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Abstract	

Zoonoses	originating	from	wildlife	represent	a	significant	threat	to	global	health,	security	and	

economic	growth,	and	combating	their	emergence	is	a	public	health	priority.	However,	our	

understanding	of	the	mechanisms	underlying	their	emergence	remains	rudimentary.	Here,	we	

update	a	global	database	of	emerging	infectious	disease	(EID)	events,	create	a	novel	measure	of	

reporting	effort,	and	fit	boosted	regression	tree	models	to	analyse	the	demographic,	

environmental	and	biological	correlates	of	their	occurrence.	After	accounting	for	reporting	

effort,	we	show	that	zoonotic	EID	risk	is	elevated	in	forested	tropical	regions	experiencing	land-

use	changes	and	where	wildlife	biodiversity	(mammal	species	richness)	is	high.	We	present	a	

new	global	hotspot	map	of	spatial	variation	in	our	zoonotic	EID	risk	index,	and	partial	

dependence	plots	illustrating	relationships	between	events	and	predictors.	Our	results	may	

help	to	improve	surveillance	and	long-term	EID	monitoring	programs,	and	design	field	

experiments	to	test	underlying	mechanisms	of	zoonotic	disease	emergence.		
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Introduction	

Emerging	infectious	diseases	(EIDs)	are	a	significant	and	growing	threat	to	global	health,	global	

economy	and	global	security	
1,2
.	Analyses	of	their	trends	suggest	that	their	frequency	and	their	

economic	impact	are	on	the	rise	
3,4
,	yet	our	understanding	of	the	causes	of	disease	emergence	

is	incomplete.	The	majority	of	EIDs	(and	almost	all	recent	pandemics)	originate	in	animals,	

mostly	wildlife,	and	their	emergence	often	involves	dynamic	interactions	among	populations	of	

wildlife,	livestock,	and	people	within	rapidly-changing	environments	
5-7
.	The	mechanisms	

underlying	this	process	are	likely	complex,	and	occur	in	contexts	that	are	often	characterized	by	

a	paucity	of	systematically	collected	data	
8
.		

Global	efforts	to	reduce	the	impacts	of	emerging	diseases	are	largely	focused	on	post-

emergence	outbreak	control,	quarantine,	drug	and	vaccine	development	
3
.	However,	delays	in	

detection	of,	or	response	to,	newly	emerged	pathogens	combined	with	increased	global	

urbanization	and	connectivity	have	resulted	in	recent	EIDs	causing	extensive	mortality	across	

cultural,	political	and	national	boundaries	(e.g.	HIV),	and	disproportionately	high	economic	

damages	(e.g.	SARS,	H1N1).	Efforts	to	identify	the	origins	and	causes	of	disease	emergence	at	

local	scales,	and	regions	where	novel	diseases	may	be	more	likely	to	emerge	from,	are	valuable	

for	focusing	surveillance,	prevention,	and	control	programs	earlier	in	the	chain	of	emergence,	

containing	EIDs	closer	to	their	source,	and	more	effectively	limiting	their	subsequent	spread	

and	socioeconomic	impacts	
8
.		

A	previous	analysis	of	global	EID	trends	modeled	the	spatial	variation	of	“EID	events”,	

representing	records	of	disease	occurrence	of	the	first	appearance	of	a	pathogen	in	a	human	
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population	related	to	increased	distribution	(e.g.,	new	geographic	location,	new	host	species),	

incidence,	virulence,	or	other	factors	
4
.	The	EID	events	were	divided	into	four	groups,	including	

wildlife-origin	zoonoses	
4
.	To	model	the	potential	risk	of	disease	emergence,	these	four	groups	

were	regressed	as	a	function	of	human	population	density	and	growth,	latitude,	rainfall,	and	

wildlife	species	richness.	The	results	suggest	that	wildlife	origin	EIDs	are	more	likely	to	occur	in	

regions	with	higher	human	population	density	and	greater	wildlife	diversity	(mammal	species	

richness)	
8
.	However,	the	study	is	limited	in	its	mechanistic	inference	due,	in	part,	to	the	lack	of	

specificity	of	the	predictors.	For	example,	the	effect	of	population	density	could	represent	

anthropogenic	environmental	changes	(human	pressure	on	landscapes),	human-animal	contact	

rates,	reporting	biases,	or	a	combination	of	these.	Furthermore,	a	range	of	potential	

mechanisms	may	not	be	adequately	represented	by	this	predictor	set;	a	lack	of	an	effect	of	

rainfall,	for	example,	does	not	discount	the	potential	for	other	climatic	factors	to	play	a	role,	

and	a	lack	of	an	effect	of	latitude	could	mean	that	it	is	simply	a	poor	proxy	for	other	more	

meaningful	factors	that	nevertheless	exhibit	some	latitudinal	variation	(e.g.,	temperature,	

habitat	types,	biodiversity,	GDP).	Improving	the	predictor	set	to	better	target	underlying	

mechanisms	could	improve	model	performance	and	our	ability	to	explain	spatial	variation	in	

EID	risk.	

The	current	study	aims	to	better	analyse	the	mechanistic	underpinnings	of	disease	emergence	

for	zoonotic	EIDs	of	wildlife	origin,	while	addressing	some	methodological	limitations	of	Jones	

et	al.	
4
.	We	focus	on	EIDs	of	wildlife	origin,	which	are	responsible	for	nearly	all	recent	

pandemics	(e.g.	Ebola,	MERS),	constitute	the	majority	of	the	high	impact	EIDs	from	the	last	few	

decades,	and	are	a	significantly	growing	proportion	of	all	EIDs	combined	
4
.		We	updated	the	EID	
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database	from	
4
,	and	employed	a	new	modelling	framework	(boosted-regression	trees,	BRT)	to	

capture	high-dimensional	interactions	and	generate	response	functions	for	individual	variables.	

We	selected	a	refined	set	of	spatial	predictors	for	their	relevance	to	a	priori	hypotheses	on	

plausible	mechanisms	underlying	zoonotic	EID	emergence,	including	proxies	for	human	activity,	

environmental	factors,	and	the	zoonotic	pathogen	pool	from	which	novel	diseases	could	

emerge,	all	key	features	of	conceptual	models	of	zoonotic	spillover	
7-11

.	We	used	an	improved	

dataset	of	mammal	species	distributions
12
,	and	included	numerous	datasets	on	measures	of	

land	use,	land-use	change	and	land	cover.	Further,	all	datasets	with	sufficient	temporal	

coverage	were	matched	to	events	in	the	EID	database	by	decade,	such	that	covariates	more	

accurately	reflect	the	prevailing	conditions	at	the	time	of	disease	emergence.	We	also	

constructed	a	novel	proxy	of	reporting	effort	to	match	the	spatial	resolution	of	the	other	

predictors,	where	previous	studies	have	relied	on	coarse,	country	level	measures,	and	

compared	EID	risk	predictions	with	and	without	corrections	for	reporting	effort.	Finally,	we	

accounted	for	spatial	uncertainty	in	EID	event	data	by	random	resampling	to	explicitly	take	into	

account	the	difficulties	of	accurately	geocoding	EID	events.		

Results	

After	factoring	out	reporting	effort	(weighted	model),	evergreen	broadleaf	trees	(median	7.6%	

of	predictive	power),	human	population	density	(6.9%),	Global	Environmental	Stratification	

(climate)	(5.9%),	and	mammal	species	richness	(an	aspect	of	biodiversity)	(5.6%)	had	the	largest	

relative	influence	over	the	distribution	of	EID	events	(Figure	1).	Across	1,000	iterations	of	the	

model,	no	variables	consistently	emerged	as	much	stronger	predictors	than	others	but	an	

average	ranking	of	predictor	importance	could	be	derived.	Of	the	top	predictors,	evergreen	
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broadleaf	trees	(representing	tropical	rainforests)	exhibited	an	overall	positive	trend,	human	

population	density	an	overall	negative	trend,	the	Global	Environmental	Stratification	(climate)	

an	idiosyncratic	trend	towards	warmer	and	wetter	(i.e.,	more	tropical)	climates,	and	mammal	

species	richness	showed	an	idiosyncratic	trend,	with	higher	risk	values	at	both	lower	and	higher	

richness	values	(Figure	2).	After	mammal	species	richness,	three	variables	involving	agricultural	

practices	followed	in	importance:	cultivated/managed	vegetation	(5.6%),	pasture	change	

(5.2%),	and	areas	dedicated	to	pasture	(5.1%).	In	the	unweighted	model,	not	accounting	for	

reporting	effort	(see	Supplementary	Results	2),	urban/built-up	land	was	by	far	the	strongest	

predictor	of	observed	events,	explaining	a	median	of	30.6%	of	the	model’s	variation	and	

exhibiting	a	distinct	positive	trend.		
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Figure	1:	The	relative	influence	of	predictors	on	EID	event	occurrence	probability.	The	box	

plots	show	the	spread	of	relative	influence	across	1000	replicate	model	runs	to	account	for	

uncertainty	in	EID	event	location	(see	above).	BRTs	do	not	provide	p-values	or	coefficients,	

but	rank	variables	by	their	relative	influence	in	explaining	variation	in	the	outcome	
13
.	
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Figure	2:	Partial	dependence	plots	for	the	zoonotic	EID	events	for	all	predictors	in	the	boosted	

regression	tree	(BRT)	model	(ordered	by	relative	influence).	X-axes	show	the	range	from	the	

10
th
	to	90

th
	percentiles	of	sampled	values	of	predictors	(e.g.	number	of	mammal	species	per	
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grid	square	(mammalian	richness)	or	percentage	of	land	cover	type	and	its	change	per	grid	

square),	the	distribution	of	which	are	displayed	in	the	histograms	(grey	bars).	Y-axes	show	the	

EID	event	risk	index.	Black	lines	show	the	median	and	coloured	areas	show	the	90%	

confidence	intervals,	computed	using	a	bootstrap	resampling	regime	incorporating	

uncertainty	in	EID	event	locations.	Our	sampling	regime	fixes	the	outcome,	which	indexes	EID	

event	risk,	between	0	and	1,	with	a	mean	at	0.5.	Y-axes	are	centred	around	the	mean	and	

scaled	to	0.1	above	and	below.	Partial	dependence	plots	display	the	response	for	an	

individual	variable	in	the	model	while	holding	all	other	variables	constant
13,14

.	They	allow	a	

visualization	of	what	are	mostly	non-linear	relationships	between	drivers	and	the	EID	event	

risk	index	(in	this	case,	after	reporting	effort	is	factored	out.).	See	Supplementary	Results	2	

for	results	of	the	model	unweighted	by	reporting	effort.	

Relative	to	the	observed	risk	index	for	EID	events,	the	model’s	estimated	risk	index	correcting	

for	reporting	bias	(Figure	3)	is	more	concentrated	in	tropical	regions.	Areas	of	higher	suitability	

for	EID	occurrence	are	fairly	evenly	distributed	across	the	continents,	with	no	major	land	mass	

free	from	areas	predicted	to	be	suitable	for	EIDs.	In	particular,	areas	of	high	population	outside	

the	tropics,	such	as	cities	in	Europe,	the	United	States,	Asia	and	Latin	America	remain	among	

areas	at	the	high	end	of	the	risk	index.	Tropical	regions	in	North	America,	Asia,	central	Africa,	

and	regions	of	South	America	have	more	extensive	areas	of	predicted	EID	occurrence.	

Our	model	validation	statistics	were	computed	both	for	the	weighted	model	—	with	a	

background,	or	absence,	sample	weighted	by	reporting	effort,	effectively	computing	statistics	

on	the	residuals	of	that	variable	—	and	our	unweighted	model,	using	a	background	sample	
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uniform	across	land	area.	The	weighted	bootstrap	model	reported	a	median	of	31.6%	of	

deviance	explained	across	the	1000	replicate	models	(empirical	90%	CI	15.9%	to	50.5%),	

whereas	the	unweighted	model	explained	a	median	50.2%	of	deviance	(empirical	90%	CI	35.8%	

to	67.2%).	Our	weighted	model’s	cross-validation	statistics,	computed	over	100	runs	of	ten-fold	

cross-validation,	varied	depending	on	the	weighting	of	the	null	validation	sample.	With	

validation	absences	weighted	by	reporting	effort,	the	weighted	model	had	a	median	AUC	of	

0.64,	with	an	empirical	90%	confidence	interval	ranging	from	0.54	to	0.69	(out	of	possible	

values	between	0	and	1,	with	0.5	indicating	performance	no	better	than	random).	The	median	

True	Skill	Statistic	(TSS)	was	0.23	with	an	empirical	90%	CI	of	0.14	to	0.33	(out	of	a	range	of	-1	to	

1).	These	indicate	low	to	moderate	predictive	performance	
15-17

.	Evaluated	against	an	

unweighted	null,	the	weighted	model	had	a	median	AUC	of	0.78	(90%	CI	[0.75,	0.81])	and	a	

median	TSS	of	0.43	(90%	CI	[0.37,	0.50]).	The	unweighted	model	evaluated	against	to	an	

unweighted	null,	had	a	median	AUC	of	0.77	(90%	CI	[0.73,	0.81])	and	a	median	TSS	of	0.44	(90%	

CI	[0.37,	0.50]).	
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Figure	3:	Heat	maps	of	predicted	relative	risk	distribution	of	zoonotic	EID	events.	The	top	panel	

shows	the	predicted	distribution	of	new	events	being	observed	(weighted	model	output	with	

current	reporting	effort);	the	bottom	panel	shows	the	estimated	risk	of	event	locations	after	

factoring	out	reporting	bias	(weighted	model	output	reweighted	by	population).	See	Figure	4	

for	raw	weighted	model	output.	Maps	were	created	in	ArcGIS	10.2.2	using	standard	deviation	

scaling,	with	the	colour	palette	scaled	to	2.5	standard	deviations	above	and	below	the	mean	
18
.	
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Figure	4.	Heat	map	of	weighted	model	response,	i.e.	EID	risk	relative	to	reporting	effort.	Value	

indicates	the	binomial	probability	that	a	grid	cell	sampled	at	that	location	will	contain	an	EID	

event	as	opposed	to	a	background	sample,	when	drawing	equal	numbers	of	absence	and	

background	samples	weighted	by	reporting	effort	(see	Materials	&	Methods).	This	layer	was	

weighted	by	reporting	effort	to	produce	the	“observed”	EID	risk	index	map	(Figure	3,	upper	

panel)	and	by	population	to	produce	the	risk	index	map	with	bias	factored	out	(Figure	3,	

bottom	panel).	

Discussion	

We	developed	a	spatial	model	to	describe	the	global	spatial	patterns	of	zoonotic	EIDs.	The	

model	factored	out	(referred	to	as	the	weighted	model)	clear	effects	of	reporting	effort,	which	

otherwise	biases	our	ability	to	interpret	EID	event	observations.	Our	model	ranked	risk	factors	

according	to	their	predictive	power,	capturing	both	their	main	effects	and	potential	interactions	

with	other	variables,	and	we	derived	the	directionality	and	shape	of	their	relationships	to	EID	

events	for	graphical	interpretation.		Our	results	suggest	that	the	risk	of	disease	emergence	is	

elevated	in	tropical	forest	regions,	high	in	mammal	biodiversity,	and	experiencing	

anthropogenic	land	use	changes	related	to	agricultural	practices	
19-21

.		

The	link	between	mammal	biodiversity	and	zoonotic	disease	emergence	has	been	identified	

previously	
4
	and	hypothesized	widely	

8,22
.	Areas	with	tropical	forest	and	high	mammalian	

biodiversity	were	elevated	on	our	EID	risk	index	(henceforth	“EID	risk”),	although	uncertainty	of	

the	estimates	was	high).	It	may	be	that	these	variables	represent	the	same	mechanism,	as	

tropical	forests	are	generally	areas	of	high	biodiversity	
23
,	and	the	apparent	causal	effect	may	
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be	attenuated	by	the	presence	of	both	in	the	model.	This	trend	is	consistent	with	existing	

hypotheses	that	suggest	greater	host	biodiversity	increases	the	‘depth’	of	the	pathogen	pool	

from	which	novel	pathogens	may	emerge,	which	in	turn	increases	the	potential	for	novel	

zoonotic	pathogens	to	emerge	
24
.	There	is	a	large	literature	on	the	relationship	between	

biodiversity	and	infectious	disease	risk	in	people,	with	some	studies	suggesting	that	high	host	

biodiversity	decreases	risk	or	that	biodiversity	loss	may	increase	risk	(i.e.	the	dilution	effect)	
25
,	

while	others	refute	the	generalizability	of	this	
26,27

	or	suggest	disease	richness	or	prevalence	

increases	with	increasing	wildlife	species	richness	
15
.	Our	findings	look	at	the	global	scale	and	a	

large	group	of	pathogens,	and	so	do	not	speak	directly	to	this	debate:	although	the	dominant	

trend	is	an	increase	in	risk	of	disease	emergence	with	higher	mammalian	richness,	this	neither	

rules	out	nor	substantiates	the	possibility	of	a	dilution	effect	for	specific	diseases.	Rather,	it	is	

consistent	with	previous	suggestions	that	the	relationship	between	biodiversity	and	disease	risk	

is	complex,	context-specific	and	idiosyncratic	
26
.		

When	not	accounting	for	reporting	effort	(“unweighted”),	our	model	showed	urban	land	as	

having	a	very	strong	positive	association	with	EID	events.	However,	this	can	be	interpreted	as	

an	effect	of	reporting	bias,	since	(1)	urban	land	was	also	strongly	associated	with	our	measure	

of	reporting	effort,	and	(2)	fitting	our	weighted	model,	relative	to	reporting	effort,	attenuated	

this	effect.	Similarly,	although	population	density	was	not	found	to	be	an	important	predictor	in	

the	unweighted	model	(median	relative	influence	2.2%),	weighting	the	model	by	reporting	

effort	drove	up	its	importance	(median	rel.	inf.	6.9%),	such	that	EID	risk	was	inversely	related	to	

population	density.	Population	density	was	also	included	in	the	reporting	effort	model,	but	was	

not	as	strong	a	predictor	(rel.	inf.	3.6%)	as	urban	land	(rel.	inf.	45.2%).	Theoretically,	population	
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has	a	baseline	multiplicative	effect	on	human	disease	events	
28
	—	of	which	EID	events	are	a	

subclass	—	and	their	detection	is	modulated	by	reporting	effort.	Reporting	effort	appears	to	be	

associated	with	urbanization,	but	reporting	effort	and	urbanization	are	also	both	products	of	

human	population.	We	did	not	attempt	to	fully	disentangle	these	factors,	instead	using	our	

measure	of	reporting	effort	to	present	a	map	of	emerging	infectious	disease	hotspots	with	bias	

“factored	out”	(described	below	in	Materials	&	Methods).		

Our	reporting	effort	measure	was	created	by	matching	placenames	in	a	subset	of	the	

biomedical	literature.	The	BRT	model	of	reporting	effort	model	suggested	that	the	distribution	

of	this	effort	was	strongly	and	positively	related	to	urban	areas.	This	could	be	because	our	

extraction	of	placenames	biases	the	outcome	toward	urban	areas,	or	it	may	accurately	

represent	the	true	distribution	of	reporting	towards	urban	areas,	or	a	combination	of	the	two.	

In	either	case,	our	reporting	effort	dataset	is	likely	to	be	a	large	improvement	over	previous	

studies	that	have	used	country-level	data	to	control	heterogeneous	reporting	effort	in	better-

than-country-level	spatial	analyses	of	disease	risks	used	in	similar	previous	studies
4,28

	(detailed	

fully	in	Supplementary	Methods:	PubCrawler).	

The	work	presented	here	builds	on	previous	research	
4
	in	a	number	of	important	ways	to	

advance	our	understanding	of	wildlife-origin	zoonotic	disease	emergence.	Firstly,	our	model	

building	approach	explores	the	explanatory	value	of	a	large	collection	of	globally-gridded	data	

on	environmental,	demographic,	and	host	diversity	variables,	including	newly	developed	

models	of	mammal	distributions	and	richness	patterns.	This	has	allowed	us	to	close	the	gap	

between	predictors	and	a	priori	mechanistic	hypotheses	specifically	relevant	to	zoonotic	

disease	emergence	from	wildlife	reservoirs.	Secondly,	we	adopted	a	machine-learning	
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modelling	approach	(boosted	regression	trees)	suited	to	the	analysis	of	complex	ecological	

data
13
,	and	used	various	resampling	regimes	to	measure	and	visualize	multiple	sources	of	

uncertainty	(model	uncertainty,	spatial	uncertainty	of	EID	events,	temporal	uncertainty	of	

covariates	matching	with	events)	and	predictive	performance.	Thirdly,	we	have	attempted	to	

improve	how	the	model	accounts	for	uneven	global	distribution	of	surveillance	and	research	on	

disease	event	detection	(i.e.	report	effort).	This	includes	an	algorithm-based	approach	to	more	

realistically	map	reporting	effort	and	shows	the	significant	implications	that	a	finer-scale,	sub-

national	resolution	variable	for	reporting	effort	can	have	for	a	model.	Finally,	we	were	able	to	

temporally	match	predictors	to	events.	

Despite	using	a	more	flexible	modelling	framework,	there	are	limitations	to	our	approach.	

When	differentiating	between	EID	events	and	a	uniformly-weighted	background	sample,	our	

weighted	and	unweighted	models	an	AUC	of	0.78	and	0.77,	and	a	TSS	of	0.43	and	0.41	

respectively,	indicating	moderate	predictive	performance.	However,	against	a	background	

sample	weighted	by	reporting	effort,	our	weighted	model	had	an	AUC	of	0.61	and	a	TSS	of	0.18,	

indicating	low–moderate	performance.	These	statistics	indicate	much	unexplained	variation.	

While	broad	changes	in	zoonotic	EID	relative	risk	are	evident	in	the	partial	dependence	plots,	in	

areas	of	elevated	risk	confidence	intervals	are	generally	wide	enough	that	quantitative	

relationships	remain	uncertain.		

Wherever	possible,	we	tried	to	define	and	incorporate	uncertainty	into	our	model	(for	example,	

correcting	for	uncertainty	in	location	by	sampling	EID	events	from	within	known	areas	of	

occurrence,	and	correcting	for	literature-level	biases	by	weighting	background	samples	by	our	

measure	of	observation	effort).	Multiple	factors	contribute	to	this	uncertainty.	Firstly,	analyses	
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were	conducted	using	gridded	data	at	1º	WGS84	resolution	(c.	100	km	at	the	equator),	the	

same	resolution	used	previously	
4
.	Our	choice	of	resolution	for	predictor	datasets	was	

constrained	by	data	availability,	since	all	were	downscaled	to	the	lowest	common	spatial	

resolution.	Secondly,	confidence	intervals	are	widest	in	regions	for	each	variable	where	fewer	

grid	cells	were	sampled.	Since	our	weighted	model	sampled	fewer	grid	cells	proportional	with	

reporting	effort,	these	represent	areas	where	more	reporting	effort	—	including	ground-

truthing	studies	—	may	increase	confidence.	Thirdly,	another	limitation	shared	with	
4
	is	the	

underlying	accuracy	and	suitability	of	EID	event	data,	which	were	drawn	from	a	review	of	

published	literature.	Individual	studies,	though,	carry	their	own	biases,	inaccuracies,	and	

different	approaches	to	collecting	and	documenting	data,	and	this	alone	adds	an	unknown	

amount	of	imprecision	and	potential	bias	to	our	outcome	dataset.	Finally,	our	goal	of	creating	a	

single	model,	to	look	for	common	trends	in	emerging	wildlife-origin	zoonotic	diseases,	likely	

imposes	limitations	on	the	specificity	of	trends	we	can	examine.	In	reality,	different	classes	of	

diseases	(e.g.,	viruses	versus	bacteria)	and	indeed	individual	diseases	have	their	own	unique	

ecology,	with	different	drivers	and	sets	of	conditions	being	more	or	less	important	in	shaping	

the	emergence	process	
29
.	Because	of	these	limitations,	we	refrain	from	making	specific	(e.g.	

city-by-city)	interpretations	of	the	model’s	output,	rather	noting	broad	trends	in	geographic	

regions	and	environment	types	of	intererest.	

Wide	confidence	intervals	in	areas	of	elevated	EID	risk	suggest	areas	for	future	study,	and	

underscore	the	need	for	targeted	long-term	disease	surveillance	and	monitoring	in	these	areas.	

Collection	of	more	accurate	spatiotemporal	data	on	events	surrounding	disease	emergence,	

including	initial	emergence	events,	using	a	combination	of	large	scale	field	research	(e.g.	
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USAID’s	PREDICT	project	
30
)	and	digital	disease	detection	tools	

31
	would	help	alleviate	this	issue	

in	the	future	by	generating	more	consistent	data	on	a	larger	scale,	potentially	automatically	
32
.	

Additionally,	we	propose	to	launch	an	editable	version	of	the	EID	event	database	to	crowd-

source	data	using	the	EID	research	community	and	ultimately	the	public	and	improve	the	

overall	spatial	resolution	and	number	of	events	
33
.	These	datasets	will	aid	efforts	to	better	

define	the	point	at	which	a	disease	becomes	‘emerging’,	allowing	the	programmatic	definition	

and	examination	of	different	definitions	of	emergence	(e.g.	first	appearance	vs.	increasing	

incidence,	etc.)	in	testable	form	
34
.	

Future	work	may	be	able	to	enhance	the	predictive	power	of	this	approach	by	focusing	on	even	

tighter	classes	of	disease,	taxonomic	groups	of	pathogens,	or	transmission	modes,	and	building	

models	to	forecast	changes	in	risk	distribution	or	to	examine	more	specific	mechanistic	

hypotheses.	Efforts	to	examine	the	commonalities	of	disease	emergence	may	benefit	from	

incorporating	disease	specific	models	in	a	hierarchical	approach,	allowing	certain	parameters	to	

vary	across	diseases	or	disease	classes,	while	pooling	other	parameters.		

Despite	shortcomings,	our	improvements	to	the	earlier	model	allowed	us	to	find	quantitative	

support	for	previously	only	hypothesized	factors	that	increase	the	risk	of	EID	events.	Our	

findings	therefore	have	broad	implications	for	surveillance,	monitoring,	control	and	research	on	

emerging	infectious	diseases.	Like	Jones	et	al.,	
4
,	we	find	that	EID	events	are	observed	

predominantly	in	developed	countries,	where	surveillance	is	strongest,	but	that	our	predicted	

risk	is	higher	in	tropical,	developing	countries.	
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Our	spatial	mapping	has	direct	relevance	to	ongoing	surveillance	and	pathogen	discovery	

efforts	
35
.	It	shows	that	the	global	distribution	of	zoonotic	EID	risk	(and	the	presence	of	EID	

‘hotspots’)	is	concentrated	in	tropical	regions	where	wildlife	biodiversity	is	high	and	land	use	

change	occurring.	These	regions	are	likely	to	be	the	most	cost	effective	for	surveillance	

programs	targeting	wildlife,	livestock	or	people	for	novel	zoonoses,	and	for	pandemic	

prevention	programs	that	build	capacity	and	infrastructure	to	pre-empt	and	control	outbreaks	

30
.	Further	honing	the	EID	risk	index	within	regions	and	countries	might	also	inform	the	planning	

of	large	land	use	change	programs	such	as	logging	and	mining	concessions,	dam-building,	and	

road	development	
36
.	These	activities	carry	an	intrinsic	risk	of	disease	emergence	by	increasing	

human	or	livestock	contact	with	wildlife	in	new	regions	or	by	disrupting	disease	dynamics	in	

reservoir	hosts
24,37

,	and	have	been	repeatedly	linked	to	outbreaks	of	novel	EIDs.	

Similarly,	the	partial	dependence	plots	allow	a	deeper	understanding	of	the	largely	non-linear	

relationships	between	EID	drivers	and	disease	emergence	that	can	be	used	to	design	field	

experiments	to	test	specific	and	generalizable	hypotheses	on	the	drivers	of	zoonotic	disease	

emergence.	These	should	include	field	sites	along	land	use	gradients	within	EID	hotspot	

countries	where	controlled	sampling	protocols	are	used	to	identify	how	wildlife	biodiversity,	

known	and	unknown	pathogen	diversity	(e.g.,	using	viral	family	level	degenerate	primers	for	

PCR
38
),	and	human	contact	with	wildlife	varies	across	a	landscape.	Such	an	approach	will	

provide	a	way	to	identify	the	fine-scale	rules	that	govern	disease	emergence	and	provide	a	

richer	understanding	of	what	drives	EID	risk	on-the-ground,	a	critical	extension	of	this	

modelling	approach.	
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Materials	&	Methods	

All data and code used to generate the models are available on GitHub (doi: 

10.5281/zenodo.400978)39, as is the code used to generate the reporting effort layer (doi: 

10.5281/zenodo.400977)40. 

Data	sources	

Response	variable	(zoonotic	EID	events)	

We	followed	the	definition	of	an	emerging	infectious	disease	and	an	EID	event	used	in	
4
	—	

specifically,	events	documented	in	the	scientific	literature	denoting	the	first	emergence	of	

pathogen	in	a	human	population	where	that	pathogen	was	classified	as	“emerging”	due	to	

recent	spillover	from	an	animal	reservoir,	a	significant	increase	in	its	incidence	or	geographic	

distribution	in	the	human	population,	a	marked	change	in	its	pathogenicity	or	virulence,	or	

other	factors.	In	this	study	we	focus	only	on	EID	events	of	wildlife	origin	(‘wildlife	zoonoses’)	

because	these	represent	the	majority	of	EID	events	in	the	most	recent	decade	studied,	are	

increasing	significantly	as	a	proportion	of	all	EIDs	after	correcting	for	reporting	bias,	include	

most	of	the	highest	impact	EIDs	of	recent	decades	(e.g.	Ebola	viruses,	Nipah	virus)	and	almost	

all	recent	pandemics	(e.g.	pandemic	influenza	viruses,	SARS).	Data	on	EID	events	were	derived	

from	an	updated	version	of	the	database	originally	used	by	
4
,	which	contained	EID	events	

ranging	from	1940	to	2004	(n	=	335	total,	n	=	145	for	wildlife	zoonoses	(43.3%	of	all	EIDs)).	We	

updated	the	database	to	include	EID	events	for	wildlife	zoonoses	through	2008	(n	=	224),	

following	the	methodology	in	
4
	so	as	to	include	only	diseases	reported	in	the	peer-reviewed	

literature,	where	there	is	evidence	that	a	disease	is	emerging	for	one	of	the	reasons	laid	out	

above.	Additionally,	we	only	included	the	first	emergence	of	a	new	disease-causing	agent,	such	
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that	the	MERS	Coronavirus	was	included,	but	not	reports	of	new	strains	of	Ebola	virus.	For	each	

EID	event,	data	were	derived	from	the	literature,	if	available,	for	date,	location	(see	below),	

pathogen	genus	and	species,	zoonotic	origin	and	type,	and	associated	or	hypothesized	drivers,	

following	
4
.	Location	data	for	initial	EID	emergence	events	were	variable	in	their	geographic	

specificity,	ranging	from	precise	coordinates	to	broader	regions	(e.g.,	municipalities,	counties,	

districts)	or	entire	continents	depending	on	details	reported	in	the	primary	literature.	A	spatial	

polygon	was	created	for	each	event	that	represented	the	most	precise	municipal	region	the	EID	

event	was	known	to	have	occurred	in.	All	EID	event	polygons,	regardless	of	precision,	were	

included	in	our	bootstrap	resampling	framework;	removing	those	with	geographic	uncertainty	

(e.g.	those	with	only	country	level	resolution)	may	artificially	inflate	the	certainty	of	our	model;	

our	resampling	scheme	limits	their	impact	to	appropriate	levels.	Events	with	precise	

coordinates	were	also	assigned	a	polygon	for	consistency	of	data	format,	but	rather	than	using	

a	municipal	boundary,	the	event	was	assigned	a	5	km	circular	buffer	zone.	EID	polygons	were	

subsampled	for	model	fitting	as	described	below.	Because	our	model	matches	EID	events	with	

decadal	population	and	land	use	data	(described	below),	we	restricted	our	analyses	to	decades	

for	which	covariate	data	exist,	excluding	events	before	1970	and	leaving	n	=	147	records	for	

analysis	(66%	of	wildlife	zoonosis	events).	

Explanatory	variables	

We	compiled	spatial	data	layers	for	20	predictors	in	four	broad	categories	to	decompose	which	

factors	are	associated	with	zoonotic	disease	emergence.	These	reflected	the	most	frequently	

hypothesized	drivers	of	zoonotic	disease	emergence	and	included	(Table	1):	human	

presence/activity,	animals/hosts,	the	environment,	and	reporting	effort.	Explanatory	variables	
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came	from	a	variety	of	data	sources,	and	all	were	rescaled	or	transformed	to	a	spatial	grid	of	1º	

resolution	(WGS84,	c.	110	km	at	the	equator)	prior	to	their	use	in	models.	Full	details	of	

sources,	original	resolutions	and	rescaling	are	presented	in	Tables	1	and	2.		

“Human	Activity”	data	were	compiled	and	eight	predictors	derived	based	on	the	following	

rationale:	1)	Population	density	likely	influences	EID	risk	in	two	discrete	ways.	Firstly,	as	EID	

events	are	defined	as	diseases	emerging	in	the	human	population,	their	frequency—before	the	

effects	of	other	predictors—is	assumed	to	be	proportional	to	population	density,	with	the	other	

predictors	modifying	the	per-person	risk	of	EID	events.	To	represent	this,	we	treated	human	

population	as	a	baseline	multiplicative	factor	in	our	models	
41
.	Secondly,	population	density	

may	affect	transmission	dynamics	such	that	EID	events	in	areas	of	denser	population	may	be	

more	likely	to	produce	outbreaks	large	enough	to	be	detected	
42
.	We	used	the	Global	Rural-

Urban	Mapping	Project	
43
	human	population	dataset,	which	provides	gridded	estimates	of	

human	population	every	five	years	for	1970–2000.	2)	Population	change	acts	as	a	proxy	for	

changing	demands	on	ecosystems	leading	to	environmental	perturbation,	which	has	been	

hypothesized	to	drive	disease	emergence	
24
.	We	created	a	measure	for	population	change	by	

calculating	the	inter-decadal	difference	of	human	population	per	grid	cell.	3)	Land-use	type	

represents	largely	anthropogenic	influence	on	the	landscape	(as	opposed	to	‘land	cover’	below)	

and	has	been	hypothesized	to	play	a	role	in	disease	emergence	and	spatial	distribution	
24,44-47

.	

We	used	the	HYDE	dataset	which	estimates	the	percentage	of	land-use	types	in	each	grid	cell	of	

a	global	dataset	every	ten	years	for	1900–2000	
48
	to	derive	predictors	representing	percentage	

of	land	used	for	cropland	and	percentage	used	for	pasture.	We	also	include	the	layers	for	Urban	

Land	and	Managed/Cultivated	Vegetation	from	the	EarthEnv	dataset,	described	below	under	
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“Environment”,	in	this	category,	as	they	index	human	impact	on	the	environment.	4)	Land-use	

change	has	been	hypothesized	as	a	key	driver	for	disease	emergence	by	perturbing	ecosystems	

and	bringing	humans	into	close	proximity	with	wildlife	
5,7,8,24,29

.	We	created	metrics	of	change	

for	pasture	and	cropland	by	calculating	the	between-decade	difference	in	values	for	each	grid	

cell	for	cropland	and	pasture.	

For	datasets	with	multiple	temporal	layers	(human	population,	cropland,	and	pasture),	we	

included	the	intersection	of	available	dates	in	different	datasets	(decades	1970–2000)	and	

calculated	inter-decadal	change	layers	by	differencing	consecutive	decades.	All	presence	and	

absence	samples	drawn	for	each	event	(see	below)	were	matched	to	the	nearest	decadal	layers	

(years	ending	in	5	were	rounded	up)	and	the	change	layer	for	the	decade	they	fell	in.	

“Animal/host”	data	were	represented	by	two	predictors:	1)	Mammalian	biodiversity.	The	

diversity	and	prevalence	in	a	host	population	of	potentially	zoonotic	pathogens	in	an	area	is	

hypothesised	to	be	a	key	factor	in	the	risk	of	novel	pathogen	emergence	
8,24,49

.	However,	spatial	

data	on	global	pathogen	diversity	do	not	currently	exist,	and	it	is	estimated	that	we	have	

identified	less	than	1%	of	mammalian	viral	diversity	
38
.	Consistent	with	previous	studies,	we	

therefore	assume	that	the	number	of	available	pathogens	in	an	area	is	proportional	to	the	

diversity	(species	richness)	of	wildlife	species	
4,5,38,50

.	The	overwhelming	majority	of	emerging	

zoonoses	have	mammalian	hosts	
51
,	and	global	biogeographic	patterns	of	human	infectious	

diseases	is	highly	correlated	with	global	patterns	of	mammalian	diversity	
32
.	We	therefore	used	

mammal	biodiversity	(species	richness)	measured	as	number	of	mammal	species	per	grid	cell	as	

a	proxy	for	pathogen	species	richness.	To	do	this,	we	used	the	most	up	to	date	mammal	species	

distribution	maps	available,	derived	from	species	distribution	ranges	filtered	according	to	



 22 

species-specific	habitat	preferences	
12
.	These	habitat	suitability	models	reflected	species	

preferences	for	land	cover	types,	their	altitudinal	limits,	their	tolerance	to	human	presence,	and	

their	relationship	with	water	bodies.	The	full-resolution	mammal	biodiversity	data	

(representing	all	5,291	terrestrial	mammal	species)
12
	was	rescaled	to	the	study	grid	by	summing	

the	number	of	species'	distributions	that	overlapped	each	grid	cell;	2)	Domestic	animal	density.	

A	number	of	past	EID	events	with	wildlife	origin	have	emerged	through	farmed	or	domestic	

animal	intermediate	or	amplifier	hosts	(e.g.	Hendra	and	Nipah	virus,	SARS).	Additionally,	there	

is	growing	evidence	that	the	global	trend	of	intensification	of	livestock	production	increases	the	

emergence	risk	of	novel	wildlife-origin	zoonoses,	e.g.	Nipah	virus	in	Malaysia	
52
,	influenza	

viruses	and	others	
6
.	We	used	the	Gridded	Livestock	of	the	World	(GLW)	dataset	

53
,	which	

contains	data	for	poultry,	goat,	buffalo,	cattle,	sheep	and	pig	headcounts.	We	summed	

mammals	to	a	single	predictor	(livestock	mammal	headcount)	and	retained	poultry	as	a	discrete	

predictor.	

We	analysed	eight	predictors	from	two	datasets	representing	“Environmental”	variables:	1)	

Climate.	Climatic	factors	have	been	repeatedly	hypothesized	as	important	in	the	global	

biogeography	of	human	infectious	diseases,	including	EIDs	
32,54,55

.	Climate	may	influence	

disease	distribution	through	enhanced	suitability	for	vectors	of	wildlife	origin	zoonoses	(e.g.	

West	Nile	virus),	more	rapid	vector	reproduction	rates	and	biting	rates,	changes	in	the	

efficiency	or	rates	of	pathogen	transmission	among	hosts	and	vectors,	and	changes	in	the	

ability	of	pathogens	to	persist	in	the	environment,	among	other	factors	
56,57

.	Climate	was	

represented	by	a	single	layer	in	our	study,	the	Global	Environmental	Stratification	
58
,	which	uses	

a	quantitative	model	to	stratify	the	Earth's	surface	into	zones	of	similar	climate	on	a	single	
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scalar	measure,	where	higher	values	equate	to	warmer,	wetter	(more	tropical)	regions;	2)	Land	

cover	type:	Land	cover	type	is	associated	with	the	distribution	of	terrestrial	mammals	
12
	and	

other	taxa	
59
,	potentially	exposing	humans	present	to	different	assemblages	of	viral	species.	It	is	

also	likely	that	the	types	of	contact	between	wildlife	and	people	vary	with	land	cover	type.	For	

land	cover,	we	used	the	EarthEnv	dataset	
60
,	which	divides	the	Earth’s	surface	into	twelve	

classes.	These	include	different	classes	of	natural	ecosystems,	urban	land	and	cultivated	

vegetation	(grouped	with	“Human	Activity”	above).	We	excluded	barren	areas,	open	water	and	

snow/ice	due	to	a	lack	of	biologically	plausible	mechanisms	for	disease	emergence.	EarthEnv	

represents	each	class	as	a	percentage	per	grid	cell.	

Reporting	effort	

The	distribution	of	reported	EID	events	is	likely	strongly	influenced	by	an	inconsistent	spatial	

distribution	of	detection	and	reporting	of	disease	outbreaks.	Previous	studies	have	used	proxies	

of	reporting	effort	such	as	the	interpolated	locations	of	known	sampling	sites	(‘sampling	effort’)	

61
;	frequency	of	countries	of	residence	for	all	authors	of	all	articles	in	the	Journal	of	Infectious	

Disease	(‘reporting	effort’)	
4
;	and	PubMed	searches	for	keywords	for	each	country	(‘reporting	

bias’)	
28
.	Other	studies	have	used	occurrence	records	for	a	similar	class	of	observations	as	a	

surrogate	for	background	sampling	effort;	for	example,	in	ecology,	modelling	the	distribution	of	

a	particular	species	and	utilizing	occurrence	records	from	multiple	other	species	to	represent	

background	samples	
62
.	

We	adapted	these	approaches	by	deriving	an	index	for	reporting	effort	based	on	the	spatial	

distribution	of	toponyms	(place	names)	in	peer-reviewed	biomedical	literature.	We	wrote	a	
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Python	package,	PubCrawler	(see	Supplementary	Methods:	PubCrawler	for	full	details),	to	

search	the	full	text	of	each	of	the	1,266,085	(as	of	April	2016)	articles	in	the	PubMed	Central	

Open-Access	Subset	(PMCOAS)	(http://www.ncbi.nlm.nih.gov/pmc/tools/ftp/)	for	toponyms	

from	the	GeoNames	database	(http://geonames.org/),	which	includes	data	on	population	(if	

appropriate),	country,	and	geographical	coordinates	for	each	toponym.	PubCrawler	uses	a	set	

of	heuristics,	based	on	textual	and	geographic	features	of	the	identified	toponyms,	to	minimize	

the	number	of	false	positives	and	select	amongst	ambiguous	matches.	We	selected	articles	

matching	terms	from	the	Human	Disease	Ontology
63
	and	exported	extracted	toponyms.	After	

excluding	a	further	round	of	potentially	spurious	matches,	place	name	matches	were	assigned	a	

weight,	normalized	by	article,	and	then	summed	to	the	study	grid.	To	impute	missing	data	

(resulting	in	a	number	of	zero-value	grid	cells)	and	smooth	noise	in	the	raw	output,	we	fit	a	

Poisson	boosted	regression	tree	model	(using	human	population,	accessibility,	urbanized	land,	

DALY	rates,	health	expenditure,	and	GDP	as	predictors),	and	used	this	to	represent	reporting	

effort	in	our	model.	This	approach	produced	a	layer	that	adequately	represented	the	underlying	

data	whilst	achieving	a	similar	coverage	of	grid	cells	to	other	layers.		
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Table	1:	List	of	predictor	layers	included	in	the	model.	

Variable	 	 Unit	per	grid	

cell	

Type	 Source	

Dataset	

Processing	 Temporal	

Resolution	

	

Human	population	 Population	 Human	

activity	

GRUMP	 Rescaled	 Decadal	

Population	change	 Change	in	

population		

Human	

activity	

GRUMP	

(calculated)	

Calculated	

from	rescaled	

layers	

Decadal	

Cropland	 Proportion	 Human	

activity	

HYDE	 Rescaled	 Decadal	

Cropland	change	 Change	in	

proportion	

Human	

activity	

HYDE	

(calculated)	

Calculated	

from	rescaled	

layers	

Decadal	

Pasture	 Proportion	 Human	

activity	

HYDE	 Rescaled	 Decadal	

Pasture	change	 Change	in	

proportion	

Human	

activity	

HYDE	

(calculated)	

Calculated	

from	rescaled	

layers	

Decadal	

Urban	land	 Percentage	 Human	

activity	

EarthEnv	 Rescaled	 Decadal	

Managed/cultivated	

vegetation	

Percentage	 Human	

activity	

EarthEnv	 Rescaled	 Static	

Mammalian	species	

richness	

Count	of	

species	

Animals/hosts	 Global	

Mammal	

Assessment	

Reprojected,	

rescaled	

Static	

Domestic	mammal	

headcount	

Count	of	

animals	

Animals/hosts	 GLW	 Rescaled,	

summed	

buffalo,	cattle,	

goat,	pig,	

sheep	

headcounts		

Static	

Poultry	headcount	 Count	of	

animals	

Animals/hosts	 GLW	 Rescaled	 Static	

Global	environmental	

stratification	

Global	

environmental	

stratification	

Environment	 GEnS	 Rescaled	 Static	

Evergreen/Deciduous	

Needleleaf	Trees	

Percentage	 Environment	 EarthEnv	 Rescaled	 Static	

Evergreen	Broadleaf	

Trees	

Percentage	 Environment	 EarthEnv	 Rescaled	 Static	

Deciduous	Broadleaf	

Trees	

Percentage	 Environment	 EarthEnv	 Rescaled	 Static	

Mixed/Other	Trees	 Percentage	 Environment	 EarthEnv	 Rescaled	 Static	

Shrubs	 Percentage	 Environment	 EarthEnv	 Rescaled	 Static	

Herbaceous	

Vegetation	

Percentage	 Environment	 EarthEnv	 Rescaled	 Static	

Regularly	Flooded	 Percentage	 Environment	 EarthEnv	 Rescaled	 Static	
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Vegetation	

Reporting	Effort	 Weighted	

number	of	

mentions	in	

publications	

Observation	

bias	

(Internal)	 (See	methods)	 Static	
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Table	2:	Original	resolutions	and	extents	of	source	datasets.		

	

Source	Dataset	 	 Spatial	Resolution	 Temporal	Resolution	

and	Extent	

GRUMP	(Global	Rural	Urban	Mapping	Project)
43
	 0º5ʹ	 5	years,	1970–2000	

HYDE	(History	Database	of	the	Global	Environment)
48
	 0º5ʹ	 10	years,	1900–2000	

GMA	(Global	Mammal	Assessment)
12
	 300m	 N/A	

GLW	(Gridded	Livestock	of	the	World)
53
	 0.05º	 N/A	

GEnS	(Global	Environmental	Stratification)
58
	 0º0ʹ30ʺ	 N/A	

EarthEnv
60
	 0º0ʹ30ʺ	 N/A	
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Statistical	Framework	

1. Modelling	algorithm:	We	used	boosted	regression	trees	(BRT)	to	model	EID	occurrence	

13,14,54
	and	to	determine	how	conditions	varied	between	locations	where	EID	events	

have	been	observed	compared	to	areas	where	they	have	not.	BRTs	handle	non-linear	

relationships	and	higher	order	interactions	among	many	variables	more	robustly	than	

many	other	modelling	methods,	and	are	robust	to	monotonic	transformations	of	data	

13,14
.	They	fit	potentially	complex,	non-linear	relationships	by	aggregating	the	

predictions	of	multiple	simpler	models,	and	are	trained	iteratively	on	random	partitions	

of	the	data	
13,14

.		In	addition,	predictive	accuracy	of	BRTs,	as	determined	by	common	

validation	methodologies	(e.g.	Area	Under	the	Curve	of	the	Receiver-Operator	

Characteristic	(AUC	of	the	ROC),	True	Skill	Statistic	(TSS)),	frequently	exceeds	

conventional	linear	methods	
13
.	Unlike	conventional	models,	they	do	not	produce	

confidence	intervals	or	p-values.	

2. Data	and	model	fitting:	We	used	various	resampling	techniques	to	incorporate	our	

measure	of	reporting	effort
62,64

,	estimate	the	predictive	power	of	our	models,	account	

for	spatial	uncertainty	in	EID	events
17
,	and	generate	empirical	confidence	intervals	for	

effects	representing	both	sampling	uncertainty	and	spatial	uncertainty
65
.	Each	time	an	

event	was	sampled,	one	presence	point	and	one	absence	point	were	drawn	(artificially	

fixing	overall	prevalence	at	0.5)
17
;	the	presence	point	from	the	grid	cells	overlapped	by	

that	event’s	polygon	and	the	absence	point	from	all	grid	cells,	both	weighted	by	
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reporting	effort	(the	effect	of	weighting	presence	points	by	reporting	effort	made	little	

difference	for	points	with	small,	precisely-specified	occurrence	polygons,	and	for	events	

with	high	uncertainty,	acted	as	a	prior	specifying	that,	absent	other	knowledge,	the	

event	was	more	likely	detected	where	reporting	effort	was	higher).	

All	replicate	BRT	models	were	fit	using	the	R	packages	dismo	and	gbm
13
.	The	function	

gbm.step()	was	called,	with	the	parameters	tree.complexity	=	3	(governing	interaction	

depth),	learning.rate	=	0.0035	(setting	the	“shrinkage”	applied	to	individual	trees),	and	

n.trees	=	35	(governing	the	initial	number	of	trees	fit,	as	well	as	the	“step	size”	or	

number	added	at	each	step	of	the	stagewise	fitting	process).
13
	These	values	were	

selected	through	an	iterative	process,	starting	with	the	default	parameters,	adding	tree	

complexity,	and	tuning	the	shrinkage	and	step	size	parameters	to	achieve	successful	

gradient	descent	consistently	across	resampling	runs,		following	
13
	and	

65
.	With	the	final	

parameters,	the	BRTs	composing	the	bootstrap	model	fit	a	mean	of	1005	trees.	

The	sampling	regimes	were	as	follows:	

1) A	bootstrap	resampling	regime	was	used	to	fit	1000	replicate	models.	For	

each	model,	147	events	were	drawn	randomly	with	replacement	from	the	

set	the	147	EID	events	of	interest;	for	each	selected	event,	one	presence	and	

one	absence	value	were	drawn	as	described	above.	The	fitted	models	were	

used	to	generate	Relative	Influence	boxplots	and	Partial	Dependence	plots	

with	empirical	90%	confidence	intervals.	The	mean	of	the	predictions	of	

these	models	were	used	to	generate	all	maps.	



 30 

2) To	compute	validation	statistics	(described	below),	we	conducted	100	rounds	

of	10-fold	cross-validation
17,65

.	In	each	round,	a	single	presence	and	absence	

sample	were	drawn	for	each	event,	which	were	assigned	randomly	to	ten	

groups.	Each	group	in	turn	was	held	out,	and	a	model	was	trained	on	the	

remaining	groups’	samples.	The	model’s	predictions	for	the	presence	and	

absences	samples	of	the	held-out	group	were	used	to	construct	confusion	

matrices,	and	calculate	the	AUC	and	TSS.	This	process	was	repeated	100	

times,	and	the	median,	0.05	and	0.95	quantiles	for	all	scores	were	reported.	

The	entire	process	was	conducted	for	each	AUC	and	TSS	reported.	

3. Factoring	reporting	bias	out:	We	assumed	that	the	distribution	of	observed	EID	events	

was	conditional	on	the	distribution	of	reporting	effort	across	the	globe	following	
62
.	

We	fit	our	main	model	weighting	by	reporting	effort.	The	models	produce	a	response	relative	to	

this.	We	multiplied	this	response	by	the	value	of	reporting	effort	in	each	grid	cell	to	map	an	

index	of	observed	EID	event	risk.	We	produced	an	estimate	of	the	risk	index	factoring	out	

reporting	bias	as	follows:	

We	assumed	that	the	optimal	distribution	of	reporting	effort	for	human	disease	events	in	a	

location	is	proportional	to	the	distribution	of	the	human	population.	In	reality,	other	

unmeasured	factors	likely	affect	this.	If	we	take	this	assumption,	we	can	define	reporting	bias	

as	proportional	to	the	ratio	of	reporting	effort	to	the	human	population.	

𝑟𝑒𝑝𝑜𝑟𝑡𝑖𝑛𝑔	𝑏𝑖𝑎𝑠	 ∝ 	
𝑟𝑒𝑝𝑜𝑟𝑡𝑖𝑛𝑔	𝑒𝑓𝑓𝑜𝑟𝑡

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
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When	bias	is	known,	it	is	possible	to	estimate	the	true	distribution	of	a	phenomenon	by	

“factoring	bias	out”	
62
.		In	ecological	studies,	this	generally	means	dividing	by	the	measured	

“survey	effort”,	assuming	that	the	optimal	distribution	of	search	effort	is	uniform	across	the	

landscape.	

𝑡𝑟𝑢𝑒	𝑟𝑖𝑠𝑘	𝑖𝑛𝑑𝑒𝑥	 ∝ 	
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑟𝑖𝑠𝑘	𝑖𝑛𝑑𝑒𝑥

𝑟𝑒𝑝𝑜𝑟𝑡𝑖𝑛𝑔	𝑏𝑖𝑎𝑠
	

We	posit	that,	in	the	case	of	human	disease	events,	uniform	search	effort	across	a	landscape	is	

also	suboptimal,	and	that	it	is	safer	to	assume	optimal	reporting	effort	distribution	would	be	

proportional	to	the	human	population.	In	this	case,	we	remove	“bias”	by	factoring	out	

measured	effort	and	factoring	in	assumed	optimal	effort,	and	obtain	a	hypothetical	map	of	the	

true	event	risk	index,	thus:	

𝑡𝑟𝑢𝑒	𝑟𝑖𝑠𝑘	𝑖𝑛𝑑𝑒𝑥	 ∝ 	𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑟𝑖𝑠𝑘	𝑖𝑛𝑑𝑒𝑥	×
ℎ𝑢𝑚𝑎𝑛	𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑟𝑒𝑝𝑜𝑟𝑡𝑖𝑛𝑔	𝑒𝑓𝑓𝑜𝑟𝑡
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Validation	and	model	performance:	We	used	multiple	tools	for	model	validation	and	

performance.	For	our	bootstrap	model,	we	calculated	deviance	explained	using	the	gbm.step()	

function	
13
	and	also	derived	median	and	empirical	90%	confidence	intervals	by	taking	the	0.05,	

0.5,	and	0.95	quantiles	of	those	values	for	the	replicate	models.	Since	this	model	is	fit	relative	

to	reporting	effort,	percentage	deviance	explained	is	calculated	relative	to	that	variable.	For	the	

ten-fold	cross-validation	runs,	we	calculated	the	area	under	the	receiver-operating	

characteristic	curve	(AUC),	a	threshold-independent	measure	of	model	predictive	performance	

that	is	commonly	used	as	a	validation	metric	in	species	distribution	modelling	
66
.	The	AUC	can	

be	interpreted	as	“the	probability	that	the	model	will	rank	a	randomly	chosen	presence	site	

higher	than	a	randomly	chosen	absence	site”	
67
,	or	more	accurately	in	our	application,	a	

measure	of	a	model's	performance	to	discriminate	EID	events		from	random	points	
62
.	Because	

the	use	of	AUC	has	been	criticized	for	its	lack	of	sensitivity	to	absolute	predicted	probability	and	

its	inclusion	of	a	priori	untenable	prediction	thresholds	
15
,	we	also	calculated	the	True	Skill	

Statistic	(TSS)
17
.	

Because	all	test	statistics	and	figures	from	our	main	model	are	relative	to	the	reporting	effort	

measure,	we	also	ran	“unweighted”	models.	We	expected	these	would	score	yield	higher	cross-

validation	scores,	since	we	expected	that	reporting	effort	would	be	correlated	both	with	some	

important	predictor	variables	and	the	outcome,	and	weighting	background	samples	uniformly	

rather	than	according	to	this	variable	would	present	a	clearer	contrast.	To	avoid	bias	from	land	

area	in	the	WGS84	grid	cells,	we	additionally	weighted	our	“unweighted	models”	by	land	area	

per	grid	cell.	The	figures	from	these	models	are	presented	fully	in	SI.	
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