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Abstract 

The wetting of a planar surface depends upon both the chemical nature of the surface and the 

local geometry. On a chemically identical solid surface in the form of a fiber the wetting is 

significantly different due to the global geometry of the cylindrical shape. A fluid that fully wets 

a material in the form of a smooth planar surface may not wet the same material when presented 

as a smooth fiber surface. On a fiber, a vanishing contact angle is not a sufficient condition for 

the formation of a wetting film; a macroscopic barrel shaped droplet with a vanishing equilibrium 

contact angle can exist. Moreover, two distinctly different geometric shapes of droplet are 

possible: a barrel and a clam-shell. In this work, these two shapes are considered using an 

analytical result for the barrel shape and a finite element calculation for the clam-shell shape. The 

surface free energies for these two conformations are evaluated for contact angles between 14o 

and 70o and for a wide range of droplet volumes. The results show that when the droplet volume 

is large or the contact angle is small, an axisymmetric barrel shape is the energetically preferred 

conformation, but that as the volume reduces or the contact angle increases the clam-shell shape 

becomes lower in energy. These results are compared to literature data for the roll-up (barrel-to-

clam-shell) transition and to a previously published criterion for metastability of the barrel shaped 

droplet. A conjecture on the role of the inflection angle in the barrel-shape droplet profile is also 

considered. For the contact angle range considered, the finite element results show that all barrel-

shaped droplets that are lower in energy than clam-shell droplets, are stable according to the 

metastability condition and also possess an inflection angle. 
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1. Introduction 

The wetting of surfaces involves both surface chemistry and geometry. Geometry can be either 

local, in the form of rough [1,2] or patterned [3] surfaces, or it can be global, in the form of 

spheres [4], cylinders/fibers [4-9], etc. Of these global geometries, cylinders are of particular 

importance because fibers are an extremely common material in practical applications. The study 

of the wetting of fibers is motivated by a range of reasons, such as fluid coating requirements 

[10], detergency [11], adhesion [12] and the potential importance of carbon nano-tubes [13]. It is 

therefore of no surprise that the measurement of contact angles on fibers and of the formation and 

stability of films on fibers is commonly reported. Theoretical studies of the wetting of fibers has 

shown that physical intuition developed from studying the wetting of flat surfaces can be 

inaccurate. In the case of flat surfaces, the sign of the spreading power, S=γSV-(γSL +γLV) where 

the γij ’s are the interfacial tensions, determines whether a film forms or whether a macroscopic 

droplet with a non-zero contact angle exists [6]. In the fiber case, a sheathing film only forms 

when S exceeds a finite positive value dependent on the fiber radius and a vanishing contact angle 

can be consistent with a macroscopic droplet [6,7,14,15]. In the fiber case, a zero contact angle 

does not imply a vanishing Laplace excess pressure as is the case for a flat surface (assuming 

classical capillarity) [16,8]. Despite our understanding of these differences between a flat surface 

and a fiber surface, the fact that the global geometry of a fiber leads to two fundamentally 

different conformations of macroscopic droplet, a barrel and a clam-shell (Figure 1), has only 

occasionally been studied. This appears surprising since the roll-up transition, first studied by 

Adam [17], is of significance in detergency [11,18] and, as we argue in this report, is of 

fundamental importance in understanding how a droplet-on-fiber system becomes a droplet-on-a-

plane surface in the limiting case of low fiber curvature. One reason for the relative neglect of the 

clam-shell conformation is probably the difficulty in dealing with its asymmetric shape compared 

to the axially symmetric barrel shaped conformation.  

 

In this work, we consider the clam-shell droplet-on-fiber system and use finite element 

calculations to compute the shape of the droplets for contact angles in the range 14o to 70o; we 

assume that classical capillarity holds and that gravity can be neglected. For each angle a full 

range of reduced droplet volume, Vr, defined as the droplet volume, V, divided by the cube of the 

fiber radius, xf, is considered. The finite element results are used to estimate the surface free 

energy of the clam-shell shaped droplets and these energies are then compared to those of barrel 

shaped droplets of the same volume and with the same contact angle. The energies for the barrel 

shaped droplets are calculated from the known solution using elliptic integrals [8,16]. We are 
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therefore able to present, for the first time, a “phase” diagram describing the conformation of 

minimum surface free energy, which we shall refer to as absolute stability, as a function of 

contact angle and volume. These results are compared to literature date on the roll-up transition 

and to theoretical predictions on the metastability of the axially symmetric barrel shape 

conformation [18]. A conjecture on the role of the inflection angle in the profile of the barrel 

drops is also considered [19].  The comparison shows that the absolute stability curve best 

corresponds to the experimental data. The results also show that barrel shaped droplets with 

surface free energy less than that of clam-shell shaped droplets (i.e. possessing absolute stability) 

are also stable, according to Carroll’s metastability criterion [18], and, furthermore, possess 

inflections in their profiles. 

2. Barrel droplet-on-fiber 

In the absence of gravity the equilibrium shape of a drop surface is that the Laplace excess 

pressure, ∆P, across the drop surface is everywhere constant, 
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where R1 and R2 are the principal radii of curvature at a point in the surface. Carroll [18] solved 

this equation for the axially symmetric barrel-shape subject to the boundary condition that the 

profile of the fluid surface meets the solid at an angle given by the equilibrium contact angle. The 

contact angle on the fiber is the same as on a flat surface and summarises the chemical nature of 

the surface. The solution involves elliptic integrals of the first and second kind and can be used to 

evaluate physical quantities, such as drop length, radius, volume, interfacial areas and Laplace 

excess pressure inside the drop. The solution of equation (1) enabled Carroll to develop a new 

drop-length – drop radius method of estimating contact angles from experimental observations of 

drops on fibers. This method was used in the studies of the solubilization of drops of oils on 

fibers that form the basis of the published data on the roll-up transition [18,20]. 

 

Carroll’s solution for the barrel shape droplet was subsequently used by McHale et al [8] to 

numerically compute the surface free energy, F, defined as, 
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where ALV and ASL are the liquid-vapor and solid-liquid interfacial areas. In the same work, the 

theoretical and practical importance of the inflection angle, θi, was emphasised. On a flat surface, 

the Laplace excess pressure in a droplet can be reduced consistent with conservation of drop 

volume by spreading the drop into a film. At the apex of the drop the two radii of curvature in 

equation (1) both increase. In contrast, on a fiber, any attempt to spread the drop into a thin 

sheathing film necessarily requires one of these two radii of curvature to reduce in order to 

conserve volume; at the apex of the drop profile both radii remain positive. At the contact line, 

the Laplace excess pressure can be reduced by inverting the sign of one radius of curvature 

compared to the other. This means an inflection point can exist in the profile of a barrel-shaped 

droplet and this inflection may occur close to the contact line depending upon the drop volume. 

This is also the reason why a vanishing contact angle does not preclude a macroscopic droplet. 

The practical consequence of the inflection is that attempts to measure the contact angle directly 

by a tangent-type method may result in a measurement intermediate between the contact angle 

and the inflection angle. The inflection angle value depends on drop volume and can be 

significantly different to the true contact angle. McHale et al suggested that Carroll’s method of 

contact angle measurement could be extended so that the inflection angle and any one other drop 

parameter (reduced length, Lr=LW/xf, reduced radius, n=x2/xf, etc) could be used to estimate the 

contact angle [8]. This method was applied to experimental data using numerical routines and, 

subsequently, analytical approximations [8,21]. 

3. Clam-shell droplet-on-fiber and surface free energy 

In contrast to the axially symmetric case, no solution to equation (1) exists for the asymmetric 

clam-shell shape.  However, a numerical approach can be adopted using the public domain finite 

element Surface Evolver package [22], which was developed as part of an NSF (National Science 

Foundation) funded geometry supercomputing project. This method models surfaces as unions of 

triangles with vertices that are iteratively moved from an initial trial shape until a minimum 

energy configuration is obtained. McHale et al [19] have recently described the application of 

this package to the evaluation of the clam-shell droplet-on-fiber problem. In the present work, 

these calculations have been extended to larger numbers of vertices and smoother surfaces. The 

droplets have been evolved to their equilibrium shapes for a wide range of reduced volumes and 

for contact angles between 14o and 70o and various droplet parameters evaluated. In particular, 

the surface free energy of the clam-shell shapes have been compared to that for barrel shaped 

droplets of the same volume and with the same contact angle. The barrel shape droplet 

calculations of energy used the analytical solution of equation (1) rather than the finite element 

calculation, although tests were performed to ensure no significant difference existed with the 
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finite element calculation of the barrel shapes. The results for the largest reduced volumes at 

which the clam-shell shape possessed a lower energy are given in table 1; this will be referred to 

as the absolute stability condition. Table 1 also shows the barrel drop parameters of reduced 

length and reduced radius. In performing the finite element calculations of the clam-shell shape it 

appeared that increasing the number of nodes in the mesh tended to reduce systematically the 

energy of the shape. Based on this observation, we conclude that clam-shells with reduced 

volumes below that in table 1 are likely to be of lower energy than equivalent barrel shapes, but 

that it is difficult to be certain that clam-shells with larger reduced volumes are definitely higher 

in energy than equivalent barrel-shapes. The value of reduced volume for which the barrel shape 

appeared to be higher in energy is shown in brackets in table 1. Two illustrative examples of 

clam-shell shapes with contact angles of 30o and 600 at the reduced volumes corresponding to the 

absolute stability criterion are given in figure 2. It should be noted that for presentational reasons 

far fewer vertices are shown than were used in the evaluation of the droplet energies.  

 

4. Roll-up on a fiber 

The term “roll-up” was originally used by Adam to describe the movement of a liquid off a 

cylinder as the contact angle increased [17]. This original view of roll-up is quite different to the 

increase in contact angle and reduction in contact area between a liquid drop and a plane surface. 

In the fiber case, if the angle is near a critical value a transformation in conformations occurs 

which results in further change in the contact area and the profile of the drop becomes radically 

different [18]. The most complete experimental data on roll-up was given by Carroll [18] and are 

reproduced here in figure 3 and table 2. Table 2 also includes columns for reduced volume and 

reduced length deduced from the literature data of contact angle and reduced maximal droplet 

thickness using the programs developed by McHale et al [8]. The literature data were obtained 

from experiments on the solubilization of an oil drop attached to a fiber immersed in a surfactant 

solution [18,20]. The drops were initially in the barrel conformation and underwent transitions to 

the clam-shell conformation as the volume of oil droplet reduced to some critical value. A 

sequence of photographs were taken for each droplet shown and the last photograph showing a 

barrel shape prior to a clam-shell shape was used to extract the data point representing the 

transition. 

 

Figure 3 illustrates that barrel shapes occur for large droplets, judged by the drop volume 

normalised by the fiber radius, or low contact angles and that clam-shell shapes occur for small 

droplets or high contact angles. We would argue from the global geometry of the cylindrical fiber 
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shape that such behaviour is to be expected. A droplet on a curved surface should appear to be a 

droplet on a plane surface if the curvature of the surface is low. Starting with a barrel shaped 

droplet on a fiber we can imagine the radius of the cylinder being increased so that locally the 

fiber surface appears flat. If no transition in conformation occurs the droplet shape becomes that 

of a stripe and this does not correspond to the droplet shape we would expect on a plane surface. 

However, if we have a clam-shell droplet on a fiber and increase the radius of the cylinder so that 

locally the surface appears flat then we can imagine the droplet shape changing smoothly into 

that of a spherical-cap type droplet on a plane surface. Thus, we would expect a barrel 

conformation to transform into a clam-shell conformation as drop volume relative to fiber radius 

decreased. Roll-up is therefore a direct consequence of the global geometry of the cylindrical 

shape. 

 

5. Stability conditions and comparison to data 

Two types of stability condition can be considered. The first is absolute stability in the sense of 

the conformation with the lowest surface free energy for a given droplet volume and contact 

angle, as discussed in section 3. The second is the stability of a given shape against perturbations 

of the shape and this is referred to as metastability. Carroll considered the effect of a small 

perturbation on a barrel shaped droplet and argued that changes in the Laplace excess pressure 

controlled the response of the system to the perturbation [18]. He suggested that figure 3 could be 

separated into two regions by the locus of points satisfying the equation, 

 

 013cos2 23 =+− nn eθ  (3) 

 

The points satisfying equation (3) are given by the lower solid curve in figure 3.  According to 

Carroll’s criterion points above this line correspond to stable barrel shaped droplets and points 

below this line correspond to metastable conformations possessing axial symmetry. McHale et al, 

re-examined this argument and demonstrated that the region above this curve can be further 

divided into two types as indicated by the dotted curve in figure 3 [19]. Above the dotted curve 

barrel shaped droplets with an inflection point in their profile occur, whereas below the dotted 

curve the barrel shaped droplets have no inflection in their profile. The significance of the 

inflection point is that the solution to equation (1) involves a parameterisation that can be double 

valued and two paths, both satisfying the boundary condition on the contact angle, can exist in the 

solution.  The path involving the inflection angle gives a change in relative sign of the radii of 
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curvature at the contact line with consequences on the Laplace excess pressure. It was 

conjectured that Carroll’s criterion for stability may only be valid for barrel shaped droplets with 

inflection points in their profiles. The dotted curve in figure 3 is the minimum drop size for which 

a barrel shape droplet can have an inflection in its profile. This corresponds to the inflection angle 

occurring at the contact line and is given by [8,19], 
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The finite element calculations (section 3) allow, for the first time, the surface free energy of the 

two droplet conformations to be directly compared and, in this sense, the absolute stability to be 

determined. The data from the finite element calculation of absolute stability (table 2) are shown 

as the upper solid curve in figure 3. Regions below this curve correspond to clam-shell shaped 

droplets that have a surface free energy lower than that of barrel shaped droplets having the same 

contact angle and the same drop volume. Regions above this curve are tentatively assigned as 

barrel shapes with lower energy than clam-shells. The reason we qualify the region above the 

curve as tentatively is that more accuracy in the finite element calculation could in principle 

lower the computed energy of the clam-shell shapes examined in this region.   Refining the finite 

element mesh always resulted in a slightly lower energy for the clam-shell shape. We are 

therefore more confident that the region below the curve does correspond to clam-shell shapes 

with lower energy than the equivalent barrels, i.e. the curve is a lower bound in separating the 

regions in figure 3.  

 

One immediate conclusion of the energy comparison is that all barrel shaped drops that are 

absolutely stable also have inflections in their profiles. Moreover, the comparison between the 

experimental data and the stability criteria show that the final measured barrel shapes prior to 

barrel droplets undergoing roll-up have inflection points in their profiles. The majority, although 

not all, of these drops also lie above the curve indicating absolute stability. None of the 

experimental points lie in the region between the curve indicating metastability and the inflection 

point condition. This is important because McHale et al originally suggested that contact angles 

for the axially symmetric barrel shape could be deduced by measuring the inflection angle and 

one further parameter, such as the drop reduced radius (i.e. maximal radius normalized by the 

fiber radius) or reduced contact length (i.e. wetted length along the fiber divided by fiber radius) 

[8].  No previous work has presented theoretical calculations showing that stable barrel shaped 

drops are likely to belong to those possessing an inflection angle.    The presentation of 
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experimental data in figure 3, chosen by Carroll, uses the barrel drop reduced radius and the 

contact angle as parameters [23]. However, the original data was obtained in the form of the 

reduced radius and reduced contact length and the solution for the axially symmetric barrel shape 

used to calculate the contact angle [23]. Figure 4 presents the data and the three curves from 

figure 3 in this form using the programs developed by McHale et al. to convert between barrel 

shape parameters [8]. The scatter in the data on this diagram is reduced compared to figure 3 and 

all curves appear as good approximations to straight lines. The agreement between the 

experimental data and the curve indicating absolute stability is good, particularly when taking 

into account the limitations in the experimental data and allowing for the fact that all accessible 

experimental data must lie to the left of the theoretical line due to them being pre-critical drops 

[18]. To have further confidence in the difference between the stability criteria, the inflection 

angle condition and metastability, additional experimental data is required. It is hoped that the 

calculations of the clam-shell conformation will provide further motivation for new experiments.  

6. Conclusion 

The wetting of a fiber surface has been considered with a particular emphasis on the role of the 

global geometry of the cylindrical shape. Differences between the two conformations of droplet 

possible on a fiber have been discussed. A physical argument for the transition from the axially 

symmetric barrel conformation to the asymmetric clam-shell conformation with reducing drop 

volume or increasing fiber radius has been provided. Finite element calculations have been 

performed for the clam-shell shape droplet and the surface free energy of the shape obtained. A 

curve indicating the absolute stability of clam-shell droplets, for which their energy is lower than 

that of equivalent barrel shaped droplets, has been constructed. This curve has been compared to 

both experimental data and a curve indicating metastability. The relative location of the curve 

indicating barrel shaped droplets with an inflection angle has also been considered. It has been 

shown that all barrel shaped droplets that are absolutely stable also possess an inflection in their 

profile and that these drops are also stable according to the metastability condition. The curve of 

absolute stability for the axially symmetric conformation is in good agreement with literature data 

on roll-up. 
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Tables 

 

Table 1 Literature data for roll-up. Equilibrium contact angle, θe and reduced maximal droplet 

thickness, n, were taken from ref. [18]. Reduced wetted length, Lr, and volume, Vr, 

were calculated using the programs developed in [8]. 

 

θe 
o Vr=V/xf Lr=LW/xf n 

10.13 26.315 7.100 1.763 

14.93 29.299 6.766 1.836 

16.07 46.464 7.604 2.101 

19.06 48.103 7.399 2.138 

18.05 89.703 8.949 2.585 

22.24 84.822 8.450 2.560 

21.94 141.183 9.823 3.007 

19.96 207.831 11.118 3.406 

24.10 251.751 11.395 3.659 

25.90 142.009 9.519 3.043 

28.06 147.269 9.450 3.092 

29.80 200.892 10.233 3.430 

28.00 88.245 8.081 2.633 

27.34 49.148 6.745 2.210 

31.12 59.417 6.888 2.355 

34.05 43.884 6.009 2.186 

33.93 102.937 8.025 2.802 

36.93 89.979 7.466 2.705 

41.91 93.679 7.227 2.778 

42.15 327.691 10.888 4.118 

53.84 795.465 13.432 5.616 

61.93 611.879 11.738 5.217 

63.25 840.848 12.951 5.797 

68.59 1572.502 15.492 7.174 
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Table 2 Finite element results for the clam-shell shape. The largest volume for which a clam-

shell shape has a lower surface free energy than a barrel shape is shown in column 

two. The bracketed value indicates the next higher volume for which the energy of the 

clam-shell appears to be higher than that of the barrel. 

 

θe 
o Vr=V/xf  F/γLV Lr=LW/xf n 

14 7.9 (8.0) 8.286 4.5117 1.382 

16 10.0 (10.1) 10.426 4.682 1.453 

18 12.4 (12.5) 12.832 4.848 1.527 

20 15.0 (15.1) 15.406 4.997 1.602 

22 18.4 (18.5) 18.642 5.193 1.689 

25 24.3 (24.4) 24.093 5.471 1.823 

30 37.8 (38.0) 35.781 5.979 2.076 

35 59.3 (59.5) 52.623 6.606 2.387 

40 94 (95) 76.871 7.364 2.769 

45 154 (156) 113.54 8.333 3.257 

50 266 (267) 172.06 9.626 3.910 

55 493 (495) 270.90 11.412 4.813 

60 1010 (1020) 452.33 14.017 6.132 

65 2400 (2450) 827.62 18.130 8.213 

70 7200 (7250) 1756.8 25.408 11.891 
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Figure Captions 

 

Figure 1 Droplet conformations on a fiber: (a) barrel, and (b) clam-shell. 

 

 

Figure 2 Axial and side views of clam-shell shapes with volumes corresponding to the absolute 

stability transition volumes: (a) θe=30o, V/xf
3=37.8, and (b) θe=60o, V/xf

3=1010. 

 

Figure 3 Literature data [18] for the barrel drop size at which roll-up occurs. The upper solid 

curve is the absolute stability condition, the dotted curve is the drop size at which the 
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inflection point in the profile touches the fiber surface, and the lower curve is the 

metastability condition. 

 

Figure 4 Data from figure 3 presented using the measured barrel shaped drop parameters of 

drop reduced length and reduced maximal drop radius. The curves are the same as 

figure 3. 
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