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Global hypoellipticity and compactness of resolvent

for Fokker-Planck operator

WEI-XI LI

Abstract. In this paper we study the Fokker-Planck operator with potential V (x),
and analyze some kind of conditions imposed on the potential to ensure the va-
lidity of global hypoelliptic estimates (see Theorem 1.1). As a consequence, we
obtain the compactness of resolvent of the Fokker-Planck operator if either the
Witten Laplacian on 0-forms has a compact resolvent or some additional assump-
tion on the behavior of the potential at infinity is fulfilled. This work improves
the previous results of Hérau-Nier [5] and Helffer-Nier [3], by obtaining a better
global hypoelliptic estimate under weaker assumptions on the potential.

Mathematics Subject Classification (2010): 35H10 (primary); 47A10 (sec-
ondary).

1. Introduction and main results

In this work we consider the Fokker-Planck operator

P = y · ∂x − ∂xV (x) · ∂y − △y +
|y|2

4
−
n

2
, (x, y) ∈ R

2n (1.1)

where x denotes the space variable and y denotes the velocity variable, and V (x)

is a potential defined in the whole space R
n
x . There have been extensive works

concerned with the operator P , with various techniques from different fields such

as partial differential equation, spectral theory and statistical physics. In this paper

we will focus on analyzing some kind of conditions imposed on the potential V (x),

so that the Fokker-Planck operator P admits a global hypoelliptic estimate and has a

compact resolvent. This problem is linked closely with the trend to equilibrium for

the Fokker-Planck operator, and has been studied by Desvillettes-Villani, Helffer-

Nier, Hérau-Nier and some other authors (see [2, 3, 5] and the references therein).

It is believed that the global estimate and the compactness of resolvent are related

to the properties of the potential V (x). In the particular case of quadratic potential,
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the theory is well developed. As far as general potential is concerned, different

kind of assumptions on V (x) had been explored firstly by Hérau-Nier [5] and then

generalized by Helffer-Nier [3]. This work is motivated by the previous works of

Hérau-Nier and Helffer-Nier, and can be seen as an improvement of their results.

Our main result is the following.

Theorem 1.1. Let V (x) ∈ C2(Rn) be a real-valued function satisfying that

∀ |α| = 2, ∃ Cα > 0,
∣

∣∂α
x V (x)

∣

∣ ≤ Cα

(

1+ |∂xV (x)|2
)
s
2

with s <
4

3
. (1.2)

Then there is a constant C, such that for any u ∈ C∞
0

(

R
2n

)

one has

∥

∥

∥
|∂xV (x)|

2
3 u

∥

∥

∥

L2
≤ C

{

‖Pu‖L2 + ‖u‖L2
}

, (1.3)

and

∥

∥

∥(1− △x )
δ
2 u

∥

∥

∥

L2
+

∥

∥

∥

∥

(

1− △y + |y|2
)
1
2
u

∥

∥

∥

∥

L2
≤ C

{

‖Pu‖L2 + ‖u‖L2

}

, (1.4)

where δ equals to 2
3
if s ≤ 2

3
, 4
3

− s if 2
3

< s ≤ 10
9

, and 2
3

− s
2
if 10

9
< s < 4

3
.

As a result the operator P has a compact resolvent if the potential V (x) satisfies

additionally that

lim
|x |→+∞

|∂xV (x)| = +∞.

Here and throughout the paper we will use ‖ · ‖L2 to denote the norm of the com-

plex Hilbert space L2
(

R
2n

)

, and denote by C∞
0

(

R
2n

)

the set of smooth compactly

supported functions.

Remark 1.2. In particular, if the assumption (1.2) is fulfilled with s = 2
3
, then we

have the following hypoelliptic estimate which seems to be optimal:

∀ u ∈ C∞
0

(

R
2n

)

,

∥

∥

∥
|∂xV (x)|

2
3 u

∥

∥

∥

L2
+

∥

∥

∥(1− △x )
1
3 u

∥

∥

∥

L2
≤ C

{

‖Pu‖L2+‖u‖L2

}

.

Moreover one can deduce from the above estimate a better regularity in the velocity

variable y, that is,

∀ u ∈ C∞
0

(

R
2n

)

,

∥

∥

∥

(

1− △y + |y|2
)

u

∥

∥

∥

L2
≤ C

{

‖Pu‖L2 + ‖u‖L2

}

.

This can be seen in Proposition 2.1 in the next section.

To analyze the compactness of resolvent of the operator P, the hypoellipticity

techniques are an efficient tool, one of which is referred to Kohn’s method [7] and

another is based on nilpotent Lie groups (see [4, 8]). Kohn’s method had been

used by Hérau-Nier [5] to study such a potential V (x) that behaves at infinity as a
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high-degree homogeneous function. More precisely, if V (x) satisfies that for some

C,M ≥ 1,

1

C
〈x〉2M−1≤

(

1+ |∂xV (x)|2
)
1
2
and ∀ |γ |≥0,

∣

∣∂
γ
x V (x)

∣

∣≤Cγ 〈x〉2M−|γ | , (1.5)

where 〈x〉 =
(

1+ |x |2
)
1
2 , then Hérau-Nier established the following isotropic hy-

poelliptic estimate, by use of the global pseudo-differential calculus,

∥

∥

∥

∥

%
1
4
x,yu

∥

∥

∥

∥

L2
≤ C

{

‖Pu‖L2 + ‖u‖L2
}

(1.6)

with %x,y =
(

1− △x − △y + 1
2
|V (x)|2 + 1

2
|y|2

)
1
2
. By developing the approach

of Hérau-Nier, Helffer-Nier [3] obtained the same estimate as above for more gen-

eral V (x) which satisfies that, with some constants c > 0 and k > 0,

1

c
〈x〉

1
k ≤

(

1+ |∂xV (x)|2
)
1
2

≤ c 〈x〉k ,

∀ |γ | ≥ 1,
∣

∣∂
γ
x V (x)

∣

∣ ≤ Cγ

(

1+ |∂xV (x)|2
)
1
2 .

(1.7)

As for the Kohn’s proof for the hypoellipticity, the exponent 1
4
in (1.6) is not op-

timal. A better exponent, which seems to be 2
3
as seen in [8], can be obtained

via explicit method in the particular case when V (x) is a non-degenerate quadratic

form. Moreover Helffer-Nier [3] studied such a V (x) that satisfies

∀ |α| = 2,
∣

∣∂α
x V (x)

∣

∣ ≤ Cα

(

1+ |∂xV (x)|2
)
1−ρ
2

with ρ >
1

3
, (1.8)

and obtained the estimate
∥

∥

∥
|∂xV (x)|

2
3 u

∥

∥

∥

L2
≤ C

{

‖Pu‖L2 + ‖u‖L2
}

. (1.9)

This generalized the quadratic potential case, and their main tool is the nilpotent

technique that initiated by [8] and then developed by [4]. Although the estimate

(1.9) is better, the condition (1.8) is stronger than (1.7) for the second derivatives,

and comparing with (1.6), we see that in (1.9) some information on the Sobolev

regularity in x is missing. In (1.2) we get rid of the assumptions on the behavior

of ∂xV (x) at infinity. This generalizes the conditions (1.5) and (1.7). Moreover,

the exponent in (1.3) is 2
3
, better than 1

4
established in (1.6). Besides, we have

relaxed the condition (1.8) by allowing the number ρ there to take values in the

interval ] − 1
3
, + ∞[. As seen in the proof presented in Section 3, our approach is

direct, which seems simpler for it doesn’t touch neither complicated nilpotent group

techniques nor pseudo-differential calculus.
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Another direction to get the compact resolvent is to analyze the relationship

between P and the Witten Laplace operator △
(0)
V/2 defined by

△
(0)
V/2 = −△x +

1

4
|∂xV (x)|2 −

1

2
△xV (x).

In [3], Helffer-Nier stated a conjecture which says that the Fokker-Planck operator

P has a compact resolvent if and only if the Witten Laplacian △
(0)
V/2 has a compact

resolvent. The necessity part is well-known, and under rather weak assumptions on

the potential V, saying V ∈ C∞
(

R
2n

)

for instance, the Witten Laplacian △
(0)
V/2 has

a compact resolvent if the Fokker-Planck operator P has a compact resolvent. The

reverse implication still remains open, and some partial answers have been obtained

by [3, 5]. For example, suppose V ∈ C∞
(

R
2n

)

such that

∀ |γ | ≥ 0, ∀ x ∈ R
2n,

∣

∣∂
γ
x V (x)

∣

∣ ≤ Cγ

(

1+ |∂xV (x)|2
)
1
2
,

∃ M, C > 1, ∀ x ∈ R
2n, |∂xV (x)| ≤ C 〈x〉M ,

and

∃ κ > 0, ∀ |α| = 2, ∀ x ∈ R
2n,

∣

∣∂α
x V (x)

∣

∣ ≤ Cα

(

1+ |∂xV (x)|2
)
1
2
〈x〉−κ .

Then the operator P has a compact resolvent if the Witten Laplace operator △
(0)
V/2

has a compact resolvent (see [3, Corollary 5.10]). Due to Theorem 1.1, we can

generalize the previous results as follows.

Corollary 1.3. Let V (x) satisfy the condition (1.2). Then the Fokker-Planck op-

erator P has a compact resolvent if the Witten Laplacian △
(0)
V/2 has a compact

resolvent.

Remark 1.4. In fact the above corollary is just a consequence of a part of Theo-

rem 1.1. This can be seen at the end of Section 3.

The paper is organized as follow. In the next section we introduce some no-

tations used throughout the paper, and then present some regularity results on the

velocity variable y. Since the proof of Theorem 1.1 is quite lengthy, we divide it

into two parts and proceed to handle them in Section 3 and Section 4. The proof of

Corollary 1.3 will be presented in Section 3.

ACKNOWLEDGEMENTS. The author would like to thank Nicolas Lerner for his

fruitful discussions and help during the preparation of this paper, as well as the

referee for valuable comments regarding the revision of this paper.
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2. Notations and regularity in velocity variable

We firstly list some notations used throughout the paper in Subsection 2.1, and then

establish the regularity in the velocity variable y in Subsection 2.2. This will give

the desired estimate on the second term on the left of (1.4).

2.1. Notations

Throughout the paper we denote by (ξ, η) the dual variables of (x, y), and denote

by 〈·, ·〉L2 the inner product of the complex Hilbert space L
2
(

R
2n

)

. Set

Dx j =−i ∂x j , Dy j =−i ∂y j and Dx =(Dx1, · · · , Dxn ), Dy = (Dy1, · · · , Dyn ).

Let %y be the operator given by

%y =

(

1+
1

2
|y|2 − △y

)
1
2

.

Observing |∂xV (x)| is only continuous, we have to replace it sometimes by a equiv-
alent C1 function f (x) given by

f (x) =
(

1+ |∂xV (x)|2
)
1
2
.

Denoting Q = y · Dx − ∂xV (x) · Dy and L j = ∂y j +
y j
2

, j = 1, · · · n, we can write
the operator P given in (1.1) as

P = i Q +

n
∑

j=1

L∗
j L j . (2.1)

2.2. Regularity in the velocity variable

In view of the expression (2.1), we see that the required estimate on the term
∥

∥%yu
∥

∥

L2
is easy to get, without any assumption on the potential V (x). Indeed,

As a result of (2.1), we have

∀ u ∈ C∞
0

(

R
2n

)

,

n
∑

j=1

∥

∥L ju
∥

∥

2

L2
≤ Re 〈Pu, u〉L2 , (2.2)

from which one can deduce that

∀u ∈ C∞
0

(

R
2n

)

,
∥

∥%yu
∥

∥

2

L2
≤ C

{

∣

∣〈Pu, u〉L2
∣

∣ + ‖u‖2
L2

}

. (2.3)

This gives the desired estimate on the second term on the left of (1.4).

For constant potential, i.e., ∂xV (x) = 0, starting from the regularity in x , we

can derive a better Sobolev exponent, which is known to be 2, for the regularity in

y variable (see for instance [1]). When general potential is involved, we have the

following estimate.



794 WEI-XI LI

Proposition 2.1. There exists a constant C such that for any u ∈ C∞
0

(

R
2n

)

,

∥

∥

∥%2
yu

∥

∥

∥

L2
≤ C

{ ∥

∥

∥
|∂xV (x)|

2
3 u

∥

∥

∥

L2
+

∥

∥

∥(1− △x )
1
3 u

∥

∥

∥

L2
+ ‖Pu‖L2

}

, (2.4)

or equivalently,

n
∑

j=1

∥

∥

∥L j L
∗
ju

∥

∥

∥

L2
≤C

{∥

∥

∥
|∂xV (x)|

2
3 u

∥

∥

∥

L2
+

∥

∥

∥(1− △x )
1
3 u

∥

∥

∥

L2
+ ‖Pu‖L2

}

. (2.5)

Proof. In this proof we show (2.5). Using (2.2) gives

∥

∥

∥L j L
∗
ju

∥

∥

∥

2

L2
≤ Re

〈

PL∗
ju, L

∗
ju

〉

L2

= Re
〈

[P, L∗
j ]u, L

∗
ju

〉

L2
+ Re

〈

Pu, L j L
∗
ju

〉

L2

≤ Re
〈

[P, L∗
j ]u, L

∗
ju

〉

L2
+
1

2

∥

∥

∥L j L
∗
ju

∥

∥

∥

2

L2
+ 2 ‖Pu‖2

L2
.

Hence
∥

∥

∥L j L
∗
ju

∥

∥

∥

2

L2
≤ 2

∣

∣

∣

〈

[P, L∗
j ]u, L

∗
ju

〉

L2

∣

∣

∣ + 4 ‖Pu‖2
L2

.

Now assume the following estimate holds, for any ε > 0,

∣

∣

∣

〈

[P, L∗
j ]u, L

∗
ju

〉

L2

∣

∣

∣ ≤ ε

∥

∥

∥L j L
∗
ju

∥

∥

∥

2

L2

+ Cε

{∥

∥

∥|∂xV |
2
3 u

∥

∥

∥

2

L2
+

∥

∥

∥(1− △x )
1
3 u

∥

∥

∥

2

L2
+‖Pu‖2

L2

}

.

(2.6)

Then combining the above two inequalities and then letting ε small enough, we get

the desired estimate (2.5). In order to show (2.6), we make use of the following

commutation relations satisfied by i Q, L j , L
∗
k , j, k = 1, 2, · · · , n,

[i Q, L∗
j ] = −

1

2
∂x jV (x) + ∂x j , [L j , Lk] = [L∗

j , L
∗
k ] = 0, [L j , L

∗
k ] = δ jk;

this gives

[P, L∗
j ] = −

1

2
∂x jV (x) + ∂x j + L∗

j .

Then

∣

∣

∣

〈

[P, L∗
j ]u, L

∗
ju

〉

L2

∣

∣

∣ ≤
〈

L∗
ju, L

∗
ju

〉

L2
+

∣

∣

∣

∣

〈(

−
1

2
∂x jV (x) + ∂x j

)

u, L∗
ju

〉

L2

∣

∣

∣

∣

≤ C

{

∥

∥

∥
|∂xV (x)|

2
3 u

∥

∥

∥

2

L2
+

∥

∥

∥(1− △x )
1
3 u

∥

∥

∥

2

L2
+

∥

∥L ju
∥

∥

2

L2

}

+C

{

∥

∥

∥L j |∂xV (x)|
1
3 u

∥

∥

∥

2

L2
+

∥

∥

∥L j (1− △x )
1
6 u

∥

∥

∥

2

L2

}

.
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Moreover, note that

∥

∥

∥L j |∂xV (x)|
1
3 u

∥

∥

∥

2

L2
=

〈

L∗
j L ju, |∂xV (x)|

2
3 u

〉

L2

=
〈

L j L
∗
ju, |∂xV (x)|

2
3 u

〉

L2
−

〈

u, |∂xV (x)|
2
3 u

〉

L2
,

and hence

∀ ε>0,

∥

∥

∥L j |∂xV (x)|
1
3 u

∥

∥

∥

2

L2
≤ε

∥

∥

∥L j L
∗
ju

∥

∥

∥

2

L2
+Cε

{

∥

∥

∥
|∂xV (x)|

2
3 u

∥

∥

∥

2

L2
+ ‖u‖2

L2

}

.

Similarly,

∀ ε>0,

∥

∥

∥L j (1−△x )
1
6 u

∥

∥

∥

2

L2
≤ε

∥

∥

∥L j L
∗
ju

∥

∥

∥

2

L2
+ Cε

{

∥

∥

∥(1−△x )
1
3 u

∥

∥

∥

2

L2
+‖u‖2

L2

}

.

These inequalities yield (2.6). The proof of Proposition 2.1 is thus completed.

3. Proof of Theorem 1.1: the first part

In this section we only show (1.3) and postpone (1.4) to the next section. Let V (x)

satisfy the assumption (1.2). Then using the notation

f (x) =
(

1+ |∂xV (x)|2
)
1
2
,

we have

∀ x ∈ R
n, |∂x f | ≤ C f (x)s with s <

4

3
. (3.1)

The following is the main result of this section.

Proposition 3.1. Suppose f satisfies the condition (3.1). Then

∃ C > 0, ∀ u ∈ C∞
0

(

R
2n

)

,

∥

∥

∥ f (x)
2
3 u

∥

∥

∥

L2
≤ C

{

‖Pu‖L2 + ‖u‖L2
}

. (3.2)

Proof. To simplify the notation, we will use the capital letter C to denote different

suitable constants. Let R ∈ C1
(

R
2n

)

be a real-valued function given by

R = R(x, y) = 2 f (x)−
2
3 ∂xV (x) · y.

We can verify that

∀ u ∈ C∞
0

(

R
2n

)

, ‖Ru‖L2 ≤ C

∥

∥

∥
|y| f (x)

1
3 u

∥

∥

∥

L2
≤ C

∥

∥

∥%y f (x)
1
3 u

∥

∥

∥

L2
.
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Recall P = i Q+
∑n

j=1 L
∗
j L j with Q = y · Dx − ∂xV (x) · Dy and L j = ∂y j +

y j
2

.

Then the above inequalities together with the relation

Re 〈Pu, Ru〉L2 = Re 〈i Qu, Ru〉L2 + Re

n
∑

j=1

〈

L∗
j L ju, Ru

〉

L2

yield

Re 〈i Qu, Ru〉L2 ≤ ‖Pu‖2
L2

+
∥

∥

∥%y f (x)
1
3 u

∥

∥

∥

2

L2
+

n
∑

j=1

∣

∣

∣

〈

L∗
j L ju, Ru

〉

L2

∣

∣

∣ . (3.3)

Next we will proceed to treat the terms on both sides of (3.3) by the following three

steps.

Step I. Firstly we will show that for any ε > 0 there exists a constant Cε > 0 such

that the estimate

∥

∥

∥%y f (x)
1
3 u

∥

∥

∥

2

L2
≤ ε

∥

∥

∥ f (x)
2
3 u

∥

∥

∥

2

L2
+ Cε

{

‖Pu‖2
L2

+ ‖u‖2
L2

}

(3.4)

holds for all u ∈ C∞
0

(

R
2n

)

. To confirm this, we use (2.3) to get

∥

∥

∥%y f (x)
1
3 u

∥

∥

∥

2

L2
≤ Re

〈

P f (x)
1
3 u, f (x)

1
3 u

〉

L2

= Re
〈

Pu, f (x)
2
3 u

〉

L2
+ Re

〈[

P, f (x)
1
3

]

u, f (x)
1
3 u

〉

L2
.

The upper bound of the term Re
〈

Pu, f (x)
2
3 u

〉

L2
can be obtained by Cauchy-

Schwarz’s inequality. Then the required estimate (3.4) will follow if the following

inequality holds: for any ε1, ε2 > 0, there exists a constant Cε1,ε2 such that

〈[

P, f (x)
1
3

]

u, f (x)
1
3 u

〉

L2

≤ ε1

∥

∥

∥%y f (x)
1
3 u

∥

∥

∥

2

L2
+ ε2

∥

∥

∥ f (x)
2
3 u

∥

∥

∥

2

L2
+ Cε1,ε2 ‖u‖2

L2
.

(3.5)

To prove (3.5), we use (3.1); this gives

∣

∣

∣

[

P, f (x)
1
3

]∣

∣

∣ ≤ C |y| f (x)s−
2
3 ,

and hence

∀ ε1>0, Re
〈[

P, f (x)
1
3

]

u, f (x)
1
3 u

〉

L2
≤ε1

∥

∥

∥%y f (x)
1
3 u

∥

∥

∥

2

L2
+Cε1

∥

∥

∥ f (x)
s− 2

3 u

∥

∥

∥

2

L2
.
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Since s − 2
3

< 2
3
for s < 4

3
then the following interpolation inequality holds:

∀ ε2 > 0,

∥

∥

∥ f (x)
s− 2

3 u

∥

∥

∥

2

L2
≤ ε2

∥

∥

∥ f (x)
2
3 u

∥

∥

∥

2

L2
+ Cε2 ‖u‖2

L2
.

Now combination of the above inequalities yields (3.5).

Step II. Next we will show that there exists a constant C > 0 such that

∥

∥

∥ f (x)
2
3 u

∥

∥

∥

2

L2
≤ C

{

Re 〈i Qu, Ru〉L2 + ‖Pu‖2
L2

+ ‖u‖2
L2

}

. (3.6)

Since Q = y · Dx − ∂xV (x) · Dy and R = 2 f (x)−
2
3 ∂xV (x) · y, then it’s a straight-

forward verification to see that

i

2

[

R, Q
]

= f (x)−
2
3 |∂xV (x)|2 − y · ∂x

(

f (x)−
2
3 ∂xV (x) · y

)

.

As a result, we use the relation

Re 〈i Qu, Ru〉L2 =
i

2
〈[R, Q] u, u〉L2

to get

Re 〈i Qu, Ru〉L2 =
∥

∥

∥ f (x)
2
3 u

∥

∥

∥

2

L2
−

∥

∥

∥ f (x)
− 1
3 u

∥

∥

∥

2

L2

−
〈(

y · ∂x

(

f (x)−
2
3 ∂xV (x) · y

))

u, u
〉

L2
.

This gives

∥

∥

∥ f (x)
2
3 u

∥

∥

∥

2

L2
≤Re 〈i Qu,Ru〉L2+‖u‖2

L2
+

〈∣

∣

∣y · ∂x

(

f (x)−
2
3 ∂xV (x) · y

)∣

∣

∣ u, u
〉

L2
.

Moreover, by use of (3.1), we compute
∣

∣

∣y · ∂x

(

f (x)−
2
3 ∂xV (x) · y

)∣

∣

∣ ≤ C f (x)s−
2
3 |y|2 ≤ C f (x)

2
3 |y|2 ,

which implies that for any ε > 0,

〈∣

∣

∣y · ∂x

(

f (x)−
2
3 ∂xV (x) · y

)∣

∣

∣ u, u
〉

L2
≤C

∥

∥

∥
|y| f (x)

1
3 u

∥

∥

∥

2

L2
≤C

∥

∥

∥%y f (x)
1
3 u

∥

∥

∥

2

L2

≤ε

∥

∥

∥ f (x)
2
3 u

∥

∥

∥

2

L2
+ Cε

{

‖Pu‖2
L2

+ ‖u‖2
L2

}

,

the last inequality using (3.4). Consequently,

∀ ε>0,

∥

∥

∥ f (x)
2
3 u

∥

∥

∥

2

L2
≤Re 〈i Qu,Ru〉L2+ε

∥

∥

∥ f (x)
2
3 u

∥

∥

∥

2

L2
+Cε

{

‖Pu‖2
L2

+‖u‖2
L2

}

.

Letting ε > 0 small enough gives (3.6).
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Step III. Now we prove that for any ε > 0 there exists a constant Cε such that

n
∑

j=1

∣

∣

∣

〈

L∗
j L ju, Ru

〉

L2

∣

∣

∣ ≤ ε

∥

∥

∥ f (x)
2
3 u

∥

∥

∥

2

L2
+ Cε

{

‖Pu‖2
L2

+ ‖u‖2
L2

}

. (3.7)

As a preliminary step, we firstly show the following estimate:

∀ ε > 0,

∥

∥

∥
〈y〉2 u

∥

∥

∥

2

L2
≤ ε

∥

∥

∥ f (x)
2
3 u

∥

∥

∥

L2
+ Cε

{

‖Pu‖2
L2

+ ‖u‖2
L2

}

, (3.8)

where 〈y〉 =
(

1+ |y|2
)
1
2 . Using (2.3) gives

∥

∥

∥
〈y〉2 u

∥

∥

∥

2

L2
≤C

{

Re 〈P 〈y〉 u, 〈y〉 u〉L2 + ‖〈y〉 u‖2
L2

}

=C
{

Re
〈

Pu, 〈y〉2 u
〉

L2
+ Re 〈[P, 〈y〉] u, 〈y〉 u〉L2

}

+ C ‖〈y〉 u‖2
L2

.

This together with (2.3) implies that

∥

∥

∥
〈y〉2 u

∥

∥

∥

2

L2
≤ C

{

‖Pu‖2
L2

+ ‖u‖2
L2

}

+ C
∣

∣〈[P, 〈y〉] u, 〈y〉 u〉L2
∣

∣ . (3.9)

Moreover observe that

|[P, 〈y〉] u| ≤ C
{

|∂xV (x)| |u| +
∣

∣∂yu
∣

∣ + |u|
}

≤ C
{

f (x) |u| +
∣

∣∂yu
∣

∣ + |u|
}

,

and hence for any ε > 0,

∣

∣〈[P, 〈y〉] u, 〈y〉 u〉L2
∣

∣ ≤ ε

∥

∥

∥ f (x)
2
3 u

∥

∥

∥

2

L2
+ Cε

{

∥

∥

∥%y f (x)
1
3 u

∥

∥

∥

2

L2
+

∥

∥%yu
∥

∥

2

L2

}

.

This along with (3.4) and (2.3) gives

∀ ε>0,
∣

∣〈[P, 〈y〉] u, 〈y〉 u〉L2
∣

∣≤ε

∥

∥

∥ f (x)
2
3 u

∥

∥

∥

2

L2
+Cε

{

‖Pu‖2
L2

+ ‖u‖2
L2

}

. (3.10)

Now combining (3.9) and (3.10), we get (3.8). As a result of (3.8), we have

∀ ε > 0,
∥

∥%y 〈y〉 u
∥

∥

2

L2
≤ ε

∥

∥

∥ f (x)
2
3 u

∥

∥

∥

2

L2
+ Cε

{

‖Pu‖2
L2

+ ‖u‖2
L2

}

. (3.11)

Indeed by (2.3) one has

∥

∥%y 〈y〉 u
∥

∥

2

L2
≤ C

{

Re 〈P 〈y〉 u, 〈y〉 u〉L2 + ‖〈y〉 u‖2
L2

}

≤ C
∣

∣〈[P, 〈y〉] u, 〈y〉 u〉L2
∣

∣ + C
{

‖Pu‖2
L2

+
∥

∥

∥
〈y〉2 u

∥

∥

∥

L2

}

.
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So (3.11) can be deduced from (3.8) and (3.10). Now we are ready to prove (3.7).

Observe
∣

∣

∣

〈

L∗
j L ju, Ru

〉

L2

∣

∣

∣ =
∣

∣

∣

〈

f (x)
1
3 L ju, f (x)−

1
3 L j Ru

〉

L2

∣

∣

∣

≤

∥

∥

∥%y f (x)
1
3 u

∥

∥

∥

2

L2
+

∥

∥

∥ f (x)
− 1
3 L j Ru

∥

∥

∥

2

L2
.

Then in view of (3.4), we see that the required inequality (3.7) will follow if the

following estimate holds:

∀ ε > 0,

∥

∥

∥ f (x)
− 1
3 L j Ru

∥

∥

∥

2

L2
≤ ε

∥

∥

∥ f (x)
2
3 u

∥

∥

∥

2

L2
+Cε

{

‖Pu‖2
L2

+ ‖u‖2
L2

}

. (3.12)

Since

L j Ru = 2u f (x)−
2
3 ∂y j (∂xV (x) · y) + 2 f (x)−

2
3 (∂xV (x) · y) ∂y j u

+ f (x)−
2
3 y j (∂xV (x) · y) u,

then

∥

∥

∥ f (x)
− 1
3 L j Ru

∥

∥

∥

2

L2
≤ C

{

‖u‖2
L2

+
∥

∥%y 〈y〉 u
∥

∥

2

L2

}

.

This along with (3.11) gives (3.12), completing the proof (3.7).

Now we combine the inequalities (3.3), (3.4), (3.6) and (3.7), to obtain

∀ ε > 0,

∥

∥

∥ f (x)
2
3 u

∥

∥

∥

2

L2
≤ ε

∥

∥

∥ f (x)
2
3 u

∥

∥

∥

2

L2
+ Cε

{

‖Pu‖2
L2

+ ‖u‖2
L2

}

.

Taking ε = 1
2
gives the desired estimate (3.2). This completes the proof of Propo-

sition 3.1.

The rest of this section is occupied by the proof of Corollary 1.3 which is in

fact a consequence of Proposition 3.1.

Proof of Corollary 1.3. Observe the compactness of the resolvent (1+ P)−1 can be

deduced from Proposition 3.1 together with the condition that

lim
|x |→+∞

f (x) = +∞. (3.13)

Then it suffices to show (3.13) holds whenever 1 + △
(0)
V/2 has a compact resolvent.

Let’s suppose that
(

1+ △
(0)
V/2

)−1
is compact and that, contrary to the condition

(3.13), there exists a sequence
{

xµ

}

µ≥1
in R

n and a constant M such that

lim
µ→+∞

∣

∣xµ

∣

∣ = +∞ and sup
µ≥1

f (xµ) ≤ M.
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As to be seen in Lemma 4.2, the condition (3.1) allows us to find a positive number

r and a constant C , both independent of µ , such that

∀ x ∈ B(xµ; r)
def
=

{

z ∈ R
n;

∣

∣z − xµ

∣

∣ ≤ r
}

, C−1 ≤
f (x)

f (xµ)
≤ C, (3.14)

due to the fact 1 ≤ f (xµ) ≤ M . Moreover since
∣

∣xµ

∣

∣ → +∞ we could choose a

subsequence, still denoted by
{

xµ

}

µ≥1
, such that the Euclidean balls B(xµ; r) are

mutually disjoint. Now we take

hµ(x) = χ(x − xµ)

with χ a smooth function such that

supp χ ⊂
{

z ∈ R
n; |z| < r

}

,

∫

Rn

|χ(x)|2 dx = 1.

It then follows that hµ ∈ C∞
0

(

B(xµ, r)
)

and

〈

hµ, hν

〉

L2(Rn)
= δµ,ν . (3.15)

Furthermore we could find a constant CM,r depending only on M and r , such that

∀ µ ≥ 1, ∀x ∈ R
n,

∣

∣(1− △x )hµ(x)
∣

∣ ≤ CM,r ,

and that by virtue of (3.14) and (3.1),

∀ µ ≥ 1, ∀x ∈ R
n,

∣

∣

∣

∣

(

1

4
|∂xV (x)|2 −

1

2
△V (x)

)

hµ(x)

∣

∣

∣

∣

≤ CM,r .

As a result there exists a constant C̃M,r depending only on M and r , such that

sup
µ≥1

∥

∥

∥

(

1+ △
(0)
V/2

)

hµ

∥

∥

∥

L2(Rn)
≤ C̃M,r .

Since
(

1+ △
(0)
V/2

)−1
is compact then

{

hµ

}

µ≥1
admits a strongly convergent sub-

sequence in L2(Rn). This contradicts (3.15). The proof of Corollary 1.3 is hence

completed.

4. Proof of Theorem 1.1: the second part

This section is devoted to the proof of (1.4), and then the proof of Theorem 1.1

will be completed. As a convention, we use the capital letter C to denote different
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suitable constants. Let V satisfy the assumption (1.2). As a result we have, with

f (x) =
(

1+ |∂xV (x)|2
)
1
2 ,

∀ x ∈ R
n, |∂x f (x)| ≤ C f (x)s with s <

4

3
. (4.1)

In view of (2.3), to prove (1.4) one only has to show

Proposition 4.1. If V (x) satisfies the assumption (1.2), then

∀ u ∈ C∞
0

(

R
2n

)

,

∥

∥

∥(1− △x )
δ
2 u

∥

∥

∥

L2
≤ C

{

‖Pu‖L2 + ‖u‖L2

}

, (4.2)

where δ equals to 2
3
if s ≤ 2

3
, 4
3

− s if 2
3

< s ≤ 10
9

, and 2
3

− s
2
if 10

9
< s < 4

3
.

We will use localization arguments to prove the above proposition. Firstly let’s

recall some standard results concerning the partition of unity. For more detail we

refer to [6] for instance. Let g be a metric of the following form

gx = f (x)s |dx |2 , x ∈ R
n, (4.3)

where s is the real number given in (4.1).

Lemma 4.2. Suppose f satisfies the condition (4.1). Then the metric g defined

by (4.3) is slowly varying, i.e., we can find two constants C∗, r > 0 such that if

gx (x − y) ≤ r2 then

C−2
∗ ≤

gx

gy
≤ C2∗ .

Proof. We only need to show that

∃ r,C∗ > 0, ∀ x, y ∈ R
n, |x − y| ≤ r f (x)−

s
2 =⇒ C−1

∗ ≤
f (x)

s
2

f (y)
s
2

≤ C∗. (4.4)

Making use of (3.1) and the fact that s < 4
3
, we have

∀ x ∈ R
n,

∣

∣

∣∂x

(

f (x)−
s
2

)∣

∣

∣ ≤ f (x)−
s
2−1 |∂x f (x)| ≤ C f (x)

s
2−1 ≤ C

withC the constant in (3.1). As a consequence, one can find a constant C̃ depending

only on C and the dimension n, such that

∀ x, y ∈ R
n,

∣

∣

∣ f (x)
− s
2 − f (y)−

s
2

∣

∣

∣ ≤ C̃ |x − y| ,

from which we conclude that if |x − y| ≤ r f (x)−
s
2 then

∣

∣

∣ f (x)
− s
2 − f (y)−

s
2

∣

∣

∣ ≤ rC̃ f (x)−
s
2 .
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Thus

∣

∣

∣

∣

∣

f (x)
s
2

f (y)
s
2

− 1

∣

∣

∣

∣

∣

≤ rC̃ .

This gives (4.4) if we choose r = C̃
2
and C∗ = 2.

Let g be the metric given by (4.3). We denote by S(1, g) the class of smooth

real-valued functions a(x) satisfying the following condition:

∀ γ ∈ Z
n
+, ∀ x ∈ R

n,
∣

∣∂γ a(x)
∣

∣ ≤ Cγ f (x)
s|γ |
2 .

The space S(1, g) endowed with the seminorms

|a|k,S(1,g) = sup
x∈Rn,|γ |=k

f (x)−
sk
2

∣

∣∂γ a(x)
∣

∣ , k ≥ 0,

becomes a Fréchet space.

The main feature of a slowly varying metric is that it allows us to introduce

some partitions of unity related to the metric. We state it as the following lemma.

Lemma 4.3 ([6, Lemma 18.4.4.]). Let g be a slowly varying metric. We can find

a constant r0 > 0 and a sequence xµ ∈ R
n, µ ≥ 1, such that the union of the balls

-µ,r0 =
{

x ∈ R
n; gxµ

(

x − xµ

)

< r20

}

coves the whole space R
n. Moreover there exists a positive integer N , depending

only on r0, such that the intersection of more than N balls is always empty. One can

choose a family of nonnegative functions
{

ϕµ

}

µ≥1
uniformly bounded in S(1, g)

such that

supp ϕµ ⊂ -µ,r0,
∑

µ≥1

ϕ2µ = 1 and sup
µ≥1

∣

∣∂xϕµ(x)
∣

∣ ≤ C f (x)
s
2 . (4.5)

Here by uniformly bounded in S(1, g), we mean

sup
µ

∣

∣ϕµ

∣

∣

k,S(1,g)
≤ Ck, k ≥ 0.

Remark 4.4. If we choose r0 small enough such that r0 ≤ r with r the constant

given in Lemma 4.2, then there exists a constant C, such that for any µ ≥ 1 one has

∀ x, y ∈ supp ϕµ, C−1 f (y) ≤ f (x) ≤ C f (y). (4.6)
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Lemma 4.5. Let V (x) satisfy the assumption (1.2), and let
{

ϕµ

}

µ≥1
be the parti-

tion of unity given above. Then for any u ∈ C∞
0

(

R
2n

)

we have

∑

µ≥1

∥

∥

(

y · ∂xϕµ

)

u
∥

∥

2

L2
≤ C

∥

∥

∥%y f (x)
s
2 u

∥

∥

∥

2

L2
(4.7)

and

∑

µ≥1

∥

∥ϕµ(x)
(

∂xV (x) − ∂xV (xµ)
)

· ∂yu
∥

∥

2

L2
≤ C

∥

∥

∥%y f (x)
s
2 u

∥

∥

∥

2

L2
. (4.8)

Proof. Firstly we show (4.7). Observe

∥

∥

(

y · ∂xϕµ

)

u
∥

∥

2

L2
=

〈

(

y · ∂xϕµ

)2
u, u

〉

L2
,

and by Lemma 4.3, we see that
∑

µ≥1

∣

∣∂xϕµ

∣

∣

2
is a sum of at most N terms and

hence bounded from above by f s . As a result,

∑

µ≥1

(

y · ∂xϕµ(x)
)2

≤ C |y|2
∑

µ≥1

∣

∣∂xϕµ

∣

∣

2
≤ C |y|2 f s .

Then (4.7) follows. Next we estimate (4.8). Note that
∣

∣x − xµ

∣

∣ ≤ C f (xµ)−
s
2 for

any x ∈ supp ϕµ, and hence we can deduce from (1.2) and (4.6) that

∑

µ≥1

ϕµ(x)2
∣

∣∂xV (x) − ∂xV (xµ)
∣

∣

2
≤ C

∑

µ≥1

ϕµ(x)2 f (x)2s
∣

∣x − xµ

∣

∣

2
≤ C f (x)s .

This along with the inequality

∑

µ≥1

∥

∥ϕµ

(

∂xV (x) − ∂xV (xµ)
)

· ∂yu
∥

∥

2

L2

≤

〈

∑

µ≥1

ϕµ(x)2
∣

∣∂xV (x) − ∂xV (xµ)
∣

∣

2 ∣

∣∂yu
∣

∣ ,
∣

∣∂yu
∣

∣

〉

L2

implies (4.8). Then the proof is completed.

Lemma 4.6. Let
{

ϕµ

}

µ≥1
be the partition given in Lemma 4.3, and let a ∈]0, 1/2[

be a real number. Then there exists a constant C, depending on the integer N given

in Lemma 4.3, such that for any u ∈ C∞
0

(

R
2n

)

we have

∥

∥(1− △x )
a u

∥

∥

2

L2
≤ C

∑

µ≥1

∥

∥(1− △x )
a ϕµu

∥

∥

2

L2
+ C ‖Pu‖2

L2
+ C ‖u‖2

L2
. (4.9)

In order to prove Lemma 4.6 we need the following technical lemma.
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Lemma 4.7. Let b ∈]0, 1[ be a real number and |Dx |
b be the Fourier multiplier

defined by, with u ∈ C∞
0 (Rn),

|Dx |
b u(x) = F

−1
(

|ξ |b û(ξ)
)

.

Let
{

ϕµ

}

µ≥1
be the partition given in Lemma 4.3. Then there exists a constant C

such that for any u ∈ C∞
0 (Rn) we have

∥

∥

∥

∥

∥

∑

µ≥1

[

|Dx |
b, f −s/2ϕµ

]

ϕµu

∥

∥

∥

∥

∥

L2(Rn)

≤ C ‖u‖L2(Rn) (4.10)

and
∥

∥

∥

[

|Dx |
b, f −s/2

]

u

∥

∥

∥

L2(Rn)
≤ C ‖u‖L2(Rn) . (4.11)

Recall here f (x) =
(

1+ |∂xV (x)|2
)1/2

and s is the real number given in (4.1).

Proof. In the proof we use C to denote different suitable positive constants, and for

simplicity we use the notation

ωµ = f −s/2ϕµ.

In view of Lemma 4.3 and the estimate (4.1), we have

sup
x∈Rn

(

∑

µ≥1

∣

∣ϕµ(x)
∣

∣

2

)
1
2

+ sup
x,x ′∈Rn

(

∑

µ≥1

∣

∣ωµ(x) − ωµ(x ′)
∣

∣

2

)
1
2

+ sup
x∈Rn

(

∑

µ≥1

∣

∣∂xωµ(x)
∣

∣

2

)
1
2

≤ C.

(4.12)

Next we will show the following relation:

∀ u ∈ C∞
0 (Rn), |Dx |

b u(x) = Cb

∫

Rn

u(x) − u(x − x̃)

|x̃ |n+b
dx̃ (4.13)

with Cb 1= 0 being a complex constant depending only on the real number b and

the dimension n. In fact, the inverse Fourier transform implies

∫

Rn

u(x) − u(x − x̃)

|x̃ |n+b
dx̃ =

∫

Rn

û(ξ) ei x ·ξ

(

∫

Rn

1− e−i x̃ ·ξ

|x̃ |n+b
dx̃

)

dξ.

On the other hand, we can verify that

∫

Rn

1− e−i x̃ ·ξ

|x̃ |n+b
dx̃ = |ξ |b

∫

Rn

1− e
−i z·

ξ
|ξ |

|z|n+b
dz.
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Observe that
∫

Rn
1−e

−i z·
ξ
|ξ |

|z|n+b
dz 1= 0 is a complex constant depending only on b and

the dimension n, but independent of ξ. Then the above two equalities give (4.13).

Now we use (4.13) to get

|Dx |
b
(

ωµ ϕµ u
)

(x)=Cb

∫

Rn

ωµ(x)ϕµ(x)u(x) − ωµ(x − x̃)ϕµ(x − x̃)u(x − x̃)

|x̃ |n+b
dx̃

= ωµ(x)|Dx |
b (ϕµ u)(x) + Cb

∫

Rn

ϕµ(x − x̃)u(x − x̃)
(

ωµ(x) − ωµ(x − x̃)
)

|x̃ |n+b
dx̃,

which gives
[

|Dx |
b, ωµ

]

(ϕµ u)(x)

= Cb

∫

Rn

ϕµ(x − x̃)u(x − x̃)
(

ωµ(x) − ωµ(x − x̃)
)

|x̃ |n+b
dx̃ .

(4.14)

Let ρ be the characteristic function of the unit ball {x ∈ R
n; |x | ≤ 1 } .We compute

∥

∥

∥

∥

∥

∑

µ≥1

[

|Dx |
b, ωµ

]

ϕµu

∥

∥

∥

∥

∥

2

L2

= |Cb|
2

∫

Rn

(

∑

µ≥1

∫

Rn

u(x − x̃)ϕµ(x − x̃)
(

ωµ(x) − ωµ(x − x̃)
)

|x̃ |n+b
dx̃

)2

dx

≤ 2|Cb|
2

∫

Rn

(

∑

µ≥1

∫

Rn

ρ(x̃)u(x − x̃)ϕµ(x − x̃)
(

ωµ(x) − ωµ(x − x̃)
)

|x̃ |n+b
dx̃

)2

dx

+2|Cb|
2

∫

Rn

(

∑

µ≥1

∫

Rn

(1−ρ(x̃)) u(x− x̃)ϕµ(x− x̃)
(

ωµ(x) − ωµ(x− x̃)
)

|x̃ |n+b
dx̃

)2

dx

=: A1 + A2.

Now we treat the termsA1 andA2. Cauchy’s inequality yields
∣

∣

∣

∣

∣

∑

µ≥1

ϕµ(x − x̃)
(

ωµ(x) − ωµ(x − x̃)
)

∣

∣

∣

∣

∣

≤

(

∑

µ≥1

∣

∣ϕµ(x − x̃)
∣

∣

2

)
1
2
(

∑

µ≥1

∣

∣ωµ(x) − ωµ(x − x̃)
∣

∣

2

)
1
2

.

This along with (4.12) gives that for any x, x̃ ∈ R
n, we have

∣

∣

∣

∣

∣

∑

µ≥1

ϕµ(x − x̃)
(

ωµ(x) − ωµ(x − x̃)
)

∣

∣

∣

∣

∣

≤ C
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and hence

A2 ≤ C

∫

Rn

(∫

Rn

(1− ρ(x̃)) |u(x − x̃)|

|x̃ |n+b
dx̃

)2

dx .

Moreover, using the relation

ωµ(x) − ωµ(x − x̃) =

∫ 1

0

∂xωµ

(

t x + (1− t)(x − x̃)
)

· x̃ dt

and the inequality (4.12) yields that for any x, x̃ ∈ R
n we have

(

∑

µ≥1

∣

∣ωµ(x) − ωµ(x − x̃)
∣

∣

2

)
1
2

≤ C |x̃ |

and hence
∣

∣

∣

∣

∣

∑

µ≥1

ϕµ(x − x̃)
(

ωµ(x) − ωµ(x − x̃)
)

∣

∣

∣

∣

∣

≤ C |x̃ | ,

which implies

A1 ≤ C

∫

Rn

(∫

Rn

ρ(x̃) |u(x − x̃)|

|x̃ |n+b−1
dx̃

)2

dx .

Combining these inequalities gives

∥

∥

∥

∥

∥

∑

µ≥1

[

|Dx |
b, ωµ

]

ϕµu

∥

∥

∥

∥

∥

2

L2

≤ C

∫

Rn

(∫

Rn

ρ(x̃) |u(x − x̃)|

|x̃ |n+b−1
dx̃

)2

dx

+ C

∫

Rn

(∫

Rn

(1− ρ(x̃)) |u(x − x̃)|

|x̃ |n+b
dx̃

)2

dx .

Moreover, for the terms on the right side of the above inequality, we can use Young’s

inequality for convolutions and the fact that ρ is the characteristic function of the

unit ball, to get

∫

Rn

(∫

Rn

ρ(x̃) |u(x − x̃)|

|x̃ |n+b−1
dx̃

)2

dx≤C ‖u‖2
L2(Rn)

∥

∥

∥

ρ

|x |n+b−1

∥

∥

∥

2

L1(Rn)
≤C ‖u‖2

L2(Rn)

and

∫

Rn

(∫

Rn

(1−ρ(x̃)) |u(x− x̃)|

|x̃ |n+b
dx̃

)2

dx≤C‖u‖2
L2(Rn)

∥

∥

∥

∥

1− ρ

|x |n+b

∥

∥

∥

∥

2

L1(Rn)

≤C‖u‖2
L2(Rn)

.

We combine these inequalities to get the desired estimate (4.10). The estimate

(4.11), which is easier to treat, can be obtained via the similar arguments as above.

This completes the proof.
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Proof of Lemma 4.6. We only need show that, with b ∈]0, 1[,

∀ u ∈ C∞
0

(

R
2n

)

,
∥

∥

∥
|Dx |

b u

∥

∥

∥

2

L2
≤ C

∑

µ≥1

∥

∥

∥
|Dx |

b ϕµu

∥

∥

∥

2

L2
+ C ‖Pu‖2

L2
+ C ‖u‖2

L2
.

(4.15)

By (4.5), we see
∥

∥|Dx |
b u

∥

∥

2

L2
=

∥

∥

∥

∑

µ≥1 |Dx |
b ϕ2µ u

∥

∥

∥

2

L2
. Thus

∥

∥

∥
|Dx |

b u

∥

∥

∥

2

L2
≤ 2

∥

∥

∥

∥

∥

∑

µ≥1

[

|Dx |
b , f − s

2ϕµ

]

ϕµ f
s
2 u

∥

∥

∥

∥

∥

2

L2

+ 2

∥

∥

∥

∥

∥

∑

µ≥1

f − s
2ϕµ |Dx |

b ϕµ f
s
2 u

∥

∥

∥

∥

∥

2

L2

.

(4.16)

In view of (4.10) we have

∥

∥

∥

∥

∥

∑

µ≥1

[

|Dx |
b , f − s

2ϕµ

]

ϕµ f
s
2 u

∥

∥

∥

∥

∥

2

L2

≤C

∥

∥

∥ f
s
2 u

∥

∥

∥

2

L2
≤ C ‖P u‖2

L2
+C ‖u‖2

L2
, (4.17)

the last inequality following from (3.2). It remains to handle the second term on the

right side of (4.16). For each µ ≥ 1, set

Iµ =
{

ν ≥ 1; supp ϕν ∩ supp ϕµ 1= ∅
}

.

Then Iµ is a finite set and has at most N elements. Recall here N is the integer

given in Lemma 4.3 such that the intersection of more than N balls is always empty.

Direct calculus give that for any u ∈ C∞
0 (R2n) we have

∥

∥

∥

∥

∥

∑

µ≥1

f − s
2ϕµ |Dx |

b ϕµ f
s
2 u

∥

∥

∥

∥

∥

2

L2

=
∑

µ≥1

∑

ν∈Iµ

〈

ϕµ f
− s
2 |Dx |

b ϕµ f
s
2 u, ϕν f

− s
2 |Dx |

b ϕν f
s
2 u

〉

L2

≤
∑

µ≥1

∑

ν∈Iµ

∥

∥

∥ϕµ f
− s
2 |Dx |

b ϕµ f
s
2 u

∥

∥

∥

2

L2
+

∑

µ≥1

∑

ν∈Iµ

∥

∥

∥ϕν f
− s
2 |Dx |

b ϕν f
s
2 u

∥

∥

∥

2

L2

= 2
∑

µ≥1

∑

ν∈Iµ

∥

∥

∥ϕµ f
− s
2 |Dx |

b ϕµ f
s
2 u

∥

∥

∥

2

L2

≤ 2
∑

µ≥1

∑

ν∈Iµ

∥

∥

∥ f
− s
2 |Dx |

b ϕµ f
s
2 u

∥

∥

∥

2

L2
.
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Since Iµ has at most N elements then it follows from the above inequalities that

∥

∥

∥

∥

∥

∑

µ≥1

f − s
2ϕµ |Dx |

b ϕµ f
s
2 u

∥

∥

∥

∥

∥

2

L2

≤ 2N
∑

µ≥1

∥

∥

∥ f
− s
2 |Dx |

b ϕµ f
s
2 u

∥

∥

∥

2

L2
. (4.18)

One the other hand, one can verify that

∑

µ≥1

∥

∥

∥ f
− s
2 |Dx |

b ϕµ f
s
2 u

∥

∥

∥

2

L2
≤ 2

∑

µ≥1

∥

∥

∥

[

|Dx |
b , f − s

2

]

ϕµ f
s
2 u

∥

∥

∥

2

L2

+ 2
∑

µ≥1

∥

∥

∥
|Dx |

b f − s
2ϕµ f

s
2 u

∥

∥

∥

2

L2

≤ C
∑

µ≥1

∥

∥

∥ϕµ f
s
2 u

∥

∥

∥

2

L2
+ C

∑

µ≥1

∥

∥

∥
|Dx |

b ϕµu

∥

∥

∥

2

L2

≤ C ‖P u‖2
L2

+ C ‖u‖2
L2

+ C
∑

µ≥1

∥

∥

∥
|Dx |

b ϕµu

∥

∥

∥

2

L2
,

the second inequality using (4.11) and the last inequality using (3.2). These in-

equalities along with (4.18) gives, with u ∈ C∞
0 (R2n),

∥

∥

∥

∥

∥

∑

µ≥1

f − s
2ϕµ |Dx |

b ϕµ f
s
2 u

∥

∥

∥

∥

∥

2

L2

≤C
∑

µ≥1

∥

∥

∥
|Dx |

b ϕµu

∥

∥

∥

2

L2
+ C ‖P u‖2

L2
+ C ‖u‖2

L2
.

This along with (4.16) and (4.17) yields the desired estimate (4.15) , completing the

proof of Lemma 4.6.

4.1. End of the proof of Theorem 1.1

In this subsection we prove Proposition 4.1. Let
{

ϕµ

}

µ≥1
be the partition of unity

given in Lemma 4.3. For each µ ≥ 1, define the operator Rµ by

Rµ = −y · ∂xϕµ(x) − ϕµ

(

∂xV (x) − ∂xV (xµ)
)

· ∂y . (4.19)

We associate with each xµ ∈ R
n the operator

Pxµ = y · ∂x − ∂xV (xµ) · ∂y − △y +
|y|2

4
−
n

2
.

Then we have

ϕµPu = Pxµ ϕµ u + Rµu
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with Rµ the operator given in (4.19). This gives

∑

µ≥1

∥

∥Pxµ ϕµ u
∥

∥

2

L2
≤ 2

∑

µ≥1

(

∥

∥ϕµPu
∥

∥

2

L2
+

∥

∥Rµu
∥

∥

2

L2

)

≤ 2 ‖Pu‖2
L2

+ 2
∑

µ≥1

∥

∥Rµu
∥

∥

2

L2
.

(4.20)

Proposition 4.8. There is a constant C independent of xµ, such that for any u ∈

C∞
0

(

R
2n

)

, one has

∣

∣∂xV (xµ)
∣

∣

4
3 ‖u‖2

L2
+

∥

∥

∥(1− △x )
1
3 u

∥

∥

∥

2

L2
≤ C

{

∥

∥Pxµu
∥

∥

2

L2
+ ‖u‖2

L2

}

, (4.21)

or equivalently,
∥

∥

∥

∥

%̃
2
3
xµu

∥

∥

∥

∥

2

L2
≤ C

{

∥

∥Pxµu
∥

∥

2

L2
+ ‖u‖2

L2

}

, (4.22)

where %̃xµ =
(

1+ 1
2

∣

∣∂xV (xµ)
∣

∣

2
− △x

)
1
2
.

The above proposition can be proven in the same way as [3, Proposition 5.22],

by taking Fourier analysis in the variable x and then reducing the problem to a

semi-classical problem. We refer to [3] and references therein for more details.

Lemma 4.9. Suppose V (x) satisfies the assumption (1.2). Let Rµ be the operator

given in (4.19). Then

∀ u∈C∞
0

(

R
2n

)

,
∑

µ≥1

∥

∥Rµu
∥

∥

2

L2
≤C

{

∥

∥

∥P f (x)
s̃u

∥

∥

∥

2

L2
+ ‖Pu‖2

L2
+ ‖u‖2

L2

}

, (4.23)

where s̃ = 2
3
−δ with δ given in (1.4), i.e., s̃ equals to 0 if s ≤ 2

3
, s− 2

3
if 2
3

< s ≤ 10
9

,

and s
2
if 10

9
< s < 4

3
.

Proof. As a convention, we use the capital letter C to denote different suitable

constants. Since V (x) satisfies (1.2), then (4.1) holds. Observe
∑

µ≥1

∥

∥Rµu
∥

∥

2

L2

is bounded from above by

2
∑

µ≥1

∥

∥

(

y · ∂xϕµ

)

u
∥

∥

2

L2
+ 2

∑

µ≥1

∥

∥ϕµ(x)
(

∂xV (x) − ∂xV (xµ)
)

· ∂yu
∥

∥

2

L2
.

Then in view of (4.7) and (4.8), we have

∑

µ≥1

∥

∥Rµu
∥

∥

2

L2
≤ C

∥

∥

∥%y f (x)
s
2 u

∥

∥

∥

2

L2
.
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So we only have to treat the term

∥

∥

∥%y f (x)
s
2 u

∥

∥

∥

2

L2
. It follows from (2.3) that

∥

∥

∥%y f (x)
s
2 u

∥

∥

∥

2

L2
≤ C

{

∣

∣

∣

〈

P f (x)
s
2 u, f (x)

s
2 u

〉

L2

∣

∣

∣ +
∥

∥

∥ f (x)
s
2 u

∥

∥

∥

2

L2

}

.

Since s
2

< 2
3
then by (3.2) we have

∀ u ∈ C∞
0

(

R
2n

)

,

∥

∥

∥ f (x)
s
2 u

∥

∥

∥

L2
≤

∥

∥

∥ f (x)
2
3 u

∥

∥

∥

L2
≤C

{

‖Pu‖L2 + ‖u‖L2
}

. (4.24)

The above two inequalities yield that for any u ∈ C∞
0

(

R
2n

)

,

∥

∥

∥%y f (x)
s
2 u

∥

∥

∥

2

L2
≤ C

{∣

∣

∣

〈

P f (x)
s
2 u, f (x)

s
2 u

〉

L2

∣

∣

∣ + ‖Pu‖2
L2

+ ‖u‖2
L2

}

. (4.25)

a) Firstly let us consider the case when s ≤ 2
3
. In such a case, we have

∣

∣

∣

〈

P f (x)
s
2 u, f (x)

s
2 u

〉

L2

∣

∣

∣ ≤
∣

∣

〈

Pu, f (x)su
〉

L2

∣

∣ +
∣

∣

∣

〈[

P, f (x)
s
2

]

u, f (x)
s
2 u

〉

L2

∣

∣

∣

≤ ‖Pu‖2
L2

+
∥

∥

∥ f (x)
2
3 u

∥

∥

∥

2

L2
+

∣

∣

∣

〈[

P, f (x)
s
2

]

u, f (x)
s
2 u

〉

L2

∣

∣

∣

≤ C ‖Pu‖2
L2

+ C ‖u‖2
L2

+
∣

∣

∣

〈[

P, f (x)
s
2

]

u, f (x)
s
2 u

〉

L2

∣

∣

∣ ,

the last inequality using (3.2). This along with (4.25) gives

∥

∥

∥%y f (x)
s
2 u

∥

∥

∥

2

L2
≤ C ‖Pu‖2

L2
+ C ‖u‖2

L2
+

∣

∣

∣

〈[

P, f (x)
s
2

]

u, f (x)
s
2 u

〉

L2

∣

∣

∣ .

On the other hand using (4.1) with s ≤ 2
3
implies, for any ε > 0,

∣

∣

∣

〈[

P, f (x)
s
2

]

u, f (x)
s
2 u

〉

L2

∣

∣

∣ ≤ C

∥

∥

∥%y f (x)
s
2 u

∥

∥

∥

L2
‖u‖L2

≤ ε

∥

∥

∥%y f (x)
s
2 u

∥

∥

∥

2

L2
+ Cε ‖u‖2

L2
.

Combining the above two inequalities and taking ε ≤ 1
2
, we get

∥

∥

∥%y f (x)
s
2 u

∥

∥

∥

2

L2
≤ C ‖Pu‖2

L2
+ C ‖u‖2

L2
.

Since
∑

µ≥1

∥

∥Rµu
∥

∥

2

L2
≤ C

∥

∥

∥%y f (x)
s
2 u

∥

∥

∥

2

L2
, then the above estimate gives the

validity of (4.23) for s ≤ 2
3
.
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b) Next we shall prove (4.23) for 2
3

< s < 4
3
. If 10

9
< s < 4

3
, then it follows from

(4.25) and (4.24) that

∀C∞
0

(

R
2n

)

,

∥

∥

∥%y f (x)
s
2 u

∥

∥

∥

2

L2
≤ C

∥

∥

∥P f (x)
s
2 u

∥

∥

∥

2

L2
+‖Pu‖L2+C ‖u‖2

L2
. (4.26)

This gives the validity of (4.23) for s ∈]10
9

, 4
3
[.

Now we focus on the case when 2
3

< s ≤ 10
9

. Observe that

∣

∣

∣

〈

P f (x)
s
2 u, f (x)

s
2 u

〉

L2

∣

∣

∣ =

∣

∣

∣

∣

〈

P f (x)
s
2 u, f (x)

2
3+

(

s
2−

2
3

)

u

〉

L2

∣

∣

∣

∣

≤

∣

∣

∣

〈

P f (x)s−
2
3 u, f (x)

2
3 u

〉

L2

∣

∣

∣ +
∣

∣

∣

〈[

P, f (x)
s
2−

2
3

]

f (x)
s
2 u, f (x)

2
3 u

〉

L2

∣

∣

∣ .

Moreover since f (x) satisfies (4.1), then

∣

∣

∣

[

P, f (x)
s
2−

2
3

]

f (x)
s
2 u

∣

∣

∣ ≤ C |y| f (x)2s−
5
3 |u| ,

and thus

∣

∣

∣

〈[

P, f (x)
s
2−

2
3

]

f (x)
s
2 u, f (x)

2
3 u

〉

L2

∣

∣

∣ ≤ ε

∥

∥

∥%y f (x)
2s− 5

3 u

∥

∥

∥

2

L2
+Cε

∥

∥

∥ f (x)
2
3 u

∥

∥

∥

2

L2
.

Combination of the above three inequalities gives

∣

∣

∣

〈

P f (x)
s
2 u, f (x)

s
2 u

〉

L2

∣

∣

∣ ≤ ε

∥

∥

∥%y f (x)
2s− 5

3 u

∥

∥

∥

2

L2

+ Cε

{

∥

∥

∥P f (x)
s− 2

3 u

∥

∥

∥

2

L2
+

∥

∥

∥ f (x)
2
3 u

∥

∥

∥

2

L2

}

.

Moreover since 2s − 5
3

≤ s
2
for s ≤ 10

9
, then

∥

∥

∥%y f (x)
2s− 5

3 u

∥

∥

∥

2

L2
≤

∥

∥

∥%y f (x)
s
2 u

∥

∥

∥

2

L2
,

and hence by (3.2) we obtain

∣

∣

∣

〈

P f (x)
s
2 u, f (x)

s
2 u

〉

L2

∣

∣

∣ ≤ ε

∥

∥

∥%y f (x)
s
2 u

∥

∥

∥

2

L2

+ Cε

{

∥

∥

∥P f (x)
s− 2

3 u

∥

∥

∥

2

L2
+ ‖Pu‖2

L2
+ ‖u‖2

L2

}

.

Inserting the above inequality into (4.25) and then taking ε small enough, we get

the desired estimate (4.23) for 2
3

< s < 10
9

. Thus the proof of Lemma 4.9 is

completed.

Now we are ready to prove the main result of this section.
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Proof of Proposition 4.1. Now we want to show that
∥

∥

∥(1− △x )
δ
2 u

∥

∥

∥

2

L2
≤ C

{

‖Pu‖2
L2

+ ‖u‖2
L2

}

. (4.27)

Recall δ equals to 2
3
if s ≤ 2

3
, 4
3

− s if 2
3

< s ≤ 10
9

, and 2
3

− s
2
if 10

9
< s < 4

3
. Using

the estimates (4.20) and (4.23) gives that

∀u∈C∞
0

(

R
2n

)

,
∑

µ≥1

∥

∥Pxµϕµ u
∥

∥

2

L2
≤C

{

∥

∥

∥P f (x)
s̃u

∥

∥

∥

2

L2
+‖Pu‖2

L2
+‖u‖2

L2

}

, (4.28)

where s̃ = 2
3

− δ.We can verify that

−s̃ + s − 1 ≤ 0. (4.29)

Firstly let us consider the case that s ≤ 2
3
. Then s̃ = 0 and (4.28) becomes

∀ u ∈ C∞
0

(

R
2n

)

,
∑

µ≥1

∥

∥Pxµϕµu
∥

∥

2

L2
≤ C

{

‖Pu‖2
L2

+ ‖u‖2
L2

}

.

On the other hand, using (4.9) with a = 1
3
and then using (4.21), we have

∥

∥

∥(1− △x )
1
3 u

∥

∥

∥

2

L2
≤ C

∑

µ≥1

∥

∥

∥(1− △x )
1
3 ϕµ u

∥

∥

∥

2

L2
+ C ‖Pu‖2

L2
+ C ‖u‖2

L2

≤C
∑

µ≥1

∥

∥Pxµϕµ u
∥

∥

2

L2
+C

∑

µ≥1

∥

∥ϕµ u
∥

∥

2

L2
+C ‖Pu‖2

L2
+ C ‖u‖2

L2
.

As a result, it follows from these inequalities that

∀ u ∈ C∞
0

(

R
2n

)

∥

∥

∥(1− △x )
1
3 u

∥

∥

∥

2

L2
≤ C

{

‖Pu‖2
L2

+ ‖u‖2
L2

}

.

This gives the validity of (4.27) for s ≤ 2
3
.

Now we consider the case when 2
3

< s < 4
3
. Note that δ = 2

3
− s̃. Then we use

(4.9) with a = δ
2
to get

∥

∥

∥(1− △x )
δ
2 u

∥

∥

∥

2

L2
≤ C

∑

µ≥1

∥

∥

∥(1− △x )
δ
2 ϕµu

∥

∥

∥

2

L2
+ C ‖Pu‖2

L2
+ C ‖u‖2

L2

≤ C
∑

µ≥1

∥

∥

∥

∥

(

1+
1

2

∣

∣∂xV (xµ)
∣

∣

2
− △x

)
δ
2
ϕµu

∥

∥

∥

∥

2

L2
+ C ‖Pu‖2

L2
+ C ‖u‖2

L2

= C
∑

µ≥1

∥

∥

∥

∥

∥

(

1+
1

2

∣

∣∂xV (xµ)
∣

∣

2
− △x

)
1
3
(

1+
1

2

∣

∣∂xV (xµ)
∣

∣

2
− △x

)− s̃
2
ϕµu

∥

∥

∥

∥

∥

2

L2

+ C ‖Pu‖2
L2

+ C ‖u‖2
L2

≤ C
∑

µ≥1

∥

∥

∥

∥

(

1+
1

2

∣

∣∂xV (xµ)
∣

∣

2
− △x

)
1
3
f (xµ)−s̃ϕµu

∥

∥

∥

∥

2

L2
+ C ‖Pu‖2

L2
+ C ‖u‖2

L2
.
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Consequently, using (4.22) yields

∥

∥

∥(1− △x )
δ
2 u

∥

∥

∥

2

L2
≤ C

∑

µ≥1

∥

∥

∥Pxµ f (xµ)−s̃ϕµ u

∥

∥

∥

2

L2
+ C ‖Pu‖2

L2
+ C ‖u‖2

L2
.

Thus (4.27) will follow if we can show that

∑

µ≥1

∥

∥

∥Pxµ f (xµ)−s̃ϕµ u

∥

∥

∥

2

L2
≤ C

{

‖Pu‖2
L2

+ ‖u‖2
L2

}

. (4.30)

To prove (4.30), we write

f (xµ)−s̃ϕµ =
(

f (x)s̃ f (xµ)−s̃
)

ϕµ f (x)−s̃ .

Then

∑

µ≥1

∥

∥

∥Pxµ f (xµ)−s̃ϕµ u

∥

∥

∥

2

L2
≤ (I ) + (I I )

with (I ), (I I ) given by

(I ) = 2
∑

µ≥1

∥

∥

∥

(

f (x)s̃ f (xµ)−s̃
)

Pxµ ϕµ f (x)
−s̃u

∥

∥

∥

2

L2

and

(I I ) = 2
∑

µ≥1

∥

∥

∥

[

Pxµ, f (x)s̃ f (xµ)−s̃
]

ϕµ f (x)
−s̃u

∥

∥

∥

2

L2
.

By (4.6), we see

(I ) ≤ C
∑

µ≥1

∥

∥

∥Pxµ ϕµ f (x)
−s̃u

∥

∥

∥

2

L2
.

This along with (4.28) gives

(I ) ≤ C

{

‖Pu‖2
L2

+
∥

∥

∥P f (x)
−s̃u

∥

∥

∥

2

L2
+

∥

∥

∥ f (x)
−s̃u

∥

∥

∥

2

L2

}

. (4.31)

By use of (4.1) and (4.29), we have

∥

∥

∥

[

P, f (x)−s̃
]

u

∥

∥

∥

2

L2
≤ C

∥

∥

∥ f (x)
−s̃+s−1 |y| u

∥

∥

∥

2

L2
≤ C ‖|y| u‖2

L2
,

and hence

∥

∥

∥P f (x)
−s̃u

∥

∥

∥

2

L2
≤ 2 ‖Pu‖2

L2
+ 2

∥

∥

∥

[

P, f (x)−s̃
]

u

∥

∥

∥

2

L2
≤ C

{

‖Pu‖2
L2

+ ‖u‖2
L2

}

.
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This along with (4.31) gives

I ≤ C
{

‖Pu‖2
L2

+ ‖u‖2
L2

}

.

Now it remains to treat the term (I I ). The equality

[

Pxµ, f (x)s̃ f (xµ)−s̃
]

=
(

y · ∂x

(

f (x)s̃
))

f (xµ)−s̃

gives

(I I ) = 2
∑

µ≥1

∥

∥

∥

(

y · ∂x

(

f (x)s̃
))

f (xµ)−s̃ f (x)−s̃ϕµu

∥

∥

∥

2

L2
. (4.32)

By (4.6), (4.1) and (4.29), we have

∣

∣

∣∂x

(

f (x)s̃
)∣

∣

∣ f (xµ)−s̃ f (x)−s̃ϕµ ≤ C f (x)s−1−s̃ ≤ C.

So

∑

µ≥1

∥

∥

∥

(

y · ∂x

(

f (x)s̃
))

f (xµ)−s̃ f (x)−s̃ϕµ u

∥

∥

∥

2

L2
≤C

∑

µ≥1

∥

∥ϕµ |y| u
∥

∥

2

L2
≤C

∥

∥%yu
∥

∥

2

L2
.

This along with (4.32) gives

(I I ) ≤ C
∥

∥%yu
∥

∥

2

L2
≤ C

{

‖Pu‖2
L2

+ ‖u‖2
L2

}

.

Combining the estimate on the term (I ), we get the required inequality (4.30). The

proof of Proposition 4.1 is thus completed.
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