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Abstract

Noise is becoming one of the most important metrics
in the design of VLSI systems, certainly of compara-
ble importance to area, timing, and power. In this
paper, we describe Global Harmony, a methodology
for the analysis of coupling noise in the global inter-
connect of large VLSI chips being developed for the
design of high-performance microprocessors. The ar-
chitecture of Global Harmony involves a careful com-
bination of static noise analysis, static timing analy-
sis, and reduced-order modelling techniques. We de-
scribe a reduced-order modelling approach that allows
for passive multiport reduction of RC netlists as im-
pedance macromodels while preserving the symmetry
and sparsity of the state matrices for e�cient stor-
age. We describe how the macromodels are practically
employed to perform coupling analysis and how tim-
ing constraints can be used to limit pessimism in the
analysis.

1 Introduction

As CMOS technology scales into the deep submi-
cron regime, noise immunity has become a metric for
the analysis and design of VLSI systems of compara-
ble importance to area, timing, and power. An essen-
tial component of the noise in VLSI chips comes from
capacitive coupling between signal lines. The need
to better understand and control coupling comes as
scaling and performance requirements in general have
created new demands for the analysis and design of
interconnect networks.

Reduced-order modelling techniques have become
an importantmethod for analyzing linear interconnect
networks. RLC analysis must be increasingly applied
to analyzing clock trees, power buses, and o�-chip in-
terconnect to control clock skew and dI=dt noise. A
more critical application for reduced-order modelling,
however, remains the large RC netlists resulting from

the global chip interconnect extraction. These extrac-
tions are typically on the scale of tens of thousands of
nets. AWE-based modelling of RC networks has been
an essential part of timing analysis for more than �ve
years[1]. Reduced-order modelling techniques must
now be extended to consider the e�ects of coupling
on noise and delay. There are three questions that
need to be answered by this analysis, all potentially
in the presence of coupled switching activity on other
nets:

� What is the e�ective loading on each driver?

� What is the delay and slew at the receivers?

� What noise will be coupled at the receiver of an
otherwise static net due to switching on other
nets?

We describe a methodology, Global Harmony, which
addresses these three issues and is being applied to the
design of complex microprocessors.

The architecture we describe is a careful marriage
of static timing analysis and static noise analysis[2].
Global Harmony consists of several important com-
ponents { a reduced-order modelling algorithm that
guarantees passive macromodelling of RC networks, a
representation of this macromodel that allows for e�-
cient storage and access, a timing rule structure that
uses this macromodel with timing information to per-
form delay and noise analysis, and a noise analysis en-
gine that considers temporal correlation of switching
signals.

2 Overview of Global Harmony

The noise and timing methodology employed in the
design of complex microprocessors is shown in Figure
1[3]. The shaded region in the �gure denotes those
pieces described in this paper as part of the architec-
ture of Global Harmony.
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Figure 1: Global Harmony architecture

The timing and noise analysis methodology rely
on a two-level hierarchical approach to practically
manage the complexity of designs with tens of mil-
lions of transistors. This methodology involves iden-
tifying groups of 10,000 - 200,000 transistors as
macros. Macros are individually laid out and oor-
planned on the chip. They are timed using static
timing analysis and abstracted in Delay Calculation
Language (DCL)[4]. Similarly, static noise analysis
(Harmony[2]) is performed on each macro and noise
abstracts are generated for the global analysis. In
some cases, noise assertions are returned back to Har-
mony analysis.

The global level consists of the interconnection net-
work between the macros which contains all the long
wire runs of the chip. The coupling capacitances be-
tween the macro and global levels are handled by
treating them as worst-case hostile coupling sources
in both the Harmony and Global Harmony analyses.
The extraction of the global interconnect results in an
RC networks that is reduced to a collection of multi-
port impedance macromodels, one for each net in the
design, stored as a DCL binary dynamic table (BDT).
The details of this reduction are described in Section
3. In Section 4, we describe how a DCL intercon-
nect subrule model reads the BDT, folds in lineariza-
tions of the drivers and receivers and calculates the
coupled noise. In Section 4, we describe the Global
Harmony engine which computes the noise and ags
violations, applying timing information obtained di-
rectly from the static timing environment. Section 5
describes in more detail the careful marriage of sta-
tic timing and static noise analysis. In particular, we
describe how timing information is used to reduce pes-
simism in coupled noise analysis and how the e�ects of
noise on delay are considered in static timing analysis.
Some results are briey presented in Section 6.

3 Passive reduced-order model-

ling of coupled RC networks

The reduction part of Global Harmony begins with
an extracted RC netlist for the global interconnect
stored as a compressed binary �le. The reduced-
order modelling approach employed for Global Har-
mony guarantees passive, multiport macromodels with
symmetry that allows for e�cient storage of the re-
sults.

The �rst step in the reduction process is to identify
a net complex for each net in the design. The primary

net of the complex is the net on which we are trying
to calculate the noise; that is, the net which should be
statically quiet. The complex also includes secondary
nets of signi�cant coupling to the primary net. To
determine which secondary nets to include in a com-
plex, a coupling capacitance threshold ratio of total
coupling to the secondary net in question to the self
capacitance of the primary net, Ccoup=Cself is used.
Coupling capacitors with couplings below this thresh-
old are treated as capacitors tied to ground. Couplings
between the signi�cant secondary nets and nets other
than those already in the net complex are grounded.
A representative net complex is shown in Figure 2(a).

We now describe the algorithm employed to re-
duce the state size of these RC net complexes. Mod-
i�ed nodal analysis (MNA) is used to stamp conduc-
tance and capacitance matrices according to the multi-
input, multi-output, linear time-invariant di�erential
equations:

C
�

x = �Gx+Bi

v = BTx
(1)

x;v; i 2 R
n are the state, output voltage, and in-

put current vectors, respectively. For a system with
n nodes and r ports, G;C 2 R

n�n are the symmet-
ric, positive semide�nite conductance and capacitance
matrices, respectively. The state vector is ordered
so that the �rst r elements represent the port volt-
ages. With this choice of ordering, the r-by-r matrix
formed by the top r rows of the input-output matrix
B 2 Rn�r is the identity and the rest of the B matrix
is zero. Moving into the Laplace domain, Equations 1
lead to an expression for the r-by-r multiport imped-
ance matrix for the net complex.

v(s) = Z(s)i(s) (2)

Z(s) = BT (G+ sC)�1B (3)

We choose impedance macromodelling over admit-
tance macromodelling[5, 6, 7] because of the ease with



which we can fold linearized driver and receiver mod-
els into the analysis. Because a net complex in general
does not have a DC path to ground, the impedance
matrix is singular at s = 0. Because of this, the con-
ductance matrix G will in general be singular.

As a result, a nonzero expansion point so must be
chosen for the moment matching. Using the change of
variable s = so + ~s, Equation 3 becomes

Z(so + ~s) = BT (G + ~sC)�1B (4)

where G = G + soC. G will be symmetric positive
de�nite for a choice of real positive so. We then em-
ploy a multiport extension of the symmetric Lanczos
process[8, 9] as shown in Algorithm 1 which is applic-
able to symmetric, positive-de�nite G. The Cholesky
factorizations can be performed because G is positive
de�nite and W (after deation) and B have full col-
umn rank[10].

d a

c b

Algorithm 1 (Symmetric Lanczos)

lanczos(input C;G;B; q; output
~Hp; ~Bp)

f

Initialize:

Set V 0 = 0;T 0 = 0;�1 = I

Cholesky factor: �T� = BT
G
�1B

T 1 = G
�1B��1;V 1 = B��1

for (j = 1; j � q; j + +) f

Hj;j = �j�1 = V T
j G

�1CT j

W = CG�1V j � V j�j�1 � V j�1�
T
j�1

Deflate W to W 0

Cholesky factor:

RTR =W 0T
G
�1W 0

V j+1 =W
0

R
�1

T j+1 = G
�1W 0R�1

Hj;j+1 =HT
j+1;j = �j+1 = V T

j+1GW

g
~V p = [V 1V 2 � � �V q]
~Bp = [�;0]
~Hp = (Hi;j), i; j = 1; � � � ; q

g

Algorithm 1 results in a reduced-order model of or-
der p:

Zp(so + ~s) = ~B
T

p

�
I + ~s ~Hp

�
�1

~Bp (5)

where Zp 2 R
r�r and p = p1+p2+ � � �+pq where pj is

the rank of V j. Zp(s) matches the �rst 2q coe�cients

of Z(s)[11]. ~Hp 2 R
p�p is a block tridiagonal matrix

such that:
~Hp = ~V

T

p G
�1CG�1 ~V p (6)

The deation ofW performed as part of Algorithm
1 deserves additional comment. As the Lanczos itera-
tion approaches convergence, the matrixW will lose
column rank[12]. This can happen easily for those
net complexes in which it is not true that the number
of nodes n is much greater than the number of ports
r (n � r). In the Golub-Underwood block Lanczos
procedure[13], the linearly independent columns of the
W matrix are replaced with randomly generated vec-
tors orthogonalized to all the preceeding columns of
V j. We instead employ a deation procedure simi-
lar to Cullum and Donath[14]. This means that the
block size on successive iterations will decrease as the
W matrix loses rank.

The computational cost of Algorithm 1 is domi-
nated by the factorization of the symmetric positive
de�nite G matrix. To perform this factorization e�-
ciently, we make use of a modi�ed version of the mul-
tifrontal algorithm[15] for sparse Cholesky factoriza-
tion embodied in the Watson Symmetric Sparse Ma-
trix Package (WSSMP)[16].

We choose an expansion frequency so for the re-
duction which is associated with a typical net Elmore
delay. We generally use the same expansion frequency
for all nets. We then monitor the convergence of the
Frobenius norm of the matrix:

~B
T

p

�
I + ~BpCport

~B
T

p � so ~Hp

�
�1

~BpGport (7)

to determine the order of the reduction to be used.
Gport is a diagonal conductance matrix with diago-
nal elements chosen to be a large default conductance.
This equation follows directly from the results of Sec-
tion 4. This is in lieu of other schemes that monitor
the convergence of the eigenvalues[17] or the magni-
tude of the residue[18].

Passivity is the property that the network always
dissipates energy and has been of considerable cur-
rent interest[19]. It is a well-known result of network
theory that the combination of two passive networks
is guaranteed to be passive, while the combination of
two asymptotically stable networks is not guaranteed
to be asymptotically stable. Therefore, ensuring pas-
sivity of the macromodel is essential for ensuring the
stability[20] of the �nal system used for noise analysis,
which comes from combining the interconnect with the
driver and receiver models. In fact, the driving point
impedance Zp in Equation 5 is already passive. To
prove this, we need to develop a few results. The �rst
is a test for passivity:



Theorem 1 A multiport linear interconnect network

is passive if and only if the impedance matrix Z(s)
satis�es:

1. Z(s�) = Z�(s), 8s 2 C

2. Z(s) is positive; that is, z�T (Z(s) +ZT (s�))z �
0, 8z 2 C p and 8s 2 C with Re(s) > 0.

The proof of Theorem 1 can be found in several refer-
ence on linear network theory[21, 22, 23]. In addition,
to prove passivity, we will need the following result:

Theorem 2 The matrix ~Hq generated by the sym-

metric Lanczos process is symmetric, positive semi-

de�nite.

Proof. Let x be an arbitrary non-zero vector in Rp.
Then

xT ~Hqx = xT ~V
T

q G
�1CG�1 ~V qx

= (G�1 ~V qx)
TC(G�1 ~V qx)

= (~T qx)
TC( ~T qx)

� 0

The inequality results from the fact that C is positive
semide�nite.

We are now �nally in the position to claim the follow-
ing.

Theorem 3 The reduced-order impedance macro-

model Zp produced by the symmetric Lanczos process

for RC circuits is passive.

Proof. To prove this, it is necessary to prove the
two conditions in Theorem 1. The �rst follows from
the fact that ~Bp and ~Hp are all real. To prove the
second condition of Theorem 1, it is necessary to show
that:

z�
T (Zp(s) + Zp(s

�))z � 0 8z 2 C p

for any s such that Re(s) � 0. From Equation 5 and
taking ~s = � + i!,

z�
T (Zp(s) + Zp(s

�))z = z�
T ~B

T

p

h
(I + ~s ~Hp) + (I

+~s� ~Hp)
T
i
~Bpz

= 2w�T (I + � ~Hp)w

� 0

where w = (I + ~s� ~Hp)�T ~Bpz Because the matrix
~Hp is positive semide�nite by Theorem 2, I +� ~Hp is
symmetric, positive de�nite for all � � 0.

These interconnect macromodels are stored as DCL
binary dynamic tables (BDT) which are subsequently
utilized by a DCL interconnect subrule for noise analy-
sis. We take advantage of the sparsity in storing the
~Hp and ~Bp matrices. The ~Hp matrix is symmetric

and block tridiagonal. The ~Bp matrix is zero except
for the top r-by-r which is upper triangular.

4 Interconnect modelling for

noise
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Figure 2: Multiport modelling of global interconnect.
(a) A typical net complex consisting of a primary net
coupled (in this case) to a single secondary net. (b)
The driver resistances are receiver capacitances are
folded into the multiport impedance macromodel.

Following reference [2], we classify noise by type.
Noise that reduces the node voltage below the sup-
ply level is denoted VH , while noise that increases
a node voltage above the ground level is denoted
VL. Noise may also be bootstrapping if it increases
a node voltage above the supply level (V �

H ) or below
the ground level(V �

L ). As part of the macro-level sta-
tic noise analysis, noise abstracts are generated for
macro blocks. These noise abstracts contain linearized
capacitances for each primary input and pull-up and
pull-down driver resistances for each primary output.
Drive resistances are determined by the linear region
of the FET ID�VDS characteristic. As part of the sta-
tic noise analysis of the macro, the maximum amount
of noise for each output that can be propagated for
each of VL and VH noise types is calculated. For each
input or output that is sensitive to noise, a noise tol-

erance is stored in the abstract by noise type. This
is calculated using a sensitivity analysis at the �rst
restoring logic gate from the pin in the macro-level
static noise analysis[2].



The noise abstracts are then used along with the in-
terconnect macromodels to check the noise on global
interconnect. A DCL interconnect subrule performs
the noise calculation from the macromodels loaded
with the BDT. We �rst fold the driver resistance and
receiver capacitances into the multiport impedance as
shown in Figure 2(b). The Zp macromodel is given
by:

v = ~B
T

p (I + ~s ~Hp)
�1 ~Bpi (8)

where ~s = s � so. If we let x denote the new state
variable set, then the equations become:

x = ~Bpi� ~s ~Hpx

v = ~B
T

p x

When receiver capacitances are added at the ports
then the port currents become:

i! i� sCport
~B
T

p x

We now apply voltage sources vport at the ports
through a diagonal port conductance matrix Gport.

i = Gport(vport � ~B
T

p x)

The conductance of the primary net driver is obtained
from the drive resistance stored in the noise abstract.
Diagonal conductance elements associated with capac-
itive receivers are zero, while the conductance associ-
ated with the secondary net drivers are set to a large
default value. Using these expressions, one �nds that
the transfer function between the voltage sources and
the ports of the interconnect are given by:

v = ~B
T

p (I+sA)�1(I+ ~BpGport
~B
T

p�soH)�1 ~BpGportvport
(9)

where

A =
�
I + ~BpGport

~B
T

p � soH
�
�1 �

~BpCport
~B
T

p +H
�
:

A is diagonalized as S�S�1, resulting in

v = ~B
T

p S (I + s�)�1S�1
�
I + ~BpGport

~B
T

p � soH
�
�1

� ~BGportvport
(10)

Let �i denote the ith column of ~B
T

p S and �i the ith
row of

S�1
�
I + ~BpGport

~B
T

p � soH
�
�1

~BGportvport:

Then
v =

X
i

�i�i

1 + s�i
vport (11)

where �i�i 2 R
r�r and the �i are the diagonal ele-

ments of �. The sum is over all the eigenvalues of A.
For a particular transfer function, one of the residues
ki is chosen from each �i�i matrix. The time-domain
response to a saturate ramp waveform of slew tr such
as that assumed to be at each switching secondary net
driver, is given by:

v(t) =

8>><
>>:

m
P

i

�
ki�i

�
e�t=�i � 1

�
� kit

�
for 0 � t � trP
i

�
mki�i

�
e�t=�i � e�(t�tr)=�i

�
� ki

�
for t � tr

(12)
where m = Vdd=tr, the slope of the switching sec-
ondary net. Because of the driver linearization ap-
proximation, superposition applies.

5 The interaction of static tim-

ing and static noise analysis
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Figure 3: Timing orthogonality. The switching times
�i are chosen so that the peak noises align.

The Global Harmony architecture shown in Fig-
ure 1 includes a tight coupling with the static timing
analysis of the same design. This enables timing in-
formation to be used in the calculation of noise and
noise information to be used in the calculation of tim-
ing. For the former case, we obtain secondary net
driver slews from the timer model. Timing windows,
as de�ned by the earliest and latest possible arrival
time, are determined for each secondary net driver.
This allows us to calculate the worst possible noise in
the presence of arrival time constraints, reducing pes-
simism in the analysis. The problem can be formally
stated as follows. Let ci be the peak noise on a given
primary receiver associated with driver i. Let tiearly
be the earliest arrival time associated with secondary
driver i and let tilate be the latest arrival time associ-
ated with secondary driver i. In addition, let �i be the



switching time associated with secondary net driver
i, such that all the noise peaks align for the primary
receiver in question. Let xi be the binary variable
indicating whether the given secondary net driver is
switching, and let n be the number of secondary nets.
The problem is then to maximize:

nX
i=1

cixi (13)

such that the following 2n constraints can be satis�ed
for all i:

(tilate � �i � tref )xi � 0 (14)

(�i + tref � tiearly)xi � 0 (15)

where tref is a continuous variable determining the
absolute time reference for the �i. In this form, the
problem takes the form of a mixed integer program-
ming problem. Alternately, the constraints can be re-
formulated to remove tref and consider only relative
times. For all i 6= j,

(tilate � t
j
early � �i + �j)xixj � 0 (16)

(tjlate � tiearly + �i � �j)xixj � 0 (17)

We refer to these constraints as timing orthogonality.
Because tiearly and tilate result from early and late path
propagation in static timing analysis, the timing win-
dows incorporate the switching of the secondary-net
drivers due to hazards.

This formulation assumes a certain \sharpness" to
the noise peaks, since when the peak falls outside the
windows, its contribution is taken as zero. We uti-
lize a branch-and-bound algorithm[24, 25] to solve this
problem since the noise on each subtree can be easily
bounded by the assumption that each node in that
subtree is contributing. The maximum noise of Equa-
tion 13 is added to the propagate noise from the noise
abstracts for each receiver and compared against the
noise margins also contained in the noise abstracts. A
noise \slack" report results. These slacks are based on
pessimistic dc noise margins at the macro inputs. To
eliminate this pessimism, one can perform a Harmony
run on the macro using assertions of the actual input
noise generated from Global Harmony.

Even when the entire design satis�es the condition
of noise stability[2] as veri�ed by static noise analy-
sis, coupled noise in the interconnect can still have a
signi�cant e�ect on timing. The coupled noise cal-
culation is generally performed only after a converged
timing solution is calculated. The algorithm employed
in Global Harmony to handle the e�ects of noise on
delay is essentially an iterative one:

1. Perform an initial timing with all secondary nets
grounded.

2. Freeze the arrival time windows and slews at each
driver.

3. Reset the timing model and recalculate all delays
including the e�ects of coupling in the intercon-
nect analysis. The frozen secondary net driver
information is used for this analysis.

4. Go to step 2 and repeat until convergence.

We now consider the calculations performed as part
of step 3. Following the usual practice in static tim-
ing analysis, we �rst �nd the waveform at the driver,
abstract it as a saturate ramp, and propagate it for-
ward to each of the net receivers. To �nd the driver
waveform, we calculate:

iport = Gport

h
I � ~B

T

p (I + sA)�1(I + ~BpGport
~B
T

p

�s0Hq)�1 ~BpGport

i
vsource

Gport in this case di�ers from that used in Equation 9
in that a very small primary driver resistance is used
to e�ectively attach the driver output voltage wave-
form directly to the multiport. Diagonalizing A as in
Equations 10 and 11 yields the following expression
for the driver current:

idriver(t) =
P

n

P
imn

�
�kni �i(e

�(t�ti)=�i � 1)u(t� ti)

+kni �i(e
�(t�t0

i
)=�i � 1)u(t� t0i)

i

where the outer sum is over the primary and secondary
drivers and the inner sum is over the eigenvalues of
A. The waveforms at the primary and secondary dri-
vers are assumed to be saturate ramps with slopes
mi which begin at time ti and end at time t0i (i. e.
t0i � ti = jVdd=mij). kni is the residue due to the ith
pole with the nth driver contributing. Opposite direc-
tion switching (negative mi) produces the worst-case
load, while same-direction switching (positivemi) pro-
duces the best-case load. The driver waveform is �rst
calculated for the case of grounded secondary nets.
Secondary net arrival times (i. e. the ti) are cho-
sen so that the peak noise at the primary driver, as
determined by the techniques of Section 4 arrives at
the 50% response point of this driver waveform. This
heuristic seems to work well in determining the worst
(or best) response. We then use an e�ective-C[26] it-
eration to �nd the driver waveform, because of the use
of driver delay characterizations based on lumped ca-
pacitance. In the presence of a more general nonlinear



driver model, recursive convolution techniques[5, 27]
can be used.

Calculating the delay and slew follows similarly. In
this case, each receiver waveform is calculated for the
case of grounded secondary nets and then the sec-
ondary net arrival times are chosen so that the peak
noise arrives at the 50% response point of this receiver
waveform.

6 Results
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Figure 4: Test interconnect structure (a) The net com-
plex consisting of a primary net and four secondary
nets. (b) The response on the primary net receiver 6
due to the switching of driver 4. Both the exact and
macromodel responses are shown.

Figure 4(a) shows one of the test structure used to
verify our interconnect analysis. This is a net complex
consisting of four secondary nets. The interconnect is
0:8�m-thick aluminum of 0:45�m width and 0:45�m
spacing. The primary net is 5mm long. Driver sizes
(as widths in microns) and loads are also indicated
in the �gure. There are 129 state variables in the
original network. The Zp macromodel used in this
design has p = 10 and so = 108sec�1. Figure 4(b)
shows the exact and approximate noise waveshapes at
the primary net driver due to a switching driver 4 with
a 100-psec slew.

In Figure 5, we shows typical \noise slack" results
in histogram form for a Global Harmony run on a

section of a high-performance CMOS microprocessor
with 7714 receivers. The noise tolerance at each input
is set to zero for this run so that the full spectrum
of the coupling noise can be observed. The supply
voltage is 1.7 V.

Figure 5: Noise slack histogram for a section of a high-
performance CMOS microprocessor. Noise slacks are
in volts. The supply voltage is 1.7 V.

Figure 6 shows a noise-on-delay calculation for a
reasonably typical point-to-point global net, 1.3 mm
long, coupled to eleven secondary nets. With worst-
case simultaneous switching of the secondary nets, the
e�ective capacitance increases from 170 fF to 250 fF .
The net delay increases from about 130 ps to 200 ps.
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Figure 6: E�ect of coupling on interconnect response
of typical global net

7 Conclusions

In this paper, we have described a methodology
for performing global noise analysis as part of a sta-



tic noise analysis methodology. This incorporates a
unique combination of timing and noise analysis and
employs a reduced-order modelling algorithm that al-
lows for passive interconnect macromodelling and ef-
�cient storage of the macromodel result.
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