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Abstract

Sentence compression holds promise for many applications ranging from summarization
to subtitle generation. Our work views sentence compression as an optimization problem
and uses integer linear programming (ILP) to infer globally optimal compressions in the
presence of linguistically motivated constraints. We show how previous formulations of
sentence compression can be recast as ILPs and extend these models with novel global
constraints. Experimental results on written and spoken texts demonstrate improvements
over state-of-the-art models.

1. Introduction

The computational treatment of sentence compression has recently attracted much attention
in the literature. The task can be viewed as producing a summary of a single sentence that
retains the most important information and remains grammatical (Jing, 2000). A sentence
compression mechanism would greatly benefit a wide range of applications. For example,
in summarization, it could improve the conciseness of the generated summaries (Jing, 2000;
Lin, 2003; Zajic, Door, Lin, & Schwartz, 2007). Other examples include compressing text
to be displayed on small screens such as mobile phones or PDAs (Corston-Oliver, 2001),
subtitle generation from spoken transcripts (Vandeghinste & Pan, 2004), and producing
audio scanning devices for the blind (Grefenstette, 1998).

Sentence compression is commonly expressed as a word deletion problem: given an in-
put source sentence of words x = x1, x2, . . . , xn, the aim is to produce a target compression
by removing any subset of these words (Knight & Marcu, 2002). The compression prob-
lem has been extensively studied across different modeling paradigms, both supervised and
unsupervised. Supervised models are typically trained on a parallel corpus of source sen-
tences and target compressions and come in many flavors. Generative models aim to model
the probability of a target compression given the source sentence either directly (Galley
& McKeown, 2007) or indirectly using the noisy-channel model (Knight & Marcu, 2002;
Turner & Charniak, 2005), whereas discriminative formulations attempt to minimize error
rate on a training set. These include decision-tree learning (Knight & Marcu, 2002), maxi-
mum entropy (Riezler, King, Crouch, & Zaenen, 2003), support vector machines (Nguyen,
Shimazu, Horiguchi, Ho, & Fukushi, 2004), and large-margin learning (McDonald, 2006).
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Unsupervised methods dispense with the parallel corpus and generate compressions either
using rules (Turner & Charniak, 2005) or a language model (Hori & Furui, 2004).

Despite differences in formulation, all these approaches model the compression process
using local information. For instance, in order to decide which words to drop, they exploit
information about adjacent words or constituents. Local models can do a good job at
producing grammatical compressions, however they are somewhat limited in scope since
they cannot incorporate global constraints on the compression output. Such constraints
consider the sentence as a whole instead of isolated linguistic units (words or constituents).
To give a concrete example we may want to ensure that each target compression has a verb,
provided that the source had one in the first place. Or that verbal arguments are present in
the compression. Or that pronouns are retained. Such constraints are fairly intuitive and
can be used to instill not only linguistic but also task specific information into the model.
For instance, an application which compresses text to be displayed on small screens would
presumably have a higher compression rate than a system generating subtitles from spoken
text. A global constraint could force the former system to generate compressions with a
fixed rate or a fixed number of words.

Existing approaches do not model global properties of the compression problem for a
good reason. Finding the best compression for a source sentence given the space of all
possible compressions1 (this search process is often referred to as decoding or inference)
can become intractable for too many constraints and overly long sentences. Typically, the
decoding problem is solved efficiently using dynamic programming often in conjunction
with heuristics that reduce the search space (e.g., Turner & Charniak, 2005). Dynamic
programming guarantees we will find the global optimum provided the principle of optimal-
ity holds. This principle states that given the current state, the optimal decision for each
of the remaining stages does not depend on previously reached stages or previously made
decisions (Winston & Venkataramanan, 2003). However, we know this to be false in the
case of sentence compression. For example, if we have included modifiers to the left of a
noun in a compression then we should probably include the noun too or if we include a verb
we should also include its arguments. With a dynamic programming approach we cannot
easily guarantee such constraints hold.

In this paper we propose a novel framework for sentence compression that incorporates
constraints on the compression output and allows us to find an optimal solution. Our
formulation uses integer linear programming (ILP), a general-purpose exact framework for
NP-hard problems. Specifically, we show how previously proposed models can be recast
as integer linear programs. We extend these models with constraints which we express as
linear inequalities. Decoding in this framework amounts to finding the best solution given
a linear (scoring) function and a set of linear constraints that can be either global or local.
Although ILP has been previously used for sequence labeling tasks (Roth & Yih, 2004;
Punyakanok, Roth, Yih, & Zimak, 2004), its application to natural language generation
is less widespread. We present three compression models within the ILP framework, each
representative of an unsupervised (Knight & Marcu, 2002), semi-supervised (Hori & Furui,
2004), and fully supervised modeling approach (McDonald, 2006). We propose a small
number of constraints ensuring that the compressions are structurally and semantically

1. There are 2n possible compressions where n is the number of words in a sentence.
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valid and experimentally evaluate their impact on the compression task. In all cases, we
show that the added constraints yield performance improvements.

The remainder of this paper is organized as follows. Section 2 provides an overview
of related work. In Section 3 we present the ILP framework and the compression models
we employ in our experiments. Our constraints are introduced in Section 3.5. Section 4.3
discusses our experimental set-up and Section 5 presents our results. Discussion of future
work concludes the paper.

2. Related Work

In this paper we develop several ILP-based compression models. Before presenting these
models, we briefly summarize previous work addressing sentence compression with an em-
phasis on data-driven approaches. Next, we describe how ILP techniques have been used
in the past to solve other inference problems in natural language processing (NLP).

2.1 Sentence Compression

Jing (2000) was perhaps the first to tackle the sentence compression problem. Her approach
uses multiple knowledge sources to determine which phrases in a sentence to remove. Central
to her system is a grammar checking module that specifies which sentential constituents
are grammatically obligatory and should therefore be present in the compression. This
is achieved using simple rules and a large-scale lexicon. Other knowledge sources include
WordNet and corpus evidence gathered from a parallel corpus of source-target sentence
pairs. A phrase is removed only if it is not grammatically obligatory, not the focus of the
local context and has a reasonable deletion probability (estimated from a parallel corpus).

In contrast to Jing (2000), the bulk of the research on sentence compression relies ex-
clusively on corpus data for modeling the compression process without recourse to exten-
sive knowledge sources (e.g., WordNet). A large number of approaches are based on the
noisy-channel model (Knight & Marcu, 2002). These approaches consist of a language
model P (y) (whose role is to guarantee that compression output is grammatical), a channel
model P (x|y) (capturing the probability that the source sentence x is an expansion of the
target compression y), and a decoder (which searches for the compression y that maximizes
P (y)P (x|y)). The channel model is acquired from a parsed version of a parallel corpus; it
is essentially a stochastic synchronous context-free grammar (Aho & Ullman, 1969) whose
rule probabilities are estimated using maximum likelihood. Modifications of this model are
presented by Turner and Charniak (2005) and Galley and McKeown (2007) with improved
results.

In discriminative models (Knight & Marcu, 2002; Riezler et al., 2003; McDonald, 2006;
Nguyen et al., 2004) sentences are represented by a rich feature space (also induced from
parse trees) and the goal is to learn which words or word spans should be deleted in a given
context. For instance, in Knight and Marcu’s (2002) decision-tree model, compression is
performed deterministically through a tree rewriting process inspired by the shift-reduce
parsing paradigm. Nguyen et al. (2004) render this model probabilistic through the use
of support vector machines. McDonald (2006) formalizes sentence compression in a large-
margin learning framework without making reference to shift-reduce parsing. In his model
compression is a classification task: pairs of words from the source sentence are classified
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as being adjacent or not in the target compression. A large number of features are defined
over words, parts-of-speech, phrase structure trees and dependencies. These features are
gathered over adjacent words in the compression and the words in-between which were
dropped (see Section 3.4.3 for a more detailed account).

While most compression models have been developed with written text in mind, Hori
and Furui (2004) propose a model for automatically transcribed spoken text. Their model
generates compressions through word deletion without using parallel data or syntactic in-
formation in any way. Assuming a fixed compression rate, it searches for the compression
with the highest score using a dynamic programming algorithm. The scoring function con-
sists of a language model responsible for producing grammatical output, a significance score
indicating whether a word is topical or not, and a score representing the speech recognizer’s
confidence in transcribing a given word correctly.

2.2 Integer Linear Programming in NLP

ILPs are constrained optimization problems where both the objective function and the
constraints are linear equations with integer variables (see Section 3.1 for more details). ILP
techniques have been recently applied to several NLP tasks, including relation extraction
(Roth & Yih, 2004), semantic role labeling (Punyakanok et al., 2004), the generation of
route directions (Marciniak & Strube, 2005), temporal link analysis (Bramsen, Deshpande,
Lee, & Barzilay, 2006), set partitioning (Barzilay & Lapata, 2006), syntactic parsing (Riedel
& Clarke, 2006), and coreference resolution (Denis & Baldridge, 2007).

Most of these approaches combine a local classifier with an inference procedure based
on ILP. The classifier proposes possible answers which are assessed in the presence of global
constraints. ILP is used to make a final decision that is consistent with the constraints
and likely according to the classifier. For example, the semantic role labeling task involves
identifying the verb-argument structure for a given sentence. Punyakanok et al. (2004) first
use SNOW, a multi-class classifier2 (Roth, 1998), to identify and label candidate arguments.
They observe that the labels assigned to arguments in a sentence often contradict each other.
To resolve these conflicts they propose global constraints (e.g., each argument should be
instantiated once for a given verb, every verb should have at least one argument) and use
ILP to reclassify the output of SNOW.

Dras (1999) develops a document paraphrasing model using ILP. The key premise of
his work is that in some cases one may want to rewrite a document so as to conform to
some global constraints such as length, readability, or style. The proposed model has three
ingredients: a set of sentence-level paraphrases for rewriting the text, a set of global con-
straints, and an objective function which quantifies the effect incurred by the paraphrases.
Under this formulation, ILP can be used to select which paraphrases to apply so that the
global constraints are satisfied. Paraphrase generation falls outside the scope of the ILP
model – sentence rewrite operations are mainly syntactic and provided by a module based
on synchronous tree adjoining grammar (S-TAG, Shieber & Schabes, 1990). Unfortunately,
only a proof-of-concept is presented; implementation and evaluation of this module are left
to future work.

2. SNOW’s learning algorithm is a variation of the Winnow update rule.
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Our work models sentence compression as an optimization problem. We show how pre-
viously proposed models can be reformulated in the context of integer linear programming
which allows us to easily incorporate constraints during the decoding process. Our con-
straints are linguistically and semantically motivated and are designed to bring less local
syntactic knowledge into the model and help preserve the meaning of the source sentence.
Previous work has identified several important features for the compression task (Knight
& Marcu, 2002; McDonald, 2006); however, the use of global constraints is novel to our
knowledge. Although sentence compression has not been explicitly formulated in terms of
optimization, previous approaches rely on some optimization procedure for generating the
best compression. The decoding process in the noisy-channel model searches for the best
compression given the source and channel models. However, the compression found is usu-
ally sub-optimal as heuristics are used to reduce the search space or is only locally optimal
due to the search method employed. For example, in the work of Turner and Charniak
(2005) the decoder first searches for the best combination of rules to apply. As it traverses
the list of compression rules, it removes sentences outside the 100 best compressions (ac-
cording to the channel model). This list is eventually truncated to 25 compressions. In
other models (Hori & Furui, 2004; McDonald, 2006) the compression score is maximized
using dynamic programming which however can yield suboptimal results (see the discussion
in Section 1).

Contrary to most other NLP work using ILP (a notable exception is Roth & Yih, 2005),
we do not view compression generation as a two stage process where learning and inference
are carried out sequentially (i.e., first a local classifier hypothesizes a list of possible an-
swers and then the best answer is selected using global constraints). Our models integrate
learning with inference in a unified framework where decoding takes place in the presence
of all available constraints, both local and global. Moreover, we investigate the influence
of our constraint set across models and learning paradigms. Previous work typically for-
mulates constraints for a single model (e.g., the SNOW classifier) and learning paradigm
(e.g., supervised). We therefore assess how the constraint-based framework advocated in
this article influences the performance of expressive models (which require large amounts of
parallel data) and non-expressive ones (which use very little parallel data or none at all). In
other words, we are able to pose and answer the following question: what kinds of models
benefit most from constraint-based inference?

Our work is close in spirit but rather different in content to Dras (1999). We concentrate
on compression, a specific paraphrase type, and apply our models on the sentence-level. Our
constraints thus do not affect the document as a whole but individual sentences. Further-
more, compression generation is an integral part of our ILP models, whereas Dras assumes
that paraphrases are generated by a separate process.

3. Framework

In this section we present the details of the proposed framework for sentence compression.
As mentioned earlier, our work models sentence compression directly as an optimization
problem. There are 2n possible compressions for each source sentence and while many
of these will be unreasonable, it is unlikely that only one compression will be satisfac-
tory (Knight & Marcu, 2002). Ideally, we require a function that captures the operations
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(or rules) that can be performed on a sentence to create a compression while at the same
time factoring how desirable each operation makes the resulting compression. We can then
perform a search over all possible compressions and select the best one, as determined by
how desirable it is. A wide range of models can be expressed under this framework. The
prerequisites for implementing these are fairly low, we only require that the decoding pro-
cess be expressed as a linear function with a set of linear constraints. In practice, many
models rely on a Markov assumption for factorization which is usually solved with a dy-
namic programming-based decoding process. Such algorithms can be formulated as integer
linear programs with little effort.

We first give a brief introduction into integer linear programming, an extension of linear
programming for readers unfamiliar with mathematical programming. Our compression
models are next described in Section 3.4 and constraints in Section 3.5.

3.1 Linear Programming

Linear programming (LP) problems are optimization problems with constraints. They
consist of three parts:

• Decision variables. These are variables under our control which we wish to assign
optimal values to.

• A linear function (the objective function). This is the function we wish to minimize or
maximize. This function is influences by the values assigned to the decision variables.

• Constraints. Most problems will only allow the decision variables to take certain
values. These restrictions are the constraints.

These terms are best demonstrated with a simple example taken from Winston and
Venkataramanan (2003). Imagine a manufacturer of tables and chairs which we shall call
the Telfa Corporation. To produce a table, 1 hour of labor and 9 square board feet of wood
is required. Chairs require 1 hour of labor and 5 square board feet of wood. Telfa have
6 hours of labor and 45 square board feet of wood available. The profit made from each
table is 8 GBP and 5 GBP for chairs. We wish to determine the number of tables and
chairs that should be manufactured to maximize Telfa’s profit.

First, we must determine the decision variables. In our case we define:

x1 = number of tables manufactured
x2 = number of chairs manufactured

Our objective function is the value we wish to maximize, namely the profit.

Profit = 8x1 + 5x2

There are two constraints in this problem: we must not exceed 6 hours of labor and no
more than 45 square board feet of wood must be used. Also, we cannot create a negative
amount of chairs or tables:
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Labor constraint x1 + x2 ≤ 6
Wood constraint 9x1 + 5x2 ≤ 45
Variable constraints x1 ≥ 0

x2 ≥ 0

Once the decision variables, objective function and constraints have been determined we
can express the LP model:

max z = 8x1 + 5x2 (Objective function)

subject to (s.t.)
x1 + x2 ≤ 6 (Labor constraint)

9x1 + 5x2 ≤ 45 (Wood constraint)
x1 ≥ 0
x2 ≥ 0

Two of the most basic concepts involved in solving LP problems are the feasibility region

and optimal solution. The optimal solution is one in which all constraints are satisfied
and the objective function is minimized or maximized. A specification of the value for
each decision variable is referred to as a point. The feasibility region for a LP is a region
consisting of the set of all points that satisfy all the LP’s constraints. The optimal solution
lies within this feasibility region, it is the point with the minimum or maximum objective
function value.

A set of points satisfying a single linear inequality is a half-space. The feasibility region
is defined by a the intersection of m half-spaces (for m linear inequalities) and forms a
polyhedron. Our Telfa example forms a polyhedral set (a polyhedral convex set) from
the intersection of our four constraints. Figure 1a shows the feasible region for the Telfa
example. To find the optimal solution we graph a line (or hyperplane) on which all points
have the same objective function value. In maximization problems it is called the isoprofit

line and in minimization problems the isocost line. One isoprofit line is represented by the
dashed black line in Figure 1a. Once we have one isoprofit line we can find all other isoprofit
lines by moving parallel to the original isoprofit line.

The extreme points of the polyhedral set are defined as the intersections of the lines
that form the boundaries of the polyhedral set (points A B C and D in Figure 1a). It can
be shown that any LP that has an optimal solution, has an extreme point that is globally
optimal. This reduces the search space of the optimization problem to finding the extreme
point with the highest or lowest value. The simplex algorithm (Dantzig, 1963) solves LPs
by exploring the extreme points of a polyhedral set. Specifically, it moves from one extreme
point to an adjacent extreme point (extreme points that lie on the same line segment) until
an optimal extreme point is found. Although the simplex algorithm has an exponential
worst-case complexity, in practice the algorithm is very efficient.

The optimal solution for the Telfa example is z = 165
4 , x1 = 15

4 , x2 = 9
4 . Thus, to

achieve a maximum profit of 41.25 GBP they must build 3.75 tables and 2.25 chairs. This
is obviously impossible as we would not expect people to buy fractions of tables and chairs.
Here, we want to be able to constrain the problem such that the decision variables can only
take integer values. This can be done with Integer Linear Programming.
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Figure 1: Feasible region for the Telfa example using linear (graph (a)) and integer linear
(graph (b)) programming

3.2 Integer Linear Programming

Integer linear programming (ILP) problems are LP problems in which some or all of the
variables are required to be non-negative integers. They are formulated in a similar manner
to LP problems with the added constraint that all decision variables must take non-negative
integer values.

To formulate the Telfa problem as an ILP model we merely add the constraints that x1

and x2 must be integer. This gives:

max z = 8x1 + 5x2 (Objective function)

subject to (s.t.)

x1 + x2 ≤ 6 (Labor constraint)
9x1 + 5x2 ≤ 45 (Wood constraint)

x1 ≥ 0;x1 integer
x2 ≥ 0;x2 integer

For LP models, it can be proved that the optimal solution lies on an extreme point of
the feasible region. In the case of integer linear programs, we only wish to consider points
that are integer values. This is illustrated in Figure 1b for the Telfa problem. In contrast to
linear programming, which can be solved efficiently in the worst case, integer programming
problems are in many practical situations NP-hard (Cormen, Leiserson, & Rivest, 1992).
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Fortunately, ILPs are a well studied optimization problem and a number of techniques have
been developed to find the optimal solution. Two such techniques are the cutting planes
method (Gomory, 1960) and the branch-and-bound method (Land & Doig, 1960). We
briefly discuss these methods here. For a more detailed treatment we refer the interested
reader to Winston and Venkataramanan (2003) or Nemhauser and Wolsey (1988).

The cutting planes method adds extra constraints to slice parts of the feasible region
until it contains only integer extreme points. However, this process can be difficult or
impossible (Nemhauser & Wolsey, 1988). The branch-and-bound method enumerates all
points in the ILP’s feasible region but prunes those sections in the region which are known
to be sub-optimal. It does this by relaxing the integer constraints and solving the resulting
LP problem (known as the LP relaxation). If the solution of the LP relaxation is integral,
then it is the optimal solution. Otherwise, the resulting solution provides an upper bound
on the solution for the ILP. The algorithm proceeds by creating two new sub-problems based
on the non-integer solution for one variable at a time. These are solved and the process
repeats until the optimal integer solution is found.

Using the branch-and-bound method, we find that the optimal solution to the Telfa
problem is z = 40, x1 = 5, x2 = 0; thus, to achieve a maximum profit of 40 GBP, Telfa
must manufacture 5 tables and 0 chairs. This is a relatively simple problem, which could be
solved merely by inspection. Most ILP problems will involve many variables and constraints
resulting in a feasible region with a large number of integer points. The branch-and-bound
procedure can efficiently solve such ILPs in a matter of seconds and forms part of many
commercial ILP solvers. In our experiments we use lp solve3, a free optimization package
which relies on the simplex algorithm and brand-and-bound methods for solving ILPs.

Note that under special circumstances other solving methods may be applicable. For
example, implicit enumeration can be used to solve ILPs where all the variables are binary
(also known as pure 0−1 problems). Implicit enumeration is similar to the branch-and-
bound method, it systematically evaluates all possible solutions, without however explicitly
solving a (potentially) large number of LPs derived from the relaxation. This removes
much of the computational complexity involved in determining if a sub-problem is infea-
sible. Furthermore, for a class of ILP problems known as minimum cost network flow
problems (MCNFP), the LP relaxation always yields an integral solution. These problems
can therefore be treated as LP problems.

In general, a model will yield an optimal solution in which all variables are integers if
the constraint matrix has a property known as total unimodularity. A matrix A is totally
unimodular if every square sub-matrix of A has its determinant equal to 0, +1 or −1.
It is the case that the more the constraint matrix looks totally unimodular, the easier
the problem will be to solve by branch-and-bound methods. In practice it is good to
formulate ILPs where as many variables as possible have coefficients of 0, +1 or −1 in the
constraints (Winston & Venkataramanan, 2003).

3.3 Constraints and Logical Conditions

Although integer variables in ILP problems may take arbitrary values, these are frequently
are restricted to 0 and 1. Binary variables (0−1 variables) are particularly useful for rep-

3. The software is available from http://lpsolve.sourceforge.net/.
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Condition Statement Constraint

Implication if a then b b − a ≥ 0
Iff a if and only if b a − b = 0
Or a or b or c a + b + c ≥ 1
Xor a xor b xor c a + b + c = 1
And a and b a = 1; b = 1
Not not a 1 − a = 1

Table 1: How to represent logical conditions using binary variables and constraints in ILP.

resenting a variety of logical conditions within the ILP framework through the use of con-
straints. Table 1 lists several logical conditions and their equivalent constraints.

We can also express transitivity, i.e., “c if and only if a and b”. Although it is of-
ten thought that transitivity can only be expressed as a polynomial expression of binary
variables (i.e., ab = c), it is possible to replace the latter by the following linear inequali-
ties (Williams, 1999):

(1 − c) + a ≥ 1

(1 − c) + b ≥ 1

c + (1 − a) + (1 − b) ≥ 1

This can be easily extended to model indicator variables representing whether a set of binary
variables can take certain values.

3.4 Compression Models

In this section we describe three compression models which we reformulate as integer linear
programs. Our first model is a simple language model which has been used as a baseline in
previous research (Knight & Marcu, 2002). Our second model is based on the work of Hori
and Furui (2004); it combines a language model with a corpus-based significance scoring
function (we omit here the confidence score derived from the speech recognizer since our
models are applied to text only). This model requires a small amount of parallel data to
learn weights for the language model and the significance score.

Our third model is fully supervised, it uses a discriminative large-margin framework
(McDonald, 2006), and is trained trained on a larger parallel corpus. We chose this model
instead of the more popular noisy-channel or decision-tree models, for two reasons, a practi-
cal one and a theoretical one. First, McDonald’s (2006) model delivers performance superior
to the decision-tree model (which in turn performs comparably to the noisy-channel). Sec-
ond, the noisy channel is not an entirely appropriate model for sentence compression. It
uses a language model trained on uncompressed sentences even though it represents the
probability of compressed sentences. As a result, the model will consider compressed sen-
tences less likely than uncompressed ones (a further discussion is provided by Turner &
Charniak, 2005).
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3.4.1 Language Model

A language model is perhaps the simplest model that springs to mind. It does not require
a parallel corpus (although a relatively large monolingual corpus is necessary for training),
and will naturally prefer short sentences to longer ones. Furthermore, a language model can
be used to drop words that are either infrequent or unseen in the training corpus. Knight
and Marcu (2002) use a bigram language model as a baseline against their noisy-channel
and decision-tree models.

Let x = x1, x2, . . . , xn denote a source sentence for which we wish to generate a target
compression. We introduce a decision variable for each word in the source and constrain it
to be binary; a value of 0 represents a word being dropped, whereas a value of 1 includes
the word in the target compression. Let:

δi =

{
1 if xi is in the compression
0 otherwise

∀i ∈ [1 . . . n]

If we were using a unigram language model, our objective function would maximize the
overall sum of the decision variables (i.e., words) multiplied by their unigram probabilities
(all probabilities throughout this paper are log-transformed):

max
n∑

i=1

δi · P (xi) (1)

Thus, if a word is selected, its corresponding δi is given a value of 1, and its probability
P (xi) according to the language model will be counted in our total score.

A unigram language model will probably generate many ungrammatical compressions.
We therefore use a more context-aware model in our objective function, namely a trigram
model. Dynamic programming would be typically used to decode a language model by
traversing the sentence in a left-to-right manner. Such an algorithm is efficient and provides
all the context required for a conventional language model. However, it can be difficult
or impossible to incorporate global constraints into such a model as decisions on word
inclusion cannot extend beyond a three word window. By formulating the decoding process
for a trigram language model as an integer linear program we are able to take into account
constraints that affect the compressed sentence more globally. This process is a much more
involved task than in the unigram case where there is no context, instead we must now
make decisions based on word sequences rather than isolated words. We first create some
additional decision variables:

αi =

{
1 if xi starts the compression
0 otherwise

∀i ∈ [1 . . . n]

βij =

⎧⎪⎨
⎪⎩

1 if sequence xi, xj ends
the compression ∀i ∈ [0 . . . n − 1]

0 otherwise ∀j ∈ [i + 1 . . . n]

γijk =

⎧⎪⎨
⎪⎩

1 if sequence xi, xj , xk ∀i ∈ [0 . . . n − 2]
is in the compression ∀j ∈ [i + 1 . . . n − 1]

0 otherwise ∀k ∈ [j + 1 . . . n]
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Our objective function is given in Equation (2). This is the sum of all possible trigrams
that can occur in all compressions of the source sentence where x0 represents the ‘start’
token and xi is the ith word in sentence x. Equation (3) constrains the decision variables
to be binary.

max z =
n∑

i=1

αi · P (xi|start)

+
n−2∑
i=1

n−1∑
j=i+1

n∑
k=j+1

γijk · P (xk|xi, xj)

+
n−1∑
i=0

n∑
j=i+1

βij · P (end|xi, xj) (2)

subject to:

δi, αi, βij , γijk = 0 or 1 (3)

The objective function in (2) allows any combination of trigrams to be selected. This
means that invalid trigram sequences (e.g., two or more trigrams containing the ‘end’ token)
could appear in the target compression. We avoid this situation by introducing sequential

constraints (on the decision variables δi, γijk, αi, and βij) that restrict the set of allowable
trigram combinations.

Constraint 1 Exactly one word can begin a sentence.

n∑
i=1

αi = 1 (4)

Constraint 2 If a word is included in the sentence it must either start the sentence or be
preceded by two other words or one other word and the ‘start’ token x0.

δk − αk −
k−2∑
i=0

k−1∑
j=1

γijk = 0 (5)

∀k : k ∈ [1 . . . n]

Constraint 3 If a word is included in the sentence it must either be preceded by one
word and followed by another or it must be preceded by one word and end the sentence.

δj −
j−1∑
i=0

n∑
k=j+1

γijk −
j−1∑
i=0

βij = 0 (6)

∀j : j ∈ [1 . . . n]

Constraint 4 If a word is in the sentence it must be followed by two words or followed
by one word and then the end of the sentence or it must be preceded by one word and end
the sentence.

δi −
n−1∑

j=i+1

n∑
k=j+1

γijk −
n∑

j=i+1

βij −
i−1∑
h=0

βhi = 0 (7)

∀i : i ∈ [1 . . . n]
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Constraint 5 Exactly one word pair can end the sentence.

n−1∑
i=0

n∑
j=i+1

βij = 1 (8)

The sequential constraints described above ensure that the second order factorization (for
trigrams) holds and are different from our compression-specific constraints which are pre-
sented in Section 3.5.

Unless normalized by sentence length, a language model will naturally prefer one-word
output. This normalization is however non-linear and cannot be incorporated into our ILP
formulation. Instead, we impose a constraint on the length of the compressed sentence.
Equation (9) below forces the compression to contain at least b tokens.

n∑
i=1

δi ≥ b (9)

Alternatively, we could force the compression to be exactly b tokens (by substituting the
inequality with an equality in (9)) or to be less than b tokens (by replacing ≥ with ≤).4

The constraint in (9) is language model-specific and is not used elsewhere.

3.4.2 Significance Model

The language model just described has no notion of which content words to include in the
compression and thus prefers words it has seen before. But words or constituents will be of
different relative importance in different documents or even sentences.

Inspired by Hori and Furui (2004), we add to our objective function (see Equation (2))
a significance score designed to highlight important content words. In Hori and Furui’s
original formulation each word is weighted by a score similar to un-normalized tf ∗ idf . The
significance score is not applied indiscriminately to all words in a sentence but solely to
topic-related words, namely nouns and verbs. Our score differs in one respect. It combines
document-level with sentence-level significance. So in addition to tf ∗ idf , each word is
weighted by its level of embedding in the syntactic tree.

Intuitively, in a sentence with multiply nested clauses, more deeply embedded clauses
tend to carry more semantic content. This is illustrated in Figure 2 which depicts the
clause embedding for the sentence “Mr Field has said he will resign if he is not reselected,

a move which could divide the party nationally”. Here, the most important information is
conveyed by clauses S3 (he will resign) and S4 (if he is not reselected) which are embedded.
Accordingly, we should give more weight to words found in these clauses than in the main
clause (S1 in Figure 2). A simple way to enforce this is to give clauses weight proportional
to the level of embedding. Our modified significance score becomes:

I(xi) =
l

N
· fi log

Fa

Fi

(10)

where xi is a topic word, fi and Fi are the frequency of xi in the document and corpus
respectively, Fa is the sum of all topic words in the corpus, l is the number of clause

4. Compression rate can be also limited to a range by including two inequality constraints.
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S1

S2

Mr Field has said

S3

he will resign

S4

if he is not reselected

, a move

SBAR

which could divide the party nationally

Figure 2: The clause embedding of the sentence “Mr Field has said he will resign if he is

not reselected, a move which could divide the party nationally”; nested boxes
correspond to nested clauses.

constituents above xi, and N is the deepest level of clause embedding. Fa and Fi are
estimated from a large document collection, fi is document-specific, whereas l

N
is sentence-

specific. So, in Figure 2 the term l
N

is 1.0 (4/4) for clause S4, 0.75 (3/4) for clause S3, and
so on. Individual words inherit their weight from their clauses.

The modified objective function with the significance score is given below:

max z =
n∑

i=1

δi · λI(xi) +
n∑

i=1

αi · P (xi|start)

+
n−2∑
i=1

n−1∑
j=i+1

n∑
k=j+1

γijk · P (xk|xi, xj)

+
n−1∑
i=0

n∑
j=i+1

βij · P (end|xi, xj) (11)

We also add a weighting factor (λ) to the objective, in order to counterbalance the impor-
tance of the language model and the significance score. The weight is tuned on a small
parallel corpus. The sequential constraints from Equations (4)–(8) are again used to ensure
that the trigrams are combined in a valid way.

3.4.3 Discriminative Model

As a fully supervised model, we used the discriminative model presented by McDonald
(2006). This model uses a large-margin learning framework coupled with a feature set
defined on compression bigrams and syntactic structure.

Let x = x1, . . . , xn denote a source sentence with a target compression y = y1, . . . , ym

where each yj occurs in x. The function L(yi) ∈ {1 . . . n} maps word yi in the target com-
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pression to the index of the word in the source sentence, x. We also include the constraint
that L(yi) < L(yi+1) which forces each word in x to occur at most once in the compression
y. Let the score of a compression y for a sentence x be:

s(x,y) (12)

This score is factored using a first-order Markov assumption on the words in the target
compression to give:

s(x,y) =

|y|∑
j=2

s(x, L(yj−1), L(yj)) (13)

The score function is defined to be the dot product between a high dimensional feature
representation and a corresponding weight vector:

s(x,y) =

|y|∑
j=2

w · f(x, L(yj−1), L(yj)) (14)

Decoding in this model amounts to finding the combination of bigrams that maximizes
the scoring function in (14). McDonald (2006) uses a dynamic programming approach
where the maximum score is found in a left-to-right manner. The algorithm is an extension
of Viterbi for the case in which scores factor over dynamic sub-strings (Sarawagi & Cohen,
2004; McDonald, Crammer, & Pereira, 2005a). This allows back-pointers to be used to
reconstruct the highest scoring compression as well as the k-best compressions.

Again this is similar to the trigram language model decoding process (see Section 3.4.1),
except that here a bigram model is used. Consequently, the ILP formulation is slightly
simpler than that of the trigram language model. Let:

δi =

{
1 if xi is in the compression
0 otherwise

(1 ≤ i ≤ n)

We then introduce some more decision variables:

αi =

{
1 if xi starts the compression
0 otherwise

∀i ∈ [1 . . . n]

βi =

{
1 if word xi ends the compression
0 otherwise ∀i ∈ [1 . . . n]

γij =

{
1 if sequence xi, xj is in the compression ∀i ∈ [1 . . . n − 1]
0 otherwise ∀j ∈ [i + 1 . . . n]

The discriminative model can be now expressed as:

max z =
n∑

i=1

αi · s(x, 0, i)

+
n−1∑
i=1

n∑
j=i+1

γij · s(x, i, j)

+
n∑

i=1

βi · s(x, i, n + 1) (15)

413



Clarke & Lapata

Constraint 1 Exactly one word can begin a sentence.

n∑
i=1

αi = 1 (16)

Constraint 2 If a word is included in the sentence it must either start the compression
or follow another word.

δj − αj −
j∑

i=1

γij = 0 (17)

∀j : j ∈ [1 . . . n]

Constraint 3 If a word is included in the sentence it must be either followed by another
word or end the sentence.

δi −
n∑

j=i+1

γij − βi = 0 (18)

∀i : i ∈ [1 . . . n]

Constraint 4 Exactly one word can end a sentence.

n∑
i=1

βi = 1 (19)

Again, the sequential constraints in Equations (16)–(19) are necessary to ensure that the
resulting combination of bigrams are valid.

The current formulation provides a single optimal compression given the model. How-
ever, McDonald’s (2006) dynamic programming algorithm is capable of returning the k-best
compressions; this is useful for their learning algorithm described later. In order to produce
k-best compressions, we must rerun the ILP with extra constraints which forbid previous
solutions. In other words, we first formulate the ILP as above, solve it, add its solution to
the k-best list, and then create a set of constraints that forbid the configuration of δi decision
variables which form the current solution. The procedure is repeated until k compressions
are found.

The computation of the compression score crucially relies on the dot product between
a high dimensional feature representation and a corresponding weight vector (see Equa-
tion (14)). McDonald (2006) employs a rich feature set defined over adjacent words and
individual parts-of-speech, dropped words and phrases from the source sentence, and de-
pendency structures (also of the source sentence). These features are designed to mimic the
information presented in the previous noisy-channel and decision-tree models of Knight and
Marcu (2002). Features over adjacent words are used as a proxy to the language model of
the noisy channel. Unlike other models, which treat the parses as gold standard, McDonald
uses the dependency information as another form of evidence. Faced with parses that are
noisy the learning algorithm can reduce the weighting given to those features if they prove
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poor discriminators on the training data. Thus, the model should be much more robust
and portable across different domains and training corpora.

The weight vector, w is learned using the Margin Infused Relaxed Algorithm (MIRA,
Crammer & Singer, 2003) a discriminative large-margin online learning technique (McDon-
ald, Crammer, & Pereira, 2005b). This algorithm learns by compressing each sentence and
comparing the result with the gold standard. The weights are updated so that the score of
the correct compression (the gold standard) is greater than the score of all other compres-
sions by a margin proportional to their loss. The loss function is the number of words falsely
retained or dropped in the incorrect compression relative to the gold standard. A source
sentence will have exponentially many compressions and thus exponentially many margin
constraints. To render learning computationally tractable, McDonald et al. (2005b) create
constraints only on the k compressions that currently have the highest score, bestk(x;w).

3.5 Constraints

We are now ready to describe our compression-specific constraints. The models presented
in the previous sections contain only sequential constraints and are thus equivalent to their
original formulation. Our constraints are linguistically and semantically motivated in a
similar fashion to the grammar checking component of Jing (2000). However, they do
not rely on any additional knowledge sources (such as a grammar lexicon or WordNet)
beyond the parse and grammatical relations of the source sentence. We obtain these from
RASP (Briscoe & Carroll, 2002), a domain-independent, robust parsing system for English.
However, any other parser with broadly similar output (e.g., Lin, 2001) could also serve our
purposes. Our constraints revolve around modification, argument structure, and discourse
related factors.

Modifier Constraints Modifier constraints ensure that relationships between head words
and their modifiers remain grammatical in the compression:

δi − δj ≥ 0 (20)

∀i, j : xj ∈ xi’s ncmods

δi − δj ≥ 0 (21)

∀i, j : xj ∈ xi’s detmods

Equation (20) guarantees that if we include a non-clausal modifier5 (ncmod) in the compres-
sion (such as an adjective or a noun) then the head of the modifier must also be included;
this is repeated for determiners (detmod) in (21). In Table 2 we illustrate how these con-
straints disallow the deletion of certain words (starred sentences denote compressions that
would not be possible given our constraints). For example, if the modifier word Pasok from
sentence (1a) is in the compression, then its head Party will also included (see (1b)).

We also want to ensure that the meaning of the source sentence is preserved in the
compression, particularly in the face of negation. Equation (22) implements this by forcing
not in the compression when the head is included (see sentence (2b) in Table 2). A similar
constraint is added for possessive modifiers (e.g., his, our), including genitives (e.g., John’s

5. Clausal modifiers (cmod) are adjuncts modifying entire clauses. In the example “he ate the cake because

he was hungry”, the because-clause is a modifier of the sentence “he ate the cake”.
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1a. He became a power player in Greek Politics in 1974, when he founded the
socialist Pasok Party.

1b. *He became a power player in Greek Politics in 1974, when he founded the

Pasok.

2a. We took these troubled youth who don’t have fathers, and brought them into
a room to Dads who don’t have their children.

2b. *We took these troubled youth who do have fathers, and brought them into a
room to Dads who do have their children.

2c. *We took these troubled youth who don’t have fathers, and brought them into
a room to Dads who don’t have children.

3a. The chain stretched from Uganda to Grenada and Nicaragua, since the 1970s.
3b. *Stretched from Uganda to Grenada and Nicaragua, since the 1970s.
3c. *The chain from Uganda to Grenada and Nicaragua, since the 1970s.
3d. *The chain stretched Uganda to Grenada and Nicaragua, since the 1970s.
3e. *The chain stretched from to Grenada and Nicaragua, since the 1970s.
3f. *The chain stretched from Uganda to Grenada Nicaragua, since the 1970s.

Table 2: Examples of compressions disallowed by our set of constraints.

gift), as shown in Equation (23). An example of the possessive constraint is given in
sentence (2c) in Table 2.

δi − δj = 0 (22)

∀i, j : xj ∈ xi’s ncmods ∧ xj = not

δi − δj = 0 (23)

∀i, j : xj ∈ xi’s possessive mods

Argument Structure Constraints We also define a few intuitive constraints that take
the overall sentence structure into account. The first constraint (Equation (24)) ensures
that if a verb is present in the compression then so are its arguments, and if any of the
arguments are included in the compression then the verb must also be included. We thus
force the program to make the same decision on the verb, its subject, and object (see
sentence (3b) in Table 2).

δi − δj = 0 (24)

∀i, j : xj ∈ subject/object of verb xi

Our second constraint forces the compression to contain at least one verb provided the
source sentence contains one as well: ∑

i:xi∈verbs

δi ≥ 1 (25)

The constraint entails that it is not possible to drop the main verb stretched from sen-
tence (3a) (see also sentence (3c) in Table 2).
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Other sentential constraints include Equations (26) and (27) which apply to prepo-
sitional phrases and subordinate clauses. These constraints force the introducing term
(i.e., the preposition, or subordinator) to be included in the compression if any word from
within the syntactic constituent is also included. By subordinator we mean wh-words
(e.g., who, which, how, where), the word that, and subordinating conjunctions (e.g., after,

although, because). The reverse is also true, i.e., if the introducing term is included, at
least one other word from the syntactic constituent should also be included.

δi − δj ≥ 0 (26)

∀i, j : xj ∈ PP/SUB

∧xi starts PP/SUB∑
i:xi∈PP/SUB

δi − δj ≥ 0 (27)

∀j : xj starts PP/SUB

As an example consider sentence (3d) from Table 2. Here, we cannot drop the preposition
from if Uganda is in the compression. Conversely, we must include from if Uganda is in the
compression (see sentence (3e)).

We also wish to handle coordination. If two head words are conjoined in the source
sentence, then if they are included in the compression the coordinating conjunction must
also be included:

(1 − δi) + δj ≥ 1 (28)

(1 − δi) + δk ≥ 1 (29)

δi + (1 − δj) + (1 − δk) ≥ 1 (30)

∀i, j, k : xj ∧ xk conjoined by xi

Consider sentence (3f) from Table 2. If both Uganda and Nicaragua are present in the
compression, then we must include the conjunction and.

Finally, Equation (31) disallows anything within brackets in the source sentence from
being included in the compression. This is a somewhat superficial attempt at excluding
parenthetical and potentially unimportant material from the compression.

δi = 0 (31)

∀i : xi ∈ bracketed words (inc parentheses)

Discourse Constraints Our discourse constraint concerns personal pronouns. Specif-
ically, Equation (32) forces personal pronouns to be included in the compression. The
constraint is admittedly more important for generating coherent documents (as opposed to
individual sentences). It nevertheless has some impact on sentence-level compressions, in
particular when verbal arguments are missed by the parser. When these are pronominal,
constraint (32) will result in more grammatical output since some of the argument structure
of the source sentence will be preserved in the compression.

δi = 1 (32)

∀i : xi ∈ personal pronouns
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We should note that some of the constraints described above would be captured by
models that learn synchronous deletion rules from a corpus. For example, the noisy-channel
model of Knight and Marcu (2002) learns not to drop the head when the latter is modified
by an adjective or a noun, since the transformations DT NN → DT or AJD NN → ADJ are
almost never seen in the data. Similarly, the coordination constraint (Equations (28)–(30))
would be enforced using Turner and Charniak’s (2005) special rules — they enhance their
parallel grammar with rules modeling more structurally complicated deletions than those
attested in their corpus. In designing our constraints we aimed at capturing appropriate
deletions for many possible models, including those that do not rely on a training corpus
or do not have an explicit notion of a parallel grammar (e.g., McDonald, 2006). The
modification constraints would presumably be redundant for the noisy-channel model, which
could otherwise benefit from more specialized constraints, e.g., targeting sparse rules or
noisy parse trees, however we leave this to future work.

Another feature of the modeling framework presented here is that deletions (or non-
deletions) are treated as unconditional decisions. For example, we require not to drop the
noun in adjective-noun sequences if the adjective is not deleted as well. We also require to
always include a verb in the compression if the source sentence has one. These hardwired de-
cisions could in some cases prevent valid compressions from being considered. For instance,
it is not possible to compress the sentence “this is not appropriate behavior” to “this is

not appropriate” or“Bob loves Mary and John loves Susan” to “Bob loves Mary and John

Susan”. Admittedly we lose some expressive power, yet we ensure that the compressions
will be broadly grammatically, even for unsupervised or semi-supervised models. Further-
more, in practice we find that our models consistently outperform non-constraint-based
alternatives, without extensive constraint engineering.

3.6 Solving the ILP

As we mentioned earlier (Section 3.1), solving ILPs is NP-hard. In cases where the co-
efficient matrix is unimodular, it can be shown that the optimal solution to the linear
program is integral. Although the coefficient matrix in our problems is not unimodular, we
obtained integral solutions for all sentences we experimented with (approximately 3,000,
see Section 4.1 for details). We conjecture that this is due to the fact that all of our vari-
ables have 0, +1 or −1 coefficients in the constraints and therefore our constraint matrix
shares many properties of a unimodular matrix. We generate and solve an ILP for every
sentence we wish to compress. Solve times are less than a second per sentence (including
input-output overheads) for all models presented here.

4. Experimental Set-up

Our evaluation experiments were motivated by three questions: (1) Do the constraint-
based compression models deliver performance gains over non-constraint-based ones? We
expect better compressions for the model variants which incorporate compression-specific
constraints. (2) Are there differences among constraint-based models? Here, we would like
to investigate how much modeling power is gained by the addition of the constraints. For
example, it may be the case that a state-of-the-art model like McDonald’s (2006) does not
benefit much from the addition of constraints. And that their effect is much bigger for less
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sophisticated models. (3) How do the models reported in this paper port across domains?
In particular, we are interested in assessing whether the models and proposed constraints
are general and robust enough to produce good compressions for both written and spoken
texts.

We next describe the data sets on which our models were trained and tested (Section 4.1),
explain how model parameters were estimated (Section 4.2) and present our evaluation setup
(Section 4.3). We discuss our results in Section 5.

4.1 Corpora

Our intent was to assess the performance of the models just described on written and spoken
text. The appeal of written text is understandable since most summarization work today
focuses on this domain. Speech data not only provides a natural test-bed for compression
applications (e.g., subtitle generation) but also poses additional challenges. Spoken utter-
ances can be ungrammatical, incomplete, and often contain artefacts such as false starts,
interjections, hesitations, and disfluencies. Rather than focusing on spontaneous speech
which is abundant in these artefacts, we conduct our study on the less ambitious domain
of broadcast news transcripts. This lies in-between the extremes of written text and spon-
taneous speech as it has been scripted beforehand and is usually read off on autocue.

Previous work on sentence compression has almost exclusively used the Ziff-Davis corpus
for training and testing purposes. This corpus originates from a collection of news articles
on computer products. It was created automatically by matching sentences that occur in
an article with sentences that occur in an abstract (Knight & Marcu, 2002). The abstract
sentences had to contain a subset of the source sentence’s words and the word order had
to remain the same. In earlier work (Clarke & Lapata, 2006) we have argued that the
Ziff-Davis corpus is not ideal for studying compression for several reasons. First, we showed
that human-authored compressions differ substantially from the Ziff-Davis which tends to
be more aggressively compressed. Second, humans are more likely to drop individual words
than lengthy constituents. Third, the test portion of the Ziff-Davis contains solely 32 sen-
tences. This is an extremely small data set to reveal any statistically significant differences
among systems. In fact, previous studies relied almost exclusively on human judgments for
assessing the well-formedness of the compressed output, and significance tests are reported
for by-subjects analyses only.

We thus focused in the present study on manually created corpora. Specifically, we
asked annotators to perform sentence compression by removing tokens on a sentence-by-
sentence basis. Annotators were free to remove any words they deemed superfluous provided
their deletions: (a) preserved the most important information in the source sentence, and
(b) ensured the compressed sentence remained grammatical. If they wished, they could leave
a sentence uncompressed by marking it as inappropriate for compression. They were not
allowed to delete whole sentences even if they believed they contained no information content
with respect to the story as this would blur the task with abstracting. Following these
guidelines, our annotators produced compressions of 82 newspaper articles (1,433 sentences)
from the British National Corpus (BNC) and the American News Text corpus (henceforth
written corpus) and 50 stories (1,370 sentences) from the HUB-4 1996 English Broadcast
News corpus (henceforth spoken corpus). The written corpus contains articles from The LA
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Times, Washington Post, Independent, The Guardian and Daily Telegraph. The spoken
corpus contains broadcast news from a variety of networks (CNN, ABC, CSPAN and NPR)
which have been manually transcribed and segmented at the story and sentence level. Both
corpora have been split into training, development and testing sets6 randomly on article
boundaries (with each set containing full stories) and are publicly available from http:

//homepages.inf.ed.ac.uk/s0460084/data/.

4.2 Parameter Estimation

In this work we present three compression models ranging from unsupervised to semi-
supervised, and fully supervised. The unsupervised model simply relies on a trigram lan-
guage model for driving compression (see Section 3.4.1). This was estimated from 25 mil-
lion tokens of the North American corpus using the CMU-Cambridge Language Modeling
Toolkit (Clarkson & Rosenfeld, 1997) with a vocabulary size of 50,000 tokens and Good-
Turing discounting. To discourage one-word output we force the ILP to generate compres-
sions whose length is no less than 40% of the source sentence (see the constraint in (9)).
The semi-supervised model is the weighted combination of a word-based significance score
with a language model (see Section 3.4.2). The significance score was calculated using
25 million tokens from the American News Text corpus. We optimized its weight (see
Equation (11)) on a small subset of the training data (three documents in each case) us-
ing Powell’s method (Press, Teukolsky, Vetterling, & Flannery, 1992) and a loss function
based on the F-score of the grammatical relations found in the gold standard compression
and the system’s best compression (see Section 4.3 for details). The optimal weight was
approximately 1.8 for the written corpus and 2.2 for the spoken corpus.

McDonald’s (2006) supervised model was trained on the written and spoken training
sets. Our implementation used the same feature sets as McDonald, the only difference
being that our phrase structure and dependency features were extracted from the output of
Roark’s (2001) parser. McDonald uses Charniak’s (2000) parser which performs comparably.
The model was learnt using k-best compressions. On the development data, we found that
k = 10 provided the best performance.

4.3 Evaluation

Previous studies have relied almost exclusively on human judgments for assessing the well-
formedness of automatically derived compressions. These are typically rated by naive sub-
jects on two dimensions, grammaticality and importance (Knight & Marcu, 2002). Although
automatic evaluation measures have been proposed (Riezler et al., 2003; Bangalore, Ram-
bow, & Whittaker, 2000) their use is less widespread, we suspect due to the small size of
the test portion of the Ziff-Davis corpus which is commonly used in compression work.

We evaluate the output of our models in two ways. First, we present results using
an automatic evaluation measure put forward by Riezler et al. (2003). They compare
the grammatical relations found in the system compressions against those found in a gold
standard. This allows us to measure the semantic aspects of summarization quality in terms
of grammatical-functional information and can be quantified using F-score. Furthermore,

6. The splits are 908/63/462 sentences for the written corpus and 882/78/410 sentences for the spoken
corpus.
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in Clarke and Lapata (2006) we show that relations-based F-score correlates reliably with
human judgments on compression output. Since our test corpora are larger than Ziff-
Davis (by more than a factor of ten), differences among systems can be highlighted using
significance testing.

Our implementation of the F-score measure used the grammatical relations annotations
provided by RASP (Briscoe & Carroll, 2002). This parser is particularly appropriate for the
compression task since it provides parses for both full sentences and sentence fragments and
is generally robust enough to analyze semi-grammatical sentences. We calculated F-score
over all the relations provided by RASP (e.g., subject, direct/indirect object, modifier; 15
in total).

In line with previous work we also evaluate our models by eliciting human judgments.
Following the work of Knight and Marcu (2002), we conducted two separate experiments.
In the first experiment participants were presented with a source sentence and its target
compression and asked to rate how well the compression preserved the most important
information from the source sentence. In the second experiment, they were asked to rate
the grammaticality of the compressed outputs. In both cases they used a five point rating
scale where a high number indicates better performance. We randomly selected 21 sentences
from the test portion of each corpus. These sentences were compressed automatically by
the three models presented in this paper with and without constraints. We also included
gold standard compressions. Our materials thus consisted of 294 (21 × 2 × 7) source-
target sentences. A Latin square design ensured that subjects did not see two different
compressions of the same sentence. We collected ratings from 42 unpaid volunteers, all self
reported native English speakers. Both studies were conducted over the Internet using a
custom build web interface. Examples of our experimental items are given in Table 3.

5. Results

Let us first discuss our results when compression output is evaluated in terms of F-score.
Tables 4 and 5 illustrate the performance of our models on the written and spoken corpora,
respectively. We also present the compression rate7 for each system. In all cases the
constraint-based models (+Constr) yield better F-scores than the non-constrained ones.
The difference is starker for the semi-supervised model (Sig). The constraints bring an
improvement of 17.2% on the written corpus and 18.3% on the spoken corpus. We further
examined whether performance differences among models are statistically significant, using
the Wilcoxon test. On the written corpus all constraint models significantly outperform the
models without constraints. The same tendency is observed on the spoken corpus except for
the model of McDonald (2006) which performs comparably with and without constraints.

We also wanted to establish which is the best constraint model. On both corpora we
find that the language model performs worst, whereas the significance model and McDonald
perform comparably (i.e., the F-score differences are not statistically significant). To get
a feeling for the difficulty of the task, we calculated how much our annotators agreed in
their compression output. The inter-annotator agreement (F-score) on the written corpus
was 65.8% and on the spoken corpus 73.4%. The agreement is higher on spoken texts since
they consists of many short utterances (e.g., Okay, That’s it for now, Good night) that can

7. The term refers to the percentage of words retained from the source sentence in the compression.
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Source The aim is to give councils some control over the future growth of second
homes.

Gold The aim is to give councils control over the growth of homes.
LM The aim is to the future.
LM+Constr The aim is to give councils control.
Sig The aim is to give councils control over the future growth of homes.
Sig+Constr The aim is to give councils control over the future growth of homes.
McD The aim is to give councils.
McD+Constr The aim is to give councils some control over the growth of homes.

Source The Clinton administration recently unveiled a new means to encourage
brownfields redevelopment in the form of a tax incentive proposal.

Gold The Clinton administration unveiled a new means to encourage brown-
fields redevelopment in a tax incentive proposal.

LM The Clinton administration in the form of tax.
LM+Constr The Clinton administration unveiled a means to encourage redevelop-

ment in the form.
Sig The Clinton administration unveiled a encourage brownfields redevelop-

ment form tax proposal.
Sig+Constr The Clinton administration unveiled a means to encourage brownfields

redevelopment in the form of tax proposal.
McD The Clinton unveiled a means to encourage brownfields redevelopment

in a tax incentive proposal.
McD+Constr The Clinton administration unveiled a means to encourage brownfields

redevelopment in the form of a incentive proposal.

Table 3: Example compressions produced by our systems (Source: source sentence, Gold:
gold-standard compression, LM: language model compression, LM+Constr: lan-
guage model compression with constraints, Sig: significance model, Sig+Constr:
significance model with constraints, McD: McDonald’s (2006) compression model,
McD+Constr: McDonald’s (2006) compression model with constraints).

be compressed only very little or not all. Note that there is a marked difference between the
automatic and human compressions. Our best performing systems are inferior to human
output by more than 20 F-score percentage points.

Differences between the automatic systems and the human output are also observed
with respect to the compression rate. As can be seen the language model compresses most
aggressively, whereas the significance model and McDonald tend to be more conservative
and closer to the gold standard. Interestingly, the constraints do not necessarily increase
the compression rate. The latter increases for the significance model but decreases for
the language model and remains relatively constant for McDonald. It is straightforward to
impose the same compression rate for all constraint-based models (e.g., by forcing the model
to retain b tokens

∑n
i=1 δi = b). However, we refrained from doing this since we wanted our
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Models CompR F-score

LM 46.2 18.4
Sig 60.6 23.3
McD 60.1 36.0

LM+Constr 41.2 28.2∗

Sig+Constr 72.0 40.5∗†

McD+Constr 63.7 40.8∗†

Gold 70.3 —

Table 4: Results on the written corpus; compression rate (CompR) and grammatical re-
lation F-score (F-score); ∗: +Constr model is significantly different from model
without constraints; †: significantly different from LM+Constr.

Models CompR F-score

LM 52.0 25.4
Sig 60.9 30.4
McD 68.6 47.6

LM+Constr 49.5 34.8∗

Sig+Constr 78.4 48.7∗†

McD+Constr 68.5 50.1†

Gold 76.1 —

Table 5: Results on the spoken corpus; compression rate (CompR) and grammatical rela-
tion F-score (F-score); ∗: +Constr model is significantly different from without
constraints; †: significantly different from LM+Constr.

models to regulate the compression rate for each sentence individually according to its
specific information content and structure.

We next consider the results of our human study which assesses in more detail the quality
of the generated compressions on two dimensions, namely grammaticality and information
content. F-score conflates these two dimensions and therefore in theory could unduly reward
a system that produces perfectly grammatical output without any information loss. Tables 6
and 7 show the mean ratings8 for each system (and the gold standard) on the written and
spoken corpora, respectively. We first performed an Analysis of Variance (Anova) to
examine the effect of different system compressions. The Anova revealed a reliable effect
on both grammaticality and importance for each corpus (the effect was significant by both
subjects and items (p < 0.01)).

We next examine the impact of the constraints (+Constr in the tables). In most cases
we observe an increase in ratings for both grammaticality and importance when a model
is supplemented constraints. Post-hoc Tukey tests reveal that the grammaticality and
importance ratings of the language model and significance model significantly improve with

8. All statistical tests reported subsequently were done using the mean ratings.
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Models Grammar Importance

LM 2.25†$ 1.82†$

Sig 2.26†$ 2.99†$

McD 3.05† 2.84†

LM+Constr 3.47∗† 2.37∗†$

Sig+Constr 3.76∗ 3.53∗

McD+Constr 3.50† 3.17†

Gold 4.25 3.98

Table 6: Results on the written text corpus; average grammaticality score (Grammar) and
average importance score (Importance) for human judgments; ∗: +Constr model
is significantly different from model without constraints; †: significantly different
from gold standard; $: significantly different from McD+Constr.

Models Grammar Importance

LM 2.20†$ 1.56†

Sig 2.29†$ 2.64†

McD 3.33† 3.32†

LM+Constr 3.18∗† 2.49∗†$

Sig+Constr 3.80∗† 3.69∗†

McD+Constr 3.60† 3.31†

Gold 4.45 4.25

Table 7: Results on the spoken text corpus; average grammaticality score (Grammar) and
average importance score (Importance) for human judgments; ∗: +Constr model
is significantly different from model without constraints; †: significantly different
from gold standard; $: significantly different from McD+Constr.

the constraints (α < 0.01). In contrast, McDonald’s system sees a numerical improvement
with the additional constraints, but this difference is not statistically significant. These
tendencies are observed on the spoken and written corpus.

Upon closer inspection, we can see that the constraints influence considerably the
grammaticality of the unsupervised and semi-supervised systems. Tukey tests reveal that
LM+Constr and Sig+Constr are as grammatical as McD+Constr. In terms of importance,
Sig+Constr and McD+Constr are significantly better than LM+Constr (α < 0.01). This
is not surprising given that LM+Constr is a very simple model without a mechanism for
highlighting important words in a sentence. Interestingly, Sig+Constr performs as well
as McD+Constr in retaining the most important words, despite the fact that it requires
minimal supervision. Although constraint-based models overall perform better than mod-
els without constraints, they receive lower ratings (for grammaticality and importance) in
comparison to the gold standard. And the differences are significant in most cases.
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In summary, we observe that the constraints boost performance. This is more pro-
nounced for compression models that are either unsupervised or use small amounts of
parallel data. For example, a simple model like Sig yields performance comparable to
McDonald (2006) when constraints are taken into account. This is an encouraging result
suggesting that ILP can be used to create good compression models with relatively little
effort (i.e., without extensive feature engineering or elaborate knowledge sources). Per-
formance gains are also obtained for competitive models like McDonald’s that are fully
supervised. But these gains are smaller, presumably because the initial model contains a
rich feature representation consisting of syntactic information and generally does a good job
at producing grammatical output. Finally, our improvements are consistent across corpora
and evaluation paradigms.

6. Conclusions

In this paper we have presented a novel method for automatic sentence compression. A key
aspect of our approach is the use of integer linear programming for inferring globally optimal
compressions in the presence of linguistically motivated constraints. We have shown how
previous formulations of sentence compression can be recast as ILPs and extended these
models with local and global constraints ensuring that the compressed output is structurally
and semantic well-formed. Contrary to previous work that has employed ILP solely for
decoding, our models integrate learning with inference in a unified framework.

Our experiments have demonstrated the advantages of the approach. Constraint-based
models consistently bring performance gains over models without constraints. These im-
provements are more impressive for models that require little or no supervision. A case
in point here is the significance model discussed above. The no-constraints incarnation of
this model performs poorly and considerably worse than McDonald’s (2006) state-of-the-art
model. The addition of constraints improves the output of this model so that its perfor-
mance is indistinguishable from McDonald. Note that the significance model requires a
small amount of training data (50 parallel sentences), whereas McDonald is trained on hun-
dreds of sentences. It also presupposes little feature engineering, whereas McDonald utilizes
thousands of features. Some effort is associated with framing the constraints, however these
are created once and are applied across models and corpora. We have also observed small
performance gains for McDonald’s system when the latter is supplemented with constraints.
Larger improvements are possible with more sophisticated constraints, however our intent
was to devise a set of general constraints that are not tuned to the mistakes of any specific
system in particular.

Future improvements are many and varied. An obvious extension concerns our con-
straint set. Currently our constraints are mostly syntactic and consider each sentence in
isolation. By incorporating discourse constraints we could highlight words that are impor-
tant at the document-level. Presumably words topical in a document should be retained in
the compression. Other constraints could manipulate the compression rate. For example,
we could encourage a higher compression rate for longer sentences. Another interesting
direction includes the development of better objective functions for the compression task.
The objective functions presented so far rely on first or second-order Markov assumptions.
Alternative objectives could take into account the structural similarity between the source
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sentence and its target compression; or whether they share the same content which could
be operationalized in terms of entropy.

Beyond the task and systems presented in this paper, we believe the approach holds
promise for other generation applications using decoding algorithms for searching the space
of possible outcomes. Examples include sentence-level paraphrasing, headline generation,
and summarization.
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