
1. Introduction
Geomagnetic storms drive a spectrum of potentially catastrophic disruptions to our technologically dependent 
society (UN, 2017). A cohort study of insurance claims of electrical equipment provides evidence that space 
weather poses a continuous threat to electrical distribution grids via geomagnetic storms and geomagnetically 
induced currents (GICs) (Schrijver et al., 2014). GICs also pose a threat to oil pipelines, railways, and telecom-
munication systems (Barlow et al., 1849; Boteler, 2001; Eastwood et al., 2018; Pulkkinen et al., 2001), potentially 
wiping out the backbone of economies and destroying the livelihoods of people worldwide. In the case of extreme 
but historically probable geomagnetic storms, the economic impact due to prolonged power outages can exceed 
billions of dollars per day (Oughton et al., 2017). Hence, it is imperative to monitor and forecast space weather 
impacts like geomagnetic storms and GICs.

Abstract Geomagnetically Induced Currents (GICs) arise from spatio-temporal changes to Earth's 
magnetic field, which arise from the interaction of the solar wind with Earth's magnetosphere, and drive 
catastrophic destruction to our technologically dependent society. Hence, computational models to forecast 
GICs globally with large forecast horizon, high spatial resolution and temporal cadence are of increasing 
importance to perform prompt necessary mitigation. Since GIC data is proprietary, the time variability of the 
horizontal component of the magnetic field perturbation (dB/dt) is used as a proxy for GICs. In this work, we 
develop a fast, global dB/dt forecasting model, which forecasts 30 min into the future using only solar wind 
measurements as input. The model summarizes 2 hr of solar wind measurement using a Gated Recurrent Unit 
and generates forecasts of coefficients that are folded with a spherical harmonic basis to enable global forecasts. 
When deployed, our model produces results in under a second, and generates global forecasts for horizontal 
magnetic perturbation components at 1 min cadence. We evaluate our model across models in literature for two 
specific storms of 5 August 2011 and 17 March 2015, while having a self-consistent benchmark model set. Our 
model outperforms, or has consistent performance with state-of-the-practice high time cadence local and low 
time cadence global models, while also outperforming/having comparable performance with the benchmark 
models. Such quick inferences at high temporal cadence and arbitrary spatial resolutions may ultimately enable 
accurate forewarning of dB/dt for any place on Earth, resulting in precautionary measures to be taken in an 
informed manner.

Plain Language Summary Geomagnetically induced currents (GICs) result due to the interaction 
of the solar wind with Earth's magnetosphere, and are catastrophic to our technologically dependent society. 
Since GIC data is proprietary, the time variability of geomagnetic perturbation is used as a proxy, and 
forecasting these perturbation at high spatial resolution and time cadence is important. In this work we develop 
a deep learning-based model to forecast these perturbation measurements at arbitrary spatial resolutions and 
at high time cadence, using only the solar wind measurements. Our model outperforms, or has consistent 
performance at worse with benchmark models, and hence can provide quick, accurate forecasts at high time 
cadence across the whole globe.
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GICs are driven by the geoelectric field that depends on temporal changes in the horizontal component of ground 
magnetic field perturbation (dB/dt) and local Earth geology. Due to their proprietary nature, publicly available 
GIC data are limited. However, the geomagnetic perturbations can be measured using Ground magnetometer 
stations, and may be used as a good proxy to study GICs variations (Kozyreva et al., 2018; Lanzerotti, 2001; 
Ngwira et al., 2018). The challenge, however, is twofold: (a) the ground magnetometers measurements are not 
performed uniformly across the Earth, and are spatially sparse and (b) perturbation changes occur over timescales 
of minutes.

For predicting dB/dt, ground magnetic perturbations models at high spatial and temporal resolution are essential. 
Currently, first-principle models are used to forecast magnetic field perturbation as a part of the NOAA-Space 
Weather Prediction Center using the Space Weather Modeling Framework (SWMF; see, e.g., Tóth et al., 2005; 
Tóth et al., 2011, 2012). The models generate forecasts of the global heliosphere, while they also provide fore-
casts of the magnetospheric parameters as a part of SWMF. However, these models are computationally expen-
sive and require a long run time for high-resolution forecasts, which is necessary for highly localized magnetic 
field fluctuations.

Data-Driven empirical models are more feasible for Space Weather forecasting due to their high speed and 
low computational cost (Camporeale, 2019). However, these empirical data-driven models (e.g., Weimer, 2013; 
Weigel et al., 2002) did not perform well under Community-wide validation of geospace model ground magnetic 
field perturbation (dB/dt) predictions by Pulkkinen et al. (2013). The study was performed based on the three first 
principle models and two empirical models as a function of upstream solar wind drivers using Heidke Skill Score 
(HSS) metrics over a number of ground magnetometer stations in middle- and high-latitudes. Further evaluation 
of the models by Welling et al. (2017) concluded that all the models underpredict dB/dt during more active times 
and the need for model-data comparison and model improvements.

Machine learning (ML) and deep learning (DL) are rapidly growing areas that operate on large data. These have 
been used with great success in various studies—right from forecasting the solar wind (Upendran et al., 2020) to 
correlating auroral dynamics with Global navigation satellite system scintillations (Lamb et al., 2019). Wintoft 
et al. (2015) develop a neural network to forecast 30 min maximum of |dB/dt| at multiple stations over Europe 
with good success. More recently, Keesee et  al.  (2020) developed two models—an artificial neural network 
model, and a Long Short Term Memory cell (LSTM); Hochreiter & Schmidhuber, 1997) model—to forecast the 
geomagnetic perturbations at the Ottawa station. While these studies forecast the perturbations at high temporal 
cadence (at ≈1 min cadence), they are limited to forecast at specific spatial locations on the globe.

In this work, we develop a near grid-free global geomagnetic perturbation forecasting model using DL to address 
the issues of near-real-time forecasts at high spatial and temporal cadence. This is performed by coupling a DL 
model with a spherical harmonic basis, rendering the model near grid-free. The model takes the solar wind 
parameters, the Interplanetary Magnetic Field (IMF) measurements, and the solar radio flux measurements as 
input. It generates a forecast of perturbation measurements across the Earth with a lead time of 30 min. These 
forecasts may then be sampled over a grid at nearly any resolution. Owing to the global nature of spherical 
harmonics, the perturbation forecasts may in principle be sampled at any location on the globe. The remainder 
of the paper is structured as follows: in Section 2, we describe the data used in this work, along with the various 
preprocessing steps in Section 2.3. Then, we describe the main modeling scheme with the evaluation metrics in 
Section 3.1, benchmark models in Section 3.2, and our proposed model Deep leArninG Geomagnetic pErtuRba-
tion (DAGGER) in Section 3.3. Finally, we present the results of our model in Section 4, with a detailed analysis 
on two selected storms in Section 4.2, and follow it up with a summary and broader impact in Section 5.

2. Data
2.1. Perturbation Measurement Data Set

In this study, we obtain the ground magnetic perturbations measurements from the SuperMAG (Gjerloev, 2012) 
consortium. SuperMAG is a global network of ground stations employed in measurement of geomagnetic pertur-
bations. The available data set comprises of measurements from around 300 magnetometer stations around the 
globe. These data are validated, transformed to a common coordinate system and processed with the same base-
line remove methodology. From SuperMAG, we obtain perturbations in the geomagnetic field, δbe and δbn, from 
2010 to 2019 at 1 min cadence.
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The SuperMAG stations are primarily located in the Northern Hemisphere. Thus, while the perturbations are 
densely sampled in the Northern Hemisphere, the sampling becomes sparser (and hence more susceptible to 
outliers) for lower latitudes and the Southern Hemisphere. Particularly, the coverage of SuperMAG stations is 
dense for Magnetic Latitude (MAGLAT) ≥40°. Hence, to ensure a robust forecast and as a first step in developing 
a grid-free model, we select stations only above a MAGLAT of 40°. Since we focus primarily on forecasting at 
MAGLAT ≥40°, our results are well constrained for the same regions. However, we emphasize that our solu-
tion formalism is generic enough to perform a forecast anywhere on the globe—the forecasts for regions with 
MAGLAT ≤40°, however, may not be expected to be as well constrained. This selection leaves us with a total of 
175 magnetometer stations (at max) to constrain our forecasts.

2.2. Solar Wind, IMF, and Solar Proxy Data Set

We use the solar wind and IMF measurements at 1 min cadence 
from NASA/GSFC's OMNI data set (through OMNIWeb). Particu-
larly, we use, measurements of the three components of the IMF 
in Geocentric Solar Magnetospheric coordinates (Bx, By, Bz), solar 
wind speed (VSW), solar wind proton temperature (T), the clock 
angle of the IMF(θc), and finally the solar radio flux at 10.7  cm 
(F10.7) (King & Papitashvili, 2005; Papitashvili et al., 2014).

From these basic measurements, we generate “good” features as 
input to our model following Weimer  (2013). We perform this 
feature generation to ensure accelerated convergence of our model, 

Figure 1. Architecture of Deep leArninG Geomagnetic pErtuRbation. The model has three principle components—a time series summarizer, a coefficient generator, 
and a spherical harmonic constructor. The time series summarizer (Gated Recurrent Unit (GRU) cell) takes in the solar wind time series, and generates a summary 
hidden state. This is fed to a fully connected layer (FC Layer), which generates a vector of coefficients. These coefficients are contracted with the spherical harmonic 
basis to generate global forecast of perturbations.

GRU Cell FC Layer

R00 R1-1 R10 R11 I1-1 I10 I11 R2-1

(Basis contraction)

Global perturbation forecast

Solar wind encoder Global forecaster

Hidden state

t = 1 t = 2 t = N

Layer name Size

GRU 8 units

FC: MLP Layer 1 16

FC: MLP Layer 2 440*2 (real and imaginary parts)

Spherical harmonic layer (NOT trainable) –

Note. GRU, Gated Recurrent Unit.

Table 1 
Model Architecture: A Summary
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as these features are known to be important for reconstruction of the pertur-
bation maps (Weimer, 2013; Weimer et al., 2010).

The inputs to our model are: Bx, By, Bz, BT, VSW, t (dipole axis angle in radi-
ans), θc, T, 𝐴𝐴

√

F10.7 , BT cos(θc), VSW cos(θc), tcos(θc), 𝐴𝐴

√

F10.7cos (𝜃𝜃𝑐𝑐) , BT sin(θc), 
VSW sin(θc), t sin(θc), 𝐴𝐴

√

F10.7sin (𝜃𝜃𝑐𝑐) , BT cos(2θc), VSW cos(2θc), BT sin(2θc), 
VSW sin(2θc).

2.3. Data Preprocessing

In general, the data set for any ML work is split into three independent train-
ing, testing, and validation sets. The training set is used to train the model, 
while the validation set is used to find the best model parameters that explain 
both the training and validation sets well. Finally, the model is evaluated on 
a testing set. Since we have a continuous time series of data, which covers 
almost 75% of the solar cycle, a naive division of different years into the 

three sets may result in bias due to prevalence of storms. Thus, in order to obtain a long enough time series to 
avoid edge effects, and mitigate bias from storm prevalence, we divide the whole time series into 100 buckets. 
Of these, we consider the two buckets with the 2011 and 2015 storms for benchmark. The remaining buckets 
are then split as 80% training set, 10% validation, and 10% testing set. Also, note that following Weimer (2013), 
we have included the F10.7 measurement, which is a widely used index of solar ultraviolet radiation levels and 
solar activity (Clette, 2021; Verbanac et al., 2011). While we expect F10.7 to provide some degree of information 
regarding the solar cycle, note that this index also shows localized variations (Tapping, 2013). However, perform-
ing a detailed, quantitative analysis of the effect of the solar cycle on our model is beyond the scope of the current 
work. Hence, we may only expect some effect of the solar cycle to be captured by our model at this stage.

The OMNI data at 1 min cadence have missing values at multiple times, while the SuperMAG measurements have 
missing data both at different times, and for different stations. Across the full data set (train + test + val + storm), 
the OMNI solar wind measurements have the maximum missing data (≈25%). Similarly, for the two storm time 
series, the solar wind measurements again have the maximum number of missing data (≈18% for 2011, and 
≈24% for 2015 storm). The SuperMAG data, on the other hand, have stations that go offline. This results in no 
target sample at the station location. During the storm times, the stations in consideration have a median missing 
fraction of ≈5%. We report the median missing fraction for the missing SuperMAG measurements, as the missing 
stations do not contribute to our training scheme.

To make the data set uniform, we replace all missing values with 0 for both the OMNI and SuperMag data. To 
prevent any effect of missing measurements on our network, we replace the corresponding forecasts with 0 during 
training and validation time. This ensures that the “error” is zero for the particular sample, and that it does not 
contribute to training (and validation) of the network.

Hyperparameter Value

OMNI time series length 120 min

Maximum number of modes 20

Learning rate 5 × 10 −3

L2 regularization coefficient 5 × 10 −5

Dropout probability 0.7

Batch size 8,500

Optimizer Adam, with default Pytorch parameters

Table 2 
Hyperparameters Set Through Grid Search

Figure 2. The joint histogram of predictions v/s target SuperMag measurements for all points in the test set (panel a), 2011 storm set (panel b), and 2015 storm set 
(panel c). The colors depict the number of points in each bin of the joint histogram.
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Before feeding the data (both OMNI and SuperMag) to our model, it is good 
practice to standardize the data by subtracting the mean and dividing by 
the standard deviation of the training set for each column. Due to memory 
constraints and the very large number of datapoints in the data set, we gener-
ate the mean and standard deviation for 10,000 random points from the data. 
This “Monte Carlo” sample of points generates a mean and standard devia-
tion, which serves as a proxy for the training set mean and standard devia-
tion. During inference time, these values are used to scale the validation and 
testing sets.

3. Modeling and Methods
3.1. Metrics for Model Evaluation

We define multiple metrics to evaluate our model. For a target measurement 
of y and forecast of 𝐴𝐴 𝐴y , the metrics are listed below:

 1.  Root Mean Square Error (RMSE):

RMSE∶=

√

√

√

√
1
�

�
∑

�

(y − ŷ)2, 

where the average is taken across all samples.

 2.  Mean Absolute Error (MAE):

MAE∶= 1
�

�
∑

�

(|y − ŷ|) , 

where the average is taken across all samples.

Apart from these two metrics, we also use the Pulkkinen-Welling metrics, which are based on binary event anal-
ysis for geomagnetic storms (Pulkkinen et al., 2013). This analysis is performed only for the two storm series of 
2011 and 2015, and not for the validation and testing sets. For such an analysis, we define the horizontal pertur-
bation component as

𝛿𝛿𝛿𝛿H =

√

𝛿𝛿𝛿𝛿𝑒𝑒
2
+ 𝛿𝛿𝛿𝛿𝑛𝑛

2
, 

The time derivative dδbi/dt is approximated as:

𝑑𝑑𝑑𝑑𝑑𝑑H,𝑖𝑖

𝑑𝑑𝑑𝑑
≈

√

(

𝑑𝑑𝑑𝑑𝑒𝑒,𝑖𝑖 − 𝑑𝑑𝑑𝑑𝑒𝑒,𝑖𝑖−1

1min

)2

+

(

𝑑𝑑𝑑𝑑𝑛𝑛,𝑖𝑖 − 𝑑𝑑𝑑𝑑𝑛𝑛,𝑖𝑖−1

1min

)2

. 

Following Pulkkinen et al. (2013), we divide our target and forecast δbe and δbn for each station, into 20 min 
nonoverlapping time windows. For each window, if dδbH,i/dt crosses a specified threshold, the segment is given 
a value 1—else, it is given a value of 0. Thus, by comparing strings of 1 and 0 s, we can then understand how 
good the model is at predicting events above or below a specific magnitude. Hits (H) are defined as the number 
of correctly forecasted 1s, while Misses (M) correspond to the number of measured 1 s marked 0 by the model. 
Similarly, False alarms (F) correspond to observed 0 s, which are marked as 1 by the model, while True nega-
tives (N) are 0 s in the observation, marked as 0 by the model. Using this contingency table, we define four 
standard metrics following Welling et al. (2018) to evaluate our model:

Storm Metric

DAGGER W2013 Persistence

δbe δbn δbe δbn δbe δbn

2011 MAE 34.99 53.20 67.41 76.74 30.87 43.52

RMSE 72.86 100.46 127.54 140.93 73.53 97.41

2015 MAE 61.44 104.7 104.69 121.48 47.17 67.4

RMSE 102.45 175.37 179.97 195.52 87.78 128.90

Note. Both the metrics are in units if nT. DAGGER, Deep leArninG 
Geomagnetic pErtuRbation; MAE, Mean Absolute Error; RMSE, Root 
Mean Square Error.

Table 3 
RMSE and MAE Comparison Between DAGGER, W2013, and Persistence 
Models
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 1.  Probability of Detection (POD):

𝑃𝑃𝑃𝑃𝑃𝑃 =
𝐻𝐻

𝐻𝐻 +𝑀𝑀
. 

 2.  Probability of False Detection (POFD):

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑃𝑃

𝑃𝑃 +𝑁𝑁
. 

Figure 3. The IMF Bz (panel a), Sym-H (panel b) and top three best (panels c, e, g) and worst (panels d, f, h) performing stations for the 2011 storm. The blue color 
indicates forecast from Deep leArninG Geomagnetic pErtuRbation (DAGGER), while the black color indicates measurements at different stations (in the legend of 
each figure), with the Mean Absolute Error (MAE) reported on top.
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 3.  Proportion Correct (PC):

𝑃𝑃𝑃𝑃 =
𝐻𝐻 +𝑁𝑁

𝐻𝐻 +𝑁𝑁 + 𝐹𝐹 +𝑀𝑀
. 

 4.  HSS is a measure of correctly predicted results after accounting for those which may be correct, purely due to 
chance. The HSS is defined as:

𝐻𝐻𝐻𝐻𝐻𝐻 =
2(𝐻𝐻𝐻𝐻 −𝑀𝑀𝑀𝑀 )

(𝐻𝐻 +𝑀𝑀)(𝑀𝑀 +𝐻𝐻) + (𝐻𝐻 + 𝑀𝑀 )(𝑀𝑀 +𝐻𝐻)
. 

In this work, we select four different thresholds of 18, 42, 66, and 90 nT/min following Pulkkinen et al. (2013).

3.2. Benchmark Models

We use the 2011 and 2015 storm data sets, at 1 min cadence as benchmark. Thus, the results presented here may 
be directly compared with other models evaluated on the same data (e.g., with the models proposed by Keesee 
et al., 2020). However, we also have two self-consistent benchmark models operated on the same data set.

The first and the simplest model is a persistence model. In our formulation, this model propagates the target 
SuperMAG measurement at time T to T + LAG, where our LAG time is the forecasting horizon of our model. 
This propagation is performed for each station. Such a persistence model imposes a strong constraint on the utility 
of any proposed modeling scheme on “how much” new information is captured. For each target measurement, we 
also compute all the metrics for the persistence model.

Our second benchmark model is the empirical fitting scheme of Weimer (2013, henceforth called W2013). This 
is an empirical fitting scheme that decomposes the perturbation measurements into spherical harmonics, assum-
ing the coefficients depend only on the solar wind parameters. This is a much stronger constraint over the persis-
tence model, for it actually generates a map between the solar wind and perturbation measurements. Note that 
the W2013 metrics are generated only for the two storm times, since we do not have the forecast for all times in 
our data set.

Figure 4. The measurements at different stations (black) and forecast (blue) of Deep leArninG Geomagnetic pErtuRbation (DAGGER) for the 2011 storm, with 
different Y-axis scales to bring out the detailed features from Figure 3.
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3.3. Proposed Deep Learning Model: DAGGER

The DAGGER model is a DL model. We use T hours of OMNI data at 1 min cadence as input, and forecast the 
geomagnetic perturbations LAG minutes from the final input. The length of OMNI data and the LAG value are 
free parameters, which are set through a hyperparameter search—this is explained later in Section 3.4. The model 
has three parts: a time series summarizer, a coefficient generator, and a spherical harmonic constructor. We first 
describe the spherical harmonic formulation, and then explain the full model.

Figure 5. Same as Figure 3, but for the 2015 storm.
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3.3.1. Spherical Harmonic Formulation

Since we seek to develop a forecast model with continuous spatial coverage, we develop an almost “grid free” 
approach to forecast using Spherical Harmonics. Spherical harmonics assume a continuous and differentiable 
functional form of any field sought to be decomposed over a spherically symmetric manifold. Since we expect 
the perturbation fields to be largely smooth and devoid of localized peaks, we forecast the spherical harmonic 
coefficients, which can be easily transformed to the perturbations depending on the grid.

Any scalar field over the unit sphere can be expressed as

𝑓𝑓 (𝜃𝜃𝜃 𝜃𝜃) =

∞
∑

𝑛𝑛=0

𝑛𝑛
∑

𝑚𝑚=−𝑛𝑛

𝑎𝑎𝑛𝑛𝑚𝑚𝑌𝑌𝑛𝑛𝑚𝑚(𝜃𝜃𝜃 𝜃𝜃)𝜃 

where

���(�, �) ∶=

√

2� + 1
4�

(� − �)!
(� + �)!

����� �
� (cos(�)), 

and 𝐴𝐴 𝐴𝐴
𝑚𝑚

𝑛𝑛 (cos(𝜙𝜙)) are the associated Legendre polynomials.

These functions Ynm(θ, ϕ) are solutions to Laplace equation in a spherically symmetric coordinate system. If the 
sum is truncated at a maximum harmonic degree N, f(θ, ϕ) is approximated as

𝑓𝑓 (𝜃𝜃𝜃 𝜃𝜃) =

𝑁𝑁
∑

𝑛𝑛=0

𝑛𝑛
∑

𝑚𝑚=−𝑛𝑛

𝑎𝑎𝑛𝑛𝑚𝑚𝑌𝑌𝑛𝑛𝑚𝑚(𝜃𝜃𝜃 𝜃𝜃). (1)

Defining i = n 2 + n + m, we may rewrite Equation 1 as

𝑓𝑓 (𝜃𝜃𝜃 𝜃𝜃) ≈ 𝑓𝑓 (𝜃𝜃𝜃 𝜃𝜃) =

(𝑁𝑁+1)
2
−1

∑

𝑖𝑖=0

𝑎𝑎𝑖𝑖𝑌𝑌𝑖𝑖(𝜃𝜃𝜃 𝜃𝜃). (2)

If the 2-D fields over θ, ϕ are unrolled as one-dimensional arrays, we have

𝑓𝑓 = 𝑎𝑎𝑎 

Figure 6. Same as Figure 4, but for the 2015 storm.
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where 𝐴𝐴 𝐴𝐴𝐴 = (𝐴𝐴𝑖𝑖) is a vector of spherical harmonic coefficients, and 𝐴𝐴  =

(

�⃗�𝑏𝑖𝑖

)

 is the basis matrix wherein column 
vector 𝐴𝐴 �⃗�𝑏𝑖𝑖 corresponds to the set of basis functions Ynm(θ, ϕ). The maximum harmonic degree, or the number of 
modes N is a free parameter, which is fixed by hyperparameter tuning. This is explained in Section 3.4.

We forecast both δbe and δbn in this work. Hence, we generate coefficients for both the parameters with the same 
code.

Figure 7. Maps of the measurement (top row) and forecast (bottom row) for the 2011 storm at times with minimum (left), 
mean (center) and maximum (right) mean absolute error (MAE).
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3.3.2. Model Architecture

We use a Gated Recurrent Unit (GRU) cell (Cho et al., 2014) as a time series summarizer. A GRU cell is a variant 
of the Recurrent Neural Network (Rumelhart et al., 1985). The GRU cell has an internal memory in the form of 
a “hidden state,” which is updated as inputs are given to it. This update happens through a sequence of nonlinear 
projection and shift operations (see Cho et al., 2014, for details). Thus, the input time series is used to update the 
hidden state, encoding the information content of the input time series.

We feed in the T hours of the solar wind measurements to the cell, which are summarized into a “hidden state” 
of the cell. Note again that this length of the time series is fixed through the hyperparameter search described in 

Figure 7. (Continued)
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Section 3.4. The hidden state vector has a size of 8 units. This state vector acts as a proxy for all the solar wind 
information needed for our forecast.

The hidden state is then fed into a fully connected layer, which transforms the hidden state to a vector of coeffi-
cients. The number of coefficients is determined by the largest mode we seek to forecast from the code.

Finally, the output from the fully connected layer is then contracted with the spherical harmonic basis, giving out 
the forecast of perturbation measurements at any required spatial location. This basis, which enforces our GRU 
hidden state to be the spherical harmonic coefficients, is called the Spherical harmonic basis layer. Since the basis 

Figure 7. (Continued)
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functions are computed using their analytical form (and not learned through data), the basis layer is not trainable. 
The model architecture is summarized in Figure 1, while the layer sizes are provided in Table 1.

The MLTs of various SuperMAG stations change with time. Hence, during training and inference time, the 𝐴𝐴  are 
evaluated during every forward pass for the (MAGLAT,MLT) of the stations where the measurements are made. 
Hence, the spherical harmonic coefficients are constructed during each forward pass. Also note that the spherical 
harmonic formulation presented in Section 3.3.1 has the azimuth origin at the North Pole. Hence, we transform 
the MAGLAT into Magnetic colatitude.

Figure 8. Same as Figure 7, but for the 2015 storm.
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3.4. Hyperparameters

Deep Learning models generally have trainable parameters (which we shall henceforth call weights), and free 
parameters, which must be set manually (called hyperparameters). We monitor the validation set performance 
for different combinations of the hyperparameters, and use a Bayesian grid search to select the hyperparameters, 
which give the best validation set performance as the final model. A Bayesian grid search is a more informed 
search over a random search, which updates the next to-be-tested hyperparameter combination conditioned on the 
previous samples and validation set performance. We performed the hyperparameter search using Weights and 

Figure 8. (Continued)
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Biases (Biewald, 2020). The hyperparameters values are given in Table 2. The hyperparameter grid or bounds of 
the distributions are provided in Supporting Information S1.

With the model hyperparameters and architecture fixed, we train the model. We use the Mean Absolute Error 
(MAE) as the loss function to be optimized. The L2 regularization is a penalization term preventing the coeffi-
cients from growing too large. This penalty term serves the twofold benefit of preventing overfitting, and reduc-
ing sparsity amongst the coefficients. Since we would want as many harmonics to be captured as possible to 
better resolve local disturbances, we would want the “power” to be spread across as many modes as possible. 
Furthermore, we use dropouts (Srivastava et al., 2014) to randomly switch off neurons during the training time to 
enhance independent pathways within the model. This again serves to prevent overfitting in the model.

Figure 8. (Continued)
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As already mentioned in Section 2, we train the model on ≈10 years of data and report the 
results below. We performed the training on an NVIDIA A100 GPU with 40 GB memory, with 
the model taking ≈40 hr for convergence.

4. Results
4.1. Testing Set

We report the results and performance of our model below. This is done in two ways: first, we 
report the statistics on the test set, and next we report the performance of our model for the two 
storm times described in Section 2. For both the data sets, we benchmark our model against the 
persistence model, while for the storm times, we also benchmark against W2013. Furthermore, 
we also report the event-based metrics for the two storm times, to enable comparison across 
other models and papers.

In Figure 2, we report the joint distributions of the forecast and the target δbH for the test set 
(panel a), 2011 storm set (panel b), and 2015 storm set (panel c). Since there are a large number 
of points, the number of points in each bin is shown using the color bar. Note that the number 
points (and hence the color) scale logarithmically. The black line shows a slope = 1 line. For 
a perfect forecast, all points should lie on this line—however, this is seldom the case. From 
Figure 2, we see that by and large the model predictions and targets are aligned to the slope = 1 
line. Furthermore, the 2011 storm is better forecasted than the 2015 storm. However, note that 
we can also see that DAGGER also has a tendency to “under-forecast”, since there exist more 
points below the line slope = 1 than above.

On the held-out testing set, we obtain an RMSE (MAE) of 35.28 (20.41 ) and 63.74 (39.36) nT 
for δbe and δbn, respectively. Hence, we see a clear effect of outlier datapoints in the computa-
tion of these metrics, resulting in higher value of RMSE over MAE. For the persistence model, 
we obtain an RMSE (MAE) of 26.46 (10.39) and 35.88 (13.63) nT for δbn and δbe, respectively. 
Thus, while our model shows low errors, it does not quite beat the persistence model in these 
metrics. Hence, significant “autocorrelation” of the perturbations seems to exist within a fore-
cast horizon of 30 min, which results in the low RMSE and MSE of the persistence model.

However, RMSE and MAE do not quite give us any information regarding the temporal struc-
ture of the forecasts with respect to our measurements. Hence, we next validate our model 
performance across the two storm data sets. For these two storms, we have the nowcast from 
W2013 and the persistence model to benchmark our performance.

4.2. Storm Time Performance

We now report the RMSE and MAE of our forecasts and the benchmarks, for the two storm 
data sets in Table 3. Note that the metrics are calculated across all times and all stations. From 
Table 3, we again clearly see the feature of larger RMSE over MAE due to outlier cases in the 
data set. The persistence model shows metrics only marginally better than DAGGER forecasts 
for the 2011 storm—infact, the RMSE in δbe is lower for DAGGER. However, this is not the 
case for the 2015 storm. Hence, a 30 min time window still contains significant autocorrelation 
in the SuperMAG measurements, as we have also seen from the testing set results.

DAGGER clearly outperforms W2013 in both the metrics for both the components of the 
horizontal magnetic field perturbation. Since the primary input features to our model are the 
same as those used by W2013, these results tell us that DL is able to capture a much more 
nonlinear association between the solar wind/IMF/solar flux and geomagnetic perturbation 
measurements.

To investigate “how good” RMSE and MAE are as metrics to quantify performance, we present 
the forecasts from our model and compare them with the measurements at different stations. St
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Since there are ≤175 stations in our data set, we present results for the “best” 
and “worst” forecasted stations. To this end, we select forecasts for 3 stations, 
which show the smallest and largest MAE. Every other forecast would lie 
somewhere between the best and worst case scenarios. These forecasts for the 
two storms, along with IMF Bz and Sym-H indices are shown in Figures 3 
and 5 for the two storms.

From Figure  3, we see that the dichotomy between the best and worst 
performing forecast is quite stark. First, we clearly see that the forecasts 
deemed “best” (left column) correspond to stations where the measurements 
are ≤250 nT. Second, DAGGER is able to clearly pick out the different peaks 
and troughs of the forecast—especially for the stations with the lowest MAE 
(panel. c). Third, the perturbation forecast and measurement values are of 
similar magnitudes, and in many cases match well for the stations that show 
the lowest errors. On the other hand, prima facie it looks like DAGGER is 
unable to forecast anything at all for the stations with large MAE. Clearly, the 
largest perturbation measurements from these stations are ≈6× the largest 
perturbations for the stations showing low MAE. Since some salient vari-
ations seem to be captured by DAGGER (see panels f and h), we define 
different Y-axes for the forecast and measurement, to probe how good (or 
bad) DAGGER forecasts for these stations in Figure 4.

From Figure  4, two inferences may be made. First, DAGGER is able to 
forecast the variation of perturbation over time even for stations which have 
a large associated MAE. And second, DAGGER underpredicts the large 
perturbation values, which hence gives rise to a large MAE. Thus, a purely 
DL framework is able to assimilate the solar wind measurements and generate 
salient associations with the magnetic field perturbations. The exact scale of 
perturbations is however missed for the stations with large associated MAE.

These results are also clearly seen in Figure 5 for the 2015 storm data set. 
The stations having low MAE typically have a max perturbation of ≈300 nT, 
while the stations with the largest MAE are ≈6× larger. One interesting 
result to be noticed for the stations with the lowest MAE for this storm is 
the mismatch between forecast and measurement is larger for the 2015 storm 
than in the 2011 storm case (compare panels c, e, and g between Figures 3 
and 5). This is also consistent with larger spread in the joint histograms in 

Figure 2c. To see if this is also observed for the stations with large MAE, we check the forecast and measurements 
on different Y-axis scales in Figure 6.

From Figure 6, we once again see that DAGGER is able to capture salient variation of the perturbation meas-
urements but fails to reproduce the exact values. However, both the lowest and largest MAE for the 2015 storm 
are larger than those for the 2011 storm. From Figure 5a (and also from Section 2.3), we see that the 2015 storm 
measurements have a lot of data gaps. This is not seen for the 2011 storm (see Figure 3a). Hence, we speculate 
that the larger MAE for the 2015 storm arises from a lack of data (which may also depend on the imputation 
scheme), resulting in spurious forecast when the solar wind data is missing.

In Figure 7 and 8, we show the maps for δbH (forecast in the bottom row, perturbations in the top) in the MLT-MCO-
LAT grid, with the center being the North Pole. This is done for three cases—this time, for the time step with 
minimum, mean, and maximum MAE across all stations. From these plots, we clearly see that our model provides 
a dynamic map of the perturbations, at a cadence of 1 min. Furthermore, it also shows how underprediction gives 
rise to the larger MAEs. Thus, such perturbation maps for δbn, δbe and δbH, changing dynamically over time scale 
of ≈1 min are made available across the two storm times as video files in the online version of the paper.

Metric

DAGGER W2013 Persistence

2011 2015 2011 2015 2011 2015

MSE δbe 22.54 46.35 28.48 45.97 24.58 40.64

δbn 52.87 79.89 46.37 65.23 37.78 46.14

MAE δbe 14.68 34.18 22.51 32.33 14.63 26.12

δbn 32.55 57.68 35.40 54.30 20.13 27.50

18 POD 0.56 0.52 0.33 0.04 0.78 0.64

POFD 0.14 0.42 0.00 0.04 0.03 0.08

PC 0.84 0.57 0.95 0.82 0.95 0.88

HSS 0.25 0.06 0.48 −0.00 0.68 0.55

42 POD 0.00 0.00 0.00 0.00 0.00 0.29

POFD 0.00 0.07 0.00 0.01 0.01 0.04

PC 0.99 0.89 0.99 0.95 0.98 0.93

HSS 0.00 −0.06 0.00 −0.01 −0.01 0.21

66 POD - 0.00 - 0.00 - 0.50

POFD 0.00 0.01 0.00 0.00 0.00 0.01

PC 1.00 0.98 1.00 0.99 1.00 0.99

HSS - −0.01 - 0.00 - 0.49

90 POD - 0.00 - 0.00 - 0.00

POFD 0.00 0.01 0.00 0.00 0.00 0.01

PC 1.00 0.99 1.00 0.99 1.00 0.98

HSS - −0.01 - 0.00 - −0.01

Note. Blanks (-) denote metrics that are unavailable due to the denominator 
in the metric definition going to 0. The full table for all stations is given 
in Supporting Information  S1. DAGGER, Deep leArninG Geomagnetic 
pErtuRbation; PC, Proportion Correct; POD, Probability of Detection; 
POFD, Probability of False Detection; HSS, Heidke Skill Score; MAE, Mean 
Absolute Error.

Table 5 
Metric Comparison Between DAGGER, W2013, and Persistence Models 
for the OTT Station for the Years 2011 (Top Row) and 2015 (Bottom Row)
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Finally, we clearly see that MAE (or MSE) are good detectors of magnitude-match of the forecast with the meas-
urements but cannot pick out if the variations are captured with specific thresholds. Thus, we also present the 
event-based metrics as a measure of DAGGER performance in Table 4.

In Table 4, the metrics are computed for each station, and we report the mean and standard errors across all the 
stations. The standard error is defined as 𝐴𝐴 𝐴𝐴∕

√

𝑁𝑁  , where σ is the standard deviation of metric across all stations, 
and N is the number of stations. The standard error reflects the uncertainty in the estimation of mean value 
reported in Table 4. Note that while we present the mean and uncertainty in the metric in Table 4, we report the 
metrics for all the stations in Supporting Information S1.

From Table 4, we first compare the performance for the 2011 storm. We see that the metrics for all the models 
reduce as a function of the selected threshold. First, DAGGER shows a larger POD than either W2013 or the 
Persistence model, implying many of the events are detected well by DAGGER. This is in-line with DAGGER 
being able to capture the variation in peaks of the measurements well.

Next, we find that DAGGER shows larger POFD when compared to W2013 or Persistence for a threshold of 
18 nT/min. However, the POFD becomes small and consistent with the benchmarks for larger thresholds.

Third, we find that the PC from DAGGER are consistent with those from W2013, irrespective of the threshold 
value chosen. Since the POD of DAGGER is larger than W2013, this means that there are far more nonevent 
cases, which are captured well enough by both the models. However, the persistence model has a larger PC, which 
again indicates some true negatives being missed out by DAGGER.

Finally, DAGGER HSS are larger than W2013 but smaller than the persistence model. This tells us that propor-
tion of correct forecasts by DAGGER are significantly better informed than those from W2013. However, the 
forecasting horizon contains enough autocorrelation in the SuperMAG time series to give rise to a good fraction 
of nonrandom correct proportion of events. The HSS between DAGGER and Persistence become consistent only 
at a threshold of 90 nT/min, indicating that the large events are not very persistent, and this information from the 
solar wind is captured by DAGGER.

Interestingly, for the 2015 storm, all of our metrics—both for DAGGER and W2013 are worse than the persis-
tence model. DAGGER shows better metric performance when compared to W2013, and shows only marginally 
better (or worse) metrics (except HSS) when compared to persistence. However, the HSS indicates that both 
DAGGER and W2013 are no better than a random model generating 1 and 0 s, which is consistent with the 
performance of similar RNN-based models (Keesee et al., 2020).

Since both DAGGER and W2013 do not give as good a performance as the persistence model, we get further 
evidence of the strong influence of missing OMNI data in giving rise to the poor performance of OMNI-based 
forecasting schemes.

5. Summary and Conclusion
Accurate global forecasts of geomagnetic perturbations are extremely important from the perspective of both 
disruptions due to GICs and to understand the modulation of Earth's global magnetic field due the streaming 
solar wind.

To this end, we develop a global magnetic field perturbation forecasting model in this work. The model, named 
DAGGER, has three components: a time series summarizer, a coefficient generator, and a spherical harmonic 
constructor. The time series summarizer takes in a time series of solar wind, IMF and solar radio flux, and 
generates a summary state across all variables and time. This summary state is transformed nonlinearly by a 
fully connected layer to generate a vector of coefficients. Finally, the spherical harmonic layer contracts with this 
coefficient layer, and generates perturbation forecasts at different locations on the Earth.

We find that the DAGGER is able to clearly capture the temporal variations of the perturbations. However, 
it underpredicts the perturbation values if they are ≈1,000  nT, resulting in large pointwise errors. Note that 
DAGGER is trained predominantly during quiet times—since 2.1% of data consists of a SYM-H index of less 
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than −50 nT. Thus, the results may potentially be biased toward more quiet time than active times, resulting in 
underprediction of perturbations.

We benchmark our model against W2013 and a 30 min persistence model using various metrics. We find that 
DAGGER clearly outperforms W2013 in all metrics. However, DAGGER shows comparable (or slightly worse) 
performance than a persistence model on MAE and RMSE. On the event-based metrics, DAGGER shows either 
consistent, or worse performance than the persistence model. Clearly, a persistence model seems to possess 
an advantage over both DAGGER and W2013. However, the persistence can be computed only for individual 
stations and lacks the spatial coverage, which DAGGER provides.

Regardless of the exact performance measure, our results show that DL is able to capture associations between 
changes in the solar wind/interplanetary medium, and the Earth's magnetosphere. However, the magnetosphere 
seems to have enough memory over 30 min for a persistence model to show good enough performance. For the 
2015 storm, DAGGER and W2013 show much worse performance than the persistence model—this is not the 
case for the 2011 storm, where the performance is comparable. Since both DAGGER and W2013 show the  dras-
tic reduction in performance on the 2015 storm, the underlying reason seems to be the missing values in the 
OMNI data set, resulting in a noisy input to the model. However, similarly in metrics for both the 2011 and 2015 
storm for the Persistence model tells us that DAGGER can, in principle, perform well, given good data.

Also note that the time scale of 120 min is interestingly of the order of time to transfer information from dayside 
and nightside reconnection sites in the magnetosphere to the ionosphere system especially for higher latitude 
≥40° (Coxon et al., 2019). However, we may only speculate, and not claim an exact connection at this stage.

Our results may be compared across literature with models that benchmark on the two storms, at similar cadence. 
Models by Keesee et al. (2020) consider the solar wind and IMF parameters as inputs, and output the geomagnetic 
perturbations at the Ottawa station (OTT). However, note that while DAGGER has a forecast horizon of 30 min 
(over and above the lag between OMNI and SuperMAG), such a lag is not present in Keesee et al. (2020).

We can first compare the average metrics from DAGGER with the metrics provided by Keesee et al.  (2020) 
(compare Table 4 of this paper with Table 1 of Keesee et al.  (2020)). For the 2011 storm, DAGGER clearly 
outperforms the LSTM model of Keesee et al. (2020) in all metrics except POFD. Similarly, DAGGER shows 
better performance than the ANN model for POD and PC, while the performance is consistent in HSS and slightly 
worse in POFD. For the 2015 storm, DAGGER shows better performance in POD, marginally worse perfor-
mance in PC and HSS, while far many false detections are made by DAGGER for a threshold of 18 nT/min. This 
clearly seems to be a manifestation of the missing data and the imputation scheme deployed to tackle it. Hence, 
prima facie, it seems that linear interpolation is a much better imputation scheme than zeroing of inputs. Note, 
however, that DAGGER forecasts are not confined to any particular station and generates maps of forecasts.

Next, we may also pick out the specific metrics for the OTT station (presented in Table 5), and compare them 
with the two models of Keesee et al. (2020). Here, we find for the 2011 storm that while DAGGER shows better 
performance than both the models of Keesee et al. (2020) in POD and PC, the performance is marginally worse in 
POFD and HSS. However, note that DAGGER HSS is more than (or even similar to) the LSTM model of Keesee 
et al. (2020), while it is lower than the ANN model. For the 2015 storm, DAGGER outperforms both the models 
in POD, while the performance is marginally worse in PC, POFD, and HSS. This is consistent with the average 
performance across all stations, and seems to again point toward a dependence on the data imputation scheme.

We also compare our result with Pulkkinen et al. (2013) study but not for a particular station or event. In general, 
none of the models in the community, including first-principle and empirical, can capture the high dB/dt (1.5 nT/s 
or 90  nT/min) threshold. This behavior is very important while forecasting particularly strong spaceweather 
events. If the mitigation of a storm depends on a model forecast, underprediction of the perturbation magnitude 
would pose a significant problem. These models are not able to reproduce point-by-point fluctuations of pertur-
bation due to the complex waveform of the perturbation signal. Hence, this is an important issue, which would 
need to be mitigated in the future.

It is important to note the various caveats associated with this work. The first, and the most obvious issue is of 
the missing data. We have imputed the missing data with 0 s. While this is a simplistic scheme of imputation, we 
did not perform any interpolation as we did not find any well-motivated reason to induce artificial variations in 
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the data. However, addressing this issue with complex imputation schemes is far too complicated, and beyond 
the scope of this work.

Next, we see that the DAGGER forecasts follow the variations in SuperMAG measurements well but do not 
reproduce the exact values when the perturbations are large. The fact that DAGGER captures the variations but 
not the exact magnitude, seems to arise from a lack of “context” perturbation measurements. One can perform a 
nonlinear rescaling (see, e.g., Camporeale et al., 2020) to circumvent this issue. However, our overarching aim is 
to have a rather more self-consistent model avoiding any ad hoc scaling as much as possible. In principle, we can 
incorporate a proxy for the state of the Earth's magnetosphere as an input to the model. This would help provide 
“context” to the forecasting model, and may help it give the correct perturbation values (and not just capture the 
variations). Incorporating geomagnetic indices have been shown to improve the quality of magentospheric fore-
casts (see, e.g., Smith et al., 2020). However, capturing a summary of the magnetosphere, given changing stations 
across multiple MLT and MAGLAT, is nontrivial and is a work for the future.

Third, our method assumes a smooth, continuous, and differentiable perturbation field, with power distributed 
amongst different modes. Furthermore, we truncate the spherical harmonics at a maximum mode due to opera-
tional constraints and hyperparameter selection. While these assumptions are physically motivated, their effect 
is to impose a “smooth” reconstruction, which may prevent capture of localized large peaks in data across a 
set of (MLT,MAGLAT). Similarly, since we have truncated the spherical harmonics at a maximum number of 
modes, we expect the highest frequency mode to be translated to the shortest length scale that our workflow can 
resolve. Hence, DAGGER will not be able to—in the current formulation—resolve fluctuations shorter than this 
“threshold” length scale. Note further that the shortest length scales of importance would also depend on local 
ionospheric current and local geology. We, however, expect these scales to be much smaller than the length scale 
corresponding to the highest harmonic mode considered (Beggan, 2015; Pulkkinen et al., 2015).

The spherical harmonic formulation performs an instantaneous decomposition of the field over the globe. 
However, the whole system—as a sphere—evolves dynamically over time. Hence, information propagation 
across different stations takes time, which must be incorporated in the basis matrix formulation itself. While this 
is beyond the scope of the paper, such a path is a potential future work for improvement.

Also, note that DAGGER does not yet provide uncertainty estimates on the perturbation forecasts. The uncer-
tainty estimates both provide a degree of confidence, and also inform us of ill-constrained regions of forecasts. 
Thus, such uncertainties may provide us with means of diagnosing the most optimum location of stations to (a) 
reduce uncertainty and (b) optimize the number of stations.

Finally, we emphasize that the codebase and the proposed model DAGGER are general enough to be suited 
for forecasting fields on any spherically-symmetric systems. A direct application of DAGGER would be trans-
fer-learn the perturbation forecasts to magnetic field perturbation measurements in other planets. This is useful 
from both a spacecraft navigation and a science measurement perspective to gather data pertaining to specific 
locations as a study of planetary magnetospheres.

Data Availability Statement
Our model outputs are agnostic to the grid on which the basis is defined. Hence, the coefficients may be contracted 
with an appropriate basis to generate full-Earth maps of perturbation forecasts. The SuperMag data are availa-
ble online (https://supermag.jhuapl.edu/), and so is the case with OMNI (https://omniweb.gsfc.nasa.gov/form/
omni_min.html). To further reproducible research, and foster innovation with modeling schemes, we are making 
our codebase and models open source at Upendran et al. (2022). For getting researchers started with using our 
code, a tutorial notebook as a part of SpaceML (Koul et al., 2020) is available at https://spaceml.org/repo/project/
60c0a78d4ba8cb0012611ad4. Our model is built in PyTorch (Paszke et al., 2019), PyTorch-lightning (Falcon 
et al., 2019), and Sympy (Meurer et al., 2017). We also use Numpy (Harris et al., 2020), Scikit-learn (Pedregosa 
et al., 2011), and Scipy (Virtanen et al., 2020) for analysis, Dask (Dask Development Team, 2016) and Pandas 
(development team, 2020) for data processing, and Matplotlib (Hunter, 2007), Cartopy (Met Office, 2010 – 2015) 
for plotting.
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