Global Impact of COVID-19 on Stroke Care

SVIN COVID-19 global registry

Ett al.

Let us know how access to this document benefits you.
Follow this and additional works at: https://escholarship.umassmed.edu/covid19

Part of the Cardiovascular Diseases Commons, Clinical Epidemiology Commons, Epidemiology Commons, Health Services Administration Commons, Health Services Research Commons, Infectious Disease Commons, Nervous System Diseases Commons, and the Virus Diseases Commons

Repository Citation

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License. This material is brought to you by eScholarship@UMassChan. It has been accepted for inclusion in COVID-19 Publications by UMMS Authors by an authorized administrator of eScholarship@UMassChan. For more information, please contact Lisa.Palmer@umassmed.edu.
Global impact of COVID-19 on stroke care

SVIN COVID-19 global registry

Abstract

Background: The COVID-19 pandemic led to profound changes in the organization of health care systems worldwide.

Aims: We sought to measure the global impact of the COVID-19 pandemic on the volumes for mechanical thrombectomy, stroke, and intracranial hemorrhage hospitalizations over a three-month period at the height of the pandemic (1 March–31 May 2020) compared with two control three-month periods (immediately preceding and one year prior).

Methods: Retrospective, observational, international study, across 6 continents, 40 countries, and 187 comprehensive stroke centers. The diagnoses were identified by their ICD-10 codes and/or classifications in stroke databases at participating centers.

Results: The hospitalization volumes for any stroke, intracranial hemorrhage, and mechanical thrombectomy were 26,699, 4002, and 5191 in the three months immediately before versus 21,576, 3540, and 4533 during the first three pandemic months, representing declines of 19.2% (95%CI, 19.7 to 18.7), 11.5% (95%CI, 12.6 to 10.6), and 12.7% (95%CI, 13.6 to 11.8), respectively. The decreases were noted across centers with high, mid, and low COVID-19 hospitalization burden, and also across high, mid, and low volume stroke/mechanical thrombectomy centers. High-volume COVID-19 centers (−20.5%) had greater declines in mechanical thrombectomy volumes than mid- (−10.1%) and low-volume (−8.7%) centers (p < 0.0001). There was a 1.5% stroke rate across 54,366 COVID-19 hospitalizations. SARS-CoV-2 infection was noted in 3.9% (784/20,250) of all stroke admissions.

Conclusion: The COVID-19 pandemic was associated with a global decline in the volume of overall stroke hospitalizations, mechanical thrombectomy procedures, and intracranial hemorrhage admission volumes. Despite geographic variations, these volume reductions were observed regardless of COVID-19 hospitalization burden and pre-pandemic stroke/mechanical thrombectomy volumes.

Keywords

COVID-19, stroke care, acute ischemic stroke, mechanical thrombectomy, intracranial hemorrhage, epidemiology

Received: 16 December 2020; accepted: 8 January 2021

Introduction

In December 2019, a novel highly pathogenic virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), caused an infectious disease involving multiple organ systems termed coronavirus disease 2019 (COVID-19). COVID-19 holds a unique balance between high transmissibility and low-to-moderate morbidity and mortality that has led to a nearly universal spread with devastating consequences worldwide. On 11 March 2020, the World Health Organization declared a global pandemic as COVID-19 hospitalizations and emergency medical system activations increased. As a potential consequence of its neurotropism as well as the inflammatory, immunological, and coagulation disorders, COVID-19 has been reported in association with a broad array of neurological disorders including encephalitis, Guillain-Barre syndrome, seizures, ischemic, and hemorrhagic strokes. Some groups reported an increase in cryptogenic strokes involving young patients with SARS-CoV-2 infection, possibly in association with endothelial inflammation and thrombotic diathesis. Others reported a decline in the rates of stroke hospitalizations and the proportion of patients receiving
Reperfusion therapies (intravenous thrombolysis (IVT) and/or mechanical thrombectomy (MT)) for acute ischemic stroke (AIS). Notably, many of these studies originated from global epicenters for the pandemic supporting the notion that the indirect or collateral damage of COVID-19 on systems of care has had a greater impact on stroke patients than the viral infection itself. However, most of these reports were limited to regional or country-specific analyses, and thus, the extent to which the COVID-19 outbreak has impacted global stroke systems of care has not been previously assessed. Importantly, given the profound benefit of MT in AIS, the global public health impact of such declines, if confirmed, adds to the devastation caused by COVID-19.

Aims and hypotheses

We conducted an international, observational study on the impact of the COVID-19 pandemic on stroke care at the height of the COVID-19 pandemic. Our primary aim was to evaluate the effect of COVID-19 on stroke care as measured by the changes in volumes for overall stroke hospitalizations, ischemic stroke/transient ischemic attacks (TIA) admissions, ICH admissions, and MT procedures across the pre-pandemic and pandemic periods in a multinational pool of comprehensive stroke centers (CSC). The study compared the three initial months of the pandemic (1 March 2020–31 May 2020) with (1) the immediately preceding months (December 2019–February 2020 for overall volume and November 2019–February 2020 for monthly volume) as the primary analysis and (2) the equivalent three months in the previous year (1 March 2019–30 May 2019) as the secondary analysis. The reason for this analytic hierarchy was an a priori expectation that the volumes for both stroke admissions and MT procedures would increase over time due to the growing evidence supporting the broader utilization of MT. While the primary analysis provided a realistic picture of stroke care utilization prior to COVID-19, the secondary analysis allowed for the assessment for potential seasonal variations.

We hypothesized that in the face of the pandemic’s strain on healthcare infrastructure, (1) a reduction in all four aforementioned measurements of stroke care would take place over the pandemic, (2) centers with higher COVID-19 inpatient volumes would report greater decreases in stroke admissions and MT procedure volumes, (3) the degree of decline in stroke admissions and MT procedure volumes would be less profound in high-volume compared to low-volume stroke centers, and (4) a geographic variation would exist in the intensity of decline in stroke care.

Methods

Data are available upon request to the corresponding author.

Study design

This was a cross-sectional, observational, retrospective study evaluating monthly and weekly volumes of consecutive patients hospitalized with a diagnosis of COVID-19, stroke, MT, and ICH. The diagnoses were identified by their related ICD-10 codes (primary, secondary, or tertiary discharge codes) and/or classifications in stroke databases at participating centers.

Setting and participants

Data were collected from collaborators of the Society of Vascular and Interventional Neurology, the Middle East North Africa Stroke and Interventional Neurotherapies Organization, the Japan Society of Vascular and Interventional Neurology, and academic partners from 6 continents, 40 countries, and 187 CSCs. To reduce bias, only centers providing the full dataset required for any given analysis were included in that specific analysis. Centers were screened for potential confounders that could explain unexpected changes in volumes. One center in Vietnam was excluded from the MT secondary analysis due to an abrupt increase in volume attributed to the purchase of automated imaging software. One center in Brazil was excluded from the stroke admission analysis because it became the designated center for stroke patients, resulting in tripling of their volumes.

Study variables and outcomes measures

The overall and mean monthly volumes for stroke hospitalizations, admissions for ischemic stroke/TIA, and admissions for ICH and MT procedures were compared across the pandemic and pre-pandemic periods for the overall population and across the low, mid, and high volume strata based on mean monthly volume tertiles for COVID-19 hospitalizations (≤ 10.6 vs. $>10.6–103.6$ vs. >103.6 COVID-19 admissions/month), stroke admissions (≤ 46.2 vs. $>46.2–78.4$ vs. >78.4 stroke admissions/month), and MT interventions (≤ 4.8 vs. >4.8 to 11.4 vs. >11.4 procedures/month).

Statistical analysis

We first compared overall hospital volumes for stroke admissions (overall stroke, ischemic, and ICH) and MT procedures between the pre-pandemic and the pandemic period. For this analysis, the percentage change in the number of admissions or procedures between the
two time periods was calculated. The three-month pre-
pandemic period was restricted to three months before
the pandemic (1 December 2019–29 February 2020) to
keep it consistent with the three months during the
COVID-19 pandemic group (1 March 2020–31 May
2020). The 95% confidence intervals for percentage
change were calculated using the Wilson procedure
without continuity correction. The analyses were
repeated within each tier (low, mid, and high) of centers
classified based on COVID-19 hospitalizations, stroke
admissions, and MT procedures. The relative percent-
age change in overall volume between low, mid, and
high-volume centers was tested using the z-test of pro-
portion. We also looked at relative change in overall
volume by continent.

In the second analysis, we compared monthly hospi-
tal volumes (admissions or procedures/hospital/
month) for our outcome of interests between the
pre-pandemic and the pandemic period. For the pre-
pandemic period, for each hospital, the monthly hospi-
tal volume was calculated from November 2019 to
February 2020 and compared to the monthly hospital
volume during the pandemic period (1 March 2020–31
May 2020). The data were analyzed in a mixed design
using a repeated-measures analysis of variance (PROC
MIXED analysis in SAS) to account for the paired data
structure and potential covariates. The auto-regressive,
compound symmetrical, and unstructured variance-
covariance matrix structures were analyzed for the
best model determined by Akaike’s Information
Criterion. The unstructured matrix was the best fit
and used for most analyses. The monthly hospital
volume analysis was adjusted for peak COVID-19
volume for each country and the continent. Estimated
marginal means were calculated using the LSMEANS
statement in PROC MIXED. Similar to the overall
volume analysis, monthly volume analysis was repeated
within low, mid, and high tier of centers based on their
COVID-19 hospitalizations, stroke admissions, and
MT procedures as well as by the continent.

Finally, for our secondary objective, we compared
the relative change in overall volume and change in
monthly hospital volume during the COVID-19 pan-
demic and corresponding three months from 2019 (1
March 2019–31 May 2019). All data were analyzed
using SAS version 9.4 (SAS Institute), and the signifi-
cance level was set at a p-value of <0.05.

Funding and ethics
This was an investigator-initiated project with no fund-
ing. The first and last authors wrote the first draft of the
manuscript with subsequent input of all co-authors. The
institutional review boards from the coordinating
sites (Emory University and Boston University) considered that the investigators did not have access
to protected health information, and thus no IRB over-
sight was required since the study did not meet the fed-
eral description of human subject research. This study
is reported in accordance with the Strengthening the
Reporting of Observational studies in Epidemiology
(STROBE) statement.

Results
A total of 16,141, 26,699, and 21,576 stroke hospital-
izations (overall n = 64,416) and 3397, 5191, and 4533
MT procedures (overall n = 13,121) were included
across the three-month prior year, three-month imme-
diately pre-pandemic, and three-month pandemic peri-
ods, respectively.

Overall stroke hospitalization volumes
In the primary analysis of overall volume, stroke hospi-
talization volumes were 26,699 admissions in the
three months immediately before compared to 21,576
admissions during the pandemic, representing a 19.2%
(95%CI, −19.7 to −18.7, N = 121 sites) drop, Table 1.
The stroke hospitalization decline had a geographic
variation: Asia, −20.5% (95%CI, −21.2 to −19.8); North
America, −20.6% (95%CI, −21.4 to −19.7); Europe,
−11.2% (95%CI, −12.3 to −10.1); South America,
−15.9% (95%CI, −17.9 to −14.0); Oceania,
−11.6% (95%CI, −14.4 to −9.3); Africa,
−48.1% (95%CI, −55.8 to −40.5), Table S1. In an
analysis of monthly volume, after adjustment for peak
COVID-19 volume by country and continent, the
number of hospitalizations for stroke/month/hospital
(adjusted mean (SE)) declined from 76.4 (12.3) pre-
pandemic to 64.2 (12.0) during the pandemic
(p < 0.0001), Table 1.

Mechanical thrombectomy procedural volumes
MT volume data was represented by 176 centers in the
primary analysis with 5191 procedures in the three
months immediately preceding compared to 4533 pro-
cedures during the first three months of the pandemic,
representing a 12.7% (95%CI, −13.6 to −11.8) decline,
Table 2. The volume reduction varied: Asia, −9.8%
(95%CI, −11.3 to −8.4); North America, −14.5%
(95%CI, −16.2 to −12.9); Europe, −14.4% (95%CI,
−16.4 to −12.6); South America, −12.4% (95%CI,
−19.0 to −7.9), Oceania, −9.4% (95%CI, −13.4 to
−6.5); Africa, −21.2% (95%CI, −37.8 to −10.7),
Table S2. The adjusted mean (SE) number of MT pro-
cedures/month/center decreased from 10.9 (1.3) pre-
pandemic to 9.8 (1.3) during the pandemic
(p < 0.0001), Table 2. There were 120 centers that
Table 1. Stroke admissions overall and monthly volumes immediately before and during the COVID-19 pandemic

<table>
<thead>
<tr>
<th>Overall volume</th>
<th>Monthly volumea</th>
<th>N</th>
<th>n1</th>
<th>n2</th>
<th>Change % (95%CI)</th>
<th>N</th>
<th>Immediately before</th>
<th>During COVID-19</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td></td>
<td>119</td>
<td>26,699</td>
<td>21,576</td>
<td>-19.2 (-19.7 - -18.7)</td>
<td>121</td>
<td>76.4 (12.3)</td>
<td>64.2 (12.0)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Hospital COVID-19 volumeb</td>
<td></td>
<td>38</td>
<td>7612</td>
<td>6654</td>
<td>-12.6 (-13.4 - -11.9)</td>
<td>38</td>
<td>62.4 (31.4)</td>
<td>53.9 (30.7)</td>
<td>0.002</td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td>31</td>
<td>7495</td>
<td>6008</td>
<td>-19.8 (-20.8 - -19.0)</td>
<td>34</td>
<td>84.8 (10.5)</td>
<td>71.0 (8.7)</td>
<td>0.002</td>
</tr>
<tr>
<td>Mid</td>
<td></td>
<td>30</td>
<td>7163</td>
<td>5534</td>
<td>-22.7 (-23.7 - -21.8)</td>
<td>33</td>
<td>90.1 (9.8)</td>
<td>72.9 (9.3)</td>
<td><0.0001</td>
</tr>
<tr>
<td>High</td>
<td></td>
<td>40</td>
<td>3536</td>
<td>3003</td>
<td>-15.1 (-16.3 - -13.9)</td>
<td>40</td>
<td>28.7 (2.6)</td>
<td>24.5 (2.5)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Mid</td>
<td></td>
<td>37</td>
<td>1370</td>
<td>1232</td>
<td>-10.1 (-11.8 - -8.6)</td>
<td>45</td>
<td>11.7 (1.2)</td>
<td>10.8 (1.2)</td>
<td>0.004</td>
</tr>
<tr>
<td>High</td>
<td></td>
<td>37</td>
<td>14,994</td>
<td>12,400</td>
<td>-17.3 (-17.9 - -16.7)</td>
<td>41</td>
<td>134.1 (21.6)</td>
<td>111.6 (20.8)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

N: number of hospitals; n1: number of admissions immediately before COVID-19 pandemic; n2: number of admissions during COVID-19 pandemic; CI: confidence interval; SE: standard error.

Note: The n1 is based on 3 months before (December 2019–February 2020) COVID-19 pandemic.

aThe monthly volume analysis is adjusted for peak COVID-19 volume for each country and the continent.

b:p: low vs. mid ≤ 0.0001; low vs. high ≤ 0.0001; mid vs. high ≤ 0.0001.

c:p: low vs. mid = 0.001; low vs. high = 0.002; mid vs. high = 0.588.

Table 2. Mechanical thrombectomy overall and monthly volumes immediately before and during the COVID-19 pandemic

<table>
<thead>
<tr>
<th>Overall volume</th>
<th>Monthly volumea</th>
<th>N</th>
<th>n1</th>
<th>n2</th>
<th>Change % (95%CI)</th>
<th>N</th>
<th>Immediately before</th>
<th>During COVID-19</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td></td>
<td>176</td>
<td>5191</td>
<td>4533</td>
<td>-12.7 (-13.6 - -11.8)</td>
<td>173</td>
<td>10.9 (1.3)</td>
<td>9.8 (1.3)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Hospital COVID-19 volumeb</td>
<td></td>
<td>44</td>
<td>952</td>
<td>869</td>
<td>-8.7 (-10.7 - -7.1)</td>
<td>44</td>
<td>11.2 (3.6)</td>
<td>10.5 (3.5)</td>
<td>0.044</td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td>45</td>
<td>1370</td>
<td>1232</td>
<td>-10.1 (-11.8 - -8.6)</td>
<td>45</td>
<td>11.7 (1.2)</td>
<td>10.8 (1.2)</td>
<td>0.004</td>
</tr>
<tr>
<td>High</td>
<td></td>
<td>45</td>
<td>1602</td>
<td>1273</td>
<td>-20.5 (-22.6 - -18.6)</td>
<td>46</td>
<td>7.8 (2.2)</td>
<td>5.7 (2.2)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Hospital MT volumec</td>
<td></td>
<td>59</td>
<td>459</td>
<td>412</td>
<td>-10.2 (-13.4 - -7.8)</td>
<td>60</td>
<td>2.6 (0.36)</td>
<td>2.3 (0.36)</td>
<td>0.082</td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td>55</td>
<td>1294</td>
<td>1092</td>
<td>-15.6 (-17.7 - -13.7)</td>
<td>55</td>
<td>8.1 (0.46)</td>
<td>7.0 (0.50)</td>
<td>0.0002</td>
</tr>
<tr>
<td>High</td>
<td></td>
<td>58</td>
<td>3432</td>
<td>3029</td>
<td>-11.7 (-12.9 - -10.7)</td>
<td>58</td>
<td>18.8 (1.8)</td>
<td>16.8 (1.7)</td>
<td>0.0002</td>
</tr>
</tbody>
</table>

N: number of hospitals; n1: number of procedures immediately before COVID-19 pandemic; n2: number of procedures during COVID-19 pandemic; CI: confidence interval; SE: standard error; MT: mechanical thrombectomy.

The n1 is based on three months before (December 2019–February 2020) COVID-19 pandemic.

aThe monthly volume analysis is adjusted for peak COVID-19 volume for each country and the continent.

b:p: low vs. mid = 0.259; low vs. high ≤ 0.0001; mid vs. high ≤ 0.0001.

c:p: low vs. mid = 0.004; low vs. high = 0.345; mid vs. high = 0.0003.
reported concomitant monthly data on stroke admission and MT volume. The adjusted mean (SE) monthly proportion of MT relative to stroke admissions remained stable across the pre-pandemic and pandemic periods (17.8 (2.2)% vs. 18.5 (2.2)%; respectively; p = 0.150). This proportional stability in MT performance was consistent across all COVID-19 and MT hospitalization volumes strata, Table S3.

Ischemic stroke/TIA and intracranial hemorrhage volumes

The ischemic stroke/TIA admission volumes declined from 19,882 to 16,884 patients across the three months preceding versus the pandemic months, corresponding to a 15.1% (95%CI, −15.6 to −14.6; N = 113 sites) reduction with an adjusted mean (SE) number of ischemic stroke or TIA/month/center decreasing from 64.3 (6.8) to 55.6 (6.5) across the two epochs (p < 0.0001). Complete results are presented in Table S4.

The ICH admission volumes, submitted by 100 sites, decreased from 4002 to 3540 patients across the three months immediately before versus the pandemic months, representing an 11.5% (95%CI, −12.6 to −10.6) decline with the adjusted mean (SE) number of hospitalizations for ICH/month/center dropping from 13.4 (2.6) to 11.6 (2.6) across the two periods (p < 0.0001), Table S5.

Changes in stroke care metrics during the pandemic as a function of COVID-19 hospitalization volumes

Figures 1 and 2 provide the weekly volume of stroke admissions (ischemic and hemorrhagic), MT, and COVID-19 hospitalizations. COVID-19 hospital weekly volume data was available for 131 centers. There was an early peak of 1235 COVID-19 hospitalizations in February which predominately originated from one hospital in Wuhan, China. Significant reductions in the mean monthly volumes were seen for all stroke care metrics across all tertiles of low, mid, and high COVID-19 hospitalization volumes. The exception was ICH volumes in high-volume COVID-19 centers which did not show a statistically significant difference (Tables 1, S4, and S5). High-volume COVID-19 centers (−20.5%; 95%CI, −22.6 to −18.6) had greater declines in MT volumes than mid- (−10.1%; 95%CI, −11.8 to −8.6; p < 0.0001) and low-volume (−8.7%; 95%CI, −10.7 to −7.1; p < 0.0001) COVID-19 centers, Table 2. Likewise, high-volume COVID-19 centers (−22.7%; 95%CI, −23.7 to −21.8) had greater reductions in stroke hospitalization volumes than mid- (−19.8%; 95%CI, −20.8 to −19.0; p < 0.0001) and low-volume (−12.6%; 95%CI, −13.4 to −11.9; p < 0.0001) COVID-19 centers, Table 1.

Changes in stroke care metrics during the pandemic as a function of stroke center MT and admission volumes

Significant declines in the mean monthly volumes were observed for all stroke/MT metrics across low-, mid-, and high-volume stroke/MT centers except MT volumes in low-volume MT centers showed a trend in decline (Tables 1, 2, S4, and S5). Mid-volume stroke centers (−17.6%; 95% CI, −18.5 to −16.7) demonstrated greater decreases in stroke admission volumes
than low-volume (−15.1%; 95% CI, −16.3 to −13.9; p < 0.0001) centers, Table 1.

Secondary objective

Table S6 depicts the volumes for overall stroke, ischemic stroke/TIA, ICH hospitalizations, and MT procedures during the first three months of the pandemic versus the corresponding period in the prior year. Compared to the prior year, there were significant declines in the monthly volumes for stroke and ischemic stroke/TIA admissions but not for ICH and MT.

Associations between the diagnoses of COVID-19 and stroke

There were 124 centers that reported patients with concomitant stroke (all subtypes) and SARS-CoV-2 infection. To reduce bias, 13 centers with no COVID-19 patients were excluded, leaving 111 eligible centers. A diagnosis of any stroke was present in 791 of 54,366 (1.45%; 95% CI 1.35–1.55) COVID-19 hospitalizations. There was geographic variation with incidences ranging from 0.43% (95% CI 0.08–2.38) in Oceania to 11.9% in South America (95% CI 10.05–14.03), Table S7. Conversely, 784 of the 20,250 (3.9%, 95% CI 3.61–4.14) overall stroke admissions were diagnosed with COVID-19 with proportions varying from 0.14% (95% CI 0.03–0.78) in Oceania to 8.93% in South America (95% CI 7.54–10.55), Table S8.

Discussion

We noted a significant global decline in all measured stroke care metrics in the current study including the numbers of mechanical thrombectomy procedures (−12.7%), overall stroke admissions (−19.2%), ischemic stroke/TIA admissions (−15.1%), and intracranial hemorrhage hospitalization volumes (−11.5%) during the COVID-19 pandemic as compared to the immediately preceding three months, confirming our primary hypothesis. Volume reductions were also seen in relation to the equivalent period in the prior year for stroke admissions and ischemic/TIA admissions. The intensity of the decline was more pronounced when comparing the pandemic period with the immediate three months prior than with the same months in 2019 (MT: 12.7% vs. 6.0%; stroke admissions: 19.2% vs. 12.0%). This followed our a priori expectations in face of the expansions in MT indications along with its progressive but gradual global implementation in developed and developing countries.

Interestingly, despite the absolute decrease in MT volumes, the proportion of MT relative to stroke admissions remained stable during the pandemic. While at first glance this might suggest that the intra-hospital workflow was maintained, it is possible that this was not the case since one would actually expect an increase in the MT ratio relative to stroke admissions as many studies have now demonstrated that there was a preferential decline in patients presenting with milder strokes during the pandemic. The decreases in the amount of stroke care were noted across centers with high, mid, and low COVID-19 hospitalization burden and also across high, mid, and low volume stroke and MT centers. As hypothesized, centers with higher COVID-19 inpatient volumes suffered more declines. Contrary to our expectations, the declines in stroke hospitalizations and MT volumes were more profound in mid-(and high-) volume than low-volume stroke centers. This might be related to the fact that larger centers were more likely to become the preferred destination for COVID-19 referrals leading to capacity issues. Finally, we confirmed a broad geographic variation in the patterns of stroke care decline.

Our results align with recent reports emphasizing the collateral effects of the COVID-19 pandemic on stroke systems of care from China, Spain, Italy, France, Germany, Brazil, Canada, and United States showing declines in the volumes for MT, IVT, and stroke hospitalizations over the pandemic (Table S9–11). Some of these studies also reported delays in hospital arrival times and treatment workflow. Our analysis adds to the growing literature regarding the collateral damage of COVID-19 on stroke care with the advantage of providing a broader global perspective. While the overall data clearly points to a significant reduction in the quantity of stroke care provided during the pandemic, it also depicts variations within and across the different regions reflecting the diversity in the epidemiology for COVID-19 as well as in the socio-cultural behaviors, healthcare logistics, and infrastructure encountered across the globe. Indeed, our study demonstrated important geographic variations in the proportional declines for both stroke hospitalization and MT volumes. Notably, our analysis may have underestimated the impact of geographic disparities in healthcare resources and related socio-economic factors as we only included thrombectomy capable centers which are known to have better infrastructure than the more commonly found primary stroke centers. Moreover, there was a higher geographic variation in the proportional decline for stroke hospitalization (Asia, −20.5%; North America, −20.6%; Europe, −11.2%; South America, −15.9%; Oceania, −11.6%; Africa, −48.1%) than mechanical thrombectomy (Asia, −9.8%; North America, −14.5%; Europe, −14.4%;
South America, −12.4%, Oceania, −9.4%; Africa, −21.2%) volumes. As seen in relation to the stability in the MT ratio relative to stroke admissions, this might have been related to the favored decline in milder strokes over the course of the pandemic.4,11,18–20 Given the growing evidence supporting the association between COVID-19 and thromboembolic events, it would be expected that the stroke incidence would rise at the precipice of the pandemic. Several factors may explain this paradoxical global decrease in stroke, MT, and ICH volumes observed in this study. As this decline in stroke volume was seen in centers with low or non-existent COVID-19 hospitalizations, hospital access due to the COVID-19 hospitalization burden was unlikely a major factor.12 As elective surgeries were canceled with the pandemic, a decrease in perioperative stroke may have played a role. It is also conceivable that the environmental situation of a lockdown, with improved patient behaviors or medication compliance, may be protective in decreasing vascular events.27 A reduction in exposure to other common viruses that may play a role in triggering vascular events may have also reduced stroke risk. However, it is unlikely that true incidence of stroke declined and more likely the behavioral and infrastructural changes related to the pandemic led to a reduction of admission of AIS patients, especially during the initial phases of public lockdown. Fear of contracting SARS-CoV-2 may have led many patients with milder stroke presentations to avoid seeking medical attention.4,11,18–20 Physical distancing measures may have prevented patients from the timely witnessing of a stroke.

Our subgroup of 111 centers including 54,366 COVID-19 hospitalizations is the largest sample reporting the concomitant diagnoses of stroke and SARS-CoV-2 infection to date. Our 1.45% stroke rate in COVID-19 hospitalizations is similar to the pooled incidence of 1.1–1.2% (range, 0.9–2.7%) of hospitalized COVID-19 patients.28,29 Some variations in the proportions are expected given the different definitions (all strokes vs. ischemic only) and populations involved (all hospitalized vs. severely infected only) across studies. We also provide a new perspective on this relationship by reporting an incidence of 3.9% (784/20,250) for SARS-CoV-2 infection across all stroke admissions among centers with documented COVID-19 hospitalization.

Study strengths and limitations

The strength of our study was the large volume of patients (n = 64,416) and a high number of centers (n = 187) contributing data from a diverse population across six continents and 40 countries. Our study contained centers with high and low COVID-19 hospitalization admissions, high and low stroke admission, and MT volumes, permitting the generation of multiple hypotheses and endpoints.

The limitations of this study were that the diagnosis of stroke/TIA/ICH, thrombectomy volume in some centers was obtained using hospital ICD administrative codes, and verification for accurate diagnosis was not universally undertaken. The centers contributing to these data have systems in place to track stroke admissions; thus, the relative changes in volume from this analysis are likely accurate. Details on patient-level data including demographics, stroke subtypes, and clinical outcomes were not collected as these were not the focus of the study. As with any other study, our data may underestimate true rates of concomitant SARS-CoV2 infection with a stroke diagnosis depending on the frequency of testing at each site and across the study period. The definition of the pandemic period was arbitrary since the outbreak started and peaked at different times at different locations. After adjustment for peak COVID-19 volume for each country and continent, the monthly volume declines were retained for all stroke metrics (stroke hospitalization, MT, ICH). As the penetration of MT remains limited in many countries,17 some geographic regions were not represented (i.e. central Africa). We did not collect data on the timing or intensity of social distancing policies including lockdown implementation across the different localities which likely played an important role in the reported stroke care decline. Finally, the sampling varied with the availability of complete data in each subset of the analysis.

Summary

There was a significant global decline in mechanical thrombectomy and stroke admissions over the three months studied during the pandemic. These decreases were seen regardless of COVID-19 admission burden, individual pre-pandemic stroke, and MT volumes. Thus, it is critical to expeditiously raise public awareness to prevent the additional healthcare consequences associated with the lack of stroke treatment. These findings can inform regional stroke networks preparedness29 in the face of a future pandemic or anticipated surge of COVID-19 cases in order to ensure that the access and quality of stroke care remains preserved despite the crises imposed by the continuous spread of the virus.

Acknowledgements

Patrick Nicholson, MD, Jasmine Johann, MSN, FNP-BC, Judith Clark, RN, Matt Metzinger, MBA, CPHQ, Jefferson, Kamini Patel, RN, MBA, Janis Ginnane, RN.
Disclosures
Dr Nguyen: Medtronic.
Dr Nogueira: Stryker; Cerenovus/Neuravi; Ceretrieve.
Dr Walker: Medtronic, Cerenovus.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iDs
Y Mansour https://orcid.org/0000-0001-8814-6431
Zhongming Qiu https://orcid.org/0000-0002-1622-9526
James E. Siegler https://orcid.org/0000-0003-0287-3967
Laura Mechtiouff https://orcid.org/0000-0001-9165-5763
Omer Eker https://orcid.org/0000-0002-5696-5368
Raoul Pop https://orcid.org/0000-0003-4417-1496
Juan F. Arenillas https://orcid.org/0000-0001-7464-6101
Mahmoud Mohammad https://orcid.org/0000-0002-7393-9989
Simon Nagel https://orcid.org/0000-0003-2471-6647
Muaddas Farooqui https://orcid.org/0000-0003-3697-5967
Ameer E. Hassan https://orcid.org/0000-0002-7148-7616
Allan Taylor https://orcid.org/0000-0002-2692-2068
Bertrand Lapergue https://orcid.org/0000-0002-8993-2175
Bruce CV Campbell https://orcid.org/0000-0003-6362-9433
Noel Van Horn https://orcid.org/0000-0001-5764-1982
Ryo Yama moto https://orcid.org/0000-0001-8558-9831
Takehiro Yamada https://orcid.org/0000-0001-5196-1934
Yukako Yawaza https://orcid.org/0000-0003-3891-0221
Jane Morris https://orcid.org/0000-0001-5256-8165
Michael D. Hill https://orcid.org/0000-0002-6269-1543
Thanh Nguyen https://orcid.org/0000-0002-2810-1685

Authors

*Drs. Nogueira and Nguyen contributed equally to this article.

1Neurology, Grady Memorial Hospital, Emory University, Atlanta, Georgia, USA
2Radiology, Boston Medical Center, Boston University School of Medicine, Boston, USA
3Radiology, Radiation Oncology, Boston Medical Center, Boston University School of Medicine, Boston, USA
4Neurology, Grady Memorial Hospital, Emory University, Atlanta, Georgia, USA
5Neurology Department, Stroke and Neurointervention Division, Alexandria University Hospital, Alexandria University, Egypt
6Stroke Neurology, National Hospital Organization, Osaka National Hospital, Japan
7Neurology, Xinhua Hospital of the Army Medical University, Chongqing, China
8Tabriz University, Iran
9Neurology, Cooper Neurological Institute, Cooper University Hospital, Camden, New Jersey, USA
10Neurology, Radiology, New York University School of Medicine, New York, USA
11Neurology, Radiology, New York University School of Medicine, New York, USA
12Neurosurgery, Kobe City Medical Center General Hospital, Kobe, Japan
13Neurology, Kobe City Medical Center General Hospital, Kobe, Japan
14Fondation Ophtalmologique Adolphe de Rothschild, France
15Neurologie, Hospices Civils de Lyon, France
16Neuroradiologie, Hospices Civils de Lyon, France
17Hôpital Bicêtre, Paris, France
18Royal Adelaide Hospital, Australia
19Hôpitaux Universitaires de Strasbourg, France
20Changzhou Hospital, Shanghai, China
21Royal Prince Alfred Hospital, Sydney, Australia
22Vijyshkan Hospital of Wannan Medical College, China
23Neurology, Hospital Clinic de Barcelona, Spain
24Interventional Neuroradiology, Hospital Clinic de Barcelona, Spain
25Neurology, Hospital Clinico Universitario, Valladolid, Spain
26Interventional Neuroradiology, Hospital Clinico Universitario, Valladolid, Spain
27University Hospital Basel, Switzerland
28Clinica Sagrada Familia, Buenos Aires, Argentina
29Neurology, Grady Memorial Hospital, Emory University, Atlanta, Georgia, USA
30Stroke, Centro Hospitalar Universitario de São João, Portugal
31Neuroradiology, Centro Hospitalar Universitario de São João, Portugal
32Hospital Geral de Fortaleza, Brazil
33Careggi University Hospital, Florence, Italy
34Neurology, University Hospital Bern, Switzerland
35Interventional Neuroradiology, University Hospital Bern, Switzerland
36Swedish Medical Center, USA
37MAX Superspeciality Hospital, India
38Memorial Neuroscience Institute, Florida
39Neurology, University Hospital Heidelberg, Germany
40Neuroradiology, University Hospital Heidelberg, Germany
41Neurology, University of Iowa, USA
42Neurosciences, Valley Baptist Medical Center, Harlingen, Texas, USA
43Neurosurgery, University of Cape Town, South Africa
44Neurology, Hôpital Foch, France
45Interventional Neuroradiology, Hôpital Foch, France
46Royal Melbourne Hospital, Melbourne, Australia
47Neurology, University of Washington, Seattle, USA
48Neurosurgery, University of Washington, Seattle, USA
49Interventional Neuroradiology, Universitätsklinikum Hamburg-Eppendorf, Germany
50People’s 115 Hospital, Vietnam
51IMS Tokyo-Katsushika General Hospital, Japan
52Affiliated Hangzhou First People’s Hospital, China
53Hue Central Hospital, Vietnam
54Erlanger Medical Center, USA
55Rutgers University, USA
56Miami Cardiac and Vascular Institute, USA
57Nottingham University Hospitals, United Kingdom
58Clinica Alemana, Universidad del Desarrollo, Chile
59Universidade Federal de Sao Paulo Hospital Israelita Albert Einstein, Brazil
60Hospital Israelita Albert Einstein, Brazil
61Hackensack Meridian Health, New Jersey, USA
62Neuroradiology, University Hospital Heidelberg, Germany
63Kyorin University, Japan 64 Yokohama Brain and Spine Center, Japan

International Journal of Stroke, 0(0)
Iwate Prefectural Central Hospital, Japan
Japanese Red Cross Kyoto Daichii Hospital, Japan
Kyoto Second Red Cross Hospital, Japan
Japanese Red Cross Kumamoto Hospital, Japan
Kohan Hospital, Japan
Neurology, Maine Medical Center, USA
Beaumont Hospital, Dublin, Ireland
Hospital Enfant Jesus, Quebec City, Canada
Yale New Haven Hospital, USA
Neurology, University of Calgary, Canada
University Hospital Salzburg, Austria
Emory University School of Medicine, USA
Valley Hospital, New Jersey, USA
University Hospital Germans Trias i Pujol, Barcelona, Spain
Lau Medical Center, Beirut, Lebanon
CHU Montreal, Canada
University of Ottawa, Canada
University of South Alabama, USA
University of Massachusetts Medical Center, USA
University of Maryland, USA
Riverside Regional Medical Center, Virginia, USA
UT Southwestern, Dallas, Texas, USA
Henry Ford Health System, Detroit, USA
Metropolitan Hospital, Piraeus, Greece
UTHhealth McGovern Medical School, Houston, USA
SUNY Upstate Medical University Hospital, USA
University Hospital Centre Zagreb, Croatia
Westchester Medical Center, USA
Xinqiao Hospital of the Army Medical University, China
Wuhan No.1 Hospital, China
Affiliated Hospital of Southwest Medical University, China
Maoming Traditional Chinese Medicine Hospital, China
Shaw Hospital, China
Mianyang 404 Hospital, China
University Clinical Hospital Center Sestre Milosrdnice, Croatia
CHU Nantes, France
University of California San Francisco, USA
King Fahad Hospital of the University, Saudi Arabia
King Saud University, Saudi Arabia
Tabriz University, Iran
Banner Desert Medical Center, USA
Ajou University Hospital, Korea
Kyungbuk National University Hospital, Korea
Gachon University Gil Hospital, Korea
Konkuk University Hospital, Korea
St. Louis University, USA
Texas Tech University, USA
Cooper University Hospital, USA
University of Miami, USA
UCLA, Los Angeles, USA
Thomas Jefferson University Hospital, USA
Hospital Sao Jose, Brazil
Eskisehir Osmangazi University, Turkey
Saga-ken Medical Centre Koseikan, Japan
Saitama Medical Center, Japan
Nara City Hospital, Japan
Toyonaka Municipal Hospital, Japan
Kagoshima City Hospital, Japan
Japanese Red Cross Matsue Hospital, Japan
Shiroyama Hospital, Japan
Niigata City General Hospital, Japan
Sugimura Hospital, Kumamoto, Japan
Rush University Medical Center, USA
Neurology, McMaster University, Canada
Interventional Neuroradiology, Ribeirão Preto Medical School, Brazil
Neurosciences, Ribeirão Preto Medical School, Brazil
Shahid Beheshti University, Iran
Khoura Hospital, Ministry of Health, Oman
Hamad Medical Corporation, Qatar
Alexandria University Hospital, Egypt Hamad Medical Corporation, Qatar
Mount Sinai Health System, New York, USA
Cleveland Clinic Abu Dhabi, UAE
WellStar Health, Marietta, Georgia, USA
Rambam Health Care, Israel
General Hospital Dr. Soetomo, Indonesia
Istanbul Aydin University, Turkey
Sriraj Hospital, Thailand
Zanjan University, Iran
Isfahan University, Iran
Qom University, Iran
Royal North Shore Hospital, Australia
Christchurch Hospital, Christchurch, New Zealand
Neurology, Tufts Medical Center, USA
Neurosurgery, Tufts Medical Center, USA
Neurology, Beth Israel Lahey Health, USA
Interventional Neuroradiology, Beth Israel Lahey Health, USA
Neuroradiology, Instituto de Neurocirugia Dr. Asengo, Chile
National Institute of Neurological Sciences of Lima, Peru
University of Toronto, Canada
Neurology, Beth Israel Lahey Health, USA
Neurology, Universitätsklinikum Hamburg-Eppendorf, Germany
University of Texas San Antonio, USA
University Hospitals of Geneva, Switzerland
University of Michigan, USA
Royal London Hospital, United Kingdom
Bon Secours Mercy Health, USA
Hospital-Estadual Central, Brazil
NH Mazumdar Shaw Medical Center, India
University of Southern California, USA
Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
Neurology, Bayhealth Medical Center, Delaware, USA
Neurosurgery, University of Saskatchewan, Canada
Medical City Plano Texas, USA
St. Joseph’s University Medical Center, USA
Jikei University School of Medicine, Japan
University of South Florida, USA
Changhai Hospital, Shanghai, China
14. Nogueira RG Jadhav AP Haussen DC, et al. Supplemental material for this article is available online.

References

