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Summary. We investigate the stability and dynamics of an isolated cloud of
gas which is contained by external pressure, and which has imposed one-
dimensional symmetry, uniform density and polytropic equation of state.
The energies of the cloud in its three internally conserved modes are summed
to form a potential function controlling radial motions, and the associated
Lagrangian is obtained. Families of stable equilibrium states are then derived
— where they exist — along with conditions for marginal instability.

We show that this simple global model mimics closely the behaviour of
clouds in detailed hydrostatic balance (DHB); and we use the global model to
discuss the onset of gravitational instability in real clouds, and in particular,
to evaluate the role of non-quasistatic compression.

1 Introduction

Detailed numerical calculations have been performed by Larson (1969, 1972) and others to
follow the evolution of an isolated and initially unstable, individual protostar as it contracts
towards ‘the main sequence. By contrast, the highly chaotic, non-equilibrium thermo-
dynamic processes which lead to the formation of such an individual protostar from the
general interstellar medium have to date only been crudely represented, as for example by
comparing the freefall time with the sound-crossing time (Jeans criterion), with the radiative
cooling time (minimum mass; Rees 1976), or with the collision time (efficiency; Larson
1976). Such comparisons are very useful as a means of establishing general trends and
dependences; but further insight can be gained only if the competing processes are more
realistically represented by global time-dependent equations. In this paper, we explore a
possible form for the global dynamical equations. We postpone consideration of magnetic,
centrifugal and tidal stresses (by imposing spherical symmetry), and of real thermal and
chemical processes (by stipulating a polytropic equation of state).

In Section 2 we develop a model for a spherically symmetric gas cloud. In Section 3 we
formulate the energies of the cloud in its three internally conserved modes. These energies
are summed to yield a potential function %; and hence a Langrangian .# controlling radial
motions of the cloud is obtained. In Section 4, % is differentiated to give parameters of
stable equilibrium and marginally unstable states. In Section 5 we show how accurately these
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results mimic the predictions of DHB calculations. In Section 6 we demonstrate how a cloud
may become ‘pre-unstable’ due to non-quasistatic compression; and in Section 7 we show
that highly non-quasistatic compression would seem inevitable for most protostellar clouds.
In Section 8 we summarize the main results. The global treatment is extended in two
appendices to the cases of cylindrical and plane-parallel symmetries.

For isothermal gas clouds, the results of this global treatment of stability are exactly the
same as those derived by McCrea (1957) on the basis of the Virial Theorem. We have
generalized the results to polytropic gas clouds with spherical, cylindrical and plane-parallel
symmetries. We have also obtained an equation of motion which enables us to investigate
non-quasistatic cloud evolution, and in particular ‘pre-instability’. This equation of motion
can be identified as the Time-Dependent Virial Theorem. However, we believe that the
global approach used here has conceptual advantages over the Virial Theorem, which arise
from its being thermodynamic rather than kinetic. We hope to develop and exploit these
advantages in future work.

2 Spherical cloud model

The model cloud has constant mass M, and is constrained to be spherical with radius R. The
gas in the cloud has uniform density p;;, (subscript ‘in’ for internal), and obeys a polytropic
equation of state with exponent n. Thus the pressure P;, and isothermal sound speed g;, of
the cloud gas are given by

Pin = Kpl = K(3Mo/ATR®)Y;  af, = KT/ = Pig/pin = KofT V. (1)

K and n are constants defining a particular polytrope, &k is Boltzmann’s constant, T the gas
kinetic temperature, and /7 the mean gas-particle mass. The cloud is contained by constant
external pressure P, (subscript ‘ex’ for external).

Evidently this is a very idealized cloud model. It is spherical and has uniform density
simply so that we can describe the instantaneous state with a single parameter R. Externally
compressed (non-magnetic, non-rotating) clouds only have gravitationally bound, stable
hydrostatic equilibrium states if 7> 0. In reality such states are centrally peaked. If the
external pressure containing the cloud is initially small and is increased sufficiently slowly
for radial pulsations to be damped, the cloud is compressed quasistatically; it evolves
through a continuous succession of stable equilibrium states with monotonically decreasing
radius. If n<4/3, the cloud eventually reaches a critical equilibrium state and becomes
unstable against indefinite contraction. This quasistatic approach to instability against
contraction has been mapped for an isothermal gas (n =1, K = a,) by Ebert (1955) using
the DHB solutions of Emden (1907). Ebert’s conclusions are supported by an approximate
treatment due to McCrea (1957) based on the Virial Theorem. McCrea confirms the critical
equilibrium state as the real onset of instability against contraction for an isothermal gas
cloud which is compressed quasistatically. We are here able (i) to extend this conclusion
to general polytropes, and (ii) to evaluate the modifications inherent in a non-quasistatic
approach to instability.

Numerical calculations of the contraction of initially static but gravitationally unstable,
spherically symmetric clouds indicate that, whether or not the initial state is centrally
peaked, the cloud becomes increasingly centrally peaked as the contraction proceeds (e.g.
Larson 1969, 1972). However, we argue — as did McCrea — that in nature a protostellar
cloud is probably not afforded sufficient time to evolve quasistatically, and so at the
onset of instability is unlikely to be very centrally peaked, if at all; indeed, we are already
investing the cloud with an unrealistically high degree of coordination by giving it spherical
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symmetry and isotropic P,. For example, consider a cloud whose instability against
contraction is triggered by a sudden increase in P,y. This may happen as the cloud is overrun
by a shock (e.g. Opik 1953); or as the surroundings of the cloud are ionized and heated by
a nearby, newly born O star (Ebert 1955). Under these circumstances the cloud may
actually start its contraction with a central rarefaction. Alternatively, consider a subcloud
condensing gravitationally out of a parent cloud which is itself contracting. Disney (1976)
has argued that the boundary of such a subcloud will from the outset have supersonic speed
relative to its centre; and that this must inhibit the development of a central density peak
during the isothermal stages of the contraction. Much later on, as the protostar approaches
the main sequence, a pronounced central peak is likely to develop; but hopefully we can
avoid these complications and derive useful results for the earlier formative stages by
assuming a uniform density within the cloud. In these earlier stages we expect an effective
polytropic exponent dIn(P)/dIn(p)<1 (e.g. Hoyle 1953; Shu et al. 1972), in which
case the asymptotic similarity solutions of Larson (1969) suggest that the tendency toward
central peaking is relatively weak.

The remaining assumptions underlying this model are only justifiable on grounds of
expediency. (i) The epoch- and scale-dependent thermal and chemical processes defining the
real equation of state are likely to have important consequences for the formation of stars
and galaxies; in particular they introduce characteristic mass-scales into the problem (e.g.
Hoyle 1953; Low & Lynden-Bell 1976; Rees 1976; Silk 1977), and they are only
ignored here in favour of a polytropic equation of state in order to focus attention on the
dynamics. (ii) Likewise, departures from spherical symmetry must be of fundamental
importance; Lin, Mestel & Shu (1965) have shown that initial departures from spherical
symmetry are amplified during freefall collapse, and the inclusion of magnetic, centrifugal
and/or tidal stresses would introduce asphericity by anisotropically inhibiting contraction.
(iii) Finally, constant P,, must be supplied by an infinitely hot, infinitely rarefied gas:
Goy = and pey > 0, 50 that P,y = pex @2, remains finite. Such a gas has zero density /inertia,
so it does not feel the gravitational attraction of the underlying cloud, and it can adjust
instantaneously to keep in touch with a moving cloud boundary; at the same time, if the
gas particles accrete on to the cloud, its mass does not change, dMy/dt < R*peyaex = 0.

3 ‘Internally conserved’ energy modes

In this section we enumerate the ‘internally conserved’ energy modes of the cloud, and
formulate how the energy of each mode changes when the cloud makes a radial excursion
from its initial state with radius R, to a displaced state with radius R. An energy mode is
‘internally conserved’ if (i) its energy is a function of R only (i.e. a function of state) and
(i) it exchanges energy exclusively with other internally conserved modes and/or with the
bulk kinetic energy associated with radial motion. Such a mode will contribute to the
potential function # controlling radial motions.

The gravitational energy is & = —3GM3/SR = %5(R/R,) ™!, where %o =—3GM}/5R,.
We must also consider the work done by/against pressure on/by the cloud as it contracts/
expands. This work is supplied to a compressional energy # defined by d B/dV = Py — Py,
where V is the cloud volume. Substituting for Py, from equation (1) and integrating, we
obtain

g-_—} gex +=@in =Pex VO(R/R0)3
+ (1 =81 7) (=1 KMEVE"D(R/RPV™ —8,,3KMoIn (R/R,),  (2)

where 8 , is the Kronecker delta. (The constant of integration is arbitrary.)
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We note that the internal energy of the cloud .# is not necessarily an internally conserved
mode. The polytropic equation of state (1) prescribes the variation of P, and a;, =
(kT/m)"? with p,,. Hence, in principle, equation (1) admits arbitrary variations in T or 7;
i.e. no unique dependence of .#, or of chemical composition, on p;, is required. Here we
simply presume that the (unspecified) microscopic thermal and chemical processes (which
in reality determine the variations of T and #7) (i) are instantaneous, and (ii) contrive to
reproduce equation (1). Some internal energy is supplied/removed by compression/expansion
(specifically, by #;,,), but the balance must be extracted from or dumped into an external
reservoir, such as the radiation field. If the gas has constant chemical composition, and a
constant ratio of specific heats y (i.e. no degrees of freedom ‘freezing out’ or ‘melting in’
at quantum thresholds) we can write # = (y —1)"'KMJV§D(R/Ro)**"™ + constant.
In this particular circumstance, the cloud’s luminosity (which can be negative) is
d(Bin—2)dt=3m—7)(y =1 KMIVETD(R/Re* " dIn(R)/dt. The special case
n = v then yields zero luminosity and hence represents adiabatic excursions.

The internally conserved modes can be summed to form a global potential function:
U=%+B;,+RB.,. The kinetic energy associated with homologous radial motions of a
uniform-density cloud is ¥~ =3My(dR/dt)*/10. Hence we can construct a global
Lagrangian ¥ = ¥ " — %, and deduce the equation of motion:

DR e 2 5 g RRo + Ao (RIRDCD 3P VoRR]. ()
dt? 3My dR 3MeRo =~ | ° meee ex OVl

where oy, = 3KMJVET™.

4 Stable and neutral equilibria; quasistatic compression

If d%/dR)g, =0, Ry is an equilibrium state, and the equilibrium is — respectively — stable,
neutral or unstable, according as R3(d*#/dR*)g, =12PexVo + 3n—4)47 >, =, or <O.
Since PV, and ¢, cannot be negative, unstable equilibrium states are only available when
n<4/3.

If (d%/dR)g, = (d*%/dR*)g, =0, R, is a neutral equilibrium state with R3(d*%/dR*)g,
= (4 —3n)3nHy, and

Ro = Ry = [(3/4)"570 "M KG™ MSH)] 1/(3n-4)

Po >Py,=(1-3 nj4)K~YCn-D[28374573, n"3G3M(2,]77/(3"'4) “4)

(subscript ‘nu’ for neutral). For 0 < n< 4/3, the neutral equilibrium state is real and has
] 3%/dR3)Rnu >0, so that it represents the verge of instability against contraction (for a
cloud which has been compressed quasistatically). For <0 or n>4/3, the neutral
equilibrium state is unreal. :

The general equilibrium condition, (d%/dR )g = 0, reduces to

Ro~Reg, Pex=K(3Mo/4TR3)"—3GM3/20mRE, ®)

(subscript ‘eq’ for equilibrium). The stability condition, ((1’2?//dR2)Re > 0, can then be
written as Req <Ry, for n>4/3, K> K., = (4nM}/3)*(G/5) for n =3f/3 (subscript ‘cr’
for critical) and Req > Rpy, for 0 < 1< 4/3. There are no stable equilibria for n<O0.

For >0, the pattern of stable equilibrium states, and hence the path for quasistatic
evolution of a cloud subjected to monotonically increasing Pe,, are fundamentally different
according as n>, =, or <4/3; and if n=4/3, according as K>, =, or <K . This is
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illustrated on the (P, R)-plane in Fig. 1(a). (i) For n > 4/3, the cloud always has a stable
equilibrium state and can be compressed indefinitely from (Pex, Req) = (0, Rpmy) to
(e, 0), where R, = [3/4m)™@ V5KG M D] VE 14 | (subscript ‘mx’ for maximum). (ii)
For n=4/3, equation (5) reduces to Pey = (K — K ;) (3Mo/4m)**R5, so that provided
K> K (as is the case for the n=4/3 cloud represented in Fig. 1a), the cloud always has a
stable equilibrium state and can be compressed indefinitely from (Pex,Req)=1(0, ) to
(=0, 0). (i) For 0<n<4/3, the cloud can be compressed quasistatically only from
(Pex; Req) =(0,°) to (Pyy,Rpy), where it then becomes unstable against indefinite
contraction. (iv) For n=4/3 with K <K, and for =0 with P,y > K, the cloud has no
equilibrium and contracts indefinitely. (v) For n =0 with P, <K, and for 1 <0, the cloud
has an unstable equilibrium and therefore contracts/expands indefinitely according as it is
released from a sufficiently small/large initial radius.

TV s 1

(a) OS5,

05

R
gy (R-re:)

(b)_o‘5|1|||11|111144441I1|

Figure 1. (a) The (P, R)-plane for uniform-density spherical clouds with standardized polytropic equation
of state Pj, =K np?n. The continuous lines (——) mark stable equilibrium states; the dashed lines (— — —),
unstable equilibrium states, R,,(Pey); and the dotted lines (----- ), marginally pre-unstable states,
Rpi(Pex)- The inset schematically divides the (P, R)-plane into two domains: clouds released from rest
in the shaded domain between R, (Pex) and R {Pex) pulsate indefinitely; whilst clouds released in the
unshaded domain contract indefinitely, The filled circles mark the limiting neutral equilibrium states, and
the cross marks the standardizing state (Pj, = 4Prf, R = R;f) to which all polytropes subscribe. The
numbers (1/3, 2/3, etc.) by the curves give the corresponding values of 7. (b) As (a), but for clouds in
DHB; pre-instability is not defined here.
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We shall henceforth refer cloud parameters to those obtaining in the neutral equilibrium
state for an isothermal cloud,

Rnu(n = I,K =K1) = 4GM0/15K1 _>er’
6
Pou(1=1,K =K,) = 2713°* 171G MK § > Py, ©

(subscript ‘rf” for reference), with internal pressure P;, =4P.c. We can then — without
significant loss of generality — standardize the polytropic coefficients K be requiring
that all polytropes subscribe to this same state. In other words, we restrict our consideration
to a one-parameter (parameter ) family of pre-existing clouds which all have the same mass
M, and in the particular state R = R, also have the same internal pressure Py, =4P,. This
requires that we put K > K, = (4P, )*"MKD. For these standardized polytropes we then
have K,;3 =4K/3,i.e. K45 > K4,

(Rnw/Re) = VG (P /Prg) = (4 —3n)pd /@30, @)
(Pex/Prf) = 4(Req/er)_3n - 3(Req/er)_4, (8)

and (Rpy/Re) = (4/3)VC ™), The loci of equilibrium states predicted by equation (8) are
plotted on the (P, R)-plane in Fig. 1(a) for several representative values of 7.

5 Comparison with detailed hydrostatic balance (DHB) solutions

It is appropriate to compare these results with those based on (analytic or accurate
numerical) solutions of the DHB equation. Some solutions are tabulated by Airey, Miller &
Sadler (1932), Chandrasekhar & Wares (1949) and Shu ez al. (1972); additional solutions are
readily computed. Here we adopt the notation of Chandrasekhar (1939) and put K - K, as
above. For a particular M, and 7, the variation of equilibrium radius R.q with external
pressure Pey is obtained in parametric form (parameter £) from the following two require-
ments. If the DHB solution is truncated at a particular &, corresponding to the cloud
boundary, then (i) the central density o, must be scaled so that the radius r(§) contains mass
M (&) =M,, and (ii) the internal pressure at the boundary, P(£), must exactly match the
external pressure, Pey. Thus we can eliminate p, in favour of M,, and identify
Chandrasekhar’s [r(§); P(§)] with our (Reg, Pey) to obtain:

forn+#1,4/3

(Req/Ref)pup = [(40/5 1n—11) (£/3)"1d8,, [dE |G~ M ]VEN-4),

(Pex/Pe)pup = [27%7(5 |1 —11/n)*(3/£)*(d8 ,/d £) VG- Dgmn-1), (92)
forn=1,

(Req/Ref)pup = 15/4£(d y/d§),

(Pex/Pr)pun = 2837457384 (dy/dE)? exp (— ), (9b)

(apart from normalization, equation (9b) is identical to the solution obtained by Ebert
1955);

for n =4/3, the cloud evolves homologously, i.e.

(Pex/Prt)puB = 2'°37 572 [£003(50)]* (Req/R: 1) Db, (9¢)
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where £o ~ 2.814 is the root of £2(d0 3/d £) = — 279325%2 ~ —1.572,and s0 [£405(§o)] = 1.111.
The DHB equilibrium loci defined by equations (9a—c) are plotted on the (P, R)-plane in
Fig. 1(b). Qualitatively (and neglecting the unstable equilibrium states since they are not
physically significant), the global uniform-density solutions (Fig. 1a) closely mimic the DHB
solutions (Fig. 1b). However, the uniform-density spheres resist compression more
effectively in the sense that (i) at given external pressure Py <Py, pyp, the equilibrium
state of the uniform-density sphere is more extended; and (ii) the critical external pressure
P, (representing the verge of instability against contraction for 0 < n < 4/3) is greater for
the uniform- density spheres.

6 ‘Pre-instability’

The global potential function controlling a uniform density cloud is

29U 3/R\! 1/P,\[{R\? 2 R \3(-m R
=—-(__ (=== +a_am)____(__) —812In{—);
3MoK, 2 \R;¢ 6 \ P/ \R,¢ 3(n—1) \R;¢/ R ¢

(10)
4 is here referred to the thermal translational kinetic energy 3MyK /2 in the reference state
(R =R.¢, P, =4P,¢). Equation (10) is plotted in Fig. 2 for a cloud of fixed mass M, with
isothermal equation of state (=1, K = K;) and several representative values of the external
pressure P.,. In these plots, the (otherwise arbitrary) zero of potential is allocated to the
‘no-contrast’ state, (Ryo/Rrs) = (Pey/4P,¢) " (subscript ‘nc’ for no contrast), in which
there is no pressure discontinuity across the cloud boundary. The pattern of potential
curves is essentially the same for other n-values in (0, 4/3); but for larger n, the stable
equilibrium potentials become deeper as P,, approaches P,,,.
From the potential curves in Fig. 2 we see that, even if P,y < P, the cloud will contract
indefinitely provided it is released from rest in a sufficiently extended state and/or is given
sufficient initial radial kinetic energy ¥ . Specifically, if the cloud’s total energy % + ¥~

O—-a
Pe)(/pvf:D oogo ifggf\l
¥ TR
T T 3
0-05}- 3
2 O va
3MOK, /&
-0-05}- —
_O|O — ;. /’ —
{FF SFF
-015f- T
-020 P ! | L |
0 20 30 4.0
R/R;

Figure 2. The continuous lines are potentials controlling radial motions of a uniform-density spherical
cloud with isothermal equation of state (i.e. n =1), for several different values of the external pressure
Py (as labelled). The filled circles mark stable equilibria; the open circles mark unstable equilibria; and
the cross marks the critical neutral equilibrium state. The dotted lines are freefall collapse potentials for
comparison.

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z 1snbny Lz uo1senb Aq /€91 / L/296/7/G6 L/e|o1e/SBIUW/ /WO dno"ojwepeoe//:sdiy wol) pepeojumod


http://adsabs.harvard.edu/abs/1981MNRAS.195..967W

FIOBIVNRAS, 195- ~967W

974 A. Whitworth

(which is an invariant, there being no dissipation) exceeds the potential energy of the
unstable equilibrium state, then the contracting cloud gathers enough implosive momentum
to overshoot both the stable and the unstable equilibrium states, and so keeps on
contracting. We shall call this circumstance ‘pre-instability’. For an initially stationary cloud,
the minimum radius defining marginal pre-instability R p; (subscript ‘pi’ for pre-instability) is
defined relative to the radius of the unstable equilibrium state R,, (subscript ‘un’ for
unstable) by Rp; > Ry, and #(R ;) = # (Ryy). The variation of R ; with Py is shown in Fig.
1(a). In the absence of dissipation, clouds released from rest in the top left comer in Fig.
1(a) between Ryn(Pex) and Ryi(Pey) will pulsate indefinitely; whilst clouds released
anywhere else in the (P, R)-plane will contract indefinitely. Evidently pre-instability can be
very important for clouds subjected to a sudden (i.e. non-quasistatic) increase in external
pressure.

7 Conditions for pre-instability

From equation (3) we obtain the freefall equation d?R/dt*=—GM,/R?, with initial
conditions R (¢ = 0) = R, and dR/dt(t = 0) = 0; and well-known solution

)b lG) 1) TG

T Rg \ 172 37T 12
t =— = ) 11
FE 2<2GM0) [32Gp(t=0)] (1)

(subscript ‘FF’ for freefall). We can also deduce the dynamical relaxation time for
infinitesimal ~ displacement from a  stable equilibrium  state, ¢, =(7/2)
[3M,/5(d 2%/dR2)Req] Y2 (subscript ‘rl’ for relaxation). If we normalize to the freefall time
from the reference state, r,¢ = TGMy(2/15K)*?, we obtain

(trl/trf) =277 [n(Req/er)(l I _ (Req/er)-3]—l/2- (12)

A cloud will only evolve quasistatically if to > (¢;1 + t4rn), Where to, and t4,, are the time-
scales on which, respectively, P,, changes, and radial pulsations are damped (subscript ‘dm’
for damping). By imposing a polytropic equation of state we have rendered the
compressional energy quasi-conservative and hence implicitly suppressed damping from the
equation of motion: #4, =°°. An evaluation of 74, for a gas with real equation of state
is outside the scope of this paper, but #4,, is unlikely to be less than the sound-crossing time
te (subscript ‘sc’ for sound-crossing), so we put (¢4m/?:£) 2

(tse/tet) = 1 (30/1) Y2 (Req/Reg) 712, (13)

equations (12) and (13) have been evaluated for representative stable equilibrium states. For
0<n<1.2, all stable equilibrium states have #, 2 2¢,¢ and 2.2 2¢,¢, and so (¢ +tam) 2
(trl + tsc) 2 4ty

If P,, increases because the cloud is overrun by an ionization front, #., can be almost
arbitrarily short, particularly if the front is young and consequently weak R-type. If
P,, increases because the cloud i~ overrun by any type of front (shock or ionization),
fex < tg; otherwise the cloud is not ‘overrun’, we cannot envisage an isotropic Py, and the
cloud may actually be disrupted. Finally, if P,, increases because the background medium
is part of a larger cloud which is itself contracting — as in the hierarchical fragmentation
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scheme of Hoyle (1953) — then t¢y ~ 2#,¢. We conclude from the calculated values of ¢
and 7, that under realistic circumstances we should expect foy < (f;; +tqm)- Therefore
the evolution will be highly non-quasistatic and pre-instability must occur.

(We note that the model cloud behaves, unrealistically, as if permeated by a weightless
rigid membrane which somehow transmits the external pressure so that changes therein are
felt instantaneously throughout the cloud volume and the cloud responds homologously.
External pressure changes are felt at the centre of a real cloud only after a time delay
~te. In a time-dependent treatment we might include this effect by requiring that the
boundary transmit to the underlying cloud a retarded external pressure P, (subscript
‘rt’ for retarded) satisfying dPy/dt = w(Pey — Py1)/ts., Where w is a weighting factor which
allows for the radial distribution of force required to drive homologous radial motions.
However, since we estimate w~20/3 and #,;2%, the condition for pre-instability
formulated above will not be significantly changed by this modification.)

8 Conclusion

(i) We have derived a simple global hydrodynamic equation (3) to describe the radial
motions of a uniform, polytropic, spherical cloud contained by external pressure. (ii) We
have used the associated potential function to investigate the cloud’s stability; and (iii) we
have shown that the results mimic closely the behaviour of clouds in DHB. (iv) We have
evaluated the effect of a non-quasistatic increase in external pressure giving rise to pre-
instability. (v) We have evaluated the time-scale for dynamic relaxation of a cloud to its
stable equilibrium state, and the sound-crossing time in this state. Hence we obtain a quanti-
tative condition for the quasistatic evolution of a cloud toward instability: we show that this
condition is very unlikely to be fulfilled. (vi) Finally, we have repeated the basic analysis for
cylindrical and plane-parallel symmetries in the two following appendices.
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Appendix A: Cylindrical filament

The axially infinite, cylindrically symmetric filament has constant mass per unit length M,
radius R, cross-sectional area 4 = mR?, uniform density p;,, = Mo/A4, and polytropic equation
of state P;, = Kpj. It is contained by constant external pressure P,,. The potential function
per unit length is

U'(R) = (G5 —81n ") In(R/Ro) + (1-817) H5) (R/Ro )"~ ™[2(n —1) + PeyAo(R/R0)?,

where 9 = GMy*, and Xy = 2KMA™™. The kinetic energy per unit length is ¥ =
My(dR/dt)*4, and so the equation of motion is

d’R 2 dU' 2 (R\TY RN\ R
S T T T T T [%(_) ""/"(“) +2Pe"’4°—]‘ (Asy*
dt My dR  MgR, Ro Ro Ro

Ry is an equilibrium if %+ 2PeyAo— an' = 0. The equilibrium is stable, neutral , or
unstable, respectively, according to whether 2P A, + (n—1)Ay >, =, or <0. Thus there
can only be unstable equilibria when n < 1. The neutral equilibrium represents the verge of
instability against contraction, (higher order) stability, or the verge of instability against
expansion, respectively, according to whether n(1—n)Xy >, =, or <0. Thus instability
against contraction can only be approached quasistatically for 0<n<1; and the limiting
neutral equilibrium state has

Ro > Rpy = 1 VA(GM®~ /2nK) 2 (=), (A4).

Pey > Poy = (1=K V" D Q2n/GMg)" ™.
The general equilibrium condition is
Ro>Req, Pex=K(Mo/mRZ)" —GM*[27R%,. (AS5)

(i) For n>1, the filament always has a stable equilibrium state and can be compressed
indefinitely from (Peg, Req) = (0, Riny) to (e, 0), where Ry, = 77 2(2KG 1M~ D)12 (-1,
(ii) For n=1, equation (AS5) reduces to Poy = (K — K¢ )Mo/nR3,, where K =af, and K, =
GM,/2; so when K> K, i.e. when My <M = 2a,/G, the filament always has a stable
equilibrium state and can be compressed indefinitely from (Pey, Req) = (0, °°) to (oo, 0). (iii)
For 0 < n< 1, stability requires Pey < Py, and Req> Ry, so the filament can be compressed
quasistatically only from (Pex, Req) = (0, *) to (Ppy, Rpy), where it then becomes unstable
against indefinite contraction. (iv) For n =1 with K <K, and for n =0 with P, > K, the
filament has no equilibrium and contracts indefinitely. (v) For n =0 with P, <K, and for
n< 0, the filament has an unstable equilibrium and therefore contracts/expands indefinitely
according as it is released from a sufficiently small/large initial radius.

The pattern of equilibria Req(Pey) and the resulting quasistatic evolution closely mimic
the predictions of DHB calculations (e.g. Ostriker 1964). In fact, for the isothermal case
(n=1), there is exact agreement.

The equation of freefall is d2R/dt* = —2GMy/R, with initial conditions R (z=0)=R,
and dR/dt(¢t = 0) = 0; and solution

(t/trp) = erf{[—In (R/Ro)]"?},  tpr = (1/GMg)* (Ro[2) =1/2[Gp(t = 0)]", (A11)
where ‘erf’ is the error function (e.g. Abromowitz & Stegun 1964).

*Equations in the appendices for the cylindrical and plane-parallel cases are given the same numbers as
the corresponding equations in the main text for the spherical case.
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Appendix B: Plane-parallel sheet

The two-dimensionally infinite, plane-parallel symmetric sheet has constant mass per unit
area My, half-thickness R, thickness z = 2R, uniform density p;, =M,/Z, and polytropic
equation of state P;, = Kpl . It is contained by external pressure P,y. The potential function
per unit area is

%"(R) = (g('), +PexZO) (R/RO) —5 lntx/i" In (R/RO) + (1 -8 1n)%"(R/Ro)(1_")/(ﬂ —l)s

where %o =4nGMy3Ro/3, and X7, = KMU"Z§"™. The kinetic energy per unit area is
¥"" = My (dR/dt)*/6, and so the equation of motion is

PR3 dw" 3
da? M, dR MR,
Ry is an equilibrium if &g +PexZo — A7, =0, which reduces to

Ro~>Reqs Pox=K(M§[2R.)" —27GMy*/3. (BS)

[0 —oAn" (R/Ro) ™ + PexZo). (B3)

(i) For n>0, the sheet always has a stable equilibrium state and can be compressed
indefinitely from (Pey,Roq) = (0, Rpmy) to (22, 0), where Ry, = 3KMy @ D/200* D Gym,
(ii) For n =0, the sheet contracts indefinitely, is always in neutral equilibrium, or expands
indefinitely, respectively, according to whether Pey >, = or <(K —-K,), where K =
2mGMy?/3. (iii) For n< 0, the sheet has an unstable equilibrium and therefore contracts/
expands indefinitely according as it is released from sufficiently small/large initial radius.

The pattern of equilibria Req(Pex) and the resulting quasistatic evolution closely mimic
the predictions of DHB calculations. Instability against contraction cannot be approached
quasistatically for any value of 7.

The equation of freefall is d2R/dt* = —4nGMy, with initial conditions R(z =0) =R,
and dR/dt(t = 0) = 0; and solution

(R/Ro) =1—(t/tpr)’, trr=Ro/21GMg)"* =1/2[nGp(t = 0)] . (B11)
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