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Abstract We present new observations of pyroclastic deposits on the surface of Mercury from data

acquired during the orbital phase of the MErcury Surface, Space ENvironment, GEochemistry, and Ranging

(MESSENGER) mission. The global analysis of pyroclastic deposits brings the total number of such identified

features from 40 to 51. Some 90% of pyroclastic deposits are found within impact craters. The locations of

most pyroclastic deposits appear to be unrelated to regional smooth plains deposits, except some deposits

cluster around the margins of smooth plains, similar to the relation between many lunar pyroclastic deposits

and lunar maria. A survey of the degradation state of the impact craters that host pyroclastic deposits

suggests that pyroclastic activity occurred on Mercury over a prolonged interval. Measurements of surface

reflectance by MESSENGER indicate that the pyroclastic deposits are spectrally distinct from their

surrounding terrain, with higher reflectance values, redder (i.e., steeper) spectral slopes, and a downturn at

wavelengths shorter than ~400 nm (i.e., in the near-ultraviolet region of the spectrum). Three possible causes

for these distinctive characteristics include differences in transition metal content, physical properties (e.g.,

grain size), or degree of space weathering from average surface material on Mercury. The strength of the

near-ultraviolet downturn varies among spectra of pyroclastic deposits and is correlated with reflectance at

visible wavelengths. We suggest that this interdeposit variability in reflectance spectra is the result of either

variable amounts of mixing of the pyroclastic deposits with underlying material or inherent differences in

chemical and physical properties among pyroclastic deposits.

1. Introduction

Multispectral images of Mercury acquired during three flybys by the MErcury Surface, Space ENvironment,

GEochemistry, and Ranging (MESSENGER) spacecraft [Solomon et al., 2008] revealed a number of sites on the

surface that were identified as pyroclastic deposits formed through explosive volcanic processes [Head et al.,

2008, 2009;Murchie et al., 2008; Robinson et al., 2008; Blewett et al., 2009; Kerber et al., 2009, 2011]. These sites

are all characterized by high-reflectance deposits with diffuse borders that are approximately centered on

irregularly shaped, rimless pits. The deposits have a “red” spectral slope (i.e., reflectance increases with

increasing wavelength) [Blewett et al., 2009; Kerber et al., 2009, 2011]. The central pits are interpreted to be the

source vents for the pyroclastic deposits [Kerber et al., 2011].
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These pyroclastic deposits provide insight into the abundances, composition, and distribution of volatiles in

Mercury’s interior [Kerber et al., 2009; Zolotov, 2011]. Moreover, their presence constitutes an important

constraint on the formation of the inner solar system, because Mercury’s crust and mantle are not as volatile

depleted as predicted by most earlier formation models for the innermost planet [Cameron, 1985; Benz et al.,

1988; Boynton et al., 2007; Solomon et al., 2007; Kerber et al., 2009, 2011]. The possibility of explosive volcanism

on Mercury had been suggested on the basis of analysis of Mariner 10 images [e.g., Rava and Hapke, 1987;

Robinson and Lucey, 1997], but the large number of deposits identified from flyby images [Kerber et al., 2011]

was surprising, and the distribution and geological setting of these deposits yielded new and important clues

to Mercury’s complex geologic evolution.

FromMercury Dual Imaging System (MDIS) [Hawkins et al., 2007] images acquired during MESSENGER’s three

flybys of Mercury, Kerber et al. [2011] compiled a catalog of 40 pyroclastic deposits. The deposits are primarily

located on the floors of impact craters and along the rim of the Caloris impact basin [Kerber et al., 2011].

Deposits were identified by high-reflectance, spectrally red terrain surrounding irregularly shaped, rimless

pits. The radial extent of 35 of the 40 deposits was found to range from ~7 to 71 km [Kerber et al., 2011].

Together with a ballistic trajectory model, these radial extents were used to estimate the volatile content

needed to emplace pyroclastic material to these distances from the source vent. Calculations indicated

volatile contents of ~1600–16,000 ppm CO (or an equivalent amount of other volatile species) [Kerber et al.,

2011], figures far larger than those previously hypothesized for Mercury’s interior [e.g., Boynton et al., 2007;

Kerber et al., 2011]. Kerber et al. [2011] also used MDIS color images to show that none of the identified

pyroclastic deposits displays a 1000 nm absorption feature in its reflectance spectrum that would be

indicative of a crystal field effect produced by octahedrally coordinated Fe2+ bound in the structure of silicate

minerals [Burns, 1993a].

Although MESSENGER flyby data were sufficient to recognize many of the pyroclastic deposits on Mercury

[Head et al., 2008, 2009;Murchie et al., 2008; Robinson et al., 2008; Blewett et al., 2009; Kerber et al., 2009, 2011],

the insertion of the MESSENGER spacecraft into orbit about Mercury on 18 March 2011 has provided images

at higher spatial resolution and with more complete spatial coverage than were available during the three

flybys, as well as such additional global data sets as spectral reflectance and topography. In this paper, we use

orbital observations to augment the earlier catalog of pyroclastic deposits developed by Kerber et al. [2011]

and to characterize those deposits in greater detail. Specific goals of this analysis are (1) to determine the

morphometry of the vents associated with the pyroclastic deposits, (2) to assess whether these deposits

tend to occur in specific settings or in association with specific geologic units, (3) to estimate the relative age

of these deposits and their associated pyroclastic activity, and (4) to further our understanding of the spectral

characteristics of the pyroclastic deposits.

2. Data Sets Used

To address the goals of this study, we used three data sets from instruments on the MESSENGER spacecraft.

The distribution and the morphometry of the deposits and associated vents were investigated with narrow-

angle camera (NAC) and wide-angle camera (WAC) images obtained with MDIS. The spatial resolution of the

utilized images ranged from ~15 to 200m/pixel for the NAC and ~60 to 500m/pixel for the WAC. Because

of MESSENGER’s highly eccentric orbit and high northern periapsis [Solomon et al., 2007], the spatial

resolution of MDIS NAC and WAC images depend on latitude; images at high northern latitudes have

markedly higher spatial resolution than images of the southern hemisphere. However, a global campaign

of mapping the surface of Mercury at ~250m/pixel with MDIS has been completed, and the global MDIS

NAC- and WAC-derived mosaic at ~250m/pixel was also utilized in this study when no images of higher

resolution were available. Analyzed MDIS NAC, WAC, and mosaic images were geographically referenced

using the U.S. Geological Survey’s Integrated Software for Imagers and Spectrometers. These data were

then analyzed in Environmental Systems Research Institute’s ArcMap geographic information system

software, which allows for coregistration of an array of data sets.

Vent depths were determined from topographic profiles obtained with the Mercury Laser Altimeter (MLA)

instrument [Cavanaugh et al., 2007]. The MLA instrument measures the range from the MESSENGER

spacecraft to a point on the surface of Mercury, with a footprint diameter of ~15–100m and an along-track

spacing of ~400m [Cavanaugh et al., 2007; Zuber et al., 2012]. The topographic datum for analyzed MLA data
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is a sphere of radius 2440 km. MLA has a range precision (i.e., shot-to-shot vertical precision) of <1m under

nadir-viewing conditions, and the accuracy of the topography with respect to Mercury’s center of mass is

<20m [Cavanaugh et al., 2007; Zuber et al., 2012].

Individual MLA measurements of elevation were analyzed alongside coregistered MDIS images to obtain

topographic information for the pyroclastic source vents. Although MLA profile measurements have been

interpolated to produce gridded topographic data sets, the resolution of the gridded dada is insufficient

for measuring features of small areal extent. Whereas the along-track spacing of MLA footprints remains

relatively constant at ~400m [Cavanaugh et al., 2007; Zuber et al., 2012], the track-to-track spacing increases

with increasing distance fromMESSENGER’s periapsis latitude, and there is little southern hemisphere coverage

by MLA because the spacecraft altitude is too high for laser ranging [Cavanaugh et al., 2007; Solomon et al.,

2007]. Available MLA profiles across individual pyroclastic source vents are therefore sparse at this time.

The spectral reflectance of pyroclastic deposits was investigated with two data sets. MDIS WAC eight-filter

color images were used to assess the general spectral signature of the pyroclastic deposits. Although the

MDIS WAC camera has 11 color filters, with band centers ranging from ~430 to 1010 nm [Hawkins et al., 2007],

the mapping phase of MESSENGER’s primary orbital mission concentrated on the acquisition of a global

mosaic of eight-filter color images, obtained with band pass filters that have wavelength centers at ~430, 480,

560, 630, 750, 830, 900, and 1000 nm [Hawkins et al., 2007]. All analyzed MDIS color images were

photometrically corrected using the Hapke model of Domingue et al. [2010, 2011], which normalizes the data

to an incidence angle of 30°, an emission angle of 0°, and a phase angle of 30°. The high spatial resolution of

MDIS color images provides an excellent basis for locating and identifying the boundaries of pyroclastic

deposits [e.g., Blewett et al., 2009; Kerber et al., 2009, 2011], but the low spectral resolution is not as favorable

for detailed spectral characterization.

To perform such analyses, higher spectral resolution data from the Visible and Infrared Spectrograph (VIRS)

portion of the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) instrument [McClintock

and Lankton, 2007] were analyzed. VIRS is a point spectrometer with a 0.023° field of view that collects

reflectance data from the surface of Mercury across the wavelength range ~300–1450 nm at a spectral

resolution of ~5 nm [McClintock and Lankton, 2007]. VIRS has two spectral channels, one in the ultraviolet (UV)

to visible (VIS) region from ~300 to 1050 nm, and one in the near-infrared (NIR) region from ~850 to 1450 nm.

Because the NIR channel of the VIRS instrument is susceptible to noise at the elevated temperatures

experienced on Mercury’s dayside, however, only data from the UV–VIS channel of the VIRS instrument

were analyzed here. The analyzed MASCS data were converted to reflectance using the techniques

described in detail by Holsclaw et al. [2010], and a first-order photometric correction was applied as

described by Izenberg et al. [2014], which normalizes the MASCS data to incidence and emission angles of

45° and a phase angle of 90°.

3. Update to the Global Catalog of Pyroclastic Deposits

To build on the global catalog of pyroclastic deposits presented by Kerber et al. [2011], we examined MDIS

NAC and WAC images from the first 10months of MESSENGER’s orbital mission phase to seek evidence for

rimless depressions that could be source vents for pyroclastic deposits [Kerber et al., 2009, 2011]. Identified

candidate pyroclastic vents were studied with individual MDIS WAC eight-filter color images to determine

their spectral signature.

In order to be added to the global catalog of pyroclastic deposits, newly identified candidate vents had

to exhibit two distinct spectral characteristics associated with pyroclastic deposits previously identified

on Mercury: (1) they must be associated with a high-reflectance deposit having diffuse boundaries and

(2) they must have a red spectral signature compared with surrounding terrain [Head et al., 2008, 2009;

Murchie et al., 2008; Robinson et al., 2008; Blewett et al., 2009; Kerber et al., 2009, 2011] (e.g., Figure 1).

These criteria also help to distinguish the identified candidate vents from collapse pit features, which

have a similar morphology to the pyroclastic source vents but may be linked to endogenic activity

unrelated to pyroclastic volcanism [e.g., Gillis-Davis et al., 2009]. Furthermore, it is important to note

that any pyroclastic deposit that has had its associated source vent buried by younger material (e.g.,

volcanic flows or crater ejecta) would not be identified in this work. Such deposits could potentially be
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identified from global MDIS color mosaics, in a manner similar to the technique employed by Kerber

et al. [2011].

With these criteria, 10 newly identified pyroclastic deposits and corresponding source vents were added

to the global catalog (Figure 2), along with the pyroclastic deposit located in the Tyagaraja crater

identified by Blewett et al. [2011], bringing the total in the catalog to 51 deposits. The earlier convention

for naming pyroclastic deposits [Kerber et al., 2011] was followed with the newly identified deposits

(Table 1). As with the previous catalog [Kerber et al., 2011], the current catalog shows that pyroclastic

deposits are relatively evenly distributed across the surface of Mercury and display minimal regional

clustering (Figure 2). However, there does appear to be some degree of local clustering of pyroclastic

deposits along the southern rim of the Caloris impact basin (Figure 2, cyan circle) as well as in and around

large impact craters, such as Praxiteles (Figure 2, orange arrow) and Lermontov (Figure 2, green arrow)

[Head et al., 2008, 2009; Murchie et al., 2008; Kerber et al., 2011]. Furthermore, all of the newly identified

pyroclastic deposits are located in the interiors of impact craters and basins, with the exception of the

N Rachmaninoff deposit, which is located in cratered terrain north of the Rachmaninoff basin. This

Figure 2. Locations of the 40 previously identified pyroclastic deposits (red circles) [Kerber et al., 2011], the 10 pyroclastic

deposits newly identified here (yellow circles), and the Tyagaraja pyroclastic deposit (purple circle) [Blewett et al., 2011]. An

approximate outline of Caloris basin is shown with a cyan dashed line, the location of Lermontov crater is indicated by a

green arrow, and the location of Praxiteles crater is indicated by an orange arrow. The background is the MDIS-derived

global mosaic introduced in Figure 1.

Figure 1. (a) Two newly identified pyroclastic deposits on the floor of Kipling crater (~160 km in diameter, centered at

�18.5°N, 71.5°E) (Table 1). The vent at left center (white arrow) in the image is associated with the Kipling W deposit,

and the upper vent (red arrow) is associated with the Kipling N deposit. Approximate vent outlines are indicated by dashed

orange lines. MDIS NAC image EN9221974660M overlaid on a global mosaic obtained from MDIS NAC and WAC images

with an average resolution of 250m per pixel. (b) False-color MDISWAC eight-band color image, for which red (R), green (G),

and blue (B) are wavelengths 996.8 nm, 749 nm, and 430 nm, respectively; the “red” spectral signature of the Kipling N and

W deposits is evident. The false-color image is from MDIS WAC images EW0221845266I–EW0221845286G, overlaid on the

MDIS-derived global mosaic. North is up in both images.
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distribution of deposits is consistent with the conclusion of Kerber et al. [2011] that pyroclastic

deposits “are located principally on the floors of craters, along rims of craters, and along the edge of

the Caloris basin.”

4. Orbital Observations of Pyroclastic Deposits

Building on the earlier work of Kerber et al. [2011], we have analyzed the morphometry, global distribution,

geologic associations, relative ages, and spectral characteristics of the pyroclastic deposits and associated

source vents with the data sets described above.

4.1. Morphometry of the Source Vents and Pyroclastic Deposits

Three main aspects of morphometry were assessed in this study: source vent area, area of the associated

pyroclastic deposits, and source vent depth. Areas of pyroclastic deposits were calculated for the 11 newly

identified deposits, and source vent areas and depths were calculated for a subset of the entire catalog (i.e.,

both new and old source vents) from available MDIS and MLA data.

4.1.1. Areas of Source Vents and Deposits

Boundaries of source vents and pyroclastic deposits were mapped using MDIS NAC and WAC images. Areas

were calculated from maps in a sinusoidal

equal-area projection, which preserves area.

High-resolution NAC and WAC images are

not available for every vent at the

illumination geometries most favorable for

mapping topographic lows (such as the

source vents), so we elected to map only 23

of the 51 source vents. The 23 mapped

source vents have areas that range from ~60

to 800 km2 (Table 2).

Areas for the 11 new pyroclastic deposits

were mapped from MDIS WAC eight-filter

color images on the basis of the high-

reflectance and spectrally red signatures of

the deposits. The newly identified deposits

have a range of areas of ~480–4500 km2

(Table 1), values that fall within the range of

deposit areas mapped by Kerber et al. [2011].

As described by Kerber et al. [2011], these

deposit sizes are large compared with

those on the Moon and are even larger

than their lunar counterparts when scaled

for differences in surface gravitational

acceleration. The larger pyroclastic deposits

Table 1. Names, Locations, and Deposit Areas of Newly Identified Pyroclastic Deposits

Deposit Name Latitude (°N) Longitude (°E) Deposit Area (km
2
) Reference

Kipling N �18.45 72.03 936 This work.

Kipling W �19.21 71.43 1109 This work.

Kipling S �21.16 72.40 1956 This work.

N Rachmaninoff 36.10 57.30 4273 This work.

Tolstoj E �16.70 �161.70 4525 This work.

Tolstoj S �21.13 �163.02 524 This work.

Tolstoj SE �19.88 �161.14 512 This work.

Tyagaraja 3.75 �148.88 498 Blewett et al. [2011]

Unnamed crater 6 58.80 �32.90 1352 This work.

Unnamed crater 7 32.40 88.20 1383 This work.

Unnamed crater 8 �45.04 �167.60 484 This work.

Table 2. Measured Vent Areas for Selected Pyroclastic Source Vents

Deposit Name Vent Area (km
2
) Reference

Beckett 253 Kerber et al. [2011]

Geddes 488 Pashai et al. [2010];

Kerber et al. [2011]

Gibran 666 Kerber et al. [2011]

Glinka 199 Kerber et al. [2011]

Hemingway 148 Kerber et al. [2011]

Kipling W 405 This work.

Kipling S 245 This work.

Lermontov NE 79 Kerber et al. [2011]

Mistral NW 87 Kerber et al. [2011]

N Rachmaninoff 711 This work.

NE Derzhavin 339 Kerber et al. [2011]

NE Rachmaninoff 794 Kerber et al. [2011]

Picasso 653 Kerber et al. [2011]

Praxiteles NE 127 Kerber et al. [2011]

Praxiteles SW 237 Kerber et al. [2011]

RS-03 297 Kerber et al. [2011]

RS-05 356 Kerber et al. [2011]

Scarlatti 483 Kerber et al. [2011]

To Ngoc Van 327 Kerber et al. [2011]

Tolstoj E 149 This work.

Tolstoj S 61 This work.

Unnamed crater 1 176 Kerber et al. [2011]

Unnamed crater 5a 329 Kerber et al. [2011]
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on Mercury suggest that the erupting magma at the time of emplacement of these deposits had

volatile contents that generally exceeded those of lunar magmas [Kerber et al., 2011].

4.1.2. Vent Depths

Of the 51 identified pyroclastic deposits (Figure 2), as of this writing only six have been profiled by MLA

(e.g., Figures 3a and 3b). Topographic profiles across these six vents show that the vent depths range from

~1.2 to 2.4 km (Table 3), with a mean depth of

1.8 km and a standard deviation of 0.4 km.

The depths for the pyroclastic source vents

indicated by MLA topographic data are in

agreement with the depths of rimless

depressions, both with and without identified

pyroclastic deposits, determined from stereo-

derived topography [Gwinner et al., 2012].

The relatively narrow range of depths of

~1.2–2.4 km suggests either that the

Figure 3. Topographic profiles of representative pyroclastic source vents on Mercury and the Moon. North is up in all

images. (a) The To Ngoc Van pyroclastic source vent on Mercury at 52.8°N, �111.6°E [Kerber et al., 2011]. The locus of an

MLA topographic profile is indicated by the orange line, overlaid on the MDIS-derived global mosaic introduced in Figure 1.

(b) MLA topographic profile of the To Ngoc Van vent along the line indicated in Figure 3a. The vent depth is ~2.1 km. The

profile is from MLASCIRDR1105170905, and the topographic datum is a sphere of radius 2440 km. Vertical exaggeration is

~12.5:1. (c) The Orientale dark mantling deposit source vent [Head et al., 2002]. The location of a Lunar Orbiter Laser Altimeter

(LOLA) topographic profile is indicated by the orange line. The image is from a Lunar Reconnaissance Orbiter Camera global

mosaic at a resolution of 100m/pixel [Robinson et al., 2010]. (d) LOLA [Smith et al., 2010] topographic profile along the line

indicated in Figure 3c. The vent depth is ~2.6 km. The profile is from LOLARDR_092020648, and the topographic datum is

the gravitational equipotential surface evaluated at a radius of 1737.4 km from the spherical harmonic representation of

the gravity field, evaluated to degree and order 60, given by Mazarico et al. [2012]. Vertical exaggeration is ~12.5:1.

Table 3. Measured Source Vent Depths for Pyroclastic Deposits

With MLA Coverage

Deposit Name Vent Depth (km) Reference

Gibran 1.5 Kerber et al. [2011]

NE Derzhavin 1.7 Kerber et al. [2011]

NE Rachmaninoff 2.4 Kerber et al. [2011]

RS-02 1.2 Kerber et al. [2011]

Scarlatti 1.8 Kerber et al. [2011]

To Ngoc Van 2.1 Kerber et al. [2011]

Journal of Geophysical Research: Planets 10.1002/2013JE004480

GOUDGE ET AL. ©2014. American Geophysical Union. All Rights Reserved. 640



formation mechanism may control the final depth of the vent, or that these six data points do not span the

full range of depth values.

4.2. Geologic Associations of Pyroclastic Deposits

An important aspect of the global distribution of these pyroclastic deposits is their association with different

terrains and geologic features. The pyroclastic deposits typically occurwithin impact craters [Kerber et al., 2011];

46 of 51 (~90%) deposits occur in such settings. This strong correlation suggests a possible genetic link

between impact cratering and the pyroclastic deposits.

We have also investigated the relation between pyroclastic deposits and the smooth plains depositsmapped by

Denevi et al. [2013] (Figure 4). Denevi et al. [2013] interpreted the majority of smooth plains units to be

volcanic in origin, and so an assessment of the relation between pyroclastic and plains deposits may elucidate

aspects of the volcanological evolution of Mercury. On global to regional scales, most pyroclastic deposits are

distant from smooth plains, but some pyroclastic deposits are found around the margins of smooth plains

units, as earlier noted byDenevi et al. [2013]. The only large smooth plains unit to contain a pyroclastic deposit

in its interior is the expanse of circum-Caloris plains to the north of the Caloris basin (Figure 4).

4.3. Relative Timing of Pyroclastic Activity

To assess the relative timing of the pyroclastic activity associated with these 51 pyroclastic deposits, each of

the source vents was examined for crosscutting relationships. We found distinct crosscutting relationships at

14 pyroclastic source vents, and possible but less clear crosscutting relationships at 12 additional pyroclastic

source vents. These relationships fall into three main categories. The first category is crosscutting by a

secondary crater chain, a situation observed at only one site, the Praxiteles SW vent (Figure 5). The secondary

crater chain crosscutting the Praxiteles SW vent can be traced back to the fresh, rayed impact crater Hokusai

(~114 km in diameter, centered at 57.8°N, 16.9°E), which is located in the northern smooth plains [Head et al.,

2011] at a distance of ~2600 km.

The second type of relationship observed is crosscutting by contractional tectonic features (i.e., wrinkle

ridges or lobate scarps). Clear relationships are observed at the NE Derzhavin (Figure 6a) and Glinka

(Figure 6b) source vents, and more ambiguous relationships are observed at two other pyroclastic source

vents, those associated with unnamed crater 1 (Figure 6c) and Geddes crater (Figure 6d) [Pashai et al., 2010;

Kerber et al., 2011].

Lobate scarps are thought to be an expression of surface-breaking thrust faults [e.g., Strom et al., 1975;

Watters et al., 1998]. At the NE Derzhavin site, the formation of Victoria Rupes appears to have caused the

wall slump feature observed in the western portion of the NE Derzhavin vent (Figure 6a, yellow arrow). As

crustal material was thrust over the vent during formation of Victoria Rupes, the vent may have provided

Figure 4. Distribution of pyroclastic deposits (as in Figure 1) compared with the distribution of smooth plains deposits

mapped by Denevi et al. [2013] (blue regions). Note that the pyroclastic deposits are either distant from or located on

the margins of the smooth plains units. The background is the MDIS-derived global mosaic introduced in Figure 1.
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accommodation space, permitting the

collapse of a portion of the leading

edge of the scarp into the vent. At the

Glinka site, the lobate scarp is clearly

observed to cut across the source vent

rim as well as the vent floor (Figure 6b,

yellow arrow). At unnamed crater 1

[Kerber et al., 2011], no definitive

crosscutting relationship is observed,

although there may be an indication

that the vent interior is crosscut by the

associated scarp (Figure 6c, yellow

arrow), an observation that is

hindered by shadowing in the

available NAC image. Similarly, at the

Geddes site, the crisp morphology of

the scarp (Figure 6d, red arrows) may

suggest that it was not blanketed by

pyroclastic material; however, no

definitive crosscutting relationship is

observable.

The third type of crosscutting

relationship is between pyroclastic

deposits and hollows, which are small

depressions (on the order of tens to a

few thousands of meters in diameter)

with high-reflectance interiors and

surrounding “halos” characterized by

relatively “blue” spectra (i.e., reflectance

increases less steeply with wavelength)

[Blewett et al., 2011, 2013; Thomas et al.,

2014]. At 11 of the 51 pyroclastic

deposits, hollows clearly crosscut the

pyroclastic vents and deposits (e.g.,

Figure 7, orange arrows), whereas

another 11 of the pyroclastic deposits

are possibly crosscut by hollows, with

confirmation hindered by image

resolution. In all cases for which

adequate data exist, hollows appear to

postdate the pyroclastic activity. It is

also important to note that 29 of the

51 pyroclastic deposits show no

association with hollows, and hollows

are also found in many locations

where there are no pyroclastic deposits

[Blewett et al., 2011, 2013; Thomas

et al., 2014].

To supplement crosscutting and

stratigraphic relationships, planetary surfaces are commonly dated in both relative and absolute terms

from the size-frequency distribution of superposed impact craters and a known or estimated impact crater

production function [e.g., Hartmann, 1966, 1977; Neukum et al., 1975]. However, dating pyroclastic

deposits with such a method is not straightforward because the deposits are surficial and mantle the

Figure 5. A secondary crater chain from the Hokusai impact crater cross-

cuts the Praxiteles SW pyroclastic deposit and source vent at 26.0°N, �60.3°E

[Kerber et al., 2011]. North is up in both images. (a) Context image showing

the Praxiteles SW pyroclastic deposit and source vent (approximate vent

outline is indicated by dashed orange line) and the crosscutting secondary

crater chain (indicated by white arrows). Mosaic of MDIS NAC images

EN0223745081M, EN0223745074M, and EN0223745067M overlaid on the

MDIS-derived global mosaic introduced in Figure 1. (b) Close-up view of

the Praxiteles SW pyroclastic deposit source vent. Trend of crosscutting

secondary crater chain is indicated by a cyan ellipse. Mosaic of MDIS NAC

images EN0223745081M, EN0223745074M, and EN0223745067M.
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underlying terrain, so it can be difficult to determine whether a crater is superposed on the pyroclastic

deposit or the underlying surface. Further, the unconsolidated nature of the pyroclastic deposits can affect

the size and preservation of impact craters [e.g., Lucchitta and Schmitt, 1974]. Moreover, the areas of the

pyroclastic deposits are typically small, limiting the statistical precision of crater size-frequency

distributions. These complications effectively prevent the derivation of relative or absolute crater retention

ages for individual pyroclastic deposits.

Nonetheless, the fact that ~90% of these deposits occur within large impact craters can be used to assess their

relative age. Large craters on the surface of Mercury are commonly degraded as a result of modification by

several processes, including volcanism, tectonic deformation, emplacement of impact ejecta, and the formation

of superposed craters [e.g., Spudis and Guest, 1988; Watters et al., 2009; Prockter et al., 2010, 2012; Baker et al.,

2011]. Therefore, assessing the degradation state of the host craters for the 46 pyroclastic deposits contained

within them can offer some insight into their relative timing. Such an assessment was performed in this analysis

with the qualitative classification of crater degradation, regarded as a proxy for relative crater age, of Spudis and

Guest [1988]. Each crater that hosts a pyroclastic deposit was examined in MDIS images and assigned a crater

degradation state. Those crater degradation classes are divided by geologic era [Spudis and Guest, 1988], and

Figure 6. Crosscutting relationships between pyroclastic source vents and contractional tectonic structures, indicated by

red arrows. North is up in all images. (a) Victoria Rupes (red arrows) crosscuts the NE Derzhavin pyroclastic source vent

at 48.3°N,�33.8°E [Kerber et al., 2011]. The yellow arrow indicates the slump feature caused by thrusting of material over the

NE Derzhavin vent depression. Mosaic of MDIS NAC images EN0221237588M, EN0221237609M, and EN0221237630M

overlaid on the MDIS-derived global mosaic introduced in Figure 1. (b) A lobate scarp (red arrows) crosscuts the Glinka

pyroclastic source vent at 15.0°N, �112.4°E [Kerber et al., 2011]. The scarp clearly cuts the Glinka vent rim at the point

indicated by the yellow arrow. Mosaic of MDIS NAC images EN0242295873M and EN0242295825M overlaid on the global

mosaic. (c) A lobate scarp (red arrows) crosscuts the pyroclastic source vent in unnamed crater 1 at 22.0°N,�67.5°E [Kerber

et al., 2011]. The scarp may crosscut the interior of the source vent at the location indicated by the yellow arrow. Mosaic of

MDIS NAC images EN0239163782M, EN0223745181M, and EN0223745173M and MDIS WAC image EW0238909186G. (d)

A lobate scarp (red arrows) crosscuts the Geddes pyroclastic deposit source vent at 27.2°N, �29.5°E [Pashai et al., 2010;

Kerber et al., 2011]. MDIS NAC image EN0221107380M overlaid on the global mosaic.
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examples of each of the classes

(Mansurian, Calorian, Tolstojan, and Pre-

Tolstojan) for impact craters hosting

pyroclastic deposits are shown

in Figure 8.

Results from the crater degradation

assessment show that 10 pyroclastic

deposits are hosted in Mansurian-age

craters (~3.25–1Ga), 13 deposits are

hosted in Calorian-age craters (~3.9–

3.25Ga), 11 deposits are hosted in

Tolstojan-age craters (~4–3.9 Ga), and

two deposits are hosted in Pre-

Tolstojan-age craters (>4Ga) (Figure 9),

where the ages indicated are estimates

of the approximate age boundaries of

each geological era inferred by

extrapolation from the history of

impact cratering on the Moon [Spudis

and Guest, 1988]. The nine pyroclastic

deposits located in Caloris were

classified as being hosted in an impact

feature at the Tolstojan-Calorian age

boundary (as the Caloris impact basin

defines this stratigraphic boundary)

[Spudis and Guest, 1988], and the

pyroclastic deposit in the Tolstoj basin

was similarly classified as hosted by an

impact feature at the boundary

between Pre-Tolstojan and Tolstojan.

Each pyroclastic deposit must be

younger than its host crater, so

the relative age of the host crater

provides an upper limit on the age of

each deposit.

4.4. Spectral Characteristics

of Pyroclastic Deposits

Spectral characterization of the

deposits was undertaken using data

from the VIRS channel on the MASCS

instrument. Of the 51 identified

deposits, there are MASCS spectra for

39 as of this writing. The spectral

signature of these deposits from MASCS is qualitatively consistent with that indicated by MDIS images

[Blewett et al., 2009; Kerber et al., 2011], including a strongly red spectral slope (Figure 10a). However, apart

from this spectral slope, there is little evident spectral character associated with these deposits. In

particular, there is no resolvable crystal field absorption identifying the presence of octahedrally

coordinated Fe2+ in silicate minerals, which manifests as a broad absorption band centered near

1000nm [Burns, 1993a]. Although MASCS spectra are plotted here only to 800 nm (Figure 10),

indications of a broad, 1000 nm crystal field absorption from minerals such as olivine and low-calcium

pyroxene would have been visible even at these short wavelengths in laboratory spectra [e.g., Adams,

1974; King and Ridley, 1987; Klima et al., 2007, 2011]. Laboratory spectra are clearly optimal with respect

Figure 7. Examples of hollows crosscutting pyroclastic source vents

and deposits. Approximate vent outlines are indicated by dashed orange

lines. North is up in all images. (a) Hollows forming in the Praxiteles NE

pyroclastic deposit and source vent at 26.7°N,�59.2°E [Blewett et al., 2011;

Kerber et al., 2011]. Orange arrows indicate crosscutting hollows. Mosaic of

MDIS NAC images EN0223831439M and EN0223831447M overlaid on the

MDIS-derived global mosaic introduced in Figure 1. (b) Hollows forming

in the unnamed crater 1 pyroclastic deposit source vent at 22.0°N,�67.5°E

[Kerber et al., 2011]. Orange arrow indicates hollow superposed on the source

vent floor. Mosaic of MDIS NAC images EN0223745181M, EN0223745173M,

and EN0239163782M overlaid on the global mosaic.
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Figure 8. Different states of degradation of the host craters of selected pyroclastic deposits as identified with the crater

degradation scheme of Spudis and Guest [1988]. North is up in all images. (a) The Lermontov NE and Lermontov SW pyroclastic

deposits within the Mansurian-age Lermontov crater at 15.5°N,�48.6°E [Kerber et al., 2011]. Note the different degradation states

of the two pyroclastic deposit source vents, shown inmore detail in Figures 8b and 8c, within the same crater, as indicated by the

differing crispness of the vent edges, indicated by red arrows in Figures 8b and 8c. Mosaic of MDISWAC images EW0228587466G

and EW0243797322G overlaid on the MDIS-derived global mosaic introduced in Figure 1. (b) The Lermontov NE pyroclastic

deposit source vent. The vent edges (red arrows) are comparatively crisp. The location of Figure 8b is indicated by a red box in

Figure 8a. MDISWAC image EW0228587466G. (c) The Lermontov SWpyroclastic deposit source vent. The vent edges (red arrows)

aremore degraded. The location of Figure 8c is indicated by a cyan box in Figure 8a.Mosaic ofMDISNAC images EN0223788445M

and EN0223615672Moverlaid on the globalmosaic. (d) The Hemingway pyroclastic deposit within theCalorian-ageHemingway

crater at 17.6°N,�2.9°E [Kerber et al., 2011]. An approximate vent outline is indicated by the dashed orange line. Mosaic of MDIS

NAC images EN0220847851M, EN0220804746M, EN0220804665M, and EN0220804578M overlaid on the global mosaic. (e) The

Picasso pyroclastic deposit within the Tolstojan-age Picasso impact crater at 3.9°N, 50.9°E [Kerber et al., 2011]. An approximate

vent outline is indicated by the dashed orange line. Mosaic of MDIS NAC images EN0219476823M, EN0219476821M,

EN0219476669M, and EN0219476667M overlaid on the global mosaic. (f ) The Raphael pyroclastic deposit within the Pre-

Tolstojan-age Raphael impact crater at�21.1°N,�74.9°E [Kerber et al., 2011]. An approximate vent outline is indicated by the

dashed orange line. Mosaic of MDIS WAC images EW0228587466G and EW0243797322G overlaid on the global mosaic.
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to high signal-to-noise ratios, typically no mixing of different phases, and no space weathering, all of

which are in contrast to the spacecraft data analyzed here; however, no broad absorption feature

centered near 1000 nm is evident in the analyzed spectra. This observation is also consistent with

previous findings [Blewett et al., 2009; Kerber et al., 2011].

A common technique when looking at spectra of planetary surfaces is to ratio the data to spectrally neutral

background terrain [e.g.,McCord et al., 1972, 1981]. This technique brings out the spectral diversity in an area

of interest and accentuates any potential spectral features or absorptions and has been used previously for

MASCS spectral analysis [McClintock et al., 2008; Izenberg et al., 2014]. Each of the spectra from the 39

pyroclastic deposits with MASCS coverage was ratioed to a spectrum from a nearby region exterior to the

pyroclastic deposit but acquired during the same orbit (Figures 10b and 10c).

The exterior spectra used for ratioing were manually examined and selected on the basis of their

similarity in absolute reflectance and spectral shape to the average MASCS/VIRS global spectral

signature [Izenberg et al., 2014], which is an average of all MASCS/VIRS spectra from the primary and first

extended missions of the MESSENGER spacecraft that satisfy the following restrictions: incidence

angle< 70°, emission angle< 80°, phase angle< 95°, detector temperature< 35°C, and number of

spectra in the observation> 20. The spectral detector pixels were also binned by four for this mean

spectrum from the VIS detector [Izenberg et al., 2014]. The similarity to the MASCS/VIRS global average

spectrum was assessed by examining the ratio of the exterior spectra to the global average and searching

for spectra with values of approximately 1 across the wavelength range of interest (i.e., 300–800 nm).

Figure 9. Results of the survey of host crater morphology for the 46 pyroclastic deposits located within impact craters.

Shown are the major periods in Mercury’s global stratigraphy [Spudis and Guest, 1988] and an approximate geological

timescale for Mercury, modified from Head et al. [2007], on the left, and the number of pyroclastic deposits that are

contained within host craters that have a degradation state comparable with craters from each geologic period as defined

by Spudis and Guest [1988]. The nine deposits that fall at the Tolstojan-Calorian boundary are the nine deposits contained

within the Caloris basin (which defines this stratigraphic boundary), and the deposit at the boundary between the Pre-

Tolstojan and the Tolstojan is contained within the Tolstoj basin (which defines this stratigraphic boundary). Note the

approximately even distribution of pyroclastic deposits hosted within older impact craters (e.g., Tolstojan) and younger

impact craters (e.g., Mansurian).
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Although different spectra were used for determining the ratioed reflectance from each pyroclastic deposit,

all of these ratios approximate a ratio to the global average MASCS/VIRS spectrum [Izenberg et al., 2014]. A

plot of the average of the 39 denominator spectra with 1-standard-deviation bounds (Figure 10b) shows that

there is minimal variability among denominator spectra, and thus the adopted procedure allows for

interdeposit comparison of ratioed reflectance spectra.

From the spectral ratioing technique,

the pyroclastic deposits are seen again

to be spectrally redder than their

surrounding terrain (Figure 10c).

However, the steepness of the slope of

the ratioed spectra is variable. Some

deposits have a weakly red slope

whereas some have a strongly red

slope in the ratioed data; slope

values over visible wavelengths in

the ratioed spectra range over an

order of magnitude (Figure 10c).

Additionally, all of the pyroclastic

deposits, with the exception of the

unnamed crater 4 deposit [Kerber

et al., 2011], have mean ratioed

reflectance values >1 across the

wavelength region ~300–800 nm,

Figure 10. Example MASCS spectra of 15 pyroclastic deposits showing the general spectral characteristics of these deposits.

(a) Geometrically corrected reflectance spectra for 15 different pyroclastic deposits, as well as the average of the 39 spectra of

surrounding terrain used for ratioing (black line; see also Figure 10b). Note that all the spectra have higher reflectance and a

steeper spectral slope than the average spectrum of surrounding terrain. MASCS orbit numbers for the plotted spectra are

listed in Table 4. (b) Plot of the average of the 39 spectra of terrain surrounding the pyroclastic deposits (thick black line).

Shaded area indicates the 1-standard-deviation bounds on this average. Note the relatively narrow range for spectra of sur-

roundings. (c) RatioedMASCS spectra for the 15 pyroclastic deposits shown in Figure 10a. The reference spectrum in each case

is that of surrounding terrain that has a spectrum near the global average for Mercury [Izenberg et al., 2014] obtained during

the same orbit. Note the range in spectral characteristics, although all deposits have a red spectral slope and variable degrees

of a turndown in the UV. Spectra are offset for clarity.

Table 4. MASCS Orbit Numbers for the Spectra Displayed in Figure 10

Deposit Name Orbit Number Reference

Geddes ORB_11274_091908 Kerber et al. [2011]

Glinka ORB_11312_221408 Kerber et al. [2011]

Hemmingway ORB_12073_223244 Kerber et al. [2011]

Lermontov SW ORB_11247_091659 Kerber et al. [2011]

Mistral SE ORB_11103_161453 Kerber et al. [2011]

NE Derzhavin ORB_11099_154240 Kerber et al. [2011]

Picasso ORB_11257_165554 Kerber et al. [2011]

Praxiteles NE ORB_11106_043345 Kerber et al. [2011]

Rachmaninoff SE ORB_11226_085956 Kerber et al. [2011]

Raphael ORB_11109_122433 Kerber et al. [2011]

RS-04c ORB_11359_131457 Kerber et al. [2011]

To Ngoc Van OB2_12123_230528 Kerber et al. [2011]

Tyagaraja ORB_11346_063128 Blewett et al. [2011]

Unnamed crater 2 ORB_11346_012509 Kerber et al. [2011]

Unnamed crater 5a ORB_11336_233947 Kerber et al. [2011]
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again indicating that they are brighter than the surrounding terrain (Figure 10a). The mean relative

reflectance value for the unnamed crater 4 deposit is slightly less than 1, but this deposit appears

brighter than the surrounding terrain in MDIS eight-filter color images, so this low relative reflectance

value may be due to the precise location of the MASCS footprint in relation to the pyroclastic deposit

itself (i.e., the footprint may include both portions of the bright pyroclastic deposit and darker

surrounding material). Alternatively, this observation may be the result of the specific choice of

background terrain used in ratioing for this individual deposit.

In addition to the red spectral slope, for many of the ratioed spectra there appears to be a downturn in

the ratioed reflectance values at ultraviolet wavelengths, shortward of ~400nm (Figure 10c). The UV downturn

is seen with varying degrees of strength in the ratioed reflectance data (Figure 10c). To quantify this spectral

feature, we define the spectral parameter

UVdepth ¼ Depth300 þ Depth325 þ Depth350; (1)

which uses the formulations

Depth300 ¼ R 401ð Þ½ �– 401� 303½ � VISslope
� �

= R 303ð Þ½ �; (2)

Depth325 ¼ R 401ð Þ½ �– 401� 324½ � VISslope
� �

= R 324ð Þ½ �; (3)

Depth350 ¼ R 401ð Þ½ �– 401� 350½ � VISslope
� �

= R 350ð Þ½ �; (4)

and

VISslope ¼ R 550ð Þ½ � � R 750ð Þ½ �f g= 550� 750f g; (5)

where R(λ) is the ratioed reflectance value at the wavelength λ given in nanometers. To avoid spurious

results from channel-to-channel instrument noise, a running average of ratioed reflectance values from

three adjacent spectral channels was used in calculating the parameters in the above expressions,

with the averages centered on the wavelengths listed in equations (2)–(5). The spectral parameter

given by equation (1) approximately maps the fractional strength of the UV downturn in the ratioed

spectral data by calculating the ratio of the expected ratioed reflectance value at 300, 325, and

350 nm from the visible wavelength slope (VISslope) to the actual ratioed reflectance value at these

wavelengths. Spectra with stronger UV downturns (i.e., steeper UV slopes) will have a higher UVdepth
parameter value.

With this UVdepth parameter, we have classified the MASCS spectra of the pyroclastic deposits into four

spectral types, types I to IV (Figure 11). These types were distinguished on the basis of the mean (μUV) and

standard deviation (σUV) of the calculated UVdepth values (~3.11 and 0.08, respectively):

For type I;UVdepth < μUV � σUV

For type II;μUV � σUV ≤ UVdepth < μUV

For type III;μUV ≤ UVdepth < μUV þ σUV

For type IV;μUV þ σUV ≤ UVdepth

Type I spectra typically have a red spectral slope and minimal UV downturn, type II spectra typically have a

slightly redder spectral slope with a weak UV downturn, type III spectra typically have a still redder spectral

slope and a clear UV downturn, and type IV spectra typically have the steepest red spectral slope and the

strongest UV downturn (Figure 11). The absolute reflectance values for these four types also increases from

type I to type IV (Figure 11), and plotting the UVdepth parameter versus absolute reflectance at 700 nm (i.e.,

unratioed reflectance) shows a clear positive correlation (Figure 12). This relationship is approximately linear

(with a squared correlation coefficient r2= 0.61), suggesting that the process that contributes to a weaker

UV downturn also results in a darkening of the deposit material.
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Figure 11. MASCS spectra showing examples of the four different spectral types (types I–IV). (a) Geometrically

corrected reflectance for the Kipling W pyroclastic deposit (type I), RS-05 pyroclastic deposit (type II), Lermontov SW

pyroclastic deposit (type III), and Tyagaraja pyroclastic deposit (type IV) [Blewett et al., 2011; Kerber et al., 2011]. Spectra

are from MASCS orbital tracks ORB_11222_205837, ORB_11354_152144, ORB_11247_091659, and ORB_11346_063128

for the Kipling W, RS-05, Lermontov SW, and Tyagaraja pyroclastic deposits, respectively. (b) Ratioed MASCS spectra for

the four spectra shown in Figure 11a. The reference spectrum in each case is that of surrounding terrain that has a

spectrum near the global average for Mercury [Izenberg et al., 2014] obtained during the same orbit. Note the change

from a weakly red spectral slope and minimal to no UV downturn for type I to a strongly red spectral slope and strong

UV downturn for type IV. (c–f ) Locations of MASCS footprints on Mercury’s surface (indicated by filled red boxes)

for the spectra shown in Figure 11a and used as the numerators for the ratioed spectra in Figure 11b, for the

(Figure 11c) Kipling W, (Figure 11d) RS-05, (Figure 11e) Lermontov SW, and (Figure 11f) Tyagaraja pyroclastic deposits.

Approximate vent outlines are indicated by dashed orange lines. Background for all images is the MDIS-derived global

mosaic introduced in Figure 1.
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Although we have used the UVdepth

parameter to classify the spectra of

pyroclastic deposits into four spectral

types, it is important to note that the

population of spectra is not separable

into four distinct spectral groups

(Figures 10a and 12). Rather, our

classification scheme constitutes a

spectral sorting of the spectra of

pyroclastic deposits on the basis of the

statistics of the UVdepth parameter. The

assignment of four spectral types has

been designed more to search for

systematic patterns in the spectral

signatures of the pyroclastic deposits

than to identify distinctive spectral units.

The geographic distribution of the four

different spectral types (Figure 13) does

not indicate a high degree of clustering,

as the four types are spread relatively

evenly across the surface. This

distribution suggests that the

continuum in spectral shapes is not

geographically controlled. The

frequency distribution of the four

spectral types (Figure 13, inset) appears

normally distributed, a pattern that

reflects how the types were defined (i.e.,

using μUV and μUV± σUV as the limits).

Figure 12. Ratioed UV downturn strength (i.e., UVdepth parameter value)

versus absolute reflectance at 700nm for the 39 deposits with MASCS

spectral coverage. Note the positive correlation between the UV downturn

strength and absolute reflectance at 700nm (r
2
=0.61). Plotted reflectance

values are an average of three spectral channels centered on ~700nm in

an attempt to reduce spurious results from channel-to-channel instrument

noise. Black dot indicates the average UV downturn strength (μUV); error

bars denote± 1 standard deviation (σUV). Boxes around individual points

identify the example spectrum of each type shown in Figure 11.

Figure 13. Distribution of the four different spectral types of pyroclastic deposits identified in this work (Figure 11). White

circles denote locations with no MASCS data, blue circles indicate type I deposits, green circles indicate type II deposits,

orange circles indicate type III deposits, and red circles indicate type IV deposits. Note the relatively even distribution of the

four spectral types. Background is the MDIS-derived global mosaic introduced in Figure 1. Inset shows a histogram of

number of occurrences of each type of pyroclastic deposit.
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5. Discussion

On the basis of the orbital observations of pyroclastic deposits presented above, we may draw several

inferences about the nature and timing of pyroclastic volcanic activity on Mercury.

5.1. Vent Morphometry

The measured areas for the 23 confidently mapped source vents (Table 2) show that these vents are large,

comparable in size to terrestrial calderas formed from large plinian eruptions [e.g., Lipman, 1997; Geyer and

Martí, 2008]. This size range then raises the question of whether the depressions present at the center of the

pyroclastic deposits are actually vents or are instead calderas formed by the posteruption collapse of the

surface. Future work involving detailed stratigraphic mapping of individual events coupled with investigation

of high-spatial-resolution stereo-derived topography for these vents will help to address this question [e.g.,

Gwinner et al., 2012].

Although vent areas are similar to those of terrestrial calderas from explosive volcanic activity, vent depths

have a relatively narrow range of ~1.2–2.4 km (Figures 3a and 3b and Table 3), and the vents are ~2–5 times

deeper than terrestrial calderas formed by large plinian eruptions [e.g., Lipman, 1997]. The dimensions of

terrestrial andmercurian volcanic features cannot be compared easily, however, as many factors are involved,

including not only the difference in gravitational acceleration but also possible differences in the volume of

magma present beneath any one feature, the volatile content of that magma, and the availability of shallow

crustal volatiles with which it might interact.

A closer analog to the pyroclastic source vents on Mercury may be vent depressions associated with some

pyroclastic deposits on the Moon. The Orientale dark mantling deposit (Figure 3c) is a “ring” deposit of

pyroclastic material in the Orientale basin on the Moon interpreted to have been deposited via vulcanian-

style volcanism [Head et al., 2002]. This source vent has ameasured area of ~148 km2 [Head et al., 2002], which

falls within the range of areas of pyroclastic source vents on Mercury (Table 2), and its depth is ~2.6 km

(Figure 3d), also similar to the depths of pyroclastic source vents on Mercury (Table 3). As with terrestrial

analogs for the mercurian source vents, it is difficult simply to compare the two features without more detailed

considerations. These morphometric similarities would benefit from a more detailed volcanological analysis [e.

g., Jozwiak and Head, 2012;Wilson and Head, 2012]. Another interesting aspect that will be illuminated by future

detailed studies on individual vent morphologies is whether the measured vent areas and depths are

representative of solely the eruption of pyroclastic material, or if there have been multiple episodes of activity,

including vent collapse, at a given source vent.

5.2. Vent Associations With Impact Craters

There is a strong correlation between pyroclastic deposits and impact craters, with 46 of 51 (~90%)

pyroclastic deposits found in this geological context. Impact bombardment pervasively fractured the

upper crust and locally reduced the crustal thickness beneath large impact basins; both of these

processes may have aided the upward propagation of magma-filled dikes to the surface [e.g., Head and

Wilson, 1992]. These effects may account for the observation that pyroclastic activity is predominantly

confined to the interiors of impact craters.

Previous work on the ascent and eruption of magma on Mercury has suggested that the thermal contraction

of the planet is likely to have led to a global stress state marked by horizontal compression, making it difficult

for magma to reach the surface [Strom et al., 1975;Wilson and Head, 2008, 2012]. Such a stress state may help

to account for the localization of pyroclastic deposits within impact craters, on the grounds that crater

formation may have served to relieve the preexisting stress in the target area and create easier pathways for

ascending magma to reach the surface beneath impact craters [e.g., Head and Wilson, 1992].

5.3. Vent Associations With Smooth Plains

It is clear that most pyroclastic deposits are far from the smooth plains deposits mapped by Denevi et al.

[2013], although a minority of the deposits are clustered around the margins of the smooth plains units

(Figure 4). The only pyroclastic deposit contained within a large expanse of smooth plains is RS-02 [Kerber

et al., 2011], which is located to the north of the Caloris basin, in the middle of a large area of circum-Caloris

plains (Figure 4). Denevi et al. [2013] interpreted the majority of mapped smooth plains as volcanic in origin,
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but they noted that a volcanic origin is much less clear for the circum-Caloris plains to the north and west of

the basin. It is therefore possible that pyroclastic deposit RS-02 is not located within a volcanic unit.

The concentration of several pyroclastic deposits around themargins of large smooth plains deposits (Figure 4)

parallels the distribution of lunar pyroclastic deposits, which are often located around themargins of largemare

deposits [e.g., Head and Wilson, 1979; Gaddis et al., 1985; Weitz et al., 1998]. One possible explanation for this

observation is that there is a genetic relationship between the two types of volcanism, whereby the same

period of volcanic activity was responsible for the emplacement of the smooth plains and the adjacent

pyroclastic materials. Such a scenario, for instance, has been proposed for the Alphonsus crater pyroclastic

deposits on the Moon. Under that scenario, the magma source that fed the emplacement of the nearby Mare

Nubium deposit may have also contributed magma beneath the Alphonsus crater, which then reached the

surface in one or more vulcanian eruptions to form the pyroclastic deposits [Head and Wilson, 1979].

However, many of the pyroclastic deposits onMercury are not associatedwith smooth plains deposits (Figure 4).

For these deposits, it is likely that another factor is controlling their location, such as the characteristics (e.g.,

volatile content) of the mantle source region or the presence of a recently formed impact crater, as discussed

above. Such alternative controls are likely to be most important for the younger pyroclastic deposits (i.e., those

observed within Calorian and Mansurian impact craters; Figures 8 and 9), as Denevi et al. [2013] concluded

that the majority of the volcanic smooth plains were emplaced from ~3.9 to 3.7Ga.

The lack of pyroclastic deposits identified on the large expanses of smooth plains mapped by Denevi et al.

[2013] does not imply that pyroclastic volcanism never occurred in these regions. Rather, one may conclude

only that there has been no pyroclastic activity in these regions subsequent to the emplacement of the

smooth plains deposits. Given that pyroclastic activity appears to have occurred into the Mansurian (Figures 8

and 9), however, long after the emplacement of the majority of the smooth plains deposits at ~3.9–3.7 Ga

[Denevi et al., 2013], there is likely to be a physical explanation for the absence of pyroclastic deposits in

smooth plains regions. One possibility, for instance, is that the volatiles needed to drive explosive volcanic

eruptions were removed from themantle source regions of the plains deposits during the partial melting and

magma transport that led to the eruptions of the plains-forming lavas.

5.4. Relative Timing of Pyroclastic Volcanism

Another important aspect of pyroclastic deposits is their relative ages of emplacement inferred on the basis

of both observed crosscutting relationships (Figures 5–7) and the degradation state of the host impact

craters (Figures 8 and 9).

The secondary crater chain from the Hokusai impact crater that is observed to crosscut the Praxiteles SW vent

(Figure 5) places the cessation of pyroclastic activity at the Praxiteles SW vent earlier than the impact that

formed the Hokusai crater, which is of Kuiperian age on the basis of its extensive system of well-preserved

rays [Spudis and Guest, 1988].

Additionally, the observed crosscutting of two pyroclastic source vents by lobate scarps (Figures 6a and 6b,

yellow arrows) indicate that the pyroclastic activity at the NE Derzhavin and Glinka sites ended prior to the

final major episode of activity along these tectonic features.

Many of the contractional tectonic features on Mercury, such as these lobate scarps, are believed to have

resulted from an extended period of global contraction [Strom et al., 1975; Watters et al., 1998] resulting from

the cooling of the planet’s interior [e.g., Hauck et al., 2004]. This period of global contraction is thought to have

initiated relatively early in Mercury’s history [Strom et al., 1975; Watters et al., 1998], but many of the larger

contractional landforms may be associated with faults that continued to be active until much more recently in

Mercury’s geological history [e.g., Banks et al., 2012]. Since the crosscutting relationships observed here imply

only that pyroclastic activity at these two sites ended prior to the final movement along the lobate scarps, and

not necessarily prior to the time of their initiation, it is unclear where these deposits fall in Mercury’s global

stratigraphy. Thus, it is difficult to constrain the relative age of the pyroclastic activity at the NE Derzhavin and

Glinka sites from the observed crosscutting relationships with lobate scarps alone.

The clear crosscutting of 11 pyroclastic source vents by hollows (e.g., Figure 7, orange arrows) is consistent

with the hypothesis that hollows are geologically young features that may even be currently active on the

surface of Mercury at some locations [Blewett et al., 2011]. The superposition relations suggest that the
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pyroclastic activity at these 11 sites ceased before the final development of the current population of hollows,

but they do not preclude the possibility that these pyroclastic deposits may also be geologically young.

As hollows are thought to form through some sort of material removal process [Blewett et al., 2011, 2013;

Vaughan et al., 2012; Thomas et al., 2014], it is possible that the hollows are forming either in the pyroclastic

deposit material or in the material that underlies the pyroclastic deposits. The observations presented here

do not favor either of these scenarios, so further work on the relation between pyroclastic deposits and

hollows with high-spatial-resolution NAC images and stereo-derived topography [e.g., Gwinner et al., 2012] is

warranted to address this question.

That a number of the identified pyroclastic deposits are crosscut by hollows may be related to the idea that both

geologic features are associatedwith volatiles [e.g., Kerber et al., 2009, 2011; Blewett et al., 2011; Thomas et al., 2014].

However, given that both pyroclastic deposits and hollows are primarily foundwithin impact craters [e.g., Blewett

et al., 2011, 2013; Kerber et al., 2011; Vaughan et al., 2012; Thomas et al., 2014], the spatial relation may be more

coincidental than causal. More detailed analyses of both types of features and the development of additional

models of hollow formation [e.g., Vaughan et al., 2012] would be helpful to explore this connection further.

The degradation states of the craters that host pyroclastic deposits provide upper limits on the ages of the

pyroclastic deposits relative to Mercury’s global stratigraphy [Spudis and Guest, 1988] and are likely to provide

the best constraints on the relative timing of pyroclastic activity on the surface of Mercury. If, for example, a

pyroclastic deposit occurs within a Mansurian-age crater, it can be concluded that the pyroclastic activity at

that site must be Mansurian or younger.

The results of this survey (Figure 9) show that the 46 pyroclastic deposits within impact craters have host craters

with a range of stratigraphic ages, from Mansurian to Pre-Tolstojan, according to the degradation criteria of

Spudis and Guest [1988], with approximately equal numbers of Mansurian, Calorian, and Tolstojan host craters.

We can therefore rule out the possibility that all of the pyroclastic activity occurred early in Mercury’s history.

It is more difficult to rule out the possibility that all of the pyroclastic activity occurred relatively recently in

Mercury’s history, because this scenario would result in more pyroclastic deposits in older host craters, if only

because there are more older craters on Mercury, and such a relation is similar to what is observed (Figure 9).

However, the pyroclastic source vents themselves have different degradation states, and those states of

preservation can vary even across a single host crater (e.g., Figures 8b and 8c). These observations lead us to

conclude that the pyroclastic activity on Mercury is likely to have occurred over a considerable fraction of the

planet’s history, with some deposits emplaced early and some deposits more recently.

5.5. Spectral Characteristics of Pyroclastic Deposits and Potential Causes for the UV Downturn

The spectral reflectance of the pyroclastic deposits (Figures 10 and 11) is characterized by relatively high

reflectance values, a red spectral slope, and no resolvable broad absorption feature centered near 1000 nm,

consistent with previous spectral characterizations of these deposits [Blewett et al., 2009; Kerber et al., 2011].

Although MASCS spectra are primarily analyzed from 300 to 800 nm (Figures 10 and 11), the crystal field

absorption band centered near 1000 nm in spectra of mafic minerals such as olivine and low-calcium

pyroxene is broad in nature, and some indication of such an absorption should appear even at these short

wavelengths, as evidenced in laboratory spectra [e.g., Adams, 1974; King and Ridley, 1987; Klima et al., 2007,

2011]. Despite the fact that MASCS spectra differ from laboratory spectra, which are typically acquired under

more favorable measurement conditions, the lack of a resolvable broad absorption centered near 1000 nm in

the pyroclastic deposit spectra indicates that there is a low concentration (less than a few weight percent) of

octahedrally coordinated Fe2+ present in the crystal structure of silicate minerals in the deposits [Burns,

1993a]. This conclusion is consistent with the elemental abundances measured by MESSENGER’s X-Ray

Spectrometer (XRS) and Gamma-Ray Spectrometer, which indicate Fe abundances everywhere less

than~ 4wt % [Nittler et al., 2011] and averaging ~1.9wt % in the northern hemisphere [Evans et al., 2012].

Ratios of the spectra of pyroclastic deposits to spectra of surrounding terrain having spectral characteristics

similar to the average reflectance for Mercury [Izenberg et al., 2014] reveal a downturn at wavelengths

shortward of ~400 nm. The strength of this UV downturn differs among pyroclastic deposits (Figure 11b) and

also appears to be correlated with absolute reflectance values (Figure 12). Several factors could potentially

cause such a spectral feature, and we mention three possibilities here: (1) the transition metal content of the

deposits, (2) the grain size of the deposits, and (3) the degree of space weathering of the deposits.
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Spectral absorption features at UV wavelengths in geologic materials are primarily caused by oxygen-

metal charge transfer (OMCT) bands from transition metals in the silicate mineral structure [Burns, 1993b].

These OMCT bands are typically centered at ~200–300 nm, depending on the transition metal causing the

absorption (e.g., Fe, Ti, or V) [Wagner et al., 1987; Burns, 1993b; Cloutis et al., 2008]. OMCT absorption features

in the UV region are orders of magnitude stronger than crystal field absorptions in the 1000 nm region [Burns,

1993b], meaning that small amounts of Fe (or another transition metal) can cause OMCT absorptions and

influence the shape of material spectra in the UV [Rava and Hapke, 1987; Klima et al., 2007, 2011; Cloutis et al.,

2008; Greenspon et al., 2012]. OMCT absorptions have previously been proposed as an explanation for the

shape of both disk-integrated and spatially resolved measurements of Mercury reflectance spectra acquired

by the MASCS instrument [McClintock et al., 2008; Holsclaw et al., 2010].

Laboratory studies have shown that decreasing Fe content in silicate minerals and glasses will (1) weaken

the strength of OMCT absorptions in the UV, (2) move the shoulder of this OMCT absorption to shorter

wavelengths, and (3) increase the overall reflectance of thematerials [e.g., Rava and Hapke, 1987; Cloutis et al.,

2008; Greenspon et al., 2012]. The overall effect of these changes is that decreased Fe content will result in

higher reflectance and steeper UV slopes [Rava and Hapke, 1987; Cloutis et al., 2008; Greenspon et al., 2012].

This trend matches the observed spectral signature of the pyroclastic deposits relative to the average

spectrum for Mercury [Izenberg et al., 2014], and one interpretation of the MASCS data is that the pyroclastic

deposits are lower in Fe than the surrounding terrain. The observed lack of a broad absorption band centered

near 1000 nm in the pyroclastic deposit spectra coupled with very low global surface abundances of Fe

[Nittler et al., 2011; Evans et al., 2012] limit the possibility for substantial Fe variations. The greater sensitivity of

the UV region to the presence of trace amounts of iron [Burns, 1993b] may nonetheless permit the detection

of variations in Fe abundance in the context of a broadly low-iron surface [Nittler et al., 2011; Evans et al.,

2012], as has been documented from recent XRS results [Weider et al., 2013].

An alternative possibility is that the observed downturn in the UV region of the spectrum is due to the result of

variations in the physical properties of the deposits, in particular grain size. Laboratory studies by Cloutis et al.

[2008] have shown that, in a manner similar to the effects of increasing Fe content, increasing the grain size of

silicate minerals causes OMCT bands to deepen and broaden, resulting in a shallower UV slope. This trend is

observed evenwith spectra of a plagioclase feldspar sample that has a very low Fe concentration (0.29wt % Fe)

[Cloutis et al., 2008]. Additionally, a general effect of increasing grain size on spectra from the ultraviolet to the

near infrared is to decrease the overall reflectance because of increased volume scattering and decreased

surface reflections [e.g., Crown and Pieters, 1987; Gaffey et al., 1993; Mustard and Hays, 1997].

Therefore, a variation in grain size among the deposits could also explain the observed covariation of UV

downturn strength and overall reflectance (Figures 11 and 12). Furthermore, because the optical properties

of the finest grain-size fraction are thought to control the spectral signature of lunar soils [Pieters et al., 1993],

variations in the amount of fine particles within the pyroclastic deposits may contribute to the observed

spectral trends in the UV. If differences in grain size are responsible for the UV downturn observed in the

ratioed MASCS spectra of the pyroclastic deposits, then those deposits are, on average, composed of finer-

grained material than the rest of Mercury’s surface [Izenberg et al., 2014], as is observed for the fine-grained

pyroclastic material on the Moon [e.g., Heiken et al., 1974; Weitz et al., 1999].

A third possible contributor to variations in the observed UV downturn is a difference in the degree of space

weathering. Space weathering on the Moon and other airless bodies is known to result in the darkening of

surface material, the reduction of spectral contrast, and the reddening, or increase, of the visible to NIR

spectral slope [e.g., Hapke, 2001; Blewett et al., 2009]. Much of the previous work on space weathering has

focused on effects in the NIR region of the spectrum, but Hendrix and Vilas [2006] showed that the effect of

space weathering in the UV is a decrease of the UV spectral slope. Hendrix and Vilas [2006] hypothesize that

this change may be the result of the formation of nanophase iron coatings on mineral grains, a process also

commonly invoked to explain some of the trends of space weathering in the NIR [e.g., Pieters et al., 1993; Hapke,

2001; Noble and Pieters, 2003]. That spaceweathering acts to decrease the UV spectral slopemight suggest that,

in the absence of other contributing factors, the pyroclastic deposits are less space weathered than Mercury’s

average surface [Izenberg et al., 2014], although the expectation that space weathering processes on

Mercury operate at higher rates than on the Moon [e.g., Cintala, 1992; Noble and Pieters, 2003; Braden and

Robinson, 2013] renders this idea unlikely.
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Deciding among the above three

explanations for the UV downturn

observed in the MASCS spectral

signatures of pyroclastic deposits

(Figures 10 and 11) is not possible from

the observations presented here. Further

analyses of MASCS data coupled with

laboratory analyses of the UV–VIS

spectral signatures of minerals relevant

to the composition of Mercury, such as

low-iron silicates, and under conditions

analogous to those on Mercury’s surface

(e.g., with laser irradiation [Yamada et al.,

1999]), will illuminate more fully the

origin of the spectral signatures

observed for Mercury’s

pyroclastic deposits.

It is also worth noting that there is no obvious correlation between the spectral type of the pyroclastic deposit

and the stratigraphic age of the host crater (Figure 14). Such a correlation might be expected if the spectral

signature of the pyroclastic deposit material were controlled by space weathering, or evenwere it controlled by

transition metal content if, for instance, there is a secular trend in the average composition of mantle-derived

magmas with time on Mercury. The fact that the stratigraphic ages of host craters are only upper limits on the

ages of the pyroclastic deposits, however, may obscure any such correlation in the data we have examined.

5.6. Spectral Variability Among Pyroclastic Deposits

Regardless of the specific source of the UV downturn in the spectral reflectance of pyroclastic deposits, this

feature appears in the spectra for the majority of examined deposits and has a variable strength among

deposits (Figures 10–12). This interdeposit variability allowed us to classify the pyroclastic deposits into four

major categories (types I–IV) on the basis of the strength of the UV downturn parameter (Figures 11 and 12).

These four spectral types appear to make up a continuum in UV downturn strength, red spectral slope, and

absolute reflectance (Figures 11 and 12). The variation in the spectral signatures of the pyroclastic deposits

has two possible explanations: (1) there are variable degrees of mixing of the pyroclastic material with a

spectrally distinct host rock, such as low-reflectance material or other plains material [Robinson et al., 2008;

Denevi et al., 2009; Izenberg et al., 2014] or (2) the pyroclastic deposits themselves have variable spectral

signatures because of inherent differences in one or more of the factors discussed above.

Mixing with a spectrally distinct background material would be likely to result in lowering of the overall

reflectance, as pyroclastic deposits are among the brightest materials on Mercury’s surface [Blewett et al.,

2009; Kerber et al., 2009, 2011; Izenberg et al., 2014], as well as the subduing of spectral features [e.g., Weitz

et al., 1998], such as the strong UV downturn strength. Mixing with nonpyroclastic material could occur

as a result of mixing with country rock in the conduit during magma ascent, mixing during ballistic

emplacement of pyroclastic material on the surface [e.g., Head and Wilson, 1979; Weitz et al., 1998; Head

et al., 2002] or vertical mixing and regolith development over time during impact gardening [e.g., Oberbeck

and Quaide, 1968; Oberbeck, 1975].

All of these processes are likely to have occurred at the studied sites, and so different amounts of mixing with

background materials is certainly a likely explanation for at least some of the interdeposit spectral variability

observed (Figure 12), as has been hypothesized for interdeposit spectral variations of lunar pyroclastic

deposits [e.g., Weitz et al., 1998]. Further, given the spectral diversity of plains deposits across the surface of

Mercury [Robinson et al., 2008; Denevi et al., 2009; Izenberg et al., 2014], globally distributed pyroclastic

deposits should also vary in their makeup, including differences in composition, physical properties such as

grain size, and perhaps degree of space weathering. Although it seems likely that some combination of mixing

and intrinsic differences has produced the interdeposit spectral variability observed here, determining which

effects are dominant is beyond the scope of this work.

Figure 14. Stacked histogram showing the number of each MASCS type

within host craters of specific stratigraphic ages. Note the fairly even

distribution of MASCS types among host craters of a given stratigraphic age.
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6. Conclusions

We have completed an analysis of pyroclastic deposits on Mercury from imaging, spectral, and topographic

data acquired during the orbital phase of theMESSENGERmission. This analysis expands the global catalog of

pyroclastic deposits and brings the total number to 51. Our method for identifying new pyroclastic deposits

focused on the morphological identification of candidate pyroclastic source vents. Our approach differs from

that of Kerber et al. [2011], who searched MDIS global color mosaics for the distinctive spectral signature

associated with these deposits. It is therefore likely that additional pyroclastic deposits will be discovered in

the future with the use of methods complementary to those used here.

On the basis of global assessments of source vent areas and depths, deposit areas, geological associations

of the deposits, relative ages of the deposits, and spectral characteristics of the deposits, the principal

conclusions are as follows:

1. The great majority (~90%) of pyroclastic deposits are found within impact craters and basins. Such

localization may be the result of easier access of magma to the surface because of impact-induced frac-

turing and reduced crustal thickness beneath the largest impact features [e.g., Head and Wilson, 1992].

2. Crosscutting relationships and the degradation state of the impact craters that host pyroclastic deposits

suggest that explosive volcanic activity on Mercury likely occurred over a substantial fraction of Mercury’s

geologic history, with the emplacement of some pyroclastic deposits as recently as the Mansurian period,

which ranges from ~3.25 to 1Ga.

3. Most pyroclastic deposits are distant from smooth plains deposits, but some are located around smooth

plains margins. The relation of the latter deposits to smooth plains on Mercury is similar to that seen

for many lunar pyroclastic deposits adjacent to lunar maria [e.g., Head andWilson, 1979; Gaddis et al., 1985;

Weitz et al., 1998].

4. The spectral reflectance of pyroclastic deposits shows high overall reflectance values, a redder slope, and

a downturn at UV wavelengths compared with that for surrounding material or spectrally average

material on Mercury. Possible explanations include the following: (1) the deposits are poor in transition

metals compared with surrounding terrain, (2) the deposits consist of finer-grained material than the

surrounding terrain, or (3) the deposits are less space weathered than the surrounding terrain.

5. There is a covariation among pyroclastic deposits in the strength of the downturn in the UV and the

absolute reflectance value. These interdeposit variations may be due to (1) variable amounts of mixing

with underlying material [e.g., Head and Wilson, 1979; Weitz et al., 1998; Head et al., 2002] or (2) intrinsic

chemical or physical differences (e.g., differences in grain size or mineralogy) among deposits.

References
Adams, J. B. (1974), Visible and near-infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the

solar system, J. Geophys. Res., 79, 4829–4836, doi:10.1029/JB079i032p04829.

Baker, D. M. H., J. W. Head, S. C. Schon, C. M. Ernst, L. M. Prockter, S. L. Murchie, B. W. Denevi, S. C. Solomon, and R. G. Strom (2011), The

transition from complex crater to peak-ring basin on Mercury: New observations from MESSENGER flyby data and constraints on basin

formation models, Planet. Space Sci., 59, 1932–1948, doi:10.1016/j.pss.2011.05.010.

Banks, M. E., T. R. Watters, R. G. Strom, S. C. Solomon, S. E. Braden, C. R. Chapman, Z. Xiao, and N. G. Barlow (2012), Stratigraphic relationships

between lobate scarps and young impact craters on Mercury: Implications for the duration of lobate scarp formation, Lunar Planet. Sci., 43,

abstract 2684.

Benz, W., W. L. Slattery, and A. G. W. Cameron (1988), Collisional stripping of Mercury’s mantle, Icarus, 74, 516–528.

Blewett, D. T., M. S. Robinson, B. W. Denevi, J. J. Gillis-Davis, J. W. Head, S. C. Solomon, G. M. Holsclaw, and W. E. McClintock (2009),

Multispectral images of Mercury from the first MESSENGER flyby: Analysis of global and regional color trends, Earth Planet. Sci. Lett., 285,

272–282, doi:10.1016/j.epsl.2009.02.021.

Blewett, D. T., et al. (2011), Hollows on Mercury: MESSENGER evidence for geologically recent volatile-related activity, Science, 333,

1856–1859, doi:10.1126/science.1211681.

Blewett, D. T., W. M. Vaughan, Z. Xiao, N. L. Chabot, B. W. Denevi, C. M. Ernst, and J. W. Head (2013), Mercury’s hollows: Constraints on for-

mation and composition from analysis of geological setting and spectral reflectance, J. Geophys. Res. Planets, 118, 1013–1032, doi:10.1029/

2012JE004174.

Boynton, W. V., A. L. Sprague, S. C. Solomon, R. D. Starr, L. G. Evans, W. C. Feldman, J. I. Trombka, and E. A. Rhodes (2007), MESSENGER and the

chemistry of Mercury’s surface, Space Sci. Rev., 131, 85–104, doi:10.1007/s11214-007-9258-3.

Braden, S. E., and M. S. Robinson (2013), Relative regolith optical maturation rates on Mercury and the Moon, J. Geophys. Res. Planets, 118,

1903–1914, doi:10.1002/jgre.20143.

Burns, R. G. (1993a), Mineralogical Applications of Crystal Field Theory, 2nd ed., 551 pp., Cambridge Univ. Press, New York, N. Y.

Burns, R. G. (1993b), Origin of electronic spectra of minerals in the visible to near-infrared region, in Remote Geochemical Analysis: Elemental

and Mineralogical Composition, edited by C. M. Pieters and P. A. J. Englert, pp. 3–29, Cambridge Univ. Press, Cambridge, United Kingdom.

Cameron, A. G. W. (1985), The partial volatilization of Mercury, Icarus, 64, 285–294.

Acknowledgments

We gratefully acknowledge the contri-

butions of the engineers and managers

of the MESSENGER mission that have

made this work possible. The

MESSENGER mission is supported by

the NASA Discovery Program under

contract NAS5-97271 to The Johns

Hopkins University Applied Physics

Laboratory and NASW-00002 to the

Carnegie Institution of Washington.

Sebastien Besse, Paul Byrne, Olaf

Gustafson, and Catherine Weitz pro-

vided thorough and constructive

reviews that improved this paper. We

thank C.I. Fassett for assistance with

topographic data, and J.L. Dickson and

D.M.H. Baker for the help in processing

image data. Thanks are also extended to

D.M.H. Baker, M. Beach, D.M. Hurwitz, L.M.

Jozwiak, K.E. Scanlon, W.M. Vaughan, and

J.L. Whitten for assistance with the initial

search for potential pyroclastic source

vents and helpful discussions.

Journal of Geophysical Research: Planets 10.1002/2013JE004480

GOUDGE ET AL. ©2014. American Geophysical Union. All Rights Reserved. 656

http://dx.doi.org/10.1029/JB079i032p04829
http://dx.doi.org/10.1016/j.pss.2011.05.010
http://dx.doi.org/10.1016/j.epsl.2009.02.021
http://dx.doi.org/10.1126/science.1211681
http://dx.doi.org/10.1029/2012JE004174
http://dx.doi.org/10.1029/2012JE004174
http://dx.doi.org/10.1007/s11214&hyphen;007&hyphen;9258&hyphen;3
http://dx.doi.org/10.1002/jgre.20143


Cavanaugh, J. F., et al. (2007), The Mercury Laser Altimeter instrument for the MESSENGERmission, Space Sci. Rev., 131, 451–479, doi:10.1007/

s11214-007-9273-4.

Cintala, M. J. (1992), Impact-induced thermal effects in the lunar and mercurian regoliths, J. Geophys. Res., 97, 947–973, doi:10.1029/91JE02207.

Cloutis, E. A., K. A. McCormack, J. F. Bell, A. R. Hendrix, D. T. Bailey, M. A. Craig, S. A. Mertzman, M. S. Robinson, and M. A. Riner (2008),

Ultraviolet spectral reflectance properties of common planetary minerals, Icarus, 197, 321–347, doi:10.1016/j.icarus.2008.04.018.

Crown, D. A., and C. M. Pieters (1987), Spectral properties of plagioclase and pyroxene mixtures and the interpretation of lunar soil spectra,

Icarus, 72, 492–506.

Denevi, B. W., et al. (2009), The evolution of Mercury’s crust: A global perspective from MESSENGER, Science, 324, 613–618, doi:10.1126/

science.1172226.

Denevi, B. W., et al. (2013), The distribution and origin of smooth plains on Mercury, J. Geophys. Res. Planets, 118, 891–907, doi:10.1002/jgre.20075.

Domingue, D. L., F. Vilas, G. M. Holsclaw, J. Warell, N. R. Izenberg, S. L. Murchie, B. W. Denevi, D. T. Blewett, W. E. McClintock, and B. J. Anderson

(2010), Whole-disk spectrophotometric properties of Mercury: Synthesis of MESSENGER and ground-based observations, Icarus, 209,

101–124, doi:10.1016/j.icarus.2010.02.022.

Domingue, D. L., S. L. Murchie, N. L. Chabot, B. W. Denevi, and F. Vilas (2011), Mercury’s spectrophotometric properties: Update from theMercury

Dual Imaging System observations during the third MESSENGER flyby, Planet. Space Sci., 59, 1853–1872, doi:10.1016/j.pss.2011.04.012.

Evans, L. G., et al. (2012), Major-element abundances on the surface of Mercury: Results from the MESSENGER Gamma-Ray Spectrometer,

J. Geophys. Res., 117, E00L07, doi:10.1029/2012JE004178.

Gaddis, L. R., C. M. Pieters, and B. R. Hawke (1985), Remote sensing of lunar pyroclastic mantling deposits, Icarus, 61, 461–489.

Gaffey, S. J., L. A. McFadden, D. Nash, and C. M. Pieters (1993), Ultraviolet, visible, and near-infrared reflectance spectroscopy: Laboratory

spectra of geologic materials, in Remote Geochemical Analysis: Elemental and Mineralogical Composition, edited by C. M. Pieters and P. A. J.

Englert, pp. 43–77, Cambridge Univ. Press, Cambridge, United Kingdom.

Geyer, A., and J. Martí (2008), The new worldwide collapse caldera database (CCDB): A tool for studying and understanding caldera pro-

cesses, J. Volcanol. Geotherm. Res., 175, 334–354, doi:10.1016/j.jvolgeores.2008.03.017.

Gillis-Davis, J. J., D. T. Blewett, R. W. Gaskell, B. W. Denevi, M. S. Robinson, R. G. Strom, S. C. Solomon, and A. L. Sprague (2009), Pit-floor craters

on Mercury: Evidence of near-surface igneous activity, Earth Planet. Sci. Lett., 285, 243–250, doi:10.1016/j.epsl.2009.05.023.

Greenspon, A. S., C. A. Hibbitts, and M. D. Dyar (2012), Compositional dependencies in ultraviolet reflectance spectra of synthetic glasses

relevant to airless bodies, Lunar Planet. Sci., 43, abstract 2490.

Gwinner, K., J. W. Head, J. Oberst, J. J. Gillis-Davis, Z. Xiao, R. G. Strom, F. Preusker, and S. C. Solomon (2012), Morphology of pit craters on

Mercury from stereo-derived topography and implications for pit crater formation, Lunar Planet. Sci., 43, abstract 1991.

Hapke, B. (2001), Space weathering from Mercury to the asteroid belt, J. Geophys. Res., 106, 10,039–10,073.

Hartmann, W. K. (1966), Martian cratering, Icarus, 5, 565–576.

Hartmann, W. K. (1977), Relative crater production rates on planets, Icarus, 31, 260–276.

Hauck, S. A., II, A. J. Dombard, R. J. Phillips, and S. C. Solomon (2004), Internal and tectonic evolution of Mercury, Earth Planet. Sci. Lett., 222,

713–728, doi:10.1016/j.epsl.2004.03.037.

Hawkins, S. E. III, et al. (2007), The Mercury Dual Imaging System on the MESSENGER spacecraft, Space Sci. Rev., 131, 247–338, doi:10.1007/

s11214-007-9266-3.

Head, J. W., and L. Wilson (1979), Alphonsus-type dark-halo craters: Morphology, morphometry and eruption conditions, in Proc. Lunar

Planet. Sci. Conf., 10th, vol. 3, pp. 2861–2897, Pergamon Press, New York.

Head, J. W., and L. Wilson (1992), Lunar mare volcanism: Stratigraphy, eruption conditions, and the evolution of secondary crusts, Geochim.

Cosmochim. Acta, 56, 2155–2175.

Head, J. W., L. Wilson, and C. M. Weitz (2002), Dark ring in southwestern Orientale basin: Origin as a single pyroclastic eruption, J. Geophys.

Res., 107 (E1), 5001, doi:10.1029/2000JE001438.

Head, J. W., C. R. Chapman, D. L. Domingue, S. E. Hawkins,W. E. McClintock, S. L. Murchie, L. M. Prockter, M. S. Robinson, R. G. Strom, and T. R. Watters

(2007), The geology of Mercury: The view prior to the MESSENGER mission, Space Sci. Rev., 131, 41–84, doi:10.1007/s11214-007-9263-6.

Head, J. W., et al. (2008), Volcanism on Mercury: Evidence from the first MESSENGER flyby, Science, 321, 69–72, doi:10.1126/science.1159256.

Head, J. W., et al. (2009), Volcanism onMercury: Evidence from the first MESSENGER flyby for extrusive and explosive activity and the volcanic

origin of plains, Earth Planet. Sci. Lett., 285, 227–242, doi:10.1016/j.epsl.2009.03.007.

Head, J. W., et al. (2011), Flood volcanism in the northern high latitudes of Mercury revealed by MESSENGER, Science, 333, 1853–1856,

doi:10.1126/science.1211997.

Heiken, G. H., D. S. McKay, and R. W. Brown (1974), Lunar deposits of possible pyroclastic origin, Geochim. Cosmochim. Acta, 38, 1703–1718.

Hendrix, A. R., and F. Vilas (2006), The effects of space weathering at UV wavelengths: S-class asteroids, Astron. J., 132, 1396–1404,

doi:10.1086/506426.

Holsclaw, G. M., W. E. McClintock, D. L. Domingue, N. R. Izenberg, D. T. Blewett, and A. L. Sprague (2010), A comparison of the ultraviolet to near-

infrared spectral properties of Mercury and the Moon as observed by MESSENGER, Icarus, 209, 179–194, doi:10.1016/j.icarus.2010.05.001.

Izenberg, N. R., et al. (2014), The low-iron, reduced surface of Mercury as seen in spectral reflectance by MESSENGER, Icarus, 228, 364–374,

doi:10.1016/j.icarus.2013.10.023.

Jozwiak, L. M., and J. W. Head (2012), Mercury pit-floor craters: Perspectives on their origin from lunar floor-fractured craters, Lunar Planet.

Sci., 43, abstract 2424.

Kerber, L., J. W. Head, S. C. Solomon, S. L. Murchie, D. T. Blewett, and L. Wilson (2009), Explosive volcanic eruptions on Mercury: Eruption

conditions, magma volatile content, and implications for interior volatile abundances, Earth Planet. Sci. Lett., 285, 263–271, doi:10.1016/j.

epsl.2009.04.037.

Kerber, L., J. W. Head, D. T. Blewett, S. C. Solomon, L. Wilson, S. L. Murchie, M. S. Robinson, B. W. Denevi, and D. L. Domingue (2011), The global

distribution of pyroclastic deposits on Mercury: The view from MESSENGER flybys 1–3, Planet. Space Sci., 59, 1895–1909, doi:10.1016/j.

pss.2011.03.020.

King, T. V. V., and W. I. Ridley (1987), Relation of the spectroscopic reflectance of olivine to mineral chemistry and some remote sensing

implications, J. Geophys. Res., 92, 11,457–11,469, doi:10.1029/JB092iB11p11457.

Klima, R. L., C. M. Pieters, and M. D. Dyar (2007), Spectroscopy of synthetic Mg-Fe pyroxenes I: Spin-allowed and spin-forbidden crystal field

bands in the visible and near-infrared, Meteorit. Planet. Sci., 42, 235–253, doi:10.1111/j.1945-5100.2007.tb00230.x.

Klima, R. L., M. D. Dyar, and C. M. Pieters (2011), Near-infrared spectra of clinopyroxenes: Effects of calcium content and crystal structure,

Meteorit. Planet. Sci., 46, 379–395, doi:10.1111/j.1945-5100.2010.01158.x.

Lipman, P. W. (1997), Subsidence of ash-flow calderas: Relation to caldera size and magma-chamber geometry, Bull. Volcanol., 59, 198–218,

doi:10.1007/s004450050186.

Journal of Geophysical Research: Planets 10.1002/2013JE004480

GOUDGE ET AL. ©2014. American Geophysical Union. All Rights Reserved. 657

http://dx.doi.org/10.1007/s11214&hyphen;007&hyphen;9273&hyphen;4
http://dx.doi.org/10.1007/s11214&hyphen;007&hyphen;9273&hyphen;4
http://dx.doi.org/10.1029/91JE02207
http://dx.doi.org/10.1016/j.icarus.2008.04.018
http://dx.doi.org/10.1126/science.1172226
http://dx.doi.org/10.1126/science.1172226
http://dx.doi.org/10.1002/jgre.20075
http://dx.doi.org/10.1016/j.icarus.2010.02.022
http://dx.doi.org/10.1016/j.pss.2011.04.012
http://dx.doi.org/10.1029/2012JE004178
http://dx.doi.org/10.1016/j.jvolgeores.2008.03.017
http://dx.doi.org/10.1016/j.epsl.2009.05.023
http://dx.doi.org/10.1016/j.epsl.2004.03.037
http://dx.doi.org/10.1007/s11214&hyphen;007&hyphen;9266&hyphen;3
http://dx.doi.org/10.1007/s11214&hyphen;007&hyphen;9266&hyphen;3
http://dx.doi.org/10.1029/2000JE001438
http://dx.doi.org/10.1007/s11214&hyphen;007&hyphen;9263&hyphen;6
http://dx.doi.org/10.1126/science.1159256
http://dx.doi.org/10.1016/j.epsl.2009.03.007
http://dx.doi.org/10.1126/science.1211997
http://dx.doi.org/10.1086/506426
http://dx.doi.org/10.1016/j.icarus.2010.05.001
http://dx.doi.org/10.1016/j.icarus.2013.10.023
http://dx.doi.org/10.1016/j.epsl.2009.04.037
http://dx.doi.org/10.1016/j.epsl.2009.04.037
http://dx.doi.org/10.1016/j.pss.2011.03.020
http://dx.doi.org/10.1016/j.pss.2011.03.020
http://dx.doi.org/10.1029/JB092iB11p11457
http://dx.doi.org/10.1111/j.1945&hyphen;5100.2007.tb00230.x
http://dx.doi.org/10.1111/j.1945&hyphen;5100.2010.01158.x
http://dx.doi.org/10.1007/s004450050186


Lucchitta, B. K., and H. H. Schmitt (1974), Orange material in the Sulpicius Gallus Formation at the southwestern edge of Mare Serenitatis, in

Proc. Lunar Sci. Conf., 5th, vol. 1, pp. 223–234, Pergamon Press, New York.

Mazarico, E., D. D. Rowlands, G. A. Neumann, D. E. Smith, M. H. Torrence, F. G. Lemoine, and M. T. Zuber (2012), Orbit determination of the

Lunar Reconnaissance Orbiter, J. Geod., 86, 193–207, doi:10.1007/s00190-011-0509-4.

McClintock, W. E., and M. R. Lankton (2007), The Mercury Atmospheric and Surface Composition Spectrometer for the MESSENGER mission,

Space Sci. Rev., 131, 481–521, doi:10.1007/s11214-007-9264-5.

McClintock, W. E., et al. (2008), Spectroscopic observations of Mercury’s surface reflectance during MESSENGER’s first Mercury flyby, Science,

321, 62–65, doi:10.1126/science.1159933.

McCord, T. B., M. P. Charette, T. V. Johnson, L. A. Lebofsky, C. Pieters, and J. B. Adams (1972), Lunar spectral types, J. Geophys. Res., 77, 1349–1359.

McCord, T. B., R. N. Clark, B. R. Hawke, L. A. McFadden, and P. D. Owensby (1981), Moon: Near-infrared spectral reflectance, a first good look,

J. Geophys. Res., 86, 10,883–10,892.

Murchie, S. L., et al. (2008), Geology of the Caloris basin, Mercury: A view fromMESSENGER, Science, 321, 73–76, doi:10.1126/science.1159261.

Mustard, J. F., and J. E. Hays (1997), Effects of hyperfine particles on reflectance spectra from 0.3 to 25 μm, Icarus, 125, 145–163.

Neukum, G., B. König, H. Fechtig, and D. Storzer (1975), Cratering in the Earth-Moon system: Consequences for age determination by crater

counting, in Proc. Lunar Sci. Conf., 6th, vol. 3, pp. 2597–2620, Pergamon Press, New York.

Nittler, L. R., et al. (2011), Themajor-element composition of Mercury’s surface fromMESSENGER X-ray spectrometry, Science, 333, 1847–1850,

doi:10.1126/science.1211567.

Noble, S. K., and C. M. Pieters (2003), Space weathering on Mercury: Implications for remote sensing, Solar System Res., 37, 31–35.

Oberbeck, V. R. (1975), The role of ballistic erosion and sedimentation in lunar stratigraphy, Rev. Geophys. Space Phys., 13, 337–362.

Oberbeck, V. R., and W. L. Quaide (1968), Genetic implications of lunar regolith thickness variations, Icarus, 9, 446–465.

Pashai, P., N. R. Izenberg, J. J. Gillis-Davis, T. R. Watters, D. T. Blewett, and S. C. Solomon (2010), A Mercury impact crater with volcanic and

tectonic modification, Lunar Planet. Sci., 41, abstract 1693.

Pieters, C. M., E. M. Fischer, O. Rode, and A. Basu (1993), Optical effects of space weathering: The role of the finest fraction, J. Geophys. Res., 98,

20,817–20,824.

Prockter, L. M., et al. (2010), Evidence for young volcanism on Mercury from the third MESSENGER flyby, Science, 329, 668–671, doi:10.1126/

science.1188186.

Prockter, L. M., S. L. Murchie, C. M. Ernst, D. M. H. Baker, P. K. Byrne, J. W. Head, T. R.Watters, B. W. Denevi, C. R. Chapman, and S. C. Solomon (2012),

The geology of medium-sized basins on Mercury: Implications for surface processes and evolution, Lunar Planet. Sci., 43, abstract 1326.

Rava, B., and B. Hapke (1987), An analysis of the Mariner 10 color ratio map of Mercury, Icarus, 71, 397–429.

Robinson, M. S., and P. G. Lucey (1997), Recalibrated Mariner 10 color mosaics: Implications for Mercurian volcanism, Science, 275, 197–200,

doi:10.1126/science.275.5297.197.

Robinson, M. S., et al. (2008), Reflectance and color variations on Mercury: Regolith processes and compositional heterogeneity, Science, 321,

66–69, doi:10.1126/science.1160080.

Robinson, M. S., et al. (2010), Lunar Reconnaissance Orbiter Camera (LROC) instrument overview, Space Sci. Rev., 150, 81–124, doi:10.1007/

s11214-010-9634-2.

Smith, D. E., et al. (2010), The Lunar Orbiter Laser Altimeter investigation on the Lunar Reconnaissance Orbiter mission, Space Sci. Rev., 150,

209–241, doi:10.1007/s11214-009-9512-y.

Solomon, S. C., R. L. McNutt Jr., R. E. Gold, and D. L. Domingue (2007), MESSENGER mission overview, Space Sci. Rev., 131, 3–39, doi:10.1007/

s11214-007-9247-6.

Solomon, S. C., et al. (2008), Return to Mercury: A global perspective on MESSENGER’s first Mercury flyby, Science, 321, 59–62, doi:10.1126/

science.1159706.

Spudis, P. D., and J. E. Guest (1988), Stratigraphy and geologic history of Mercury, in Mercury, edited by F. Vilas, C. R. Chapman, and M. S.

Matthews, pp. 118–164, University of Arizona Press, Tuscon, Ariz.

Strom, R. G., N. J. Trask, and J. E. Guest (1975), Tectonism and volcanism on Mercury, J. Geophys. Res., 80, 2478–2507, doi:10.1029/

JB080i017p02478.

Thomas, R. J., D. A. Rothery, S. J. Conway, and M. Anand (2014), Hollows on Mercury: Materials and mechanisms involved in their formation,

Icarus, 229, 221–235, doi:10.1016/j.icarus.2013.11.018.

Vaughan, W. M., J. Helbert, D. T. Blewett, J. W. Head, S. L. Murchie, K. Gwinner, T. J. McCoy, and S. C. Solomon (2012), Hollow-forming layers in

impact craters on Mercury: Massive sulfide or chloride deposits formed by impact melt differentiation?, Lunar Planet. Sci., 43, abstract 1187.

Wagner, J. K., B. W. Hapke, and E. N. Wells (1987), Atlas of reflectance spectra of terrestrial, lunar, andmeteoritic powders and frosts from 92 to

1800 nm, Icarus, 69, 14–28.

Watters, T. R., M. S. Robinson, and A. C. Cook (1998), Topography of lobate scarps on Mercury: New constraints on the planet’s contraction,

Geology, 26, 991–994.

Watters, T. R., J. W. Head, S. C. Solomon, M. S. Robinson, C. R. Chapman, B. W. Denevi, C. I. Fassett, S. L. Murchie, and R. G. Strom (2009),

Evolution of the Rembrandt impact basin on Mercury, Science, 324, 618–621, doi:10.1126/science.1172109.

Weider, S. Z., L. R. Nittler, R. D. Starr, and S. C. Solomon (2013), The distribution of iron on the surface of Mercury from MESSENGER X-Ray

Spectrometer measurements, Lunar Planet. Sci., 44, abstract 2189.

Weitz, C. M., J. W. Head, and C. M. Pieters (1998), Lunar regional dark mantle deposits: Geologic, multispectral, and modeling studies,

J. Geophys. Res., 103, 22,725–22,759.

Weitz, C. M., M. J. Rutherford, J. W. Head, and D. S. McKay (1999), Ascent and eruption of a lunar high-titanium magma as inferred from the

petrology of the 74001/2 drill core, Meteorit. Planet. Sci., 34, 527–540, doi:10.1111/j.1945-5100.1999.tb01361.x.

Wilson, L., and J. W. Head (2008), Volcanism on Mercury: A new model for the history of magma ascent and eruption, Geophys. Res. Lett., 35,

L23205, doi:10.1029/2008GL035620.

Wilson, L., and J. W. Head (2012), Volcanic eruption processes on Mercury, Lunar Planet. Sci., 43, abstract 1316.

Yamada, M., S. Sasaki, H. Nagahara, A. Fujiwara, S. Hasegawa, H. Yano, T. Hiroi, H. Ohashi, and H. Otake (1999), Simulation of space weathering

of planet-forming minerals: Nanosecond pulse laser irradiation and proton implantation on olivine and pyroxene samples, Earth Planets

Space, 51, 1255–1265.

Zolotov, M. Y. (2011), On the chemistry of mantle and magmatic volatiles on Mercury, Icarus, 212, 24–41, doi:10.1016/j.icarus.2010.12.014.

Zuber, M. T., et al. (2012), Topography of the northern hemisphere of Mercury from MESSENGER laser altimetry, Science, 336, 217–220,

doi:10.1126/science.1218805.

Journal of Geophysical Research: Planets 10.1002/2013JE004480

GOUDGE ET AL. ©2014. American Geophysical Union. All Rights Reserved. 658

http://dx.doi.org/10.1007/s00190&hyphen;011&hyphen;0509&hyphen;4
http://dx.doi.org/10.1007/s11214&hyphen;007&hyphen;9264&hyphen;5
http://dx.doi.org/10.1126/science.1159933
http://dx.doi.org/10.1126/science.1159261
http://dx.doi.org/10.1126/science.1211567
http://dx.doi.org/10.1126/science.1188186
http://dx.doi.org/10.1126/science.1188186
http://dx.doi.org/10.1126/science.275.5297.197
http://dx.doi.org/10.1126/science.1160080
http://dx.doi.org/10.1007/s11214&hyphen;010&hyphen;9634&hyphen;2
http://dx.doi.org/10.1007/s11214&hyphen;010&hyphen;9634&hyphen;2
http://dx.doi.org/10.1007/s11214&hyphen;009&hyphen;9512&hyphen;y
http://dx.doi.org/10.1007/s11214&hyphen;007&hyphen;9247&hyphen;6
http://dx.doi.org/10.1007/s11214&hyphen;007&hyphen;9247&hyphen;6
http://dx.doi.org/10.1126/science.1159706
http://dx.doi.org/10.1126/science.1159706
http://dx.doi.org/10.1029/JB080i017p02478
http://dx.doi.org/10.1029/JB080i017p02478
http://dx.doi.org/10.1016/j.icarus.2013.11.018
http://dx.doi.org/10.1126/science.1172109
http://dx.doi.org/10.1111/j.1945&hyphen;5100.1999.tb01361.x
http://dx.doi.org/10.1029/2008GL035620
http://dx.doi.org/10.1016/j.icarus.2010.12.014
http://dx.doi.org/10.1126/science.1218805

