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Shock buffet on wings encountered in edge-of-the-envelope transonic flight remains
an unresolved and disputed flow phenomenon, challenging both fundamental fluid
mechanics and applied aircraft aerodynamics. Its dynamics is revealed through
the interaction of spanwise shock-wave oscillations and intermittent turbulent
boundary-layer separation. Resulting unsteady aerodynamic loads, and their mutual
working with the flexible aircraft structure, need to be accounted for in establishing
the safe flight envelope. The question of global instability leading to this flow
unsteadiness is addressed herein. It is shown for the first time on an industrially
relevant configuration that the dynamics of a single unstable oscillatory eigenmode
plays a prominent role in near-onset shock buffet on a quasi-rigid wing. Its
three-dimensional spatial structure, previously inferred both from experiment and
time-marching simulation, describes a spanwise-localised pocket of shear-layer
pulsation synchronised with an outboard-propagating shock oscillation. The results
also suggest that the concept of a critical global shock-buffet mode commonly reported
for two-dimensional aerofoils also applies to three-dimensional finite and swept wings,
albeit different modes at play. Specifically, the modern wing design, NASA Common
Research Model, with publicly available geometry and experimental data for code
validation is studied at a free-stream Mach number of 0.85 with Reynolds number
per reference chord of 5.0 × 106 and varying angle of attack between 3.5◦ and 4.0◦

targeting the instability onset. Strouhal number at instability onset just above 3.7◦

is approximately 0.39. At the same time, a band of eigenmodes shows reduced
decay rate in the Strouhal-number range of 0.3 to 0.7, with additional unstable
oscillatory modes appearing beyond onset. Importantly, those emerging modes seem
to discretise the continuous band of medium-wavelength modes, as recently reported
for infinite swept wings using stability analysis, hence generalising those findings to
finite wings. Through conventional time-marching unsteady simulation it is explored
how the critical linear eigenmode feeds into the nonlinearly saturated limit-cycle
oscillation near instability onset. The established numerical strategy, using an iterative
inner–outer Krylov approach with shift-and-invert spectral transformation and sparse
iterative linear solver, to solve the arising large-scale eigenvalue problem with an
industrial Reynolds-averaged Navier–Stokes flow solver means that such a practical
non-canonical test case at a high-Reynolds-number condition can be investigated.
The numerical findings can potentially be exploited for more effective unsteady flow
analysis in future wing design and inform routes to flow control and model reduction.
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1. Background

Shock buffet on wings is an undesirable phenomenon limiting the flight envelope
at high Mach numbers and load factors. Its study is critical for commercial transonic
air transport. The term shock buffet refers to an aerodynamic instability with
self-sustained shock-wave oscillations and intermittent boundary-layer separation.
Whereas aerofoil buffet in fully turbulent flow is characterised by large chordwise
shock excursions at dominant Strouhal numbers (i.e. dimensionless frequency of
oscillation using mean aerodynamic chord and free-stream speed) of 0.06 to 0.07,
well-developed wing buffet typically comes with lower-amplitude shock motions and
is more broadband with up to an order of magnitude higher frequencies (Strouhal
numbers of 0.2 to 0.6) depending e.g. on sweep angle (Dandois 2016). A spanwise
outboard propagation of buffet cells (a term coined by Iovnovich & Raveh (2015)),
which is believed to constitute the instability, has been reported both in experimental
and numerical studies (Lawson, Greenwell & Quinn 2016; Sartor & Timme 2017;
Sugioka et al. 2018). A spanwise inboard propagation, dominant along the shock
front, has also been identified experimentally at lower frequencies (Dandois 2016;
Masini et al. 2017; Masini, Timme & Peace 2020). Timme & Thormann (2016)
observed resonant flow due to forced wing vibration in the same lower frequency
range, in addition to distinct flow responses around typical shock-buffet frequencies on
wings. While the flow unsteadiness is self-excited, not requiring structural vibration
itself (Steimle, Karhoff & Schröder 2012), resulting aerodynamic loads excite the
wing structure (called buffeting) thus deteriorating passenger comfort, flight control
and performance and the fatigue life. Certification specifications stipulate that an
aircraft must be free of any vibration and buffeting in cruising flight with a margin
of 0.3g (where g is the gravitational acceleration) to the buffet onset boundary.

Shock-buffet characteristics on aerofoils and wings are distinct, and despite more
than half a century of research an unequivocally agreed physical interpretation is
still debated (Giannelis, Vio & Levinski 2017). An important theoretical/numerical
advance was the Crouch, Garbaruk & Magidov (2007), Crouch et al. (2009) discovery
of a global (asymptotic, modal, absolute) instability leading to aerofoil buffet, using
Reynolds-averaged Navier–Stokes (RANS) aerodynamics in a base-flow scenario.
The interested reader is referred to the excellent reviews by Sipp et al. (2010) and
Theofilis (2011) for a reflection on the various terms denoting such oscillator-type
flow instability resulting from a Hopf bifurcation. A base-flow approach essentially
refers to linearising both the RANS equations and a turbulence model around
an equilibrium point (i.e. a steady-state solution) (Mettot, Sipp & Bézard 2014).
Even though Crouch’s description of the instability somewhat differs from the
widely discussed model by Lee (1990), the two models both rely on an acoustic
feedback mechanism and involvement of the trailing edge, an observation which
is also supported by eddy-resolving simulation (e.g. Deck 2005; Grossi, Braza
& Hoarau 2014) and experiment (e.g. Hartmann, Feldhusen & Schröder 2013;
Feldhusen–Hoffmann et al. 2018). Reconciliation of a universal aerofoil buffet
model is desirable. Sartor, Mettot & Sipp (2015) additionally identified a convective
medium-frequency Kelvin–Helmholtz-type instability via optimal-forcing responses
using the resolvent approach. In the three-dimensional case, Iovnovich & Raveh
(2015) pursued the categorisation of the three-dimensionality of wing buffet by
progressively building up the geometric complexity. Similarly, relying on a basic
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Global instability of wing shock-buffet onset 885 A37-3

infinite-wing set-up, the isolated impact of sweep angle has been studied using
modal analysis (Crouch, Garbaruk & Strelet 2019; Paladini et al. 2019a; Plante et al.

2019a) and time-marching unsteady RANS (Plante, Dandois & Laurendeau 2019b).
Scale-resolving detached-eddy simulation on the other hand has been applied for
finite-wing shock-buffet flow by Brunet & Deck (2008), Sartor & Timme (2017)
and Ohmichi, Ishida & Hashimoto (2018), supporting the above mentioned spanwise
propagation of buffet cells. At the same time, industrial practice mostly relies on
steady RANS analysis e.g. with the ‘1α = 0.1◦ offset’ method (where α is the angle
of attack) to decide on shock-buffet onset (Lawson et al. 2016).

In recent years, modal descriptions of shock buffet on finite wings have been
pursued intensively. Ohmichi et al. (2018) applied modal identification techniques,
specifically proper orthogonal decomposition and dynamic mode decomposition, to
discern dominant modal aerodynamic behaviour from solution snapshots well beyond
buffet onset. Focussing instead on the discretised RANS (plus turbulence model)
operator directly, global mode computation on a case with three inhomogeneous
spatial dimensions has first been accomplished in pre-buffet conditions by Timme &
Thormann (2016), for the experiment described in Lawson et al. (2016) and Masini
et al. (2017, 2020). Although not the first reported proper three-dimensional stability
analysis (see Theofilis (2011) for a short, yet quickly growing list), the work focussed
exclusively on geometric non-canonical complexity and flow parameters, specifically
high Reynolds number, relevant to an aircraft wing. A conclusive identification of
the sought unstable global mode, with the chosen numerical approach, failed due to
non-converging base flow in the vicinity of suspected buffet onset, and this would
require, for instance, a matrix-free time-stepping iterative tool for modal analysis (see
for example Eriksson & Rizzi (1985) and Barkley, Blackburn & Sherwin (2008)).

Previous aerofoil buffet studies using global stability theory applied sparse direct
linear equation solvers with a full factorisation of the coefficient matrix. The
bottleneck is the excessive memory requirement that has already been observed
for simple aerofoil cases (Iorio, Gonzalez & Ferrer 2014). This renders direct
methods infeasible for truly three-dimensional cases, when solving linear systems
arising from a shift-and-invert approach, used for instance in the implicitly restarted
Arnoldi method (Sorensen 1992). A viable alternative is to use sparse iterative linear
equation solvers, and the generalised minimal residual method (Saad & Schultz
1986) has become standard practice. Trading memory requirements for computing
time, such iterative methods often stall for very stiff problems, as found in transonic
turbulent flow near buffet onset and exacerbated by the nearly singular shift-and-invert
preconditioned matrix eigenvalue problem. Timme & Thormann (2016) opted for a
Krylov method with deflated restarting to make their tools robust.

An important, and currently missing, link in the fundamental understanding of the
very basics of three-dimensional shock buffet on finite wings, analogous to the seminal
aerofoil work by Crouch et al. (2007, 2009), is confirmation of the existence of an
unstable global mode, or even multiple modes indeed. This is the central question
to be addressed in this work. Section 2 introduces the numerical approach, followed
by § 3 outlining the chosen test case and some basic validation of the simulations.
Details of the physically relevant modes, placing emphasis on the dominant unstable
global mode describing the incipient shock-buffet instability and its relation to the
saturated nonlinear response, are presented in § 4. Convergence studies relating to the
mesh and chosen iterative methods are provided in the appendices.
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2. Numerical approach

The aerodynamics is simulated herein using the industry-grade DLR-TAU software
package (Schwamborn, Gerhold & Heinrich 2006). The compressible RANS equations
are solved with a second-order vertex-centred finite-volume discretisation. For the
assumed fully turbulent flow simulations, turbulent closure via the Boussinesq eddy-
viscosity assumption is achieved with the negative version of the Spalart–Allmaras
model (Allmaras, Johnson & Spalart 2012). Langer (2014) provides a good account
of the code’s spatial discretisation. Specifically, inviscid fluxes are evaluated with
a central scheme with matrix artificial dissipation, and gradients of flow variables
for viscous fluxes and source terms are computed using the Green–Gauss theorem.
Far-field boundary condition is realised by the method of characteristics, consistent
with interior-flux discretisation. Symmetry-plane boundary condition is enforced by
removing plane-normal components relating to the momentum equations. Viscous-wall
no-slip boundary condition is strongly imposed. A detailed discussion is offered
in Kroll, Langer & Schwöppe (2014). Steady base-flow solutions are obtained using
the backward Euler method with lower–upper symmetric Gauss–Seidel iterations
and local time stepping. Convergence is further accelerated through the use of
geometric multigrid, specifically with a W cycle on four grid levels. All steady-state
computations herein converged at least eleven orders of magnitude in the density
residual norm (both for stable and unstable flow) and terminal convergence is
asymptotic throughout.

For time-marching unsteady RANS simulations, the governing equations are
integrated in time using the second-order backward differentiation formula with
subiterations at each physical time step. A Cauchy convergence criterion with a
relative error tolerance of 10−8 on the drag coefficient is chosen on the subiteration
level in addition to monitoring the normalised density residual norm (10−3). A
minimum of 50 subiterations per physical time step is always performed for the
simulations presented. Criteria on iterations and the chosen time-step size (1t = 1 µs)
follow previous studies (Sartor & Timme 2017) and result as a trade-off between
computational cost and iterative error. The Cauchy criterion typically terminates the
subiterations within 50 to 100 solution updates.

Global stability analysis with three inhomogeneous spatial dimensions concerns the
asymptotic time evolution of infinitesimal perturbations εũ to a three-dimensional base
flow ū, with the vector of unknowns u containing the five conservative variables of the
RANS equations, specifically density, three momentum components and total energy,
plus one for the turbulence model at each mesh-point location x and ε ≪ 1. Interest
is in solutions of the general form ũ = û eλt where û is the three-dimensional spatial
structure of the eigenmode (i.e. right/direct eigenvector) and λ= σ + iω describes its
temporal behaviour (i.e. eigenvalue) with σ as the growth/decay rate and ω as the
angular frequency. In particular, we can write for the solution

u(x, t) = ū(x) + ε ũ(x, t) = ū(x) + ε(û(x) eλt + c.c.), (2.1)

with c.c. denoting the complex conjugate eigensolution. Multiple eigenmodes are
permissible, and linear superposition would apply.

After spatial discretisation, the unsteady nonlinear RANS equations (including the
fully coupled turbulence model) can formally be written in semi-discrete form as

u̇ =R(u), (2.2)
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where R(u) is the discrete residual operator, with volume weighting due to finite-
volume method and all boundary conditions included, and u̇ denotes the temporal
derivative of u. The precise form of the rather involved spatial discretisation is non-
essential for our discussion. The nonlinear equation (2.2) is integrated for computing
both the steady base flow and unsteady time-marching solutions, using the DLR-TAU
code as briefly introduced above. Substitution of the solution ansatz (2.1) in equation
(2.2), and linearisation of the nonlinear spatial discretisation operator R(u) around the
base flow ū (discarding all terms beyond first order), leads to an algebraic system of
equations,

J û = λû, (2.3)

where J = ∂R/∂u is the discrete Jacobian matrix (i.e. the linearisation) evaluated
at ū. To be specific, the full linearisation extends to the turbulence model, as
approximations such as frozen-eddy-viscosity approach have been shown to be
inaccurate when shock-wave/turbulent-boundary-layer interaction is concerned
(Thormann & Widhalm 2013).

For eigenmode computations, the implicitly restarted Arnoldi method proposed
by Sorensen (1992) and implemented in the ARPACK library (Maschhoff & Sorensen
1996; Lehoucq, Sorensen & Yang 1998) has been coupled with the linear harmonic
incarnation of the chosen flow solver. Since this Arnoldi method has been explained
many times in the literature (see for example Mack & Schmid (2010)), it is only
summarised briefly here. In essence, Arnoldi’s method is used to approximate a few
eigenmodes of J. The approximation of eigenmodes improves with the number of
Krylov vectors and restarting is applied in practice. A polynomial approximation
of the restart vector is key to the method. For detail refer to Sorensen (1992).
Shift-and-invert spectral transformation is applied to converge to wanted parts of the
eigenspectrum, with Arnoldi’s method operating on (J − ζ I)−1 instead of J, where
ζ is an arbitrary shift and I is the identity matrix. Critical is therefore the robust
solution of many linear systems of equations.

The linearised frequency-domain flow solver follows a first-discretise-then-linearise,
matrix-forming philosophy with a hand-differentiated Jacobian matrix J. Implement-
ation details in DLR-TAU are provided by Dwight (2006) and Thormann & Widhalm
(2013). Pivotal to solve arising linear systems is the generalised conjugate residual
algorithm with deflated restarting (Parks et al. 2006; Xu, Timme & Badcock
2016). To offer the essential insight into the chosen Krylov method, a first basis
of Arnoldi vectors is always computed using the standard generalised minimal
residual algorithm (Saad & Schultz 1986). Whereas basic restarted Krylov solvers
usually discard all available information during restart (except the updated solution),
only to rebuild the entire subspace from scratch again, the chosen advanced
solver aims to retain key information which is found by ranking the interior
eigenvalues, approximated by the Hessenberg matrix. This often results in a
more robustly converging iteration combined with lower memory usage due to a
smaller required Krylov subspace. For preconditioning, a local block-incomplete
lower–upper factorisation of the shifted Jacobian matrix with zero level of fill-in is
selected (McCracken et al. 2013).

Numerical settings of the inner–outer Krylov approach used in this study, i.e. the
inner sparse iterative linear equation solver and the outer iterative eigenvalue solver,
are summarised in table 1. An optimal computational set-up was not sought
but a robust solution strategy. In fact, once the shock-buffet physics become
clear, a significantly smaller outer Krylov space is sufficient when focussing the
shift-and-invert strategy without the need for blind searches and computing hundreds
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Parameter Value

Maximum number of eigenmodes per shift 20
Maximum number of outer iterations 3
Size of Krylov space for outer iterations 100
Convergence criterion on outer iterations 10−6

Size of Krylov space for inner iterations 120
Number of deflation vectors for inner iterations 20
Convergence criterion on inner iterations 10−7

TABLE 1. Overview of default numerical settings for eigenvalue solver per chosen shift.

of modes. Notwithstanding, a truly predictive numerical capability without a priori

knowledge is desirable. A brief study of the impact of convergence tolerances and
dimension of the outer Krylov subspace is given in appendix B. The strength of
the approach lies in its numerical algorithms and not in the ultimate of brute-force
high-performance computing. To be specific, for a typical simulation described in
the table, using the baseline mesh, which results in nearly 37 × 106 complex-valued
degrees-of-freedom, two compute nodes are required, each having twin Skylake 6138
processors, 40 hardware cores and 384 GB of memory. The total memory used
(including storage of Jacobian matrix, incomplete lower–upper factorisation and inner
and outer Krylov subspaces) is less than 400 GB. Approximately 250 linear solutions
are needed per shift altogether, with each linear solution taking approximately an
hour of wall clock time.

3. NASA Common Research Model

The NASA Common Research Model is a generic commercial wide-body aircraft
configuration with a design Mach number of 0.85 and nominal lift coefficient of 0.5.
It was developed to publicly make available a modern supercritical wing geometry
together with state-of-the-art experimental data, enabling code validation, with tests
completed in several transonic wind tunnel facilities (Vassberg et al. 2018). The
wing was designed to have an aspect ratio of 9, a taper ratio of 0.275 and a 35◦

quarter-chord sweep angle. The mean aerodynamic chord of the wind tunnel model is
0.189 m with a span and reference area of 1.586 m and 0.280 m2, respectively. All
design details including aerofoil data can be found in the cited reference. The present
study analysed the wing–body–tail variant with 0◦ tail setting angle, discarding pylon
and nacelle (and also excluding the blade sting mounting system). The planform of
the half-model is shown in figure 1.

The baseline computational mesh was generated using the SOLAR mesh generator
(Martineau et al. 2006) following accepted industrial practice for full aircraft
configurations and has approximately 6.2 × 106 points including approximately
170 000 points on solid walls for the half-model used. A viscous wall spacing of
y+ < 1 is ensured. The hemispherical far-field boundary is located 100 semi-span
lengths from the body, while a symmetry boundary is applied at the fuselage centre
in the xz-plane. To demonstrate mesh convergence of the unstable global mode, a
coarser (3.1 × 106 points) and a finer (8.2 × 106 points) mesh of the same family are
investigated too, as presented in appendix A.

Flow parameters are chosen for runs 153/182 of the test campaign in the European
Transonic Windtunnel (ETW). For details on the experiments, see Hefer (2003) for a
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FIGURE 1. Overview of wing-body-tail geometry of Common Research Model showing
surface pressure distribution C̄p and zero-skin-friction line (dark grey line near mid-semi-
span) of base flow at M = 0.85, Re = 5.0 × 106 and (a) α = 3.5◦, (b) α = 3.75◦, (c) α = 4.0◦.
Nine non-dimensional spanwise stations η (normalised by semi-span length) equipped with
pressure orifices in the wind tunnel, as detailed in figures 3 through 5, are indicated.

description of the test facility and Lutz et al. (2016) for the test entry. Specifically,
Mach number is M = 0.85 and Reynolds number is Re = 5.0 × 106 per reference chord.
Run 182 measured the static deformation of the flexible wing at several angles of
attack. For intermediate angles not measured, but required e.g. to achieve a smaller
increment when tracing the global modes herein, interpolation was used (Keye &
Gammon 2018). The computational mesh was deformed accordingly (and then kept
frozen for subsequent steady and unsteady flow computations making it quasi-rigid),
a functionality readily available in the chosen flow solver, to improve numerical
predictions (Tinoco et al. 2018). Wind tunnel force measurements have been corrected
for wall interference and include a correction due to buoyancy effects of the mounting
system (Rivers, Quest & Rudnik 2018).

To avoid additional complication and ambiguity in imposing the laminar portion
of the boundary layer, no transition fixing was used in the simulations, contrary
to experiments at this Re, and fully turbulent flow is assumed. Its impact on the
near-onset dynamics of wing shock buffet is expected to be small, as long as the
shock-wave/boundary-layer interaction is fully turbulent; compare for example the
simulations by Sartor & Timme (2017) (fixed transition) and Timme & Thormann
(2016) (fully turbulent) both observing a very similar onset angle of attack.
Experimentally, for an aerofoil in turbulent flow with fixed transition, it was reported
that a fivefold increase in Reynolds number had negligible influence on the shock
dynamics (Dor et al. 1989). Also note recent experimental (Brion et al. 2017) and
numerical (Dandois, Mary & Brion 2018) work on laminar aerofoil shock buffet
which suggests an entirely different dynamic mechanism of flow unsteadiness.

An overview of the surface pressure distribution C̄p of the fully converged base flow
at angles of attack α = 3.5◦, 3.75◦ and 4.0◦ is given in figure 1. The two higher angles
of attack, as will be seen, describe an unstable steady base flow, which develops into
an unsteady flow field when time-marched accurately. A distinct shock-wave pattern
is visible along the span and a shock-induced reverse-flow region can be observed

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

10
01

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.1001


885 A37-8 S. Timme
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FIGURE 2. Aerodynamic loads at M = 0.85 and Re = 5.0 × 106 comparing experiment and
simulation for (a) lift coefficient, (b) drag coefficient and (c) pitching moment coefficient.

in the mid-semi-span sector (just outboard of the Yehudi break at 37 % semi-span
approximately where the two legs of the inboard-wing λ-shock pattern merge into
a single shock front), identified through the zero-skin-friction line. With increasing
angle of attack, the shock position moves upstream (sometimes called inverse shock
motion), due to a thickening of the boundary layer in the strong adverse-pressure-
gradient regime, and the reverse-flow region expands in the spanwise direction. The
figure also highlights the nine spanwise stations where experimental data from static
pressure taps are available. Non-dimensional coordinate η is the position along the
y-axis normalised by the semi-span length.

Figures 2 through 5 show a steady validation of the simulations reported herein.
Aerodynamic coefficients of lift, drag and pitching moment, given in figure 2, at
seven angles of attack between α = 2.5◦ and 4.0◦ in increments of 0.25◦ suggest
a fairly good agreement between the steady RANS simulations and wind tunnel
data (from continuous-pitch run 153), when compared to the spread in various other
numerical predictions (see for example Tinoco et al. 2018). The clear offset in
moment coefficient, reported elsewhere, too, is not fully understood but could result
from the partial correction applied to account for the model mounting system. The
(first) break in numerical lift and moment curves occurs at an angle of attack α ≈ 3.3◦,
similar to wind tunnel data. Experimentally, the ‘1α = 0.1◦ offset’ criterion (Lawson
et al. 2016) predicts the buffet onset at α ≈3.7◦, which is in agreement with the global
stability results to follow. Albeit a threefold decrease in Reynolds number, Sugioka
et al. (2018) estimated the shock-buffet onset angle for the 80 %-scale Common
Research Model, tested in the facilities of Japan Aerospace Exploration Agency
(JAXA) (Koike et al. 2016), at α = 3.6◦ using the ‘1α = 0.1◦ offset’ method and
α = 3.7◦ when analysing their root strain-gauge signal.

Corresponding to the conditions given in figure 1, surface pressure distributions at
different spanwise stations in figures 3 through 5 assert these favourable conclusions
from integrated loads overall. The quality of the distributed surface pressures is
akin at the different angles of attack, albeit a marked deterioration in outer wing
stations at α = 4.0◦. Nevertheless, an inadequate resolution of experimental pressure
data is observed on the wing’s suction surface at three mid-semi-span measurement
stations, specifically η = 0.397, 0.502 and 0.603. Tinoco et al. (2018) explained
this lack of shock definition with manufacturing/instrumentation limitations when
building the physical model. Indeed, to overcome such practical difficulties, recent
efforts in large-scale transonic wind tunnel testing have focussed on advanced optical
measurement techniques, such as unsteady pressure sensitive paint (see for example
Steimle et al. 2012; Merienne et al. 2013; Lawson et al. 2016; Sugioka et al. 2018),
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FIGURE 3. Surface pressure coefficient Cp at M = 0.85, Re = 5.0 × 106 and α = 3.75◦

comparing experiment and simulation along nine non-dimensional spanwise stations η.
Streamwise coordinate x (measured from leading edge) is normalised by the respective
local chord length c.

promising superior spatial extent and shock resolution on par with high-fidelity
numerical data. Notwithstanding, the experimental data set at hand was enriched
by incorporating measurements of the 80 %-scale Common Research Model (Koike
et al. 2016; Tinoco et al. 2018). In the figures, those enhanced data are labelled
‘JAXA’ showing two angles of attack each bracketing our nominal values. Focus of
the subsequent discussion is on those angles of attack between α = 3.5◦ and 4.0◦.

4. Shock-buffet instability results

Details of the global stability computations with three inhomogeneous spatial
dimensions, focussing on the near-onset shock-buffet dynamics, are discussed in the
following. The converged steady-state RANS solutions analysed in previous section
are taken as base flows. Appreciating the debate in the fluid stability community on
the treatment of the Reynolds stresses (Reynolds & Hussain 1972; Mettot et al. 2014),
we follow the argument of a decoupling of scales (Crouch et al. 2009; Sipp et al.
2010). Whereas the small scales of turbulence in space and time are accounted for by
the turbulence model and resulting eddy viscosity, the large shock-buffet scales can
be integrated in time using the unsteady RANS equations and are hence accessible for
the base-flow stability approach. Previous work suggested the adequacy of unsteady
RANS modelling, concerning the dominant flow features of spatial structures and
frequency content, in simulating shock-buffet flow on wings, when compared to
experiment and scale-resolving simulation (Sartor & Timme 2017). Unless otherwise
stated, all results are presented in non-dimensional form based on mean aerodynamic
chord (MAC) and reference free-stream values.
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FIGURE 4. Surface pressure coefficient Cp at M = 0.85, Re = 5.0 × 106 and α = 3.5◦

comparing experiment and simulation at the six outermost spanwise stations.
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FIGURE 5. Surface pressure coefficient Cp at M = 0.85, Re = 5.0 × 106 and α = 4.0◦

comparing experiment and simulation at the six outermost spanwise stations.

4.1. Characterisation of global shock-buffet modes

Figure 6 shows the computed eigenvalues for angles of attack where buffet onset
is expected. For each angle of attack, several shifts were distributed along the
imaginary axis in addition to a few shifts with positive growth rate, enabling a
wider search radius albeit with a reduced convergence rate of the shift-and-invert
spectral transformation. Angles of attack below (and including) α = 3.70◦ describe
subcritical flow, whereas angles above (and including) α = 3.75◦ constitute a
shock-buffet condition. The small increment in angle of attack of 1α = 0.05◦

allows the visualisation of mode traces; this is exemplified for the mode that
kicks off the flow unsteadiness, labelled SB (as in shock buffet) at α = 3.75◦.
The results suggest that a single unstable oscillatory global mode is responsible for
shock-buffet onset on this wing similar to what was reported previously for aerofoils
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FIGURE 6. Computed eigenvalues for angles of attack between α = 3.50◦ and 3.85◦

showing Strouhal number St and angular frequency ω over growth/decay rate σ . The
three-dimensional shock-buffet mode with eigenvalue (σ , ω) = (0.156, 2.371) at α = 3.75◦

is labelled SB.

(see for example Crouch et al. (2007), Sartor et al. (2015)). To be more precise,
self-sustained oscillatory flow unsteadiness starts between angles of attack α = 3.70◦

and 3.75◦ with an angular frequency of approximately ω = 2.46 (corresponding to
a Strouhal number of St = 0.39 where St = ω/(2π)). This value agrees nicely with
the dominant frequency range reported for the 80 %-scale Common Research Model
in established shock-buffet flow (Ohmichi et al. 2018; Sugioka et al. 2018), albeit
obvious differences in flow conditions and physical model. While approaching the
critical point, a group of eigenvalues moving towards the imaginary axis emerges
from a dense band of eigenvalues. Note that this computed dense band results
both from shifts placed along the imaginary axis and the convergence properties
of shift-and-invert methods, and a dense cloud of eigenvalues to the left of (and
including) the visible band (similar to spectra for aerofoils) is expected. Specifically,
besides the primary rightmost eigenvalue labelled SB, eigenvalues with reduced decay
rate can be observed for Strouhal numbers St ≈ 0.3 to 0.7, which is consistent with
the accepted broadband-frequency range reported for wings (Dandois 2016) and hints
at additional unstable modes for post-onset angles of attack (e.g. at α ' 3.80◦). The
discussion will return to this apparent band of modes shortly.

The spatial structure of the unstable global mode SB at α = 3.75◦ is presented
in figure 7, visualising buffet cells. The term buffet cell refers to a localised
three-dimensional cellular pattern with a flow arrangement of a ripple along the
spanwise shock wave combined with a pulsating shear layer, which develops within
a restricted sector of the wingspan. Coherent spatial amplitudes of the shock-buffet
mode are concentrated at the shock wave and its downstream shear layer. In the
figures only the real part of the complex-valued eigenvector, scaled by the maximum
value of the x-momentum component, is shown since the corresponding imaginary
part is spatially 90◦ out-of-phase to enable the description of travelling flow structures
via reconstruction of the physical signal using equation (2.1) (Crouch et al. 2007;
Sipp et al. 2010). The propagation path of these buffet-cell structures is chordwise
downstream and spanwise outboard, while there is wing support in the sector η ≈ 0.6
to 0.73, and then downstream in the wake, going beyond the horizontal-tail plane. It is
interesting to observe that the spatial structures of the three-dimensional shock-buffet
mode originate at the wing surface near the outermost portion of the reverse-flow
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FIGURE 7. Spatial structure of unstable eigenmode SB showing volumetric iso-surfaces
at two values (±0.02) of real part of x-momentum component ρ̂u and in (a) real part
of surface pressure amplitude Ĉp and (b) surface pressure coefficient C̄p. Base-flow zero-
skin-friction line is indicated by a dark grey line. The eigenvector has been scaled by the
maximum x-momentum value, found at approximately (x, y, z) = (1.170, 0.546, 0.160) and
indicated by the yellow sphere. Dash-dotted lines in (b) describe the spanwise cuts to be
presented in figures 8 and 9.

region, as enclosed by the base-flow zero-skin-friction line in figure 7(b) just outboard
of the Yehudi break. Since the sign of the skin-friction coefficient is based on the
streamwise velocity component, this suggests that the buffet cells emerge in the
vicinity of where reversed flow is forced to turn back into the main streamwise
flow direction. The impact of mesh refinement focussing on the unstable mode is
scrutinised in a brief study in appendix A. Closer inspection of the coherent structures,
while the corresponding eigenvalue of the critical shock-buffet mode migrates from
its α = 3.6◦ position, which is when the leading mode can first easily be identified
unambiguously from the rest of the spectrum – in figure 6, extrapolation of the same
mode to α = 3.5◦ gives a damping ratio of σ ≈ −0.5, well within the dense cloud
rendering it inaccessible with the methods presented – to α = 4.0◦ (not shown in the
figure), suggests that the appearance of the spatial amplitudes remains similar without
marked changes to their topology. Visual inspection of the other eigenmodes with
reduced decay rate (cf. figure 6 for Strouhal numbers St ≈ 0.3 to 0.7) follows below
in figure 11.

In figures 8 and 9 the complex-valued amplitude functions of the conservative
variables are presented at constant spanwise stations. The momentum components
are given at three stations with η = 0.603, 0.660 and 0.727, as indicated in
figure 7(b) by dash-dotted lines, of which the inner and outer locations correspond
to those in figure 3. The scalar variables of density and total energy and the
turbulence-field variable of the Spalart–Allmaras model are only shown at η = 0.660.
At individual spanwise stations, a certain similarity with the description of the
two-dimensional aerofoil shock-buffet mode is striking. Specifically, the analysis by
Sartor et al. (2015) shall be mentioned, who, for example, emphasised a synchroni-
sation with opposite signs in the x-momentum component ρ̂u within the shock
wave and its downstream shear layer. While the shock moves downstream, their
bubble contracts, and vice versa. A complicating factor herein is the added spatial
three-dimensionality with propagation not only chordwise but also spanwise, which
can be noticed in the lag of x-momentum structures downstream in the wake
region (cf. figure 7b). Comparing streamwise and spanwise momentum components,
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FIGURE 8. Slices at constant spanwise stations η = 0.603 (a–c), η = 0.660 (d–f )
and η = 0.727 (g–i) showing real part of eigenvector’s momentum components with
x-momentum ρ̂u (a,d,g), y-momentum ρ̂v (b,e,h) and z-momentum ρ̂w (c, f,i). The sonic
line is highlighted by a dash-dotted line.
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FIGURE 9. Slice at constant spanwise station η = 0.660 showing real part of eigenvector’s
scalar quantities with density ρ̂ (a), total energy ρ̂E (b) and turbulence-field variable ρ̂ν̃
(c). The sonic line is highlighted by a dash-dotted line.

their amplitudes are of similar magnitude, hence highlighting the strong crossflow
contribution. Inspecting the turbulence-field variable ρ̂ν̃, blobs of high eddy-viscosity
fluctuations in the wake can be inferred, albeit significantly reduced magnitude
compared with the other conservative amplitude functions. This is typical for unsteady
RANS simulations of shock buffet (Sartor & Timme 2017) and relates to high
turbulence levels in the buffet cells which result from the shock-wave/boundary-layer
interaction.

Figure 10 gives an idea of the magnitude of perturbation in the pressure
coefficient, |Ĉp|. The surface plot reveals that highest levels of unsteadiness are found
outboard of the base-flow reverse-flow region, extending along the shock towards

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

10
01

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.1001


885 A37-14 S. Timme

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6 0.8 1.0

0.2

0.1

0.1

0.846

0.727

˙ = 0.660

0.603

0.502

0

0.03

0.02

0.01

0.15

0.10

0.05

0.15

0.10

0.05

0.15

0.10

0.05

x/c x/c x/c

|Ĉ
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FIGURE 10. Spatial structure of unstable eigenmode SB showing magnitude |Ĉp| of
surface pressure coefficient over entire wing surface and selected outboard spanwise
stations. Base-flow pressure coefficient C̄p (black line) is included for orientation. Also
shown is the base-flow zero-skin-friction line in the surface plot (dark grey line).
Experimental data at Re ≈ 1.5 × 106 for spanwise station η = 0.603 were taken from Koike
et al. (2016) using the root-mean square pressure fluctuations (plotted at arbitrary scale)
at angles of attack α = 3.35◦ (E) and 3.88◦ (u) to bracket α = 3.75◦ discussed herein.

the wing tip and highlighting the centre of strong shear-layer pulsation between
shock location and trailing edge. It must be emphasised that the linear eigenmode
predicts the prominent shear-layer fluctuations just outboard of where the base flow
suggests reverse flow with respect to the x-velocity component. These regions do
not coincide spatially. A similar conclusion can be reached by inspecting the surface
skin-friction fluctuation (not shown herein). Information at several spanwise stations
offers a fuller picture. Note that the steady-state pressure distribution (cf. figure 3) is
included in the plots at each spanwise station to demonstrate more clearly the relation
between base-flow shock position and unsteady pressure perturbation. Particulars of
the perturbation peaks observed at the shock location are typical for linearised
frequency-domain techniques, which is at the heart of our stability tool (Thormann
& Widhalm 2013). At station η = 0.502, pressure-fluctuation levels are approximately
three orders of magnitude lower than the peak values at the other stations, and those
fluctuations are of similar magnitude on the upper and lower surface of the wing. The
other spanwise stations show significantly higher fluctuations on the upper surface
compared with the lower one. In particular, the shock motion and linked shear-layer
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pulsation dominate the picture. Note, albeit similar levels of pressure fluctuation,
the axis scaling for stations η = 0.603 and 0.846 differs by a factor of five for
two reasons. First, the intention is to accentuate the reduction in shock unsteadiness
towards the wing tip between stations η = 0.660 and 0.846. Second, for the sake of
clarity, experimental data points are included at station η = 0.603 which were taken
from Koike et al. (2016) based on measurements from unsteady pressure transducers.
The root-mean square pressure fluctuations at two angles of attack, bracketing our
critical condition, are presented at arbitrary scale. Compare with figure 17 for those
experimental data to be shown at consistent scale. Agreement regarding the chordwise
location of pressure fluctuation is rather good. Note the lack of experimental unsteady
pressure sensors between x/c = 0.36 and 0.50. Koike et al. (2016) presented additional
unsteady pressure data at spanwise station η = 0.50, where equivalent numerical data
herein in figure 10 (and also in figure 17 to follow) show insignificant activity
altogether.

It is hence important to re-emphasise that the experimental data for the 80 %-scale
model of the same wing geometry stem from a threefold decrease in Reynolds
number (Re≈1.5×106). Koike et al. (2016) discussed the impact of Reynolds-number
variation on the chordwise shock position, and consequently, a minor downstream shift
is expected herein. As noted earlier, Dor et al. (1989) judged the Reynolds-number
influence on the dynamics of shock buffet as negligible, at least for the variance
in pressure fluctuations for an aerofoil, provided the shock-wave/boundary-layer
interaction is fully turbulent. Besides Reynolds number effecting the flow development,
the deformation of a flexible wing under load, both static and dynamic, must be
accounted for, too. Different physical wing structures, although featuring nominally
the same aerodynamic geometry, were examined under different test conditions
(e.g. total pressure in the wind tunnel), presumably without regard to aeroelastic
scaling. Careful inspection of the available data in the literature at angles of attack
near our focus angle (α = 3.75◦) gives a wing-tip bending of 0.023 (per semi-span)
and a twist of −1.2◦ (wash-out) for the ETW test (Keye & Gammon 2018) compared
with 0.012 and −0.7◦ for the JAXA test (Koike et al. 2016). Differences in the
underlying structural model can also be inferred from the relative wash-in twist
near the wing tip on the 80 %-scale model. The present study accounts for static
deformation measured in the ETW test campaign. This brief discussion highlights
a key message of this work. Numerical analysis of the pure aerodynamics (be it
global stability or time-marching methods) can only explain part of the complex
interaction relating to shock-induced separation and shock unsteadiness on a flexible
wing. Multidisciplinary studies are needed to quantify various factors including, but
not limited to, wind tunnel noise and structural dynamics (Steimle et al. 2012; Masini
et al. 2020).

As hinted above, figure 11 shows a portion of the eigenspectrum, where the pure
aerodynamic shock-buffet instability is found, at three angles of attack around onset
together with the spatial structure of a number of physically dominant eigenmodes at
α = 3.75◦. A correlation between the modes’ frequencies and their spatial structures,
represented by volumetric iso-surfaces of the real part of x-momentum component ρ̂u

at non-dimensional values of ±0.02, is evident. Eigenvectors have been normalised
by their respective x-momentum value at (x, y, z) = (1.170, 0.546, 0.160), which is
the location of the maximum value for mode b in the figure (which is mode SB in
figure 7(b)), to ensure that the magnitude and phase at this point are consistently set
to one and zero, respectively. Note the increasingly fine-grained coherent structures
for modes at higher frequencies, also featuring similar levels of unsteadiness
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FIGURE 11. Eigenvalue spectra at three angles of attack approaching (and beyond)
shock-buffet onset and corresponding spatial structure of representative modes at α = 3.75◦

showing volumetric iso-surfaces at two values (±0.02) of real part of x-momentum
component ρ̂u. Eigenvectors have been normalised by the x-momentum value at
(x, y, z) = (1.170, 0.546, 0.160) to set magnitude and phase at this point consistently to
one and zero, respectively. Wing-surface colouring describes the real part of pressure
amplitude Ĉp, while solid line is the zero-skin-friction line. Dash-dotted lines, included for
the leading shock-buffet mode SB, almost perpendicular to the shock give an indication
of how the spanwise wavelength of modes is estimated.

on the horizontal-tail plane. The richness in frequencies and spatial structures
could contribute to an explanation (yet to be established) of the often-reported
broadband-frequency nature of shock buffet on wings, which is in contrast to
aerofoil studies (Jacquin et al. 2009). Besides the five modes with their spatial
structures shown in the figure, there is a large number of unphysical modes in this
same frequency range, which neither migrate significantly with increasing angle
of attack nor emerge from the dense band/cloud of eigenvalues, but do have a
strong contribution from similar coherent structures; yet, those modes also feature
increasingly incoherent, nondescript contributions between the near- and far-field
domain.

It is intriguing to note recent biglobal stability analyses by Crouch et al. (2019),
Plante et al. (2019a) and Paladini et al. (2019a) on infinite-span geometries
assessing wing-sweep effects. The term biglobal refers to a stability analysis
in three-dimensional space with two inhomogeneous dimensions (see Theofilis
2011). The third, homogeneous direction z (the xy-plane describes the aerofoil
therein) is treated as periodic using eiβz where β is the spanwise wavenumber.
The authors contemplate unstable stationary (monotone) modes providing a spanwise
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FIGURE 12. Angular frequency (and Strouhal number) as a function of spanwise
wavenumber β for characteristic medium-frequency band of eigenmodes. Results are made
dimensionless using either mean aerodynamic chord (MAC) and free-stream speed U∞ or,
when defining a plane approximately normal to the quarter-chord line, local chord cn at the
location of coherent cellular structures and velocity U∞,n. Labelling of individual modes
follows figure 11.

three-dimensional structure to a nominally aerofoil shock-buffet mode for the unswept
wing, which turn into travelling (oscillatory) modes when wing sweep is imposed,
with the sweep angle primarily defining the overall frequency range of those modes.
Notwithstanding the so-called triglobal stability analysis on a finite-span and swept
wing conducted herein, which cautions juxtaposition, the consensus in salient and
subtle shock-buffet features is interesting indeed.

More specifically, figure 12 presents an attempt to characterise the band of
eigenvalues emerging from the dense cloud for angles of attack approaching the
onset. The figure shows angular frequency ω over spanwise wavenumber β. Note that
the estimation of β is rather rough since it is very difficult to discern fully developed
periodicity along the span for a finite wing with localised cellular pattern (which is
in contrast to the infinite-wing stability results in Crouch et al. (2019), Plante et al.

(2019a) and Paladini et al. (2019a)). The subplot in figure 11 for mode SB includes
dash-dotted lines nearly perpendicular to the shock giving an indication of how
the wavelength (l = 2π/β) of modes is estimated based on the coherent structures.
Consequently, using the classical definition of the phase velocity, the buffet cells
propagate with the speed Uc =ω/β. Based on the analysis with non-dimensionalisation
using free-stream speed U∞ and MAC, the phase speed is in the range 0.26 to 0.32,
whereby a gradual increase is observed with decreasing wavelength. The figure
includes equivalent results using instead for non-dimensionalisation the reference
values in a plane normal to the quarter-chord line with Λc/4 = 35◦, specifically
U∞,n = U∞ cos(Λc/4) and local chord length cn = c cos(Λc/4) at the location of
coherent structures, where c is approximately 2/3 MAC. It is interesting to note
(whether coincidental or not) that the leading unstable mode SB has a wavelength
l ≈ c. Besides the difficulty in establishing the length and position of a developed
spatial periodicity, also the choice of an appropriate sweep angle is equivocal since
the wing is tapered (i.e. leading-edge, quarter-chord and trailing-edge lines differ
in their respective sweep angles, so does the shock front). Based on the alternative
reference velocity and length scale, the speed of propagation takes values between
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0.30 and 0.37. Finally, the figure includes both an empirical model linking the sweep
angle to the phase speed (Paladini et al. 2019a) – in our non-dimensional notation
ω = 0.76 tan(Λ) β with sweep angle Λ = 30◦ – and results taken from Crouch et al.

(2019) at the same sweep angle. Those reference data are for spanwise-infinite wings
using the OAT15A aerofoil. The data taken from Crouch et al. (2019) have been
rescaled with respect to the reference velocity normal to the leading edge to be
consistent with the definition used in Paladini et al. (2019a). It appears that our
relevant triglobal modes discretise the continuous medium-wavelength band of modes,
first presented by Crouch et al. (2019), albeit necessary secondary geometric features
of the finite wing (such as taper and twist), suspected to modify the development of
those modes (Plante et al. 2019b). Nonetheless, triglobal stability analysis of such
infinite wings benefits clearer interpretation of biglobal studies and their relation to a
finite wing with complex geometry (He & Timme 2020).

Those additional eigenvalues with reduced decay rate also show a similar pattern
as presented by Timme & Thormann (2016) for the pre-onset condition on an
older-generation wing design, hence hinting at a universal wing buffet mechanism,
and could play a role in explaining the often-reported (and widely accepted)
broadband-frequency nature of wing shock buffet beyond onset conditions. Analysis
of corresponding conventional time-marching simulation of the saturated nonlinear
state at angle of attack α = 3.75◦, to be discussed in figure 14, will reveal that
close to instability onset the broadband nature is not well established. First recall
that the analysis herein targets the onset of the alleged Hopf oscillator called shock
buffet and not fully developed shock-buffet conditions well beyond onset angle
of attack. A second contributing point in this discussion concerns the inherent
nonlinearity of the dynamics of shock-wave/boundary-layer interaction, which is
elucidated later with the help of figures 14 through 17. Third, when thoroughly
comparing with experimental data, the flexible wing structure exposed to a noisy
testing environment must not be ignored at these extreme flow conditions, which
makes the aerodynamics-only shock-buffet instability and the structural buffeting
response a multidisciplinary challenge indeed. The current results shed light on a
pure aerodynamic instability but at the same time cannot explain everything that is
going on in the wind tunnel. For instance, Masini et al. (2017, 2020) reported
distinct lower-frequency shock dynamics, even before the onset of a structural
buffeting response in the root strain-gauge signal, with an inboard propagation
direction and widely extending along the span. The frequency content is stated to
be in the range of aerofoil shock-buffet frequencies, whether this is coincidental
or not. Similar behaviour was briefly mentioned by Dandois (2016). Numerically,
small-amplitude forced wing vibration also revealed resonant aerodynamic response
for St ≈ 0.1, besides the accepted shock-buffet range with St ≈ 0.3 to 0.7 (Timme &
Thormann 2016; Belesiotis–Kataras & Timme 2018). In any case, our computations
paid special attention to these lower frequencies trying to identify another absolute
instability mechanism, without success. Nevertheless, these findings in the transonic
flow over a wing do not rule out an additional instability of convective nature
(i.e. a noise amplifier) and pseudo-resonance due to the non-normality of the
governing equations (Trefethen et al. 1993; Sipp et al. 2010; Sartor et al. 2015).
Finally, eddy-resolving simulation is required to better account for the influence of
strong turbulent fluctuations resulting from the shock-wave/boundary-layer interaction.
Having said this, while Sartor & Timme (2017) observed a broadband nature due to
irregular shock dynamics and patterns of flow separation using delayed detached-eddy
simulation as well as unsteady RANS modelling well beyond shock-buffet onset,
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Masini, Timme & Peace (2019) demonstrated far less pronounced broadbandedness
in the shock-buffet dynamics using similar scale-resolving simulation in close vicinity
to the onset on a rigid wing.

The argument is made that our results qualitatively and quantitatively reproduce
findings documented in existing literature reporting on wing shock-buffet features.
Inspecting the data-based modes from dynamic mode decomposition (in contrast
to our operator-based modes (Taira et al. 2017)) identified from a detached-eddy
simulation on the 80 %-scale model of the same wing in well-established shock-buffet
condition (Ohmichi et al. 2018), frequencies, spatial structures and their locations
agree nicely overall, despite a discarded fuselage geometry therein. The latter
numerical study itself followed the experimental campaign, mentioned earlier, at
reduced Reynolds number documented in Koike et al. (2016) and Sugioka et al.

(2018). On an older 1970s wing, experimental and numerical work revealed the
shock-buffet cells, albeit positioned further outboard towards the wing tip (Lawson
et al. 2016; Sartor & Timme 2017; Masini, Timme & Peace 2018; Masini et al. 2019,
2020). Other notable work includes the analysis of wind tunnel data on different
transport-type wings (Dandois 2016; Paladini et al. 2019b) and the hierarchical
study of canonical geometric complexity (such as wing sweep) and its impact on
shock-buffet characteristics using time-marching unsteady RANS (Iovnovich & Raveh
2015; Plante et al. 2019b) and biglobal stability theory (Crouch et al. 2019; Plante
et al. 2019a; Paladini et al. 2019a). Reflecting on such biglobal work, salient and
subtle features of the instability seem consistent. More specifically, He & Timme
(2020) demonstrate for the infinite wing how triglobal analysis, which is fully
equivalent to the methods used herein, reproduces the continuous band of spanwise
modes in the medium-wavelength range discretely (cf. figure 12). Crouch et al.

(2019) contemplate the broadbandedness on swept wings to result from an (as yet
unquantified) interaction of modes.

4.2. Symmetry and anti-symmetry

The discussion continues with a study of the impact of (not) enforcing symmetry
boundary condition at the fuselage centre plane. Figure 13 shows the relevant part
of the eigenspectra for the half- and full-span models at angle of attack α = 3.75◦.
Labelling of eigenmodes follows figure 11. We observe pairs of eigenvalues (not
referring to the complex conjugate pairs, which exist, too), labelled with subscripts
S and A for symmetric and anti-symmetric, respectively. At first glance, the unstable
eigenvalue (labelled b) seems to have approximately algebraic multiplicity of 2. For
the remaining dominant eigenvalues, one of each pair coincides with the half-span
result, while the second one is slightly shifted. This behaviour was scrutinised in
more detail. Appreciating that we use iterative solution methods with an approximate
linear solver, convergence criteria imposed on base flow (10−13) as well as inner
(10−9) and outer (10−8) Krylov methods were further reduced by two orders of
magnitude compared with parameter settings in table 1. The results suggest that also
the eigenvalues with positive growth rate are distinct. Similar modal characteristics
were observed by He et al. (2017) for an elliptic wing at low Reynolds number.
Note that these pairs of eigenmodes were calculated independent of the chosen shift
ζ . Most importantly, the corresponding pairs of eigenvectors show symmetric and
anti-symmetric behaviour. Specifically, for the symmetric case, coherent structures of
all conservative variables are mirrored with respect to the fuselage centre plane, such
as ρ̂uport = ρ̂ustarboard, except the y-momentum component with ρ̂vport = −ρ̂vstarboard,
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FIGURE 13. Eigenvalue spectra for half- and full-span computations and corresponding
spatial structure of representative full-span modes showing iso-surfaces at two values
(±0.02) of real part of x-momentum component ρ̂u. Eigenvectors have been scaled by
the x-momentum at (x, y, z) = (1.170, 0.546, 0.160) to set magnitude and phase at this
point consistently to one and zero, respectively. Wing-surface colouring describes real part
of pressure amplitude Ĉp, while solid line is zero-skin-friction line. Subscripts S and A
indicate symmetric and anti-symmetric modes, respectively. Symmetric modes correspond
to half-model results in figure 11.

and vice versa for the anti-symmetric modes. Agreement of the symmetric full-span
modes with the half-span results is expected since symmetry boundary condition
is consistently enforced in the half-span simulation set-up. The occurrence of
anti-symmetric modes means that the dynamic manifestation of the shock-buffet
instability on starboard and port sides of the aircraft does not have to be synchronised.
Hence, the dynamical system permits realistic non-symmetric perturbations, as should
be expected in general.

4.3. Time-marching analysis

To further support the findings, integrated and distributed time-marching unsteady
RANS results are consulted. Integrated aerodynamic coefficients of lift and drag,
specifically the perturbations around the base-flow solution, exemplified in the
following for the lift coefficient as C̃L = CL − C̄L, are shown in figure 14(a–c)
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FIGURE 14. Time histories of integrated coefficients around base-flow solution showing
(a) initial linear regime of lift coefficient from time-marching unsteady RANS simulations,
bracketing buffet onset between α = 3.50◦ and 3.75◦, and comparison with signal
reconstructed from unstable eigenmode at α =3.75◦, and (b) and (c) the effect of nonlinear
saturation on coefficients of lift and drag, respectively. Chosen instantaneous time steps to
be presented in figures 15 and 16 are indicated by Roman numerals in (d) for the final
cycles of the linear regime, just before nonlinear effects become dominant, and (e) and
( f ) for the saturated nonlinear regime.

as a function of non-dimensional time t. Figure 14(d–f ) gives the corresponding total
values of the same coefficients during one fundamental oscillation cycle together with
an indication of the time steps where distributed surface pressures will be presented
in figures 15 and 16 for the linear and nonlinear regime, respectively. Conventional
time-marching results at angle of attack α =3.75◦ are also compared with the unsteady
aerodynamic coefficient calculated from the unstable global mode using, e.g. for the
lift coefficient, the relation C̃L(t) = ĈL eλt + c.c. The latter equation ensures that a
real-valued physical signal is reconstructed from the complex-valued eigenmode, with
the eigenvector prescribing magnitude and phase of a damped harmonic oscillator in
each mesh point and flow variable, and with oscillation frequency (and exponential
envelope function) provided by the eigenvalue. Conveniently, the complex-valued
amplitude of e.g. the lift coefficient, denoted ĈL, is calculated directly from the
eigenvector using the expression ĈL = ∂CL/∂u · û, which is widely known in the
context of (dynamic) derivative and adjoint gradient computations. In essence, the
latter equation provides the integration of the conservative variables over solid walls.
The partial derivative ∂CL/∂u, computed once for the base flow to describe the lift
dependence on the conservative variables, is a functionality readily available in the
chosen flow solver and generalises to any integrated aerodynamic load. This means
that post-processing is very effective without the need otherwise to feed the computed
unsteady field solution of the conservative variables, which can also be reconstructed
from the eigenmode (cf. equation (2.1)), back into the nonlinear flow solver. Since the
eigenvector û can be scaled arbitrarily, and the time-marched solution is integrated in
time from an initial condition of white noise, its magnitude is adjusted manually to
align with the time-domain results.
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FIGURE 15. Time evolution of unstable eigenmode showing disturbance in surface
pressure coefficient, C̃p = Cp − C̄p, at six time steps during one oscillation cycle;
cf. figure 14(d). Instantaneous reverse-flow regions are indicated by the dark grey
zero-skin-friction lines.
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FIGURE 16. Time evolution of surface pressure coefficient, Cp, at six time steps during
one fundamental, nonlinearly saturated oscillation cycle; cf. figure 14(e, f ). Instantaneous
reverse-flow regions are indicated by the dark grey zero-skin-friction lines.

In figure 14(a), time histories of the lift coefficient locate the onset of shock-buffet
instability between angles of attack α = 3.50◦ and 3.75◦. No attempt is made to
refine this bracket further using time-marching simulations. Agreement between the
conventional time-marching simulation and global stability analysis is excellent in
the linear-amplitude regime up to approximately non-dimensional time t = 95. When
growing from white-noise disturbances due to imperfectly converged base flow, the
initial linear dynamics is dominated by the leading eigenmode. Since the underlying
physics of wing shock buffet is highly nonlinear, nonlinear saturation leading to
limit-cycle oscillation is expected. This behaviour is made clearer in figure 14(b,c)
for coefficients of lift and drag, respectively. With a base-flow lift coefficient of
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C̄L = 0.6058, the amplitude nonlinearity takes over when the unsteady lift perturbation
reaches approximately 0.15 % of its base-flow value. The terminal limit-cycle
amplitude reaches about 0.45 % of the base-flow value with its time-averaged mean
dropping approximately 1.5 % below the base-flow lift coefficient. Recall that stability
analysis of the steady base flow, which is a solution of the discretised nonlinear RANS
equations (plus turbulence model), is performed herein. In contrast, the time-averaged
mean flow is not such an equilibrium solution. Subtleties of this distinction have
been discussed in the past (e.g. in Barkley (2006), Sipp & Lebedev (2007) and
Mettot et al. (2014)). With a base-flow drag coefficient of C̄D = 0.04196, similar
values are found for the drag coefficient albeit the time-averaged mean increasing
by seven drag counts, highlighting the inevitable drag penalty. The low limit-cycle
amplitude at angle of attack α = 3.75◦ confirms the vicinity to the instability onset
(and possibly the existence of a supercritical Hopf bifurcation). Also observe the
rather regular oscillations in the nonlinear regime, albeit clear higher harmonic
contributions, as seen in figure 14(e) and ( f ) for one oscillation cycle, compared with
the single-harmonic exponential growth in figure 14(d). The presented time window
of three non-dimensional time units in figure 14(d–f ) was deliberately chosen trying
to highlight the increase in oscillation frequency in the nonlinear regime. Fourier
analysis of the linear stage shows a peak at about ω = 2.36 (St = 0.376), obviously
corresponding to the rightmost eigenvalue, whereas this shifts to ω = 2.62 (St = 0.417)
during the nonlinear response.

Figures 15 and 16 show the time evolution of the surface pressure coefficient in
the outer wing region at six time steps during one fundamental period of oscillation,
as indicated in figure 14(d–f ). For the sake of clarity, since pressure fluctuations
in the linear regime are too insignificant to deform the shock discernibly, figure 15
visualises only the linear perturbation in pressure coefficient around the base flow,
C̃p = Cp − C̄p. As explained just above for the unsteady lift coefficient, for the
flow-field reconstruction from the leading (unstable) eigenmode, the expression
C̃p(x, t) = Ĉp(x) eλt + c.c. is used. For the linear regime, the discussion can mostly
follow the description of the spatial structure of the unstable eigenmode in figure 10.
We can see pressure perturbations travelling along the shock towards the wing tip
together with the pressure footprint of the pulsating shear layer between η = 0.660 and
0.727 outboard of the instantaneous reverse-flow region, which itself closely resembles
the base flow. This suggests that the flow unsteadiness is not substantial enough to
break up the enclosed separation pattern, which is in contrast to the nonlinear regime
discussed in figure 16. The repeated spanwise outboard (and chordwise downstream)
propagation of localised buffet cells is indeed corroborated. The phase speed Uc

of those cellular patterns along the span just downstream of the shock position is
cautiously estimated from this spatial structure and is found to be about Uc ≈ 0.28
(normalised by free-stream speed U∞), which agrees nicely with figure 12.

Figure 16, on the other hand, presents the total values in the nonlinear regime to
emphasise the spanwise shock oscillation and highly irregular localised reverse-flow
patterns. Comparing with figure 15, there are clear signs that the unsteadiness
is sustained through the linear instability. For instance, the innermost position of
shock deformation around η = 0.603 agrees with the spatial amplitudes of the
eigenmode, the shock deformation itself emerges from the nonlinear amplification
of the instability, and its direction of travel remains outboard. In contrast, the shock
disturbance is substantial enough to break up the outermost portion of the otherwise
enclosed reverse-flow region irregularly. Also, those strong shock disturbances
travelling outboard result in localised pockets of separation up to η = 0.846, with the
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FIGURE 17. Standard deviation of surface pressure coefficient, Cp,stdev , in the nonlinear
regime, computed in a duration of approximately 30 non-dimensional time units, over
the entire wing surface and selected outboard spanwise stations. Pressure coefficients of
base flow (solid black line) and mean flow (dashed dark grey line) are included for
orientation. Also shown is mean-flow reverse-flow region in the surface plot (dark grey
line). Experimental root-mean square data of pressure fluctuations for spanwise station
η = 0.603 at angles of attack α = 3.35◦ (E) and 3.88◦ (u) were taken from Koike et al.
(2016) (at Re ≈ 1.5 × 106) to bracket α = 3.75◦ discussed herein.

average chordwise shock position moving upstream, which is reflected in the reduced
time-averaged lift coefficient seen in figure 14(b).

The last observation is made clearer in figure 17 showing the standard deviation
of the surface pressure coefficient, similar to the magnitude plot in figure 10.
The graphs focussing on different spanwise stations additionally include both the
base-flow and mean-flow pressure distributions. The surface plot of the standard
deviation resembles in parts the results from the eigenvector, and effectively follows
what has been discussed in figure 16. The region of shock unsteadiness is more
widespread, both chordwise and spanwise. A distinct region can be observed between
η = 0.727 and 0.846, which is the location where the prominent ripple of shock
deformation disappears (see for instance time step V in figure 16). Downstream
of this region, highest values in shear-layer activity can be observed, even though
increased unsteadiness in the shear layer, compared with the linear dynamics, can be
identified over a wider spanwise extent. Note that, despite finding localised pockets of
flow separation instantaneously, the time average remains enclosed, albeit a reduced
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spanwise extent compared with the base flow. Looking into detail, the activity on the
upper surface at spanwise station η = 0.502 compared with the lower one is higher,
which is in contrast to the eigenmode at this station (cf. figure 10). Also, while
station η = 0.660 in figure 10 was most pronounced in terms of shock unsteadiness,
the remaining stations in figure 17 all show a similar level of pressure fluctuations.
The chordwise extent of activity is increased due to the more substantial shock
deformation, which also reaches closer to the wing tip. Finally, a smearing of the
mean-flow shock compared with the crisp base-flow discontinuity can be reported.
The spanwise station η = 0.603 also includes experimental results taken from Koike
et al. (2016). Surprisingly good agreement is observed, despite a lack of pressure
sensors between about x/c = 0.36 and 0.50 and the differences pointed out earlier
when discussing figure 10. Unfortunately, experimental time-resolved and spectral
data analysis closer to the onset angle of attack for the 80 %-scale model has not
been published (Sugioka et al. 2018).

5. Conclusions

Eigenmodes of a practical test case with three inhomogeneous spatial dimensions,
specifically an aircraft wing in high-Reynolds-number, turbulent and transonic flow,
have been computed. A matrix-forming iterative scheme of an inner–outer Krylov
structure, implemented in an industrial Reynolds-averaged Navier–Stokes flow solver,
succeeds in identifying an absolute instability linked to shock-buffet onset on a
finite and swept wing for the first time. Albeit using computational aerodynamics
with turbulence modelling for the Reynolds stresses, these fundamental results
suggest that the incipient departure of shock-buffet unsteadiness from a nonlinear
steady base flow is governed by the dynamics of a single unstable oscillatory
eigenmode, which eventually is superseded by effects of nonlinear saturation.
Increasing the angle of attack beyond onset condition, additional modes from a
group of modes, exhibiting reduced decay rate in the vicinity of instability onset and
lying within the broadband-frequency range typical reported for large transport-type
wings, become unstable. Those physically relevant modes belong to a characteristic
medium-wavelength mode form with spanwise wavelengths approximately equal
to the local chord, previously identified for infinite wings. Contrary to previous
numerical work on infinite straight and swept, untapered configurations, an absolute
instability of an aerofoil-like, almost two-dimensional, long-wavelength mode is not
established herein, and in this matter the role of the complex wing geometry needs
further scrutiny. For the modern wing design of the NASA Common Research Model
discussed in this work, the investigated flow condition is a Mach number of 0.85
with reference-chord Reynolds number of 5.0 × 106. Onset occurs just above angle
of attack 3.70◦ with a Strouhal number of approximately 0.39. The spatial structure
of the unstable mode itself, generalising the concept of an aerofoil buffet mode to
finite wings, to describe the shock-buffet dynamics, confirms what has been coined
shock-buffet cells and inferred previously from numerical and experimental studies
on wings.

The numerical findings are surprising in light of the often-used broadband-frequency
explanation of three-dimensional shock buffet and have far-reaching implications,
going beyond a mere better understanding of edge-of-the-envelope flow physics.
This study will inform routes to buffet control via eigenvalue sensitivity and when
attempting to establish rapid shock-buffet prediction tools for routine industrial
unsteady aerodynamic analysis, such as reduced-order models based on a modal-
decomposition-and-projection philosophy. The successful adaptation of an industrial
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flow solver paves the way to exploit concepts, established in fundamental fluid
mechanics research on mostly canonical test cases, in an applied and practical setting.
It is anticipated that higher-fidelity eddy-resolving simulations on the rigid wing, to
overcome well-known inherent issues of turbulence modelling, will reveal similar
low-frequency buffet modes albeit a variety of associated feature-rich phenomena.
With an absolute instability confirmed, the role of convective mechanisms in
shock-buffet flow physics on wings remains to be scrutinised. In the long-term,
fully coupled fluid–structure analysis is desirable when considering the innate
multidisciplinary nature of such edge-of-the-envelope flight physics.
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Appendix A. Mesh convergence

In figure 18 (together with figure 7(b) for the top view on the medium mesh) a
mesh convergence study is offered to build confidence in the shock-buffet physics
presented herein. The slices in the right column, showing the x-momentum component
ρ̂u, are taken at constant η = 0.660, which locates them approximately at the centre
of the three-dimensional spatial structure. Gradually converging results with respect
to the mesh density is confirmed; for instance, the features of the spatial structure
become more refined with increasing mesh size. Concerning the corresponding
eigenvalues (cf. table 2), it is the rightmost eigenvalue in the shock-buffet frequency
range, identified in either case. Whereas the growth rate on the coarsest mesh with
3.1 × 106 points still indicates stable conditions, the two finer meshes predict the
instability. Despite a remaining sensitivity in growth rate, the frequencies agree nicely
throughout, offering sufficient convergence, as also demonstrated by a relative error
of less than 2 % between medium and fine mesh.

Appendix B. Properties of inner–outer Krylov method

Figure 19 and table 3 aim to establish numerical credibility of presented eigenmode
data. In figure 19(a), the norm of the Rayleigh quotient error, |λ − û

H
J û|, and the

residual norm of the eigenvalue problem, ‖J û − λû‖, are shown for all computations
at angles of attack α = 3.50◦ and 3.75◦ (being the focus of this study). The default
unit-length eigenvector with ‖û‖=1 is used. These two complementary error measures
have previously been reported in Burroughs et al. (2001). The data back the parameter
choices made for a robust solution strategy. In the figure, the residual norm does not
agree with the convergence criterion set on the outer iteration (cf. table 1), which
is due to ARPACK’s approach of assessing convergence based on the Hessenberg
matrix, which itself results from the preconditioned shift-and-invert system (Lehoucq
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FIGURE 18. Mesh refinement for rightmost eigenmode showing (a) volumetric iso-
surfaces at two values (±0.02) of the x-momentum component ρ̂u for coarsest and finest
mesh (see figure 7(b) for medium mesh) and (b) real part of x-momentum at constant
spanwise station η = 0.660. Eigenvectors have been scaled by their respective maximum
value in x-momentum, indicated by the yellow spheres, to compare results on different
meshes.

Mesh points (×106) Eigenvalue (σ , ω) Relative error (%)

3.1 −0.163, 2.330 13.5
6.2 0.156, 2.371 �

8.4 0.115, 2.361 1.8

TABLE 2. Mesh convergence of rightmost shock-buffet eigenvalue. Relative error is
calculated as |1 − λ/λ6.2M| where λ6.2M refers to the eigenvalue on the medium mesh
(6.2 × 106 points).

et al. 1998). The isolated group in the lower left corner was identified from solving
an adjoint problem corresponding to equation (2.3), specifically J

†
v̂ = λ∗

v̂ with J
† as

adjoint matrix, v̂ as the left/adjoint eigenvector and λ∗ = σ − iω as complex conjugate
eigenvalue, keeping all other parameters the same. Such favourable convergence
should be exploited in future studies. Multiple converged solutions for the same
unstable mode at α = 3.75◦ due to overlapping search regions are highlighted by red
dots in figure 19(a). In figure 19(b), coverage of the relevant part of the eigenspectrum
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FIGURE 19. Sanity checks on convergence and coverage of eigenmode computations
showing (a) norm of Rayleigh quotient error |λ− û

H
J û| vs. residual norm of eigenvalue

problem ‖J û − λû‖ for all computations at α = 3.50◦ and 3.75◦ and (b) intersection and
union of solutions based on individual shifts at α = 3.75◦. Red dots in (a) are the multiple
solutions of the unstable mode at 3.75◦. Black dots in (b) are shift locations.

Outer tolerance Inner tolerance Eigenvalue (σ , ω) ‖J û − λû‖

10−5 10−4 0.1560, 2.3704 10−2

10−5 0.1565, 2.37066 10−3

10−6 0.156474, 2.370608 10−4

10−6 10−5 0.1565, 2.37066 10−3

10−6 0.156474, 2.370608 10−4

10−7 0.1564732, 2.370603 10−5

10−8 0.1564734, 2.370603 10−6

10−9 0.1564734, 2.370603 10−7

10−7 10−6 0.156474, 2.370608 10−4

10−7 0.1564732, 2.370603 10−5

10−8 0.1564734, 2.370603 10−6

10−9 0.1564734, 2.370603 10−7

10−10 0.1564734, 2.370603 10−8

TABLE 3. Convergence of leading (unstable) eigenmode depending on tolerances of inner
and outer iterations using a shift of ζ = 2.5i. Size of Krylov space for outer iterations is
25 throughout. Eigenvalues (σ , ω) are truncated at seven significant digits, and residual
norm ‖J û − λû‖ is rounded to closest order of magnitude.

(based on engineering judgement) is sufficient and has a large overlap. The radius
of a circle describes the greatest distance between a shift (black dots in the figure)
and any of its converged eigenvalues. While such an approach in finding rightmost
eigenvalues appears naive, mathematically rigorous algorithms to compute those
eigenvalues directly (see for example Elman et al. (2012) and Timme et al. (2012))
do not seem feasible for the problem size, as yet. In the search for an absolute
instability at lower frequencies (see the discussion in § 4.1), numerous additional
eigenmode computations with different shifts did not converge to such sought mode.
Note that such a globally unstable mode would be isolated from the dense cloud
assisting the shift-and-invert Arnoldi method in detecting it more easily. This further
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supports the notion of a non-existing absolute instability in the frequency range
St / 0.1.

Table 3 summarises a succinct investigation of the convergence properties of the
iterative solution method. A number of 25 Krylov vectors is used throughout for the
outer iterations. Different tolerances are imposed on inner and outer loops, and the
convergence of the leading unstable eigenmode, based on a chosen shift ζ = 2.5i, is
monitored. The table shows both the eigenvalue λ itself and the Euclidean norm of the
residual, ‖J û −λû‖. Two observations can be stated immediately. First, for the chosen
numerical scenario, the variation of outer convergence tolerance is ineffective. This can
be explained by the target mode’s isolation from other modes. Second, convergence,
demonstrated both through the number of significant digits of the eigenvalue and the
residual norm, is proportional to the inner tolerance. These tests reaffirm the chosen
default settings, as presented in table 1. During these computations also a second
mode, specifically the least stable mode in figure 6, denoted mode c in figure 11,
with eigenvalue (σ , ω) = (−0.132, 2.728), got identified but is not included in the
table. The conclusions concerning convergence properties remain the same.

Additionally, the size of the outer Krylov space, using values between 10 and
100, was scrutinised (results of which are not shown herein explicitly either). Even
the smallest Krylov space allows the computation of the unstable mode at similar
convergence levels, which makes the presented stability method very competitive
compared with time-marching unsteady RANS to gain rapid engineering insight into
the phenomenon during wing design. If more modes are desired, the Krylov space
must be increased accordingly.
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