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GLOBAL HEAT KERNEL ESTIMATES

FOR SYMMETRIC JUMP PROCESSES

ZHEN-QING CHEN, PANKI KIM, AND TAKASHI KUMAGAI

Abstract. In this paper, we study sharp heat kernel estimates for a large
class of symmetric jump-type processes in R

d for all t > 0. A prototype of
the processes under consideration are symmetric jump processes on R

d with
jumping intensity

1

Φ(|x− y|)

∫
[α1,α2]

c(α, x, y)

|x− y|d+α
ν(dα),

where ν is a probability measure on [α1, α2] ⊂ (0, 2), Φ is an increasing function

on [0,∞) with c1ec2r
β ≤ Φ(r) ≤ c3ec4r

β
with β ∈ (0,∞), and c(α, x, y) is

a jointly measurable function that is bounded between two positive constants

and is symmetric in (x, y). They include, in particular, mixed relativistic
symmetric stable processes on R

d with different masses. We also establish the
parabolic Harnack principle.

1. Introduction

The objective of this paper is to give sharp heat kernel estimates for a large class
of symmetric jump-type processes in R

d whose jumping kernels decay exponen-
tially. Discontinuous Markov processes and their associated non-local generators
have been of current research interest both in probability theory and in PDE, due to
their importance in theory and in applications. See, for example, [4, 12, 13, 5] and
the references therein. The transition density p(t, x, y) of a Markov process X (if it
exists) is the fundamental solution (also called the heat kernel) of a PDE involving
the infinitesimal generator L, whose explicit expression is typically impossible to
get. Thus it is a fundamental problem, both in probability theory and in analysis,
to obtain sharp estimates of p(t, x, y). When X is a symmetric diffusion on R

d

whose infinitesimal generator is a uniformly elliptic and bounded divergence form
operator, it is well known that p(t, x, y) enjoys the celebrated Aronson’s Gaussian
type estimates. When X is a pure jump symmetric process on Z

d or R
d whose

jumping kernel is of stable or mixed stable type (that decays polynomially at infin-
ity), sharp estimates on p(t, x, y) have been derived in [4] (on Z

d) and in [12, 13] (on
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R
d and beyond). Moreover, in [13], sharp heat kernel estimates have also been ob-

tained in a finite time interval for a class of symmetric jump-type processes whose
jumping kernels decay at the rate e−c|x| as |x| → ∞. It, in particular, contains
relativistic stable processes as a special case. Relativistic stable processes is a class
of symmetric Lévy processes whose infinitesimal generators are m− (m2/α−Δ)α/2,

where α ∈ (0, 2) and m > 0. The operator m−
√
m2 −Δ, corresponding to α = 1,

is important in mathematical physics due to its correspondence with the kinetic
energy of a relativistic particle with mass m; see, for example, [7, 18]. In applica-
tions, one also encounters a class of pure jump Lévy processes in R

d whose jumping

kernels decay at the rate e−c|x|β as |x| → ∞ for β ∈ (0,∞] other than β = 1,
which includes a subclass of tempered stable processes in R

d. The latter arises
in statistical physics to model turbulence as well as in mathematical finance to
model stochastic volatility; see, for example, [8, 17, 19, 21, 23]. In these models,
both the small time and large time behavior for the transition density function are
important. However, except in some very special case and especially for the large
time region, detailed quantitative knowledge on the global behavior of p(t, x, y) for
these models has not been available until now. The motivation of this paper is to
give sharp global transition density estimates of a class of pure jump symmetric
processes (not just Lévy processes) in R

d whose jumping kernels decay at the rate

e−c|x|β as |x| → ∞ for all β ∈ (0,∞].
Throughout this paper, d ≥ 1. Let Rd be the d-dimensional Euclidean space and

dx or μd be the d-dimensional Lebesgue measure in R
d. For x ∈ R

d and r > 0,
let B(x, r) denote the open ball centered at x with radius r. For two non-negative
functions f and g, the notation f � g means that there are positive constants
c1, c2, c3 and c4 so that c1g(c2x) ≤ f(x) ≤ c3g(c4x) in the common domain of
definitions for f and g. The Euclidean distance between x and y will be denoted
as |x− y|. For a, b ∈ R, a ∧ b := min{a, b} and a ∨ b := max{a, b}. Here and in the
following, we use “:=” to denote a definition, which is read as “is defined to be”.

We assume that φ can be expressed as

(1.1) φ(r) = φ1(r)ψ1(r) for r > 0,

where ψ1 is an increasing function on [0,∞) with ψ1(r) = 1 for 0 < r ≤ 1 and
there are constants γ2 ≥ γ1 > 0 and β > 0 so that

(1.2) c1e
γ1r

β ≤ ψ1(r) ≤ c2e
γ2r

β

for every 1 < r < ∞,

while φ1 is a strictly increasing function on [0,∞) with φ1(0) = 0, φ1(1) = 1 and
there exist constants 0 < c1 < c2, c3 > 0 and 0 < β1 ≤ β2 < 2 so that

(1.3) c1

(R
r

)β1

≤ φ1(R)

φ1(r)
≤ c2

(R
r

)β2

for every 0 < r < R < ∞

and

(1.4)

∫ r

0

s

φ1(s)
ds ≤ c3

r2

φ1(r)
for every r > 0.

Remark 1.1. Note that condition (1.3) is equivalent to the existence of constants
c4, c5 > 1 and L0 > 1 such that for every r > 0,

(1.5) c4φ1(r) ≤ φ1(L0r) ≤ c5 φ1(r).
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Let J be a symmetric measurable function on R
d × R

d \ {x = y} such that

(1.6) J(x, y) � 1

|x− y|dφ(|x− y|) .

By (1.5), the condition (1.6) is equivalent to

κ−1
1

1

|x− y|dφ1(|x− y|)ψ1(κ2|x− y|)(1.7)

≤ J(x, y) ≤ κ1
1

|x− y|dφ1(|x− y|)ψ1(κ3|x− y|)
for every (x, y) ∈ R

d ×R
d \ {(x, y) ∈ R

d ×R
d : x = y}. Here κ1, κ2, κ3 are positive

constants.
For u ∈ L2(Rd, dx), define

(1.8) E(u, u) :=
∫
Rd×Rd

(u(x)− u(y))2J(x, y)dxdy,

and for β > 0,

Eβ(u, u) := E(u, u) + β

∫
Rd

u(x)2dx.

Let Cc(R
d) denote the space of continuous functions with compact support in R

d,
equipped with the uniform topology. Define

(1.9) D(E) := {f ∈ Cc(R
d) : E(f, f) < ∞}.

By [13, Proposition 2.2], (E ,F) is a regular Dirichlet form on L2(Rd, dx), where

F := D(E)E1
. So there is a Hunt process Y associated with it on R

d, starting
from quasi-every point in R

d (see [16]). In fact, by Meyer’s construction (see,
e.g., [13, §4.1]), process Y can be constructed from the pure jump process X whose
corresponding jumping kernel is the same as Y but with constant function 1 in place
of ψ1, by removing jumps of size larger than 1 with suitable rate. From the Hölder
continuity and the two-sided estimates for the transition density of X obtained in
[13], we can refine the process X and therefore the process Y to start from every
point in R

d. Furthermore, by (1.6) and [20, Theorem 3.1], Y is conservative; that
is, Y has infinite lifetime.

It is not difficult to see that with J satisfying (1.7) we have

(1.10) F = {u ∈ L2(Rd; dx) : E(u, u) < ∞}.
We say UJS holds (see [2]) if for a.e. x, y ∈ R

d,

(UJS) J(x, y) ≤ c

rd

∫
B(x,r)

J(z, y)dz whenever r ≤ 1
2 |x− y|.

Note that UJS holds if κ2 = κ3 in (1.7); see Lemma 2.1.
The jumping intensity kernel J(x, y) determines a Lévy system of Y , which

describes the jumps of the process Y : for any non-negative measurable function f
on R+ × R

d × R
d with f(s, x, x) = 0 for all s > 0 and x ∈ R

d and stopping time T
(with respect to the filtration of Y ),

(1.11) Ex

⎡⎣∑
s≤T

f(s, Ys−, Ys)

⎤⎦ = Ex

[∫ T

0

(∫
Rd

f(s, Ys, y)J(Ys, y)dy

)
ds

]
.

(See, for example, [12, Proof of Lemma 4.7] and [13, Appendix A].)
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A prototype of the model considered in this paper is the following. Let

E(f, f) =

∫
Rd×Rd

(f(x)− f(y))2 J(x, y) dxdy

F = {f ∈ L2(Rd, dx) : E(f, f) < ∞},
where J(x, y) is a symmetric kernel given by

(1.12) J(x, y) =

∫
[α1,α2]

c(α, x, y)

|x− y|d+α Φ(|x− y|)ν(dα),

where ν is a probability measure on [α1, α2] ⊂ (0, 2), Φ is an increasing function

on [0,∞) with c1e
c2r

β ≤ Φ(r) ≤ c3e
c4r

β

with β ∈ (0,∞), and c(α, x, y) is a jointly
measurable function that is symmetric in (x, y) and is bounded between two positive
constants.

The main result of this paper is the following heat kernel estimates. The inverse
function of the strictly increasing function t �→ φ(t) will be denoted by φ−1(t). In
this theorem, constants may depend on β > 0.

Theorem 1.2. Assume that conditions (1.1)–(1.4), (1.7) and UJS hold. Then
there is a conservative Feller process Y associated with (E ,F) that can start from
every point in R

d. Moreover, the process Y has a continuous transition density
function p(t, x, y) on (0,∞)×R

d ×R
d with respect to the Lebesgue measure, which

has the following estimates (see Figures 1 and 2).
(1) When 0 < β ≤ 1:

(1.a) (Short time estimates) There are positive constants c1, c2 and C ≥ 1 such
that for every t ∈ (0, 1] and x, y ∈ R

d,

C−1

(
1

φ−1(t)d
∧ t

|x− y|dφ(c1|x− y|)

)
(1.13)

≤ p(t, x, y) ≤ C

(
1

φ−1(t)d
∧ t

|x− y|dφ(c2|x− y|)

)
.

(1.b) (Large time estimates) There are positive constants c1, c2 and C ≥ 1 such
that for every t ∈ [1,∞) and x, y ∈ R

d,

(1.14) C−1 t−d/2 e−c1

(
|x−y|β∧ |x−y|2

t

)
≤ p(t, x, y) ≤ C t−d/2 e−c2

(
|x−y|β∧ |x−y|2

t

)
.

(2) When β ∈ (1,∞):

(2.a) (Short time estimates) There are positive constants c1, c2 and C ≥ 1 such
that

C−1

(
1

φ−1
1 (t)d

∧ t

|x− y|dφ1(|x− y|)

)
(1.15)

≤ p(t, x, y) ≤ C−1

(
1

φ−1
1 (t)d

∧ t

|x− y|dφ1(|x− y|)

)
for every t ∈ (0, 1] and |x− y| < 1, and

C−1 t e−c1

((
|x−y|

∣∣ log |x−y|
t

∣∣(β−1)/β)
∧|x−y|β

)
(1.16)

≤ p(t, x, y) ≤ C t e−c2

((
|x−y|

∣∣ log |x−y|
t

∣∣(β−1)/β)
∧|x−y|β

)
for every t ∈ (0, 1] and |x− y| ≥ 1.
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Figure 1

Figure 2

(2.b) (Large time estimates) There are positive constants c1, c2 and C ≥ 1 such
that for every t ∈ [1,∞) and x, y ∈ R

d,

C−1 t−d/2e−c1

((
|x−y|

∣∣ log |x−y|
t

∣∣(β−1)/β)
∧ |x−y|2

t

)
(1.17)

≤ p(t, x, y) ≤ Ct−d/2 e−c2

((
|x−y|

∣∣ log |x−y|
t

∣∣(β−1)/β)
∧ |x−y|2

t

)
.
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Remark 1.3. (i) When β = 1, the short time heat kernel estimates in Theorem
1.2(1.a) is first established in [13, Theorem 1.2].

(ii) Theorem 1.2 shows that there is a phase transition at β = 1 for both the
short time and the large time estimates for the transition density function
of Y .

(iii) Observe that when β > 1, there is a constant c = c(β) > 0 so that for
t ≥ 1 and |x − y| ≥ 1 (by considering cases |x − y| ≥ 2t and |x − y| < 2t
separately),

c |x− y|β ≥
(
|x− y|

∣∣∣ log |x− y|
t

∣∣∣(β−1)/β
)
∧ |x− y|2

t
.

This explains why |x−y|β does not appear in the exponent of the estimates
(1.17).

(iv) By the definition (1.1) of φ, when β ∈ (0, 1], estimate (1.13) for t ∈ (0, 1]
and |x− y| ≥ 1 is equivalent to the following: there are positive constants
c1, c2 and C ≥ 1 so that for every t ∈ (0, 1] and |x− y| ≥ 1,

(1.18) C−1te−c1|x−y|β ≤ p(t, x, y) ≤ Cte−c2|x−y|β .

To comprehend estimate (1.14), observe that

|x− y|β ∧ |x− y|2
t

=

{
|x− y|β if |x− y|2−β ≥ 1,
|x−y|2

t if |x− y|2−β < 1.

(v) When J(x, y) is a function of |x−y|, the associated process Y is a symmet-
ric Lévy process. There is a large class of symmetric Lévy processes whose
Lévy jumping kernels satisfying the condition (1.7), including relativistic
stable processes mentioned at the beginning of this paper. Theorem 1.2, in
particular, gives global two-sided sharp estimates for these Lévy processes.
The large time heat kernel estimates are new, even for relativistic stable
processes. (Short time heat kernel estimates for relativistic stable processes
were obtained in [13].) Of course, Theorem 1.2 goes far beyond Lévy pro-
cesses; it covers a large class of symmetric Markov processes which may not
be Lévy and gives the stability results on the heat kernel estimates for this
class of symmetric jump processes. �

The next theorem deals with the limiting case β → ∞. It extends the heat kernel
estimate result in [10], where φ1(r) is taken to be rα for any α ∈ (0, 2). However,
the proof in [10] extends easily to the general φ1 that satisfies the conditions (1.3)
and (1.4). So we skip the proof of Theorem 1.4. Note that, from the proof of
Lemma 2.1, it is easy to see that UJS holds for J in the next theorem.

Theorem 1.4. Assume that conditions (1.3) and (1.4) hold and J(x, y) �
1

|x−y|dφ1(|x−y|)1{|x−y|≤1}. Then there is a conservative Feller process Y associated

with (E ,F) that starts from every point in R
d. Moreover, the process Y has a con-

tinuous transition density function on (0,∞) × R
d × R

d, which has the following
estimates. There are positive constants c1, c2 and C ≥ 1 such that

C−1

(
1

φ−1
1 (t)d

∧ t

|x− y|dφ1(|x− y|)

)
(1.19)

≤ p(t, x, y) ≤ C−1

(
1

φ−1
1 (t)d

∧ t

|x− y|dφ1(|x− y|)

)
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for every t ∈ (0, 1] and |x− y| < 1,

(1.20) C−1e−c1|x−y| log |x−y|
t ≤ p(t, x, y) ≤ Ce−c2|x−y| log |x−y|

t

for every t ∈ (0, 1] and |x− y| ≥ 1, and

C−1 t−d/2e−c1

((
|x−y| log |x−y|

t

)
∧ |x−y|2

t

)
(1.21)

≤ p(t, x, y) ≤ C t−d/2e−c1

((
|x−y| log |x−y|

t

)
∧ |x−y|2

t

)
for every t > 1 and x, y ∈ R

d.

Note that the estimate in (1.20)–(1.21) is the limiting case as β → ∞ in (1.16)–
(1.17). This indicates that the constant C as well as c1 and c2 in Theorem 1.2 may
be independent of β ∈ [β0,∞) for every β0 ≥ 1. But we are not going to pursue
this independence in this paper.

The proof of Theorem 1.2 requires different techniques for different cases, which
will be given separately. In fact, some estimates in Theorem 1.2, especially the
upper bound estimates, are established for more general jumping kernel J under
condition (3.12) rather than under (1.7).

For the upper bounds, the proof of (1.18) is given in Theorem 3.4. The strat-
egy is to first consider the finite range process Y (λ), whose jumping kernel is
J(x, y)1{|x−y|≤λ}, and use Davies’ method from [6] to derive an upper bound es-

timate for the transition density function of Y (λ) through carefully chosen testing
functions. Here we need to select the value of λ in a very careful way that depends
on the values of t, |x − y| and β. The upper bound estimates for the transition
density function of Y are then obtained from those of Y (λ) through Meyer’s con-
struction of Y from Y (λ). Specifically, (1.14) is proved in Proposition 3.1 when
|x−y| ≤ c and in Theorem 3.3 when |x−y| ≥ c. The upper bounds proof for (1.17)
and (1.16) are given in Theorem 3.2 and Theorems 3.4–3.6, respectively. All these
are summarized in Theorem 3.6, where the proof of the upper bound estimates in
Theorem 1.4 is also given.

For the lower bounds, the proof of (1.18) is given in Theorem 5.3. The strategy
is to first derive large time near the diagonal lower bound estimate. For this, we
follow an approach from [1], using an enhanced version of the weighted Poincaré
inequality which was initially established in [10] and an entropy argument. We next
establish the parabolic Harnack principle (PHI in abbreviation) for Y . The lower
bound off-diagonal estimates on p(t, x, y) are then obtained after certain exit time
estimates and transition probability estimates are established. Specifically, (1.14)
is proved in Theorem 4.8 and Theorem 5.4. The lower bounds of (1.16) and (1.17)
are established in Theorems 5.5, 4.8 and 5.4(i).

Throughout this paper, we use c1, c2, · · · to denote generic constants whose exact
values are not important and can change from one appearance to another. The
labeling of the constants c1, c2, · · · starts anew in the statement of each result. The
dependence of the constant c on the dimension d may not be mentioned explicitly.
For p ∈ [1,∞], we will use ‖f‖p to denote the Lp-norm in Lp(Rd, dx).
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2. UJS and examples

Lemma 2.1. Assume that J is given by (1.7) with κ2 = κ3. Then UJS holds.

Proof. Suppose 2r ≤ |y|. By the change of variable z = |y|w, we have

1

rd

∫
B(0,r)

dz

|z − y|dφ(|z − y|) =
1

rd

∫
B(0, r

|y| )

dw

|w − y
|y| |dφ(||y|w − y|)dw.

Let

Ay,r :=

{
w ∈ R

d : |w| ≤ r

|y| ,
∣∣∣∣w − y

|y|

∣∣∣∣ ≤ 1

}
.

Since 2r ≤ |y|, it is easy to see that there exists a constant c0 = c0(d) > 0 indepen-
dent of r and y such that μd(Ay,r) ≥ c0r

d/|y|d. Thus, since φ is increasing,

1

rd

∫
B(0,r)

dz

|z − y|dφ(|z − y|) ≥ 1

φ(|y|)rd
∫
Ay,r

dw

|w − y
|y| |d

≥ c0
1

|y|dφ(|y|) .

By the above inequality, we conclude that there exists a constant c1 > 0 such that
for every r > 0 and 2r ≤ |x− y|, we have

1

rd

∫
B(x,r)

dz

|z − y|dφ(|z − y|) ≥ c1
dz

|x− y|dφ(|x− y|) .

That is, UJS holds when κ2 = κ3 in (1.7). �

Example 2.2. The examples below clearly satisfy UJS by Lemma 2.1.

(i) Let φ1(r) :=
∫ α2

α1
rα ν(dα), where 0 < α1 < α2 < 2 and ν is a probability

measure on [α1, α2]. Then it is easy to see that (1.3)–(1.4) are satisfied.
Thus if

J(x, y) =
c(x, y)e−γ|x−y|β

|x− y|d
∫ α2

α1
|x− y|αν(dα)

,

where c(x, y) is a jointly measurable function that is symmetric in (x, y) and
is bounded between two positive constants, then the conditions in Theorem
1.2 hold.

(ii) Similarly, conditions (1.3)–(1.4) are satisfied if φ1(r) := (
∫ α2

α1
r−α ν(dα))−1,

where ν is a probability measure on [α1, α2] ⊂ (0, 2). Thus if

J(x, y) = e−γ|x−y|β
∫ α2

α1

c(x, y, α)

|x− y|d+α
ν(dα),

where c(α, x, y) is a jointly measurable function that is symmetric in (x, y)
and is bounded between two positive constants, then the conditions in The-
orem 1.2 hold. A particular case occurs when ν is a discrete measure. The-
orem 1.2, in particular, gives the heat kernel estimate for Markov processes
on R

d which are linear combinations of independent symmetric tempered-
stable-like processes (see [23] for tempered stable processes), i.e.,

J(x, y) = e−γ|x−y|
k∑

i=1

ci(x, y)

|x− y|d+αi
,

where ci(x, y) is a jointly measurable function that is symmetric in (x, y)
and is bounded between two positive constants.
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(iii) φ1(r) = rα(r), where 0 ≤ α(r) ≤ β3 < 2, α(r) log r is increasing and
(α(2r)− α(r)) log r is bounded. α(r) = c− c

|r−1|+1 is such an example for

c ∈ (0, 2). This case corresponds to the jumping density

J(x, y) =
c(x, y)e−γ|x−y|β

|x− y|d+α(|x−y|) .

�

Example 2.3. (i) Let Y = {Yt, t ≥ 0} be the relativistic α-stable processes
on R

d with mass m > 0. That is, {Yt, t ≥ 0} is a Lévy process on R
d with

E0[exp(i〈ξ, Yt〉)] = exp
(
t
(
mα − (|ξ|2 +m2)α/2

))
,

where m > 0, α ∈ (0, 2). It is shown in [14] that the corresponding jumping
intensity is

J(x, y) =
Ψα(m|x− y|)
|x− y|d+α

,

where Ψα(r) is decreasing and Ψα(r) is asymptotically equal to
e−r(1 + r(d+α−1)/2) near r = ∞, and Ψα(r) = 1 + Ψ′′

α(0)r
2/2 + o(r4)

near r = 0. So it is not covered by Example 2.2. However, since Ψα(r) is
decreasing, UJS holds by Lemma 2.1. So the conditions in Theorem 1.2
are satisfied for the jumping intensity kernel for every relativistic α-stable
process on R

d.
When α = 1, the process is called a relativistic Hamiltonian process. In

this case, the heat kernel can be written as

p(t, x, y) =
t

(2π)d
√
|x− y|2 + t2

∫
Rd

emte−
√

(|x−y|2+t2)(|z|2+m2)dz;

see [13, Example 2.4]. It can be shown that the estimate of this heat kernel
given in [13, page 287, lines 3–5] is the same as that of Theorem 1.2(1) for
φ(r) = r and β = 1.

(ii) Let Y := Y (1) + · · · + Y (k), where the Y (i)’s are independent relativistic
αi-stable processes on R

d with mass mi, where {α1, · · · , αk} ⊂ (0, 2) and
{m1, · · · ,mk} ⊂ (0,∞). The corresponding jumping intensity is a symmet-
ric kernel given by

J(x, y) =

k∑
i=1

Ψαi
(mi|x− y|)

|x− y|d+αi
.

Since by (i) each
Ψαi

(mi|x−y|)
|x−y|d+αi

satisfiesUJS, so does J . The other conditions

of Theorem 1.2 are also satisfied. �

When κ2 �= κ3, conditions (1.1)–(1.4) and (1.7) do not need to imply UJS. We
give a simple example showing that there is a continuous jumping kernel satisfying
conditions (1.1)–(1.4) and (1.7) but not satisfying UJS.

Example 2.4. For convenience, assume d = 1 and α ∈ (0, 2). Let

Un := {y : (2n+ 1)− e−2n < |y| < (2n+ 1) + e−2n}, U :=

∞⋃
n=1

Un
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and

Vn := {y : (2n+ 1)− e−2n−1 < |y| < (2n+ 1) + e−2n−1}, V :=
∞⋃

n=1

Vn,

and let ϕ0 be a continuous function from (0,∞) to [1/4, 1] such that

ϕ0(r) =

{
1/4 on

⋃∞
n=1{r : (2n+ 1)− e−2n−1 < r < (2n+ 1) + e−2n−1},

1 on (0,∞) \
⋃∞

n=1{r : (2n+ 1)− e−2n < r < (2n+ 1) + e−2n}.

Note that ϕ0 is not a monotone function. We consider a jumping kernel

J(x, y) := |x− y|−1−α exp (−ϕ0(|x− y|)|x− y|) ,
which is radial and continuous. It is easy to check that the conditions (1.1)–(1.4)
and (1.7) hold, but with distinct κ2 and κ3. For every x ∈ R

1, y ∈ x + Vn and
z ∈ B(x, n), 1

2 |x− y| ≤ |y − z|. Thus∫
B(x,n)

J(z, y)dy

≤21+α|x− y|−1−αe−
1
4 |x−y|

(∫
B(x,n)∩(U+y)

e
3
4 |z−y|dz +

∫
B(x,n)\(U+y)

e−
1
2 |z−y|dz

)

≤21+αJ(x, y)

(∫
B(x,n)∩(U+y)

e
3
4 |z−y|dz +

∫
R1

e−
1
2 |z|dz

)
≤ c1 J(x, y),

from which it is easy to show that UJS cannot hold for this J . �

3. Upper bound estimate

Throughout this section we consider more general non-local Dirichlet forms and
their corresponding heat kernels. Set

(3.1) Q(f, f) =

∫
Rd

∫
Rd

(f(y)− f(x))2J0(x, y) dx dy, D = C1
c (R

d)
Q1

,

where the jump kernel J0(x, y) is a symmetric non-negative function of x and y
so that

∫
K×Rd 1 ∧ |x − y|2J0(x, y)dxdy < ∞ for every compact subset K of Rd.

Here Q1(f, f) := Q(f, f) + ‖f‖22, C1
c (R

d) denotes the space of C1 functions on R
d

with compact support, and D is the closure of C1
c (R

d) with respect to the metric
Q1(f, f)

1/2. The Dirichlet form (Q,D) is regular on R
d, and so it associates a Hunt

process Y , starting from quasi-everywhere in R
d. In the following, the transition

density for Y (if it exists) will be denoted by q(t, x, y).
Recall that φ is the non-decreasing function defined by (1.1) through (1.2)–(1.4).

Proposition 3.1. Suppose there exist positive constants κ1, κ2 > 0 such that

(3.2) J0(x, y) ≥ κ1
1

|x− y|dφ(|x− y|) for all |y − x| ≤ κ2 .

Then there is a properly Q-exceptional set N ⊂ R
d, a positive symmetric kernel

q(t, x, y) defined on [0,∞) × (Rd \ N ) × (Rd \ N ) and a positive constant c =
c(d, κ1, κ2, β, β1) such that

(3.3) Ex [f(Yt)] =

∫
Rd

q(t, x, y)f(y)dy for every x ∈ R
d \ N and t > 0,
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(3.4) q(t+ s, x, y) =

∫
Rd

q(t, x, z)q(s, z, y)dz for every t, s > 0, x, y ∈ R
d \ N ,

and

(3.5) q(t, x, y) ≤ c
(
φ−1
1 (t)−d ∨ t−d/2

)
for t > 0 and x, y ∈ R

d \ N .

Moreover, there is a Q-nest {Fk, k ≥ 1} of compact subsets of R
d so that N =

R
d \

∞⋃
k=1

Fk and that for every t > 0 and y ∈ R
d \ N , x �→ q(t, x, y) is continuous

on each Fk.

Proof. For u ∈ C1
c (R

d), let

E0(u, u) := κ1

∫
Rd×Rd

(u(x)− u(y))2

|x− y|dφ(|x− y|)1{|x−y|≤κ2}dxdy,

E1(u, u) := κ1

∫
Rd×Rd

(u(x)− u(y))2

|x− y|dφ(|x− y|)dxdy,

and define D0 := C1
c (R

d)
E0
1
, D1 := C1

c (R
d)

E1
1
. Note that under condition (3.2),

Q(u, u) ≥ E0(u, u) for every u ∈ C1
c (R

d) and hence for every u ∈ D. Moreover,
since

E1(u, u)− E0(u, u) ≤ 4κ1

∫
Rd×Rd

|u(x)|2
|x− y|dφ(|x− y|)1{|x−y|>κ2}dxdy,

it is easy to see that there exists a positive constant c1 > 0 depending on d, κ1, κ2,
β, β1 such that

(3.6) E1
1 (u, u) ≤ c1E0

1 (u, u) ≤ c1Q1(u, u) for every u ∈ D.

Hence D0 = D1 ⊃ D. Recall that, for p ≥ 1, the Lp(Rd, dx)-norm of a function
u on R

d is denoted as ‖u‖p . It follows from [13, Theorem 3.1] and (3.6) that the
following Nash’s inequality holds: there is a constant c2 > 0 so that for every f ∈ D
with ‖f‖1 = 1,

(3.7) θ(‖f‖2) ≤ c2 E1(f, f) ≤ c1c2 Q1(f, f), where θ(r) =
r

φ(r−1/d)
.

Observe that (Q1,D) is the Dirichlet form of the 1-subprocess of Y . We have
by [1, Theorem 3.1] and the same way as that for [13, Theorem 3.2] using (3.7),
that there is a properly Q-exceptional set N ⊂ R

d and a positive symmetric kernel
q(t, x, y) defined on [0,∞) × (Rd \ N ) × (Rd \ N ) such that for every x ∈ R

d \ N
and t > 0, (3.3)–(3.4) are true, and that for every x, y ∈ R

d \ N ,

(3.8) q(t, x, y) ≤ c3 e
t φ−1(t)−d for t > 0.

Moreover, there is a Q-nest {Fk, k ≥ 1} of compact subsets of Rd so that N =

R
d \

∞⋃
k=1

Fk and that for every t > 0 and y ∈ R
d \ N , x �→ q(t, x, y) is continuous

on each Fk.
On the other hand, by the third line from the end of the proof of [10, Proposition

2.2], there is a constant c4 > 0 so that for every u ∈ D ⊂ W β1/2,2(Rd) with
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Q(u, u) ≤ ‖u‖21,

‖u‖22 ≤ c4 Q(u, u)
d

d+2 ‖u‖
4

d+2

1 .

Therefore by [6, Theorem 2.9] and [1, Theorem 3.1], we have

q(t, x, y) ≤ c5 t
−d/2 for every t ≥ 1 and x, y ∈ R

d \ N .

Combining this, (3.8) and the observation that et φ−1(t)−d ≤ e φ−1
1 (t)−d for t ∈

(0, 1] and the fact that φ−1
1 (t)−d ≥ c6t

−d/2 for t ∈ (0, 1] and φ−1
1 (t)−d ≤ c7t

−d/2 for
t ≥ 1, we conclude that (3.5) holds. �

Let ψ2 be an increasing function on [0,∞) with ψ2(r) = 1 for 0 < r ≤ 1 and

(3.9) c1e
γ3r

β0 ≤ ψ2(r) ≤ c2e
γ4r

β0
for every 1 < r < ∞

for some constants γ4 ≥ γ3 > 0. Here β0 ∈ (0, β], where β is the constant given
in (1.2). We also let φ2 be a strictly increasing function on [0,∞) with φ2(0) = 0,
φ2(1) = 1,

(3.10) c1

(R
r

)β3

≤ φ2(R)

φ2(r)
≤ c2

(R
r

)β4

for every 0 < r < R < ∞

and

(3.11)

∫ r

0

s

φ2(s)
ds ≤ c3

r2

φ2(r)
for every r > 0

for some 0 < c1 < c2, c3 > 0 and 0 < β3 ≤ β4 < 2. (Note that φ2, ψ2 can be
different from φ1, ψ1, which were given in (1.1).)

Now we further assume that there exists a positive constant κ1 > 0 such that
for every x, y ∈ R

d,

κ−1
1

1

|x− y|dφ1(|x− y|)ψ1(|x− y|)(3.12)

≤ J0(x, y) ≤ κ1
1

|x− y|dφ2(|x− y|)ψ2(|x− y|) .

In the remainder of this section we will use the following Davies’ method many
times: using Proposition 3.1, (1.3), [1, Theorems 3.1 and 3.2], and [6, Corollary
3.28], we have that for every x, y ∈ R

d \ N and t > 0,

(3.13) q(t, x, y) ≤ c1

(
t−d/β1 ∨ t−d/2

)
exp(−E(2t, x, y)).

Here E(2t, x, y) is given by the following:

Γ(f)(x) :=

∫
(ef(x)−f(y) − 1)2J0(x, y)dy, Λ(f)2 := ‖Γ(f)‖∞ ∨ ‖Γ(−f)‖∞,

E(t, x, y) := sup{|f(x)− f(y)| − tΛ(f)2 : f ∈ Lipc with Λ(f) < ∞},

where Lipc is a space of compactly supported Lipschitz continuous functions on R
d.

Theorem 3.2. Suppose the jumping kernel J0 satisfies (3.12) and β0 ≥ 1. Then
for every 0 < C∗ < 1 there exist c1, c2 > 0 such that

(3.14) q(t, x, y) ≤ c1

(
t−d/β1 ∨ t−d/2

)
exp

(
−c2|x− y|2

t

)
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for x, y ∈ R
d \ N and t > 0 with |x− y| ≤ t/C∗, and

(3.15) q(t, x, y) ≤ c1

(
t−d/β1 ∨ t−d/2

)
exp

⎛⎝−c2|x− y|
(
log

|x− y|
t

) β0−1
β0

⎞⎠
for x, y ∈ R

d \ N and t > 0 with |x− y| > t/C∗.

Proof. Fix x, y ∈ R
d and let r = |x − y|. Define f(ξ) := λ (|ξ − x| ∧ r) for ξ ∈ R

d,
where λ is a constant to be chosen later. Note that |f(ξ) − f(η)| ≤ λ|ξ − η| for
every ξ, η ∈ R

d. Since |es − 1|2 ≤ s2e2|s|,

Γ(f)(ξ) =

∫
Rd

(ef(ξ)−f(η) − 1)2J0(ξ, η)dη ≤ λ2

∫
Rd

|ξ − η|2e2λ|ξ−η|J0(ξ, η)dη

≤ κ1λ
2

∫
Rd

e2λ|ξ−η|−γ3|ξ−η|β0

|ξ − η|d−2φ2(|ξ − η|)dη ≤ c1λ
2

∫ ∞

0

s e2λs−γ3s
β0

φ2(s)
ds,(3.16)

where the lower bound of (3.9) is used in the second-to-last inequality.
We first prove (3.14). When 0 < λ ≤ γ3/4,

Γ(f)(ξ) ≤ c2λ
2

(∫ 1

0

s

φ2(s)
ds+

1

φ2(1)

∫ ∞

1

s e−γ3s/2ds

)
≤ c3 λ

2,

where we used (3.11) in the last inequality. So we have

(3.17) −E(2t, x, y) ≤ −λr + c3tλ
2 = λ(−r + c3tλ) for all λ ≤ γ3/4.

Choose c3 larger if necessary so that c3 ≥ 2
C∗γ3

. For each r ≤ t/C∗, take

λ :=
r

2c3t
≤ 1

2c3C∗
≤ γ3

4
.

Then from (3.17) we get −E(2t, x, y) ≤ − r2

4c3t
. Putting this into (3.13), we obtain

(3.14) for |ξ − η| ≤ t/C∗.
We next prove (3.15). With c4 := (4/γ3)

1/(β0−1), we have by (3.16),

Γ(f)(ξ) ≤ c2λ
2

∫ c4λ
1/(β0−1)

0

s e2λs

φ2(s)
ds+ c2λ

2

∫ ∞

c4λ1/(β0−1)

s e−γ3s
β0/2

φ2(s)
ds

≤ c5λ
2

(
(c4λ

1/(β0−1))2

φ2(c4λ1/(β0−1))
e2c4λ

β0/(β0−1)

+ 1

)
≤ c6 λ

2ec7λ
β0/(β0−1)

,

where we used (3.11) and (3.10) in the second and last inequality, respectively. So
we have that for every λ > 0,

(3.18) −E(2t, x, y) ≤ −λr + c6tλ
2ec7λ

β0/(β0−1)

= λr
(
c6λ(t/r)e

c7λ
β0/(β0−1) − 1

)
.

Choose c8 ≤ (2c7)
−(β0−1)/β0 small so that

c6c8

(
sup

a≥C−1
∗

(log a)
(β0−1)/β0 a−1/2(C

1/2
∗ ∨ 1)

)
<

1

2

and take λ := c8 (log(r/t))
(β0−1)/β0 . Then

(t/r)ec7λ
β0/(β0−1)

= (t/r)(r/t)c7c
β0/(β0−1)
8 ≤ (t/r)(C

1/2
∗ ∨ 1)(r/t)1/2

= (C
1/2
∗ ∨ 1)(r/t)−1/2.
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Thus from (3.18) we get

−E(2t, x, y) ≤ λr
(
c6c8 (log(r/t))

(β0−1)/β0 (C
1/2
∗ ∨ 1)(r/t)−1/2 − 1

)
≤ −1

2
λr = −1

2
c8r (log(r/t))

(β0−1)/β0 .

Putting this into (3.13), we obtain (3.15) for |x− y| > t/C∗. �

We will use the following Meyer’s construction [22] several times in this section.
Let λ > 0 and define

J (λ)(ξ, η) := 1{|ξ−η|≤λ} J0(ξ, η) and Jλ(ξ, η) := 1{|ξ−η|>λ} J0(ξ, η).

One can remove the jumps of Y of size larger than λ to obtain a new process Y (λ)

as follows. One starts with the process Y associated with jumping kernel J0, runs
it until the stopping time T1 := inf{t : |Yt− − Yt| > λ}, and at that time restarts
Y at the point YT1−. One then repeats this procedure. Meyer [22] showed that the
resulting process Y (λ) is a process with jumping kernel J (λ). From this construction
we see that Y (λ) can start from every point in R

d \ N and that it admits quasi-
continuous transition density function q(λ)(t, x, y) defined on (0,∞) × (Rd \ N ) ×
(Rd \ N ).

It is easy to see that the Dirichlet form of Y (λ) on L2(Rd, dx) is (Q(λ),D), where

Q(λ)(v, v) =

∫
Rd

∫
Rd

(v(ξ)− v(η))2 J (λ)(ξ, η) dηdξ.

In fact, note that by (3.10),

∫
Rd

Jλ(η, ξ)dξ ≤ c1(λ) < ∞. Thus we have for v ∈ D,

0 ≤ Q(v, v)−Q(λ)(v, v) ≤ 4

∫
Rd

v(ξ)2
(∫

Rd

Jλ(ξ, η)dη

)
dξ ≤ 4c1(λ)

∫
Rd

v(ξ)2dξ,

and so (
1 + 4c1(λ)

)−1

Q1(v, v) ≤ Q(λ)
1 (v, v) ≤ Q1(v, v) for every v ∈ D.

By Proposition 3.1, for each b > 0 there exists a constant c = c(b, d) > 0 such
that for every λ ≥ b,

(3.19) q(λ)(t, x, y) ≤ c
(
(φ−1

1 (t))−d ∨ t−d/2
)

∀t ∈ (0,∞) and x, y ∈ R
d \ N .

Theorem 3.3. Suppose the jumping kernel satisfies (3.12) and with β0 ≤ 1. Then
for every a, b > 0, there exist ck, k = 1, · · · , 4, and C∗ ∈ (0, 1] such that for every
t ≥ a and x, y ∈ R

d \ N with |x− y| ≥ b,

q(t, x, y) ≤ c1

{
t−d/2e−c2|x−y|2/t when t > C∗|x− y|2−β0 ,

e−c2|x−y|β0
when t ≤ C∗|x− y|2−β0 ;

or, equivalently, q(t, x, y) ≤ c3t
−d/2 e−c4

(
|x−y|2

t ∧|x−y|β0

)
.

Proof. For λ > 0 and the function f on R
d, define

Γλ(f)(ξ) :=

∫
Rd

(
ef(ξ)−f(η) − 1

)2
J (λ)(ξ, η)dη(3.20)

and Λλ(f)
2 := ‖Γλ(f)‖∞ ∨ ‖Γλ(−f)‖∞.
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For fixed x, y ∈ R
d \ N , let f(ξ) := s (|ξ − x| ∧ |x− y|) for ξ ∈ R

d, where s > 0
is a constant to be chosen later. Note that |f(η)− f(ξ)| ≤ s|ξ− η|. We have by the
same argument as that for (3.16) that

(3.21) Γλ(f)(ξ) ≤ c1 s
2

∫ λ

0

u

φ2(u)
e2su−γ3u

β0
du for every ξ ∈ R

d,

where γ3 > 0 is the constant in (3.9). With s = γ3λ
β0−1/4, we have that for all

u ≤ λ,

2su− γ3u
β0 = γ3λ

β0−1u/2− γ3u
β0 = γ3u

β0((u/λ)1−β0/2− 1) ≤ −γ3u
β0/2,

which implies that

(3.22) Γλ(f)(ξ) ≤ Cs2, where C := c1

∫ ∞

0

u

φ2(u)
e−γ3u

β0/2du.

(Note that C < ∞ due to (3.11) and β0 > 0.) The same estimate holds for
Γλ(−f)(ξ). Thus, with λ := |x− y|,

−|f(y)− f(x)|+ Λλ(f)
2 t ≤ s(−λ+ C ts) =

γ3
4
λβ0−1

(
−λ+

Cγ3
4

(
t

λ2−β0

)
λ

)
.

Set C∗ := 2/(Cγ3). Then

(3.23) −|f(y)− f(x)|+ Λλ(f)
2 t ≤ −γ3

8
λβ0 if 0 < t ≤ C∗λ

2−β0 .

On the other hand, if t ≥ C∗λ
2−β0 , with s := λ

2Ct = γ3C∗λ
4t ≤ γ3

4 λβ0−1, we have
that for all u ≤ λ,

2su− γ3u
β0 ≤ γ3

2
λβ0−1u− γ3u

β0 = −γ3u
β0

(
−1

2
(u/λ)1−β0 + 1

)
≤ −γ3u

β0/2.

Therefore, we have by (3.22) that for t > C∗λ
2−β0 ,

(3.24) −|f(y)− f(x)|+ Λλ(f)
2 t ≤ s(−λ+ C ts) =

λ

2Ct

(
−λ+

λ

2

)
= − 1

4C

λ2

t
.

By [6, Corollary 3.28], [1, Theorems 3.1 and 3.2] and (3.19), there exists a con-
stant c2 = c2(b) > 0, independent of λ ≥ b such that

(3.25) q(λ)(t, x, y) ≤ c2

(
t−d/β1 ∨ t−d/2

)
exp
(
−|f(y)− f(x)|+ Λλ(f)

2 t
)
.

Thus applying our (3.23)–(3.24) with λ = |x − y|, there exists a constant c3 > 0
such that for every |x− y| ≥ b,

q(λ)(t, x, y)(3.26)

≤ c2

(
t−d/β1 ∨ t−d/2

){e−c3|x−y|2/t when C∗|x− y|2−β0 < t,

e−c3|x−y|β0
when C∗|x− y|2−β0 ≥ t.

Note that by (3.9) and (3.10) there are constants c4, c5 > 0 such that for every
λ > 0,

‖Jλ‖∞ ≤ c4
λd+β3

e−γ3c5λ
β0
.
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It then follows from (3.26) and [3, Lemma 3.2] that for every t > 0 and |x− y| ≥ b,
we have by taking λ = |x− y| that

q(t, x, y) ≤ q(λ)(t, x, y) + t sup
ξ∈Rd

‖Jλ(ξ, ·)‖∞

≤ c6

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
t−d/β1 ∨ t−d/2

)
e−c3|x−y|2/t +

t

|x− y|d+β3
e−c7|x−y|β0

when C∗|x− y|2−β0 < t,(
t−d/β1 ∨ t−d/2

)
e−c3|x−y|β0

+
t

|x− y|d+β3
e−c7|x−y|β0

when C∗|x− y|2−β0 ≥ t.

Therefore, for every t ≥ a > 0 and |x− y| ≥ b > 0,

q(t, x, y) ≤ c8

{
t−d/2e−c9|x−y|2/t when C∗|x− y|2−β0 < t < |x− y|2,
e−c9|x−y|β0

when C∗|x− y|2−β0 ≥ t.

When t ≥ a > 0 and t ≥ |x− y|2, we have by Proposition 3.1 that

q(t, x, y) ≤ c10t
−d/2 ≤ c11 t

−d/2e−c9|x−y|2/t.

This completes the proof of the theorem. �

The estimates for the following short time region require more sophisticated
choices of test functions in order to obtain the right polynomial exponents.

Theorem 3.4. Suppose the jumping kernel satisfies (3.12) and β0 > 0. Then for
every a > 0 there exist c1, c2 > 0 and C∗ ∈ (0, 1] such that for every 0 < t ≤ a and
x, y ∈ R

d \ N with |x− y| ≥ a/C∗,

(3.27) q(t, x, y) ≤ c1te
−c2|x−y|β0∧1

.

Suppose further that β0 ≥ 1. Then, for every 0 < t ≤ a and |x− y| ≥ a/C∗,

q(t, x, y)(3.28)

≤ c3t
(
exp
(
−c2|x− y| (log(|x− y|/t))(β0−1)/β0

)
+ exp

(
−c2|x− y|β0

))
.

Proof. Fix x, y ∈ R
d \ N with |x − y| ≥ a/C∗, where C∗ > 0 is a constant to be

chosen later. Let λ ≥ aβ3

d+β3
be a constant to be chosen later. Recall the definition

of Γλ(f) and Λλ(f)
2 from (3.20). Let r := |x− y| and

f(ξ) :=
s+ g

3
(|ξ − x| ∧ r) for ξ ∈ R

d,

where s and g are two positive constants to be chosen later. Since |f(η)− f(ξ)| ≤
s+g
3 |ξ − η| for all ξ, η ∈ R

d, by the same argument as that for (3.16) we have that

Γλ(f)(ξ) ≤
C

3
(s+ g)2 e2sλ/3

∫ λ

0

ue2gu/3−γ3u
β0

φ2(u)
du.(3.29)

We first establish (3.27). Taking g = γ3λ
(β0−1)∧0, we have by (3.29) that

Γλ(f)(ξ) ≤ C

3

(
s+ γ3λ

(β0−1)∧0
)2

e2sλ/3

(
c1 + c2

∫ λ∨1

1

ue−c3γ3u
β0/3du

)

≤ C1

3

(
s+ γ3λ

(β0−1)∧0
)2

e2sλ/3
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for every ξ ∈ R
d, where the lower bound of (3.10) is used in the first inequality. The

constant C1 > 0 is independent of λ > 0. The same estimate holds for Γλ(−f)(ξ).
Thus,

−|f(y)− f(x)|+ Λλ(f)
2 t(3.30)

≤ s+ γ3λ
(β0−1)∧0

3
r
(
−1 + C1

(
s+ γ3λ

(β0−1)∧0
)
(t/r)e2sλ/3

)
.

Now take s = 6
rβ3

(d + β3) log(
r
t ). Then for λ = β3

8(d+β3)
r we have (t/r)e2sλ/3 =

(t/r)e
1
2 log r

t =
√
t/r. Choose C∗ ∈ (0, 1] such that

6(d+ β3)

β3
C1

(
a−1C∗

(
sup

0<v≤C∗

√
v log

1

v

)
+γ3

(
aβ8

8(d+ β3)

)(β0−1)∧0(
sup

0<v≤C∗

√
v

))
is less than 1/2, where C1 > 0 is the constant in (3.30). Then for 0 < t ≤ a,

r ≥ a/C∗ and λ = β3

8(d+β3)
r, we have by (3.30),

−|f(y)− f(x)|+ Λλ(f)
2 t(3.31)

≤ s+ γ3λ
(β0−1)∧0

3
r

×
(
−1 +

6(d+ β3)

β3
a−1C∗C1

√
t

r
log
(r
t

)
+ C1γ3(

aβ3

8(d+ β3)
)(β0−1)∧0

√
t

r

)

≤ −s+ γ3λ
(β0−1)∧0

6
r

≤ −
(

d

β3
+ 1

)
log

r

t
− γ3

6

(
β3

8(d+ β3)

)(β0−1)∧0

r(β0∧1).

Let b := aβ3

8(d+β3)C∗ and note that φ−1
1 (t) ≤ c1φ

−1
2 (t) for t ≤ 1 due to (3.12). By

(3.10) and (3.25) there exists a constant c1 > 0, independent of λ ≥ b, such that

(3.32) q(λ)(t, x, y) ≤ c1 t
−d/β3 exp

(
−|f(y)− f(x)|+ Λλ(f)

2 t
)

for all t ∈ (0, a], x, y ∈ R
d\N . Thus by (3.31), for x, y ∈ R

d\N with |x−y| ≥ a/C∗

and t ∈ (0, a], we have by taking λ := β3

8(d+β3)
|x− y| ≥ b that

q(λ)(t, x, y)(3.33)

≤ c1 t
−d/β3

(
t

C∗|x− y|

) d
β3

+1

e−γ3c2|x−y|β0∧1/6 ≤ c3 t e
−γ3c2|x−y|β0∧1/6.

Note that by (3.9) and (3.10) there are constants c4, c5 > 0 such that for every
λ ≥ b,

(3.34) ‖Jλ‖∞ ≤ c4
λd+β3

e−γ3c5λ
β0∧1 ≤ c4b

−(d+β3) e−γ3c5λ
β0∧1

.

It then follows from (3.33) and [3, Lemma 3.2] that

q(t, x, y) ≤ q(λ)(t, x, y) + t sup
ξ∈Rd

‖Jλ(ξ, ·)‖∞ ≤ c6 te
−γ3c7|x−y|β0∧1

.

This proves (3.27).
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We next show that (3.28) holds. Let c+ := (2/γ3)
1/(β0−1). Then we have by

(3.29) that for every ξ ∈ R
d,

Γλ(f)(ξ)

≤C

3
(s+ g)2 e2sλ/3

(∫ c+g1/(β0−1)

0

u

φ2(u)
egudu+ c2

∫ ∞

c+g1/(β0−1)

u

φ2(u)
e−γ3u

β0/2du

)

≤C

3
(s+ g)2 e2sλ/3

(
(c+g

1/(β0−1))2

φ2(c+g1/(β0−1))
ec+gβ0/(β0−1)

+ c3

)
≤C2

3
(s+ g)2 e2sλ/3eg

β0/(β0−1)/(4C3),

where C2 and C3 are positive constants that are independent of g > 0. In the
second-to-last inequality, (3.11) is used. The same estimate holds for Γλ(−f)(ξ).

Now take g := C3

(
log r

t

)(β0−1)/β0 . Then for t > 0,

−|f(y)− f(x)|+ Λλ(f)
2 t(3.35)

≤ s+ g

3

(
−r + C2

(
s+ C3

(
log

r

t

)(β0−1)/β0
)

e2sλ/3
(r
t

)1/4
t

)
=

s+ g

3

(
r

(
−1 + C2

(
s+ C3

(
log

r

t

)(β0−1)/β0
)

e2sλ/3
(
t

r

)3/4
))

.

Next we take s := 6
rβ3

(d+ β3) log(
r
t ). Then for λ = β3

8(d+β3)
r,

e2sλ/3
(
t

r

)3/4

= exp

(
1

2
(log

r

t
)

)(
t

r

)3/4

=

(
t

r

) 1
4

.

Choose C∗ ∈ (0, 12 ] such that

C2 sup
0<v<C∗

(
6

aβ3
(d+ β3) log(

1

v
) + C3

(
log

1

v

)(β0−1)/β0
)

v1/4 < 1/2,

where C2 > 0 is the constant in (3.35). Then for 0 < t ≤ a, r ≥ a/C∗ and

λ = β3

8(d+β3)
r, (3.35) is less than or equal to

s+ g

3

(
r

(
−1 + C2

(
6

aβ3
(d+ β3) log(

r

t
) + C3

(
log

r

t

)(β0−1)/β0
) (

t

r

)1/4
))

≤− s+ g

6
r ≤ −

(
d

β3
+ 1

)
log

r

t
− C3

6

(
log

r

t

)(β0−1)/β0

r.

By this inequality, (3.32) and (3.35), we have for λ = β3

8(d+β3)
|x− y| and t ∈ (0, a],

q(λ)(t, x, y) ≤ c1 t
−d/β3

(
t

C∗|x− y|

) d
β3

+1

e−c8(log r
t )

(β0−1)/β0r(3.36)

≤ c9
t

|x− y|
d
β3

+1
e−c8(log r

t )
(β0−1)/β0r.
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It then follows from (3.34) and [3, Lemma 3.2] that for every t ∈ (0, a] and |x−y| ≥
a/C∗, we have with λ = β3

8(d+β3)
|x− y| ∈ (b,∞) that

q(t, x, y)

≤ q(λ)(t, x, y) + t sup
ξ∈Rd

‖Jλ(ξ, ·)‖∞

≤ c9t

|x− y|
d
β3

+1
e−c8(log r

t )
(β0−1)/β0r +

c4 t

( β3

8(d+β3)
|x− y|)d+β3

e
−γ3c5

(
β3

8(d+β3)
|x−y|

)β0

≤ c10t
(
exp
(
−c11|x− y| (log(|x− y|/t))(β0−1)/β0

)
+ exp

(
−c11|x− y|β0

))
.

This proves (3.28). �

The proof of the next theorem is an easy modification of the proof of [10, Theorem
2.3], so we skip the proof.

Theorem 3.5. When β0 = ∞, that is, when

κ−1
1

1

|x− y|dφ1(|x− y|)1{|x−y|≤1} ≤ J0(x, y) ≤ κ1
1

|x− y|dφ2(|x− y|)1{|x−y|≤1},

we have

p(t, x, y) ≤ c1t
−d/2 e−c2(|x−y| log(|x−y|/t)∧|x−y|2/t) when t > 1.

We now summarize Theorems 3.2–3.5 and give the upper bound of Theorems
1.2 and 1.4.

Theorem 3.6. Suppose the jumping kernel J0 satisfies (3.12). In the estimates
below for the case of t ∈ (0, 1] and |x − y| ≤ 1, we assume further that φ1 = φ2.
Then there are ck, k = 1, · · · , 9, so that the following holds.

(a) When β0 ∈ (0, 1],

p(t, x, y) ≤ c1

⎧⎪⎨⎪⎩
1

(φ−1
1 (t))d

∧ t

|x− y|d(φ2ψ2)(c2|x− y|) when t ∈ (0, 1];

t−d/2 e−c3(|x−y|β0∧|x−y|2/t) when t > 1.

(b) When β0 ∈ (1,∞),

p(t, x, y) ≤ c4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

(φ−1
1 (t))d

∧ t

|x− y|dφ1(|x− y|)
when t ∈ (0, 1] and |x− y| ≤ 1;

t
(
e−c5|x−y|(log |x−y|

t )
(β0−1)/β0

+ e−c5|x−y|β0 )
when t ∈ (0, 1] and |x− y| ≥ 1;

t−d/2 e
−c6

(
|x−y|(log |x−y|

t )
(β0−1)/β0∧|x−y|2/t

)

when t > 1.

(c) When β0 = ∞, that is, when

κ−1
1

1

|x− y|dφ1(|x− y|)1{|x−y|≤1} ≤ J0(x, y) ≤ κ1
1

|x− y|dφ1(|x− y|)1{|x−y|≤1},
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we have

p(t, x, y) ≤ c7

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

φ−1
1 (t)d

∧ t

|x− y|dφ1(|x− y|)
when t ∈ (0, 1] and |x− y| < 1;

e−c8|x−y| log(|x−y|/t)

when t ∈ (0, 1] and |x− y| ≥ 1;

t−d/2 e−c9(|x−y| log(|x−y|/t)∧|x−y|2/t)

when t > 1.

Proof. The proof of (c) is a combination of Proposition 3.1, Theorem 3.5 and [11,
Proposition 2.2]. So we assume 0 < β0 < ∞. The case t ≥ 1 is established in
Theorems 3.2–3.3. In view of Theorem 3.4 with a = 1, we only need to consider
the case when t ∈ (0, 1] and |x− y| < 1/C∗ =: R0. But by considering the bilinear
form (E∗,F) with

E∗(v, v) =

∫
Rd×Rd

(v(ξ)− v(η))2
(
J(ξ, η)1{|ξ−η|<1}

+
κ1

|ξ − η|dψ2(|ξ − η|)1{|ξ−η|≥1}

)
dηdξ,

this follows directly from [3, Lemma 3.2] and [11, Proposition 2.2]. �

4. Near diagonal lower bound estimate

and parabolic Harnack inequality

4.1. Large time near diagonal lower bound estimate. In this section, we
always assume β ∈ (0,∞) and will give the proof of the near diagonal lower bound
estimate of the heat kernel. Note that the case β = ∞ is proved in [10, Theorem
3.5].

Let σ ∈ (0,∞) and M(σ) be the set of all non-increasing function Ψ from [0, 1]
to [0, 1] such that Ψ(s) > Ψ(1) = 0 for every s ∈ [0, 1) and

(4.1) Ψ(s+ 1
2 ((1− s) ∧ 1

2 )) ≥ σΨ(s), s ∈ (0, 1).

We use N (σ) to denote all the functions Φ of the form cΨ(|x|) for some Ψ ∈ M(σ)
having

∫
Rd Φ(x)dx = 1. For Φ ∈ N (σ), define

uΦ :=

∫
B(0,1)

u(x)Φ(x)dx.

The following weighted Poincaré inequality is proved in [10]. For every d ≥ 1, 0 <
α < 2 and σ ∈ (0,∞), there exists a positive constant c1 = c1(d, α, σ) independent
of r ≥ 1, such that for every Φ ∈ N (σ) and u ∈ L1(B(0, 1),Φ(x)dx),∫

B(0,1)

(u(x)− uΦ)
2Φ(x)dx

≤ c1

∫
B(0,1)×B(0,1)

(u(x)− u(y))2
r2−α1{|x−y|≤1/r}

|x− y|d+α
(Φ(x) ∧ Φ(y)) dxdy.

Moreover, it is shown in [10] that the constant c2 stays bounded for α ∈ (0, 2).
Thus by taking α → 0, we get the following (more appropriate) form of weighted
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Poincaré inequality. For every d ≥ 1, there exists a positive constant c2 = c2(d, σ)
independent of r ≥ 1, such that for every u ∈ L1(B(0, 1),Φ(x)dx),∫

B(0,1)

(u(x)− uΦ)
2Φ(x)dx

≤ c2r
2

∫
B(0,1)×B(0,1)

(u(x)− u(y))2

|x− y|d 1{|x−y|≤1/r}(Φ(x) ∧ Φ(y)) dxdy.

For a non-negative function ϕ on (0,∞) with ϕ(0+) = 0, ϕ(r) > 0 on (0, 1] and
‖ϕ‖∞,[0,1] := supr∈[0,1] |ϕ(r)| < ∞, we get from the above inequality that, for every

u ∈ L1(B(0, 1),Φ(x)dx),∫
B(0,1)

(u(x)− uΦ)
2Φ(x)dx

≤c2r
2

∫
B(0,1)×B(0,1)

(u(x)− u(y))2

|x− y|d 1{|x−y|≤1/r}(Φ(x) ∧ Φ(y)) dxdy

≤c2r
2 · ‖ϕ‖∞,[0,1]

∫
B(0,1)×B(0,1)

(u(x)− u(y))2

|x− y|dϕ(r|x− y|)1{|x−y|≤1/r}(Φ(x) ∧ Φ(y)) dxdy

≤c2r
2 · ‖ϕ‖∞,[0,1]

∫
B(0,1)×B(0,1)

(u(x)− u(y))2

|x− y|dϕ(r|x− y|) (Φ(x) ∧ Φ(y)) dxdy.

Thus we have

Theorem 4.1. For every d ≥ 1 and σ ∈ (0,∞), there is a positive constant c =
c(d, σ) independent of r > 1, such that for every Φ ∈ N (σ), u ∈ L1(B(0, 1),Φdx)
and a non-negative function ϕ on (0,∞) with ϕ(0+) = 0, ϕ(r) > 0 on (0, 1] and
‖ϕ‖∞,[0,1] < ∞,∫

B(0,1)

(u(x)− uΦ)
2Φ(x)dx

≤ c r2 · ‖ϕ‖∞,[0,1]

∫
B(0,1)×B(0,1)

(u(x)− u(y))2

|x− y|dϕ(r|x− y|) (Φ(x) ∧ Φ(y)) dxdy.

Here uΦ :=
∫
B(0,1)

u(x)Φ(x)dx.

Now let’s consider (Q,D) of (3.1) and assume that the jump kernel J0(x, y) for
(E ,F) satisfies (3.12). Recall that q(t, x, y) is the transition density function for
the associated Hunt process Y with respect to the Lebesgue measure on R

d.
Let J0(x, y) be the function satisfying (3.9)–(3.12). For δ ∈ (0, 1), set

(4.2) Ĵδ(x, y) = J0(x, y)1{|x−y|≥δ} + κ1
1

|x− y|dφ2(|x− y|)ψ2(|x− y|)1{|x−y|<δ},

and define (Eδ,Fδ) in the same way as we defined (Q,D) in (3.1) but with Ĵδ in
place of J0.

For δ ∈ (0, 1), let Ŷ δ be the symmetric Markov process associated with (Eδ,Fδ).

By [20, Theorem 3.1], the process Ŷ δ is conservative. Moreover, by Proposition
3.1, there is a properly Eδ-exceptional set Nδ ⊂ R

d and a positive symmetric kernel
qδ(t, x, y) defined on [0,∞)× (Rd \Nδ)× (Rd \Nδ) such that for every x ∈ R

d \Nδ

and s, t > 0,

Ex

[
f(Ŷ δ

t )
]
=

∫
Rd

qδ(t, x, y)f(y)dy, qδ(t+ s, x, y) =

∫
Rd

qδ(t, x, z)qδ(s, z, y)dz,
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and for every x, y ∈ R
d \ Nδ,

(4.3) qδ(t, x, y) ≤ cδt
−d/2.

Moreover, there is an Eδ-nest {F δ
k , k ≥ 1} of compact subsets of Rd so that Nδ =

R
d\

∞⋃
k=1

F δ
k and that for every t > 0 and y ∈ R

d\Nδ, x �→ qδ(t, x, y) is continuous on

each F δ
k . For ball B(x0, r) ⊂ R

d, let qδ,B(x0,r)(t, x, y) denote the transition density

function of the subprocess Ŷ δ,B(x0,r) of Ŷ δ killed upon leaving the ball B(x0, r).
We consider the bilinear form (E(1),δ,Fδ) with

E(1),δ(v, v) :=

∫
Rd

∫
Rd

(v(ξ)− v(η))2 Ĵ
(1)
δ (ξ, η) dηdξ,

where
Ĵ
(1)
δ (ξ, η) := 1{|ξ−η|≤1}Ĵδ(ξ, η).

Let Ŷ (1),δ be the corresponding Hunt process associated with the regular Dirich-

let form (E(1),δ,Fδ). Since Ŷ (1),δ can be obtained from Ŷ δ by removing its jumps

of size larger than 1, Ŷ (1),δ can start from every point in R
d \Nδ. Moreover, Ŷ (1),δ

admits a quasi-continuous transition density function q(1),δ(t, ξ, η) on (0,∞)×(Rd \
Nδ)× (Rd \ Nδ) with respect to the Lebesgue measure that has similar properties
as that for qδ(t, x, y). Let q(1),δ,D(t, ξ, η) be the transition density function of the

subprocess Ŷ (1),δ,D of Ŷ (1),δ killed upon leaving an open set D. It follows from [1,
Lemma 3.6] that for x, y ∈ R

d \ Nδ,
(4.4)

qδ(t, x, y) ≥ e−t‖Jδ‖∞q(1),δ(t, x, y) and qδ,D(t, x, y) ≥ e−s‖Jδ‖∞q(1),δ,D(t, x, y),

where Jδ(x) :=

∫
Rd

Ĵδ(x, y)1{|x−y|>1}dy. Since supδ∈(0,1) ‖Jδ‖∞ < ∞, using (4.4)

the next three results follow from [1, Proposition 4.3, Lemma 4.5, Lemma 4.6],
respectively.

Proposition 4.2. There is a constant c1 = c1(δ, r) > 0 such that for every t ∈
[r2/8, r2/4] and x, y ∈ B(x0, r) \ Nδ,

qδ,B(x0,r)(t, x, y) ≥ c1(r − |x|)β4(r − |y|)β4 .

Let (Eδ,Fδ,B(x0,r)) be the Dirichlet form for the killed process Ŷ δ,B(x0,r).

Lemma 4.3. For every t > 0 and y0 ∈ B(x0, r)\Nδ, it holds that q
δ,B(x0,r)(t, x, y0)

∈ Fδ,B(x0,r).

Define

(4.5) Φr(x) =
(
r2 − |x|2

)12/(2−β4)
1B(x0,r)(x).

Lemma 4.4. For every t > 0 and y0 ∈ B(x0, r) \ Nδ, it holds that

Φr(·)/qδ,B(x0,r)(t, x, y0) ∈ Fδ,B(x0,r).

Let q
B(x0,1)
r (t, x, y) := rdqδ,B(x0,r)(r2t, rx, ry) and x1 ∈ B(x0, 1), and define

ur(t, x) := qB(x0,1)
r (t, x, x1),

G(t) :=

∫
B(x0,1)

Φ1(y) log ur(t, y)dy −
1

2

∫
B(x0,1)

Φ1(x) logΦ1(x)dx.
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Using the above three results, the proof of the next result is almost identical to
that of [1, Lemma 4.7]. So we skip the proof.

Lemma 4.5.

G′(t) = −E(r)
(
ur(t, ·),

Φ1

ur(t, ·)
)
,

where

E(r)(u, u) :=

∫
Rd×Rd

(u(x)− u(y))2rd+2Ĵδ(rx, ry)dxdy.

The idea of the proof of the following theorem is motivated by that of [1, Propo-
sition 4.9] and [10, Theorem 3.4].

Theorem 4.6. For each δ0 > 0 there exists c = c(δ0, β, β0) > 0, independent of
δ ∈ (0, 1), such that for every x0 ∈ R

d,

(4.6) qδ(t, x, y) ≥ c t−d/2 for every t ≥ δ0 and x, y ∈ R
d \Nδ with |x−y|2 ≤ t.

Moreover, for each δ0 > 0 and 0 < ε < M < ∞ there exists c = c(δ0, ε,M, β, β0) >
0, independent of δ ∈ (0, 1), such that for every x0 ∈ R

d, t ≥ δ0, s ∈ [εt,Mt] and
every x, y ∈ B(x0, 3

√
t/4) \ Nδ,

(4.7) qδ,B(x0,t
1/2)(s, x, y) ≥ c t−d/2.

Proof. Fix δ ∈ (0, 1) and, for simplicity, in this proof we sometimes drop the su-

perscript “δ” from Ŷ δ and qδ(t, x, y). Recall that for the ball Br := B(0, r) ⊂ R
d,

qBr (t, x, y) is the transition density function of the subprocess Ŷ Br of Ŷ killed upon
leaving the ball Br. It follows from Lemmas 4.3 and 4.4 that for every t > 0 and
y0 ∈ Br, q

Br(t, x, y0) ∈ FBr and ϕr(·)/qBr(t, x, y0) ∈ FBr , where (E ,FBr) is the

Dirichlet form for the killed process Ŷ Br .

Note that the Dirichlet form of
{
r−1Ŷr2t, t ≥ 0

}
is (E(r),F (r)), where

E(r)(u, u) =

∫
Rd×Rd

(u(x)− u(y))2rd+2Ĵδ(rx, ry)dxdy(4.8)

F (r) =
{
u ∈ L2(u, u) : E(r)(u, u) < ∞

}
= W β4/2,2(Rd).

For u ∈ L2(Rd, dx), its Fourier transform û is defined by

û(ξ) := (2π)−d/2

∫
Rd

eiξ·yu(y)dy.

Then

E(r)
1 (u, u) ≤ c0

(∫
Rd×Rd

(u(x)− u(y))2

|x− y|d+β4
dxdy +

∫
Rd

u(x)2dx

)
(4.9)

= c1

∫
Rd

(|ξ|β4 + 1)|û(ξ)|2dξ

≤ c2

∫
Rd

(|ξ|2 + 1)|û(ξ)|2dξ = c3

∫
Rd

(
|∇u(x)|2 + u(x)2

)
dx.

Define

(4.10) qBr (t, x, y) := rdqBr (r2t, rx, ry) for t > 0 and x, y ∈ B \ Nδ.

Note that qBr (t, x, y) is the transition density function for the process r−1Ŷ Br

r2t . The

latter is the subprocess of {r−1Ŷr2t, t ≥ 0} killed upon leaving the unit ball B(0, 1),
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whose Dirichlet form will be denoted as (E(r),F (r),B). It follows from Proposition
4.2 that there is a constant c4 = c4(δ, r) > 0 such that

qBr (t, x, y) ≥ c4(1−|x|)β4(1−|y|)β4 for every t∈ [1/8, 1/4] and x, y ∈ B(0, 1)\Nδ.

Let Φ(x) := c5Φ1(x), where Φ1 is the function defined in (4.5) and c5 is a normal-
izing constant so that

∫
Rd Φ(x)dx = 1. Let x0 ∈ B(0, 1) \ Nδ and define

u(t, x) := qBr (t, x, x0), v(t, x) := qBr (t, x, x0)/Φ(x)
1/2,

H(t) :=

∫
B(0,1)

Φ(y) log u(t, y)dy,

G(t) :=

∫
B(0,1)

Φ(y) log v(t, y)dy = H(t)− c6.

The remainder of the argument does not use the condition on Ĵδ, and, in par-
ticular, the constants can be taken to be independent of δ ∈ (0, 1).

Let qr(t, x, y) := rdq(r2t, rx, ry), which is the transition density function with

respect to the Lebesgue measure on R
d for the symmetric jump process Ŷ

(r)
t :=

r−1Ŷr2t, whose jumping intensity function is rd+2J(rx, ry). Let x ∈ R
d \Nδ. Using

Theorem 3.2 for r2t ≥ 1 and β0 > 1,

Px

(
Ŷ

(r)
t /∈ B(x, 1/4)

)
(4.11)

=

∫
B(x,1/4)c

rdq(r2t, rx, ry)dy =

∫
B(rx,r/4)c

q(r2t, rx, z)dz

≤ c7

∫
{w∈Rd:|w|≥((r/4)∨(r2t))}

e−c8|w|(log |w|/(r2t))(β0−1)/β0
dw

+c9

∫ r2t

r/4

r−dt−d/2 exp

(
−c10s

2

r2t

)
sd−1ds

≤ c7

∫
{w∈Rd:|w|≥r/4}

e−c11|w| dw + c9

∫ ∞

1/(4
√
t)

exp
(
−c10u

2
)
ud−1du.

Similarly, using Theorem 3.3, for r2t ≥ 1 and β0 ≤ 1,

Px

(
Ŷ

(r)
t /∈ B(x, 1/4)

)
(4.12)

≤ c12

∫
{w∈Rd:|w|≥r/4}

e−c13|w|β0 dw + c14

∫ ∞

1/(4
√
t)

exp
(
−c15u

2
)
ud−1du.

For each β0 > 0, using (4.11)–(4.12) we choose that t0 ∈ (0, 1/2) be small so that

Px

(
Ŷ

(r)
t /∈ B(x, 1/4)

)
< 1/16+1/16 = 1/8 for every r ≥ t

−1/2
0 and 0 < t ≤ t0.

By Lemma 3.8 of [1], we have that for every r ≥ t
−1/2
0 ,

(4.13) Px

(
sup

s∈[0,t0]

|Ŷ (r)
s − Ŷ

(r)
0 | > 1/4

)
≤ 1/4.
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Write Ĵ (r)(x, y) := rd+2Ĵδ(rx, ry) and κ
(r)
B (x) := 2

∫
Rd\B(0,1)

Ĵ (r)(x, y)dy for

x ∈ B := B(0, 1). Then we have from (4.8) and Lemma 4.5,

G′(t) = −
∫
B

∫
B

[u(t, y)− u(t, x)]

u(t, x)u(t, y)
[u(t, x)Φ(y)− Φ(x)u(t, y)]Ĵ (r)(x, y) dy dx

−
∫
B

Φ(x)κ
(r)
B (x)dx.

The main step is to show that for all t in (0, 1] and r ≥ t
−1/2
0 one has

(4.14) G′(t) ≥ −c16 + c17

∫
B

(log u(t, y)−H(t))2Φ(y) dy

for positive constants c16, c17. By [10, (3.13)] and the argument that follows it, we
have

[u(t, y)− u(t, x)]

u(t, x)u(t, y)
[u(t, x)Φ(y)− Φ(x)u(t, y)]

≤(Φ(x)1/2 − Φ(y)1/2)2 −
√
Φ(x)Φ(y) (log v(t, y)− log v(t, x))2.

Substituting in the formula for G′(t),

H ′(t) = G′(t)

≥ −c18 +

∫
B

∫
B

(log v(t, y)− log v(t, x))2
√
Φ(x)Φ(y)J (r)(x, y) dx dy

≥ −c18 + r2
∫
B

∫
B

(log v(t, y)− log v(t, x))2(Φ(x) ∧ Φ(y))
1

|x− y|dϕ(r|x− y|) dx dy,

where

ϕ(s) :=

{
(κ0)

−1sβ2 when s < δ,

κ1φ(s) when s > δ.

Thus, using Theorem 4.1, for all t in (0, 1] and r ≥ t
−1/2
0 ,

H ′(t) ≥ −c18 + c19

∫
B

(log v(t, y)−G(t))2Φ(y) dy

≥ −c20 + c21

∫
B

(log u(t, y)−H(t))2Φ(y) dy,

which gives (4.14). Note that in the first inequality we used the fact that∫
B

∫
B

(Φ(x)1/2 − Φ(y)1/2)2J (r)(x, y) dx dy +

∫
B

Φ(x)κ
(r)
B (x)dx

= E(r)(Φ1/2,Φ1/2) < ∞,

which follows from (4.9).
Now following the argument of the proof of [10, Theorem 3.4, pages 851-853] we

conclude that

q(t, x, y) ≥ qB(x0,
√
t)(t, x, y) ≥ c22t

−d/2

for every t ≥ t−1
0 and x, y ∈ R

d \ Nδ with |x− y|2 ≤ t, and

qB(x0,
√
t)(s, x, y) ≥ c23t

−d/2

for t ≥ t−1
0 , x, y ∈ B(x0, 3

√
t/4) \ Nδ and s ∈ [εt, Mt].
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Next suppose that δ0 < t−1
0 and δ0 ≤ t ≤ t−1

0 . Let n0 = 1+ [2/
√
t0δ0], where [a]

is the largest integer which is no larger than a. By [1, Theorem 4.10] and our (4.4)
we have
(4.15)

qB(x0,
√
δ0)(u, x, y) ≥ c24, for every

εδ0
2n0

≤ u ≤ 2t−1
0 and x, y∈B(x0, 3

√
δ0/4)\Nδ,

where the constant c24 is independent of δ and x0 ∈ R
d. Given

x, y ∈ B(x0, 3
√
t/4) \ Nδ,

let z1 · · · zn0−1 be equally spaced points on the line segment joining x and y such
that x ∈ B(z1, 3

√
δ0/4) ⊂ B(z1,

√
δ0) ⊂ B(x0,

√
t) and y ∈ B(zn0−1, 3

√
δ0/4) ⊂

B(zn0−1,
√
δ0) ⊂ B(x0,

√
t). Using (4.15) and the semigroup property, we have

qB(x0,
√
t)(s, x, y)

=

∫
B(x0,

√
t)

. . .

∫
B(x0,

√
t)

qB(x0,
√
t)(s/n0, x, w1)

. . . qB(x0,
√
t)(s/n0, wn0−1, y)dw1 . . . dwn0−1

≥
∫
B(z1,3

√
δ0/4)

. . .

∫
B(zn0−1,3

√
δ0/4)

qB(z1,
√
δ0)(s/n0, x, w1)

. . . qB(zn0
,
√
δ0)(s/n0, wn0−1, y)dw1 . . . dwn0−1

≥ c25 ≥ c25δ
d/2
0 t−d/2.

A similar argument gives (4.6) when δ0 < t−1
0 and t ∈ [δ0, t

−1
0 ]. �

For any ball B ⊂ R
d, let (Eδ,B,Fδ,B) denote the Dirichlet form of the subprocess

Ŷ δ,B of Ŷ δ killed upon leaving the ball B. It is easy to see that C1
c (R

d) is a
common core for (Eδ,Fδ) and (E ,F) and that C1

c (B) ⊂ C1
c (R

d) is a common core
for (Eδ,B,Fδ,B) and (EB,FB). Thus by [1, Theorems 2.3 and 2.4] we have the
following. (See [1, Definition 2.1] for the definition of Mosco convergence.)

Theorem 4.7. Let B be a ball in R
d. Then (Eδ,Fδ) and (Eδ,B,Fδ,B) converge as

δ → 0 to (E ,F) and (EB,FB), respectively, in the sense of Mosco.

The above theorem implies that the semigroup of Ŷ δ and Ŷ δ,B converge in L2 to

that of Ŷ and Ŷ B , respectively. By the same proof as that for [1, Theorem 1.3], we
deduce from Theorem 4.6 the following lower bound estimate for the heat kernel of

Ŷ and Ŷ B.
Recall that N is the properly exceptional set in Proposition 3.1.

Theorem 4.8. Suppose the Dirichlet form (Q,D) is given by (3.1) with the jumping
kernel satisfying (3.12). For each t0 > 0 there exists c1 = c1(t0) > 0 such that for
every x0 ∈ R

d, t ≥ t0,

q(t, x, y) ≥ c1 t
−d/2 for every x, y ∈ R

d \ N with |x− y|2 ≤ t.

Moreover, for each t0 > 0 and 0 < ε < M < ∞ there exists c2 = c2(t0, ε,M) > 0
such that for every x0 ∈ R

d, t ≥ t0,

(4.16) qB(x0,
√
t)(s, x, y) ≥ c2 t

−d/2

for every s ∈ [εt,Mt] and q.e. x, y ∈ B(x0, 3
√
t/4) \ N .
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4.2. Parabolic Harnack inequality. In this section we always assume β0 ∈
(0,∞].

We first introduce a space-time process Zs := (Vs, Ys), where Vs = V0 − s. The

augmented filtration generated by Z will be denoted as {F̃s; s ≥ 0}. The law of
the space-time process s �→ Zs starting from (t, x) will be denoted as P(t,x).

For each A ⊂ [0,∞) × R
d, denote σA := inf{t > 0 : Zt ∈ A} and τA = τ (A) :=

inf{t > 0 : Zt /∈ A} and define U(t, x, r) = {t} × B(x, r). Recall that μd+1 is the
Lebesgue measure on R

d+1.

Lemma 4.9. Suppose the Dirichlet form (Q,D) is given by (3.1) with the jumping
kernel J0 satisfying condition (3.12). For every δ ∈ (0, 1) and R∗ > 0 there exist
C2, C3 > 0 depending δ, R∗ β and β0 such that the following are true.

(i) For all x ∈ R
d \N , r ≥ R∗, t ≥ δr2 and any compact subset A ⊂ [t− δr2, t−

δr2/2]×B(x, 3r
4 ),

P(t,x)(σA < τ[t−δr2,t]×B(x,r)) ≥ C2
μd+1(A)

rd+2
.

(ii) For every R ≥ R∗, r ∈ (0, R/2], x0 ∈ R
d \ N , t ≤ 2R2 and (t′, x), (t, z) ∈

[t− 3δR2, t]×B(x0, R) with t′ ≤ t− δR2/2,

(4.17) P(t,z)

(
σU(t′,x,r) < τ[t−3δR2,t]×B(x0,2R)

)
≥ C3

rd+2

Rd+2
.

Proof. (i) Let τr := τ[t−δr2,t]×B(x,r) and As := {y ∈ R
d : (s, y) ∈ A}. Note that

E(t,x)

[∫ τr

0

1A(t− s, Ys)ds

]
=

∫ δr2

0

P(t,x)

(∫ τr

0

1A(t− s, Ys)ds > u

)
du

≤
∫ δr2

0

P(t,x)

(∫ τr

0

1A(t− s, Ys)ds > 0

)
du ≤ δr2P(t,x)(σA < τr).

On the other hand,

E(t,x)

[∫ τr

0

1A(t− s, Ys)ds

]
=

∫ δr2

2−1δr2
P(t,x)

(
(t− s, Y B(x,r)

s ) ∈ A
)
ds

=

∫ δr2

2−1δr2
Px

(
Y B(x,r)
s ∈ At−s

)
ds =

∫ δr2

2−1δr2

∫
At−s

pB(x,r)(s, x, y)dyds.

From [10, Theorem 3.5] and our (4.16), we have for (s, y) ∈ (2−1δr2, δr2) ×
(B(x, 3r/4) \ N ), pB(x,r)(s, x, y) ≥ c1r

−d. Thus

E(t,x)

[∫ τr

0

1A(t− s, Ys)ds

]
≥ c1

∫ δr2

2−1δr2

∫
At−s

r−ddyds ≥ c1μd+1(A)
1

rd
.

Combining the above two inequalities we obtain (i).
(ii) Given (4.16), the proof is almost the same as that of [11, Lemma 2.6 (ii)], so

we omit it. �

Now we consider the symmetric jump process Y whose jumping measure J is
given by (1.6). In this case, it follows from [11, Theorem 3.1] that Y admits the
jointly continuous transition density function p(t, x, y) and that Y can be modified
to start from every point in R

d in view of Meyer’s construction (so the properly
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exceptional set N of Y can be taken to be the empty set). Throughout the remain-
der of this paper, we consider the space-time process Zs = (V0 − s, Ys), where the
jumping kernel J of Y is given by (1.6) and satisfies UJS. We point out that UJS
is only used in the next lemma.

Note that for Q := [a, b]×B, τQ = inf{s ≥ 0 : Zs /∈ Q} = τB ∧ (V0−a)+1{V0≤b}.

Lemma 4.10. Let R∗ > 0, δ > 0 and 0 < a < 1/3. For R ≥ R∗, let Q1 =
[t0, t0 + 4δR2]×B(x0, 3aR/2), Q2 = [t0, t0 + 4δR2]×B(x0, 2aR) and define

Q− = [t0+δR2, t0+2δR2]×B(x0, aR), Q+ = [t0+3δR2, t0+4δR2]×B(x0, aR).

Let h : [t0, ∞)×R
d → R+ be bounded and supported in [t0, ∞)×B(x0, 3aR)c. Then

there exists C1 = C1(δ, a, R∗) > 0 independent of R ≥ R∗ such that the following
holds:

E(t1,y1)[h(ZτQ1
)] ≤ C1E(t2,y2)[h(ZτQ2

)] for (t1, y1) ∈ Q− and (t2, y2) ∈ Q+.

Proof. Given (4.16), the proof is similar to that of [11, Lemma 5.3] (with R2 in place

of φ(R) there), except with the following changes. In order to estimate
∫ t1
0

I2 ds in
[11, page 1081] from above, we claim that

(4.18) pB3aR/2(t1 − s, y1, z) ≤ c1R
−d for every z ∈ B3aR/2 and t1 > s.

Note that

(4.19) aR∗/4 ≤ aR/4 ≤ |y1 − z| ≤ 5aR/2 for every z ∈ B3aR/2.

If t1 − s ≤ 1, by Theorem 3.6 and (4.19)

pB3aR/2(t1 − s, y1, z) ≤ p(t1 − s, y1, z) ≤ c2
1

|y1 − z|d ≤ c3
Rd

.

If t1 − s > 1 and |y1 − z| ≥ (t1 − s), then, by Theorem 3.6 and (4.19),

pB3aR/2(t1 − s, y1, z) ≤ c4e
−c5|y1−z|1∧β ≤ c6Re−c7R

1∧β ≤ c8
Rd

.

If t1 − s > 1 and |y1 − z|(2−β)∨1 < (t1 − s), then by (4.19), aR
4 ≤ |y1 − z| <

(t1 − s)
1

(2−β)∨1 . Thus by Theorem 3.6

pB3aR/2(t1−s, y1, z) ≤ c9(t1−s)−d/2e−c10
|y1−z|2
t1−s ≤ c11(aR/4)−d/2e−5c10aR/2 ≤ c12

Rd
.

If t1 − s > 1, β ∈ (0, 1] and |y1 − z|2−β ≥ (t1 − s) ≥ |y1 − z|, then, by (4.19),
aR/4 ≤ |y1 − z| < t1 − s. Thus by Theorem 3.6(a)

pB3aR/2(t1 − s, y1, z) ≤ c13e
−c14|y1−z|β ≤ c13e

−c15R
β ≤ c16

Rd
.

We have proved (4.18), which implies that
∫ t1
0

I2 ds in [11, page 1081] is less than
or equal to the right hand side of [11, (5.4)]. Now using UJS, the remainder of the
proof is similar to that of [11, Lemma 5.3]. We omit the rest of the proof. �

We say that a non-negative Borel measurable function h(t, x) on [0,∞)× R
d is

parabolic (or caloric) on D = (a, b] × B(x0, r) if for every relatively compact open
subset D1 of D, h(t, x) = E(t,x)[h(ZτD1

)] for every (t, x) ∈ D1∩([0,∞)×R
d), where

τD1
= inf{s > 0 : Zs /∈ D1}.
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Theorem 4.11. For every δ ∈ (0, 1) there exists c = c(φ, d, δ, β) > 0 such that for
every x0 ∈ R

d, t0 ≥ 0, R > 0 and every non-negative function u on [0,∞) × R
d

that is parabolic on (t0, t0 + 4δ(φ1(R) ∨R2)]×B(x0, 4R),

sup
(t1,y1)∈Q−

u(t1, y1) ≤ c inf
(t2,y2)∈Q+

u(t2, y2),

where Q− = (t0 + δ(φ1(R) ∨R2), t0 + 2δ(φ1(R) ∨R2)]× B(x0, R) and Q+ = [t0 +
3δ(φ1(R) ∨R2), t0 + 4δ(φ1(R) ∨R2)]×B(x0, R).

Proof. This result was already proved in [11, Theorem 5.2] and [13, Theorem 4.12]
for R ≤ R0. Given the above lemmas, one can prove for the case R > R0 similar
to the proof in [11, Theorem 5.2] (see also [13, Theorem 4.12]) for β < ∞, and the
proof in [10, Theorem 4.1] for β = ∞. �

5. Off-diagonal lower bound estimates

For the remainder of this paper, (E ,F) is the Dirichlet form given by (1.8) and
(1.10), with the jumping kernel J satisfying conditions (1.1)–(1.4), (1.7) and UJS,
and Y is the associated Hunt process on R

d. Recall that β > 0 is the exponent in
(1.2).

In this section, we give the proof of the off-diagonal lower bound for p(t, x, y).
Using the results in previous sections, the proof of the off-diagonal lower bound for
the limiting case β = ∞ (i.e. the case ψ1(r) = ∞ for every r ≥ 1) is identical to
the one in [10]. Thus in this section we only consider the case 0 < β < ∞.

Lemma 5.1. (i) For every r0 > 0 there exist c1, c2 ∈ (0, 1) such that for every
x ∈ R

d and 0 < r ≤ r0,

(5.1) Px(τB(x,r/2) < c1φ1(r)) ≤ c2.

(ii) There exists γ ∈ (0, 1) such that for every t ≥ 1
4 and x ∈ R

d,

Px

(
τB(x,γ−1/2t1/2) < t

)
≤ 1

2
.

Proof. Since the idea of the proof is similar, we only spell out details for the proof
of (ii) (see also [11, Lemma 2.5] for the proof of (i)).

Let x ∈ R
d and t > 1. When β ∈ (1,∞), by Theorem 3.6(b),

Px (Yt /∈ B(x, r)) =

∫
B(x,r)c

p(t, x, z)dz

≤ c1

∫
{z∈Rd:|z−x|≥(r∨t)}

te−c2|z−x|(log |z−x|/t)(β−1)/β

dz

+c1

∫
{z∈Rd:t≥|z−x|≥r}

t−d/2 exp

(
−c3|z − x|2

t

)
dz

≤ c5

∫
{w∈Rd:|w|≥(r∨t)}

e−c4|w| dw + c5 1(0,t](r)

∫ t

r

t−d/2 exp

(
−c3s

2

t

)
sd−1ds

≤ c5

∫
{w∈Rd:|w|≥r}

e−c4|w| dw + c6 1(0,t](r)

∫ ∞

r/(
√
t)

exp
(
−c3u

2
)
ud−1du.
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When β ∈ (0, 1], using Theorem 3.6(a),

Px (Yt /∈ B(x, r))

≤c7

∫
{z∈Rd:|z−x|≥(r∨t1/(2−β))}

te−c8|z−x|β dz

+ c7

∫
{z∈Rd:t1/(2−β)≥|z−x|≥r}

t−d/2 exp

(
−c9|z − x|2

t

)
dz

≤c10

∫
{w∈Rd:|w|≥(r∨t1/(2−β))}

e−c11|w|β dw

+ c10 1(0,t1/(2−β)](r)

∫ t1/(2−β)

r

t−d/2 exp

(
−c9s

2

t

)
sd−1ds

≤c10

∫
{w∈Rd:|w|≥r}

e−c11|w|β dw + c12 1(0,t1/(2−β)](r)

∫ ∞

r/(
√
t)

exp
(
−c9u

2
)
ud−1du.

Thus for each β > 0 we can choose γ > 0 small so that

(5.2) Px (Yt /∈ B(x, r)) < 1/4 for every t ≤ γr2

for t ≥ 1
4 . Using (5.1), we see that (by changing γ if necessary) (5.2) holds for all

t > 0. Thus, by [1, Lemma 3.8]), we obtain

Px

(
τB(x,2r) < γr2

)
= Px

(
sup

u≤γr2
|Yu − Y0| > r

)
≤ 1

2
,

for every r2γ ≥ 1, so the proof of (ii) is completed by considering t = 4γr2. �

Let γ be the constant in Lemma 5.1(ii). Applying Lemma 5.1 and (1.11), we
can prove the following in the same way as [13, Proposition 4.11]. Thus we skip
the proof.

Proposition 5.2. (i) If (t, x, y) ∈ [ 14 ,∞)×R
d×R

d with |x−y| ≥ 3γ−1/2t1/2, then
there exist constants c1, c2 > 0 such that

Px

(
Yt ∈ B

(
y, 3 · 2−1γ−1/2t1/2

))
≥ c1

t1+d/2e−c2|x−y|β

|x− y|dφ1(|x− y|) .

(ii) For every t0 > 0 there exist constants c1 ≥ 2, c2 > 0 and c3 > 0 such that
for every x, y ∈ R

d with |x− y| ≥ c1φ
−1(t) and for every t ∈ (0, t0],

(5.3) Px(Yt ∈ B(y, c1φ
−1(t))) ≥ c2

t(φ−1(t))d

|x− y|dφ(c3|x− y|) .

Now using Theorem 4.11, Lemma 5.1(i) and Proposition 5.2(ii), the proof of the
next theorem is almost identical to that of [13, Lemma 4.13 and Theorem 1.2]. (For
the case of |x− y| ≤ c for some small c > 0, this has been proved in [11, Theorem
2.4].) Thus we skip its proof.

Theorem 5.3. Suppose t0 ∈ (0,∞). There exists c = c(β, t0) > 0 such that for
every t ≤ t0,

p(t, x, y) ≥ c

(
1

(φ−1(t))d
∧ t

|x− y|dφ(c1|x− y|)

)
.
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Theorem 5.4. (i) For every C∗ > 0 there exist c1, c2 > 0 such that for every t ≥ 1,

p(t, x, y) ≥ c1t
−d/2 exp

(
−c2|x− y|2

t

)
when C∗|x− y| ≤ t.

(ii) There exist c1, c2 > 0 such that for every t ≥ 1,

(5.4) p(t, x, y) ≥ c1 t e
−c2|x−y|β when |x− y| ≥

√
3

2
γ−1/2t1/2,

where γ is the constant in Lemma 5.1(ii).
In particular, when 0 < β ≤ 1, there exist c1, c2, C∗ > 0 such that for every

t ≥ 1,

p(t, x, y) ≥ c1 t e
−c2|x−y|β when |x− y|2−β ≥ t/C∗.

Proof. (i) Fix C∗ > 0 and let R := |x − y|. By Theorem 4.8, we only need to
consider the case 1∨ (C∗R) ≤ t ≤ R2. Let l be the smallest positive integer so that
t/l ≥ (R/l)2. Then 1 ≤ R2/t ≤ l < 1 + R2/t ≤ 2R2/t, and so 2(R/l)2 ≥ t/l ≥
(R/l)2. Since t ≥ C∗R,

t

l
≥ t

1 +R2/t
=

t2

t+R2
≥ 2−1

(
t

R

)2

≥ 2−1(C∗)2.

Let x = x0, x1, · · · , xl = y be such that |xi − xi+1| = R/l for i = 1, · · · , l − 1, and
let Bi := B(xi, R/l). Since (R/l)2 ≤ t/l and t/l ≥ 2−1(C∗)2, by Theorem 4.8 and
the semigroup property, we have

(5.5) p(t/l, yi, yi+1) ≥ c1(t/l)
−d/2, for every (yi, yi+1) ∈ Bi ×Bi+1.

Using (5.5), we have

p(t, x, y) ≥
∫
B1

. . .

∫
Bl−1

p(t/l, x, y1) . . . p(t/l, yl−1, y)dy1 . . . dyl−1

≥ c1(t/l)
−d/2Πl−1

i=1

(
c2(t/l)

−d/2(R/l)d
)
≥ c3(t/l)

−d/2(c22
−d/2)l−1

≥ c3(t/l)
−d/2 exp(−c4l) ≥ c5t

−d/2 exp

(
−c6|x− y|2

t

)
.

(ii) Since |x− y| ≥ 3 · 2−1γ−1/2(t/3)1/2, applying Proposition 5.2(i) with t/3 in
place of t, we have

Px(Yt/3 ∈ B(y, C1t
1/2)) ≥ Px(Yt/3 ∈ B(y, C1(t/3)

1/2)) ≥ c7
t1+d/2e−c8|x−y|β

|x− y|dφ1(|x− y|) ,

where C1 := 3 · 2−1γ−1/2. As μd(B(y, C1t
1/2)) ≤ c9t

d/2, the above, together with
Theorem 4.11, implies that

p(t, x, y) ≥ c10 sup
w∈B(y, C1t1/2)

p(t/3, x, w) ≥ c11
te−c8|x−y|β

|x− y|dφ1(|x− y|) ,

which is greater than c12te
−c14|x−y| since |x − y| ≥

√
3
2 γ−1/2. This completes the

proof. �
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Theorem 5.5. Suppose β > 1 and C∗ ∈ (0, 1). There exist c1, c2 > 0 depending
on C∗ and β such that

(5.6) p(t, x, y) ≥ c1 exp

(
−c2|x− y|

(
log

|x− y|
t

)(β−1)/β
)

for every t > 1 and |x− y| ≥ t/C∗, and

(5.7) p(t, x, y) ≥ c1t

(
e−c2|x−y|(log |x−y|

t )
β−1
β

+ e−c2|x−y|β
)

for every t ∈ (0, 1] and |x− y| ≥ t/C∗.

Proof. Let R := |x − y|. Note that exp(−cR(log(R/t))(β−1)/β) ≥ exp(−cRβ) is
equivalent to t ≥ R exp(−Rβ). Since R exp(−Rβ) ≤ exp(−1) for all R > 0 and
β ≥ 1, t ≥ R exp(−Rβ) holds for t > 1. When t < R exp(−Rβ) (which can only
occur for some t ∈ (0, 1]), (5.7) holds by Theorem 5.3. So it suffices to consider the
case C∗R ≥ t ≥ R exp(−Rβ). In this case we have R(logR/t)−1/β ≥ 1. Let l ≥ 2
be a positive integer such that

R
(
log(R/t)

)−1/β

< l ≤ R
(
log(R/t)

)−1/β

+ 1

and let x = x0, x1, · · · , xl = y be such that |xi − xi+1| ≤ 2R/l for i = 1, · · · , l − 1.
(Here we used the fact that Rd is a geodesic space.) We observe that

t

l
≤ t

R
(log(R/t))1/β ≤ sup

s≥1/C∗

s−1(log s)1/β =: t0 < ∞

and
R

2l
≥ 1

2
(1− 1

l
)(log(R/t))1/β ≥ 1

4
(log(C−1

∗ ))1/β =: r0 > 0.

Thus for all (yi, yi+1) ∈ B(xi, r0) × B(xi+1, r0), 3R/l ≥ |yi − yi+1| ≥ R/l and
φ(|yi−yi+1|) ≥ φ(R/l) ≥ φ(2r0) ≥ (φ(2r0)/t0)(t/l). Now, by Theorem 5.3 with our
t0, we have for all (yi, yi+1) ∈ B(xi, r0)×B(xi+1, r0),

p(t/l, yi, yi+1) ≥ c1
t/l

(R/l)dφ(4R/l)
≥ c2

t

R
(l/R)d−1+β2e−γ2(3R/l)β

≥ c3
t

R
(log(r/t))−(d−1+β2)/β(

t

R
)γ23

β ≥ c4(t/R)c5 ,(5.8)

where c5 > 1. Let Bi = B(xi, r0). Using (5.8), we have

p(t, x, y) ≥
∫
B1

. . .

∫
Bl−1

p(t/l, x, y1) . . . p(t/l, yl−1, y)dy1 . . . dyl−1

≥ c4(t/R)c5Πl−1
i=1(c4(t/R)c5 · rd0)

≥ c7 exp
(
−c5(R(log(R/t))−1/β + 1) log(c−1

8 R/t)
)

≥ c9 exp
(
−c10R(log(R/t))1−1/β

)
.

If in addition t ∈ (0, 1], then

exp(−c10R(log(R/t))1−1/β) ≥ t exp(−c10R(log(R/t))1−1/β).

We thus obtain (5.6) and (5.7). �

Combining Theorems 5.3–5.5, we have the lower bounds in Theorem 1.2.
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6. Applications of heat kernel estimates

6.1. Green function estimates. We assume d ≥ 3 and give two-sided sharp
estimates the Green function for G(x, y) of Y in R

d where

G(x, y) :=

∫ ∞

0

p(t, x, y)dt, x, y ∈ R
d.

Theorem 6.1. There exists c = c(α, d) > 1 such that for x, y ∈ R
d,

c−1

(
φ1(|x− y|)
|x− y|d +

1

|x− y|d−2

)
≤ G(x, y) ≤ c

(
φ1(|x− y|)
|x− y|d +

1

|x− y|d−2

)
.

Proof. Note that for every T,M ∈ [0,∞)

(6.1)

∫ ∞

T

t−
d
2 e−

M|x−y|2
t dt =

1

|x− y|d−2

∫ |x−y|2
T

0

u
d−4
2 e−Mudu.

When |x− y| ≤ 1, by Theorem 1.2 and (6.1),

c1
φ1(|x− y|)
|x− y|d ≤ c2

∫ φ1(|x−y|)∧1

0

t

|x− y|dφ(c1|x− y|)dt ≤ G(x, y)

≤ c3

∫ φ1(|x−y|)∧1

0

t

|x− y|dφ1(|x− y|)dt

+c4

∫ 1

φ1(|x−y|)∧1

1

(φ−1
1 (t))d

dt+ c5

∫ ∞

1

t−
d
2 e−

c6|x−y|2
t dt

≤ c7
φ1(|x− y|)
|x− y|d + c8

φ1(|x− y|)
|x− y|d

∞∑
k=0

∫ c9φ1(2
k+1|x−y|)

c9φ1(2k|x−y|)

|x− y|d

φ1(|x− y|)(φ−1
1 (t))d

dt

+c5
1

|x− y|d−2

∫ |x−y|2

0

u
d−4
2 e−c6u

β

du ≤ c10

(
φ1(|x− y|)
|x− y|d +

1

|x− y|d−2

)
,

where we used (1.3) in the last inequality. In fact,

∞∑
k=0

∫ c9φ1(2
k+1|x−y|)

c9φ1(2k|x−y|)

|x− y|d

φ1(|x− y|)(φ−1
1 (t))d

dt ≤ c11

∞∑
k=0

2−(d−β2)k < ∞.

On the other hand, if |x− y| > 1, using Theorems 1.2 and 5.4(ii) and (6.1),

c12
|x− y|d−2

∫ 1

0

u
d−4
2 du = c12

∫ ∞

|x−y|2
t−

d
2 dt ≤ G(x, y)

≤ c13

∫ 1

0

te−c14|x−y|β∧1

dt+ c15

∫ |x−y|2−(β∧1)

1

te−c16|x−y|β∧1

dt

+c17

∫ ∞

|x−y|2−(β∧1)

t−
d
2 e−

c18|x−y|2
t dt

≤ c19|x− y|e−c20|x−y|β∧1

+
c21

|x− y|d−2

∫ |x−y|β∧1

0

u
d−4
2 e−c22udu ≤ c23

|x− y|d−2
.

This completes the proof of the theorem. �
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6.2. Differentiability of spectral functions. In [24, 25], the differentiability of
spectral functions for symmetric stable processes are studied.

Let Z be a symmetric jump process considered in this paper whose Dirichlet
form (Q,D) is given by (1.8)–(1.9) whose jumping intensity kernel J is given by
(1.6) and satisfies UJS. Let μ be a signed measure in the Kato class K∞(X) as
introduced in [9]. The associated spectral function C(λ) is defined to be

C(λ) = − inf

{
Q(u, u) + λ

∫
Rd

u(x)2μ(dx) : u ∈ D with

∫
Rd

u(x)2dx = 1

}
.

It follows from [15] and Theorem 6.1 that the extended Dirichlet form (Q,De)
is compactly embedded into L2(Rd, |μ|). Hence using the heat kernel estimates
established in this paper, by an argument almost the same as that in [24, 25], it
can be shown that if d ≤ 4, then λ �→ C(λ) is differentiable on R. But we will not
go into details about it here. See [15] for recent progress on the differentiability of
spectral functions.
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