
Global Grammar Constraints

Claude-Guy Quimper1 and Toby Walsh2

1 School of Computer Science, University of Waterloo, Canada
cquimper@math.uwaterloo.ca

2 NICTA and UNSW, Sydney, Australia
tw@cse.unsw.edu.au

1 Introduction

Global constraints are an important tool in the constraint toolkit. Unfortunately,
whilst it is usually easy to specify when a global constraint holds, it is often dif-
ficult to build a good propagator. One promising direction is to specify global
constraints via grammars or automata. For example, the Regular constraint
[1] permits us to specify a wide range of global constraints by means of a DFA

accepting a regular language, and to propagate this constraint specification ef-
ficiently and effectively. More precisely, the Regular constraint ensures that
the values taken by a sequence of variables form a string accepted by the DFA.
In this paper, we consider how to propagate such grammar constraints and a
number of extensions.

2 Regular Constraint

Pesant has given a domain consistency algorithm for the Regular constraint
based on dynamic programming that runs in O(ndQ) time and space where d
is the domain size, Q is the number of states in the DFA, and n is the num-
ber of variables. The Regular constraint can be encoded using a simple se-
quence of ternary constraints. Enforcing GAC on this decomposition achieves
GAC on the original Regular constraint. and takes just O(ndQ) time and
space. We introduce a second sequence of variables, Q0 to Qn to represent the
state of the automaton. We then post the sequence of transition constraints
C(Xi+1, Qi, Qi+1) for 0 ≤ i < n which hold iff Qi+1 = T (Xi+1, Qi) where
T is the transition function of the DFA. In addition, we post the unary con-
straints Q0 = q0 and Qn ∈ F . To enforce GAC on such ternary constraints,
we can use the table constraint available in many solvers, or primitives like the
implication.

One advantage of this encoding is that we have explicit access to the states of
the automaton. These can be used, for example, to model the objective function.
The states of the automaton also need not be finite integer domain variables but
can, for example, be set variables. We can model the open stacks problem in this
way. This encoding also works with a non-deterministic finite automaton. Whist
NFA only recognize regular languages, they can do so with exponentially fewer
states than the smallest DFA. Enforcing GAC on the encoding takes O(nT)

F. Benhamou (Ed.): CP 2006, LNCS 4204, pp. 751–755, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

752 C.-G. Quimper and T. Walsh

time, where T is the number of transitions in the automaton. This number can
be exponentially smaller for a NFA compared to a DFA. We can also encode
the soft form of the Regular constraint [2] in a similar way by introducing a
variable whose value is the state of the automaton and the distance from it.

For repeating sequences, we introduce two cyclic forms of the Regular con-
straint. Regular+(A, [X1, . . . , Xn]) holds iff the string defined by X1 . . . XnX1
is part of the regular language recognized by A. To enforce GAC on Regular+,
we can create a new automaton in which states also contain the first value
used. We can therefore use this new automaton and a normal Regular con-
straint to enforce GAC on Regular+ in O(nd2Q) time. The Regularo con-
straint ensures that any rotation of the sequence gives a string in the regular
language. More precisely, Regularo(A, [X1, . . . , Xn]) holds iff the strings de-
fined by Xi . . . X1+(i+n−1 mod n) for 1 ≤ i ≤ n are part of the regular language
recognized by A. Unfortunately, enforcing GAC on a Regularo constraint is
NP-hard (reduction from Hamiltonian cycle).

3 Cfg Constraint

Another generalization is to context-free languages. We introduce the global
grammar constraint Cfg(G, [X1, . . . , Xn]) which ensures that X1 to Xn form a
string accepted by the context-free grammar G. Such a constraint might be useful
in a number of applications like bioinformatics or natural language processing.

To achieve GAC on a Cfg constraint, we give a propagator based on the
CYK parser which requires the context-free grammar to be in Chomsky normal
form. The propagator given in Algorithm 1 proceeds in two phases. In the first
phase (lines 0 to 7), we use dynamic programming to construct a table V [i, j]
with the potential non-terminal symbols that can be parsed using values in the
domains of Xi to Xi+j−1. V [1, n] thus contains all the possible parsings of the
sequence of n variables. In the second phase of the algorithm (lines 9 to 18), we
backtrack in the table V and mark each triplet (i, j, A) such that there exists a
valid sequence of size n in which A generates the substring of size j starting at
i. When the triplet (i, 1, A) is marked, we conclude there is a support for every
value a ∈ dom(Xi) such that A → a ∈ G.

Theorem 1. CYK-prop enforces GAC on Cfg(G, [X1, . . . , Xn]) in Θ(|G|n3)
time and Θ(|G|n2) space.

Our second propagator is based on the popular Earley chart parser which also
uses dynamic programming to parse a context-free language. Whilst this prop-
agator is more complex, it is not restricted to Chomsky normal form, and is
often much more efficient than CYK as it parses strings top-down, particularly
when the productions are left-recursive. The propagator again uses dynamic
programming to build up possible support. Productions are annotated with a
“dot” indicating position of the parser. WLOG, we assume a unique starting
production S → U . A successful parsing is thus S → U•.

Global Grammar Constraints 753

Algorithm 1. CYK-prop(G, [X1, . . . , Xn])
for i = 1 to n do1

V [i, 1] ← {A | A → a ∈ G, a ∈ dom(Xi)}2

for j = 2 to n do3

for i = 1 to n − j + 1 do4

V [i, j] ← ∅5

for k = 1 to j − 1 do6

V [i, j] ← V [i, j] ∪ {A | A → BC ∈ G, B ∈ V [i, k], C ∈ V [i + k, j − k]}7

if S �∈ V [1, n] then return “Unsatisfiable”8

mark (1, n, S)9

for j = n downto 2 do10

for i = 1 to n − j + 1 do11

for A → BC ∈ G such that (i, j, A) is marked do12

for k = 1 to j − 1 do13

if B ∈ V [i, k], C ∈ V [k + k, j − k] then14

mark (i, k, B)15

mark (i + k, j − k, C)16

for i = 1 to n do17

dom(Xi) ← {a ∈ dom(Xi) | A → a ∈ G, (i, 1, A) is marked}18

return “Satisfiable”19

Algorithm 2 is the Earley chart parser augmented with the sets S that keep track
of the supports for each value in the domains. We use a special data structure to
implement these sets S. We first build the basic sets {Xi = v} for every poten-
tial support v ∈ dom(Xi). Once a set is computed, its value is never changed. To
compute the union of two sets A ∪ B, we create a set C with a pointer on A and a
pointer on B. This allows to represent the union of two sets in constant time. The
data structure forms a directed graph where the sets are the nodes and the pointers
are the edges. To enumerate the content of a set S, one can perform a depth-first
search. The basic sets {Xi = v} that are visited in the search are the elements of S.

Theorem 2. Earley-prop enforces GAC on Cfg(G, [X1, . . . , Xn]) in O(|G|n3)
time for an arbitrary context-free grammar, and in O(|G|n3) space.

4 Related Work

For the Regular constraint, a propagation algorithm based on dynamic pro-
gramming that enforces GAC was given in [1]. Coincidently Beldiceanu, Carlsson
and Petit proposed specifying global constraints by means of deterministic finite
automaton augmented with counters [3]. Propagators for such automaton are
constructed automatically by means of a conjunction of signature and transi-
tion constraints. The ternary encodings used here are similar to those proposed

754 C.-G. Quimper and T. Walsh

Algorithm 2. Earley-Prop(G, [X1, . . . , Xn])
for i = 0 to n do C[i] ← ∅1

queue ← {(s → •u, 0, ∅)}2

for i = 0 to n + 1 do3

for state ∈ C[i] do push(state,queue)4

while queue is not empty do5

(r, j, S) ← pop(queue)6

add((r, j, S), C[i])7

if r = (u → v•) then8

foreach (w → . . . •u . . . , k, T) ∈ C[j] do9

add((w → . . . u• . . . , k, S ∪ T), queue)10

else if i ≤ n and r = (u → . . . •v . . .) and v ∈ dom(Xi) then11

add((u → . . . v• . . . , j, S ∪ {Xi = v}), C[i + 1])12

else if r = (u → . . . •v . . .) and non terminal(v,G) then13

foreach v → w ∈ G such that (v → •w, i, ∅) �∈ C[i] ∪ queue do14

push((v → •w, i, ∅), queue)15

if C[i] = ∅ then16

return “Unsatisfiable”17

if (s → u•, 0, S) ∈ C[n] then18

for i = 1 to n do19

dom(Xi) = {a | Xi = a ∈ S}20

else21

return “Unsatisfiable”22

Algorithm 3. add((a, b, c), q)
if ∃ (a, b, d) ∈ q then1

q ← replace((a, b, d), (a, b, c ∪ d), q)2

else3

push((a, b, c), q)4

in [3]. However, there are a number of differences. One is that we permit non-
deterministic transitions. As argued before, non-determinism can reduce the size
of the automaton significantly. In addition, the counters used by Beldiceanu,
Carlsson and Petit introduce complexity. For example, they need to achieve
pairwise consistency to guarantee global consistency. Pesant encodes a cyclic
Stretch constraint into a Regular constraint in which the initial variables of
the sequence are repeated at the end, and then dummy unconstrained variables
are placed at the start and end [1]. Hellsten, Pesant and van Beek propose a
domain consistency algorithm similar to that for the Regular constraint [4].
They also showed how to extend it to deal with cyclic Stretch constraints.

Global Grammar Constraints 755

5 Conclusions

We have studied a range of grammar constraints. These are global constraints
over a sequence of variables which restrict the values assigned to be a string
within a given language. Such constraints are useful in a wide range of schedul-
ing, rostering and sequencing problems. For regular languages, we gave a simple
encoding into ternary constraints that can be used to enforce GAC in linear time.
Experiments demonstrate that such encodings are efficient and effective in prac-
tice. This ternary encoding is therefore an easy means to incorporate this global
constraint into constraint toolkits. We also considered a number of extensions
including regular languages specified by non-deterministic finite automata, and
soft and cyclic versions of the global constraint. For context-free languages, we
gave two propagators which enforce GAC based on the CYK and Earley parsers.
Experiments show that the propagator based on the CYK parser is faster at the
top of the search tree while the propagator based on the Earley parser is faster
at the end of the search. This shows some potential for a hybrid propagator.
There are many directions for future work. One promising direction is to learn
grammar constraints from examples. We can leverage on results and algorithms
from grammar induction. For example, it is not possible to learn a Regular

constraint from just positive examples.

References

1. Pesant, G.: A regular language membership constraint for finite sequences of vari-
ables. In Wallace, M., ed.: Proceedings of 10th International Conference on Princi-
ples and Practice of Constraint Programming (CP2004), Springer (2004) 482–295

2. van Hoeve, W.J., Pesant, G., Rousseau, L.M.: On global warming : Flow-based soft
global constaints. Journal of Heuristics (2006) To appear.

3. Beldiceanu, N., Carlsson, M., Petit, T.: Deriving filtering algorithms from con-
straint checkers. In Wallace, M., ed.: Proceedings of 10th International Conference
on Principles and Practice of Constraint Programming (CP2004), Springer (2004)
107–122

4. Hellsten, L., Pesant, G., van Beek, P.: A domain consistency algorithm for the
stratch constraint. In Wallace, M., ed.: Proceedings of 10th International Conference
on Principles and Practice of Constraint Programming (CP2004), Springer (2004)
290–304

	Introduction
	Regular Constraint
	Cfg Constraint
	Related Work
	Conclusions

