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Abstract. A regionalized cluster-based water isotope predic-

tion (RCWIP) approach, based on the Global Network of

Isotopes in Precipitation (GNIP), was demonstrated for the

purposes of predicting point- and large-scale spatio-temporal

patterns of the stable isotope composition (δ2H, δ18O) of

precipitation around the world. Unlike earlier global do-

main and fixed regressor models, RCWIP predefined 36 cli-

matic cluster domains and tested all model combinations

from an array of climatic and spatial regressor variables to

obtain the best predictive approach to each cluster domain,

as indicated by root-mean-squared error (RMSE) and var-

iogram analysis. Fuzzy membership fractions were there-

after used as the weights to seamlessly amalgamate results

of the optimized climatic zone prediction models into a sin-

gle predictive mapping product, such as global or regional

amount-weighted mean annual, mean monthly, or growing-

season δ18O/δ2H in precipitation. Comparative tests revealed

the RCWIP approach outperformed classical global-fixed

regression–interpolation-based models more than 67 % of

the time, and clearly improved upon predictive accuracy

and precision. All RCWIP isotope mapping products are

available as gridded GeoTIFF files from the IAEA website

(www.iaea.org/water) and are for use in hydrology, climatol-

ogy, food authenticity, ecology, and forensics.

1 Introduction

Spatial patterns in stable hydrogen and oxygen isotope ra-

tios of precipitation were first observed in the 1950s (Epstein

and Mayeda, 1953; Friedman, 1953; Dansgaard, 1954; Craig,

1961), and increasingly revealed as long-term δ2H and δ18O

data sets from around the world accumulated in the Interna-

tional Atomic Energy Agency’s (IAEA) global network of

isotopes in precipitation (GNIP – Fig. 1) (Dansgaard, 1964;

Rozanski et al., 1993; Aggarwal et al., 2010; IAEA/WMO,

2013). The strong covariance of δ2H and δ18O in precipi-

tation (Craig, 1961) supported the construction of local and

regional isotopic “meteoric water lines”, which provided the

basis, for example, upon which to assess the origin of mod-

ern and ancient ground water (Rozanski, 1985; Clark and

Fritz, 1997) and its interaction with surface water resources

(Kendall and McDonnell, 1998; Froehlich et al., 2005).

The past decade has experienced increasing demand for

accurate spatio-temporal predictions of point, regional, and

continental-scale δ2H and δ18O values in precipitation, espe-

cially for some regions where little or no GNIP data existed.

This demand for isotopic predictive capacity arose from the

ecological, wildlife, food source traceability, and forensic

sciences after it was revealed that the δ2H (and δ18O) values

of some plant, animal, and human tissues closely mirrored

isotopic patterns of precipitation (Hobson and Wassenaar,

1997; Bowen et al., 2005a). This strong water-to-biosphere

isotopic linkage facilitated new areas of interdisciplinary spa-

tial water isotope research (“isoscapes”), since δ2H and δ18O

analyses could be used for determining origins of migra-

tory species (Hobson and Wassenaar, 1997; Popa-Lisseanu

et al., 2012), freshwater fish (Soto et al., 2013), food or drink

products (Bowen et al., 2005b; Heaton et al., 2008), and

in criminal forensics (Fraser and Meier-Augenstein, 2007;

Ehleringer et al., 2008), as well as across spatial scales

and regions that were hitherto problematic. For predictive

isoscapes to progress further into these new areas of climato-

logical, ecological, and hydrological research, improved and

accurate spatially explicit predictive δ2H and δ18O models,
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Fig. 1. Global map of GNIP stations used for RCWIP modeling. All stations represented 2 to 52 yr of monthly δ18O or δ2H and climate

data from 1960 to 2009. Inset: a cross-plot of δ18O versus δ2H at stations used, yielding a GMWL of δ2H = 7.91 δ18O + 8.72 (R2 = 0.976,

n = 576).

driven by and premised upon the foundational global patterns

of δ2H and δ18O in precipitation, were required.

Early attempts at producing maps of δ2H or δ18O patterns

in precipitation (Sheppard et al., 1969; Yurtsever and Gat,

1981) were later improved with geographical information

systems (GIS) and the online availability of spatially exten-

sive water isotope (GNIP) and climatic data sets (Rozanski

et al., 1993; Dutton et al., 2005; Welker, 2012). Descriptive

spatial maps of δ2H or δ18O in precipitation were first made

using simple inverse distance-weighted approaches (Birks

et al., 2002; Aggarwal et al., 2010). Thereafter, more com-

plex multiple regression and interpolation prediction mod-

els were widely used (Bowen and Wilkinson, 2002; Bowen

and Revenaugh, 2003). In particular, the approach of Bowen

and Wilkinson – hereafter called model M1 – used fixed

predictor variables (absolute latitude, squared latitude, alti-

tude) to obtain the response variable (δ2H/δ18O in precipita-

tion) and an interpolation parameter to optimize the fitting

model. Because isotope ratios show a strong linear corre-

lation with mean annual air temperature in nontropical re-

gions, model M1 was able to explain 58–61 % of the iso-

topic variance in precipitation over a globally gridded do-

main. Model M1 did not downscale well particularly into

tropical parts of the world, resulting in poorer fits between

isotope data and model results (e.g., Africa, Asia, etc.). Some

researchers therefore constrained the geographical domain

(Liu et al., 2008) or added meteorological explanatory re-

gressor variables at a global scale (van der Veer et al., 2009;

Bowen, 2010). Others combined meteorological (e.g., sur-

face air temperature, relative humidity, snowfall amount,

etc.) and geospatial variables in order to obtain improved re-

gressions/interpolations of precipitation isotope composition

for specific regions such as Austria (Liebminger et al., 2006),

the eastern Mediterranean (Lykoudis and Argiriou, 2007),

and Canada (Delavau et al., 2011). In a different approach,

a spatially dense groundwater isotope network was used as a

“proxy” for mean annual precipitation and used generalized

linear models (GLMs) and multiple predictor variables (ele-

vation, precipitation amount, latitude, basin, and their inter-

actions) to explain 81 % of the isotopic variance and patterns

in precipitation in Mexico (Wassenaar et al., 2009). All of

the above regionalized multivariate regression and interpo-

lation approaches resulted in markedly improved predictive

outcomes across some regions as manifested by (1) higher

coefficients of determinations (R2) between the measured

and modeled data and (2) lower predictive uncertainties or

residuals when compared to model M1 (a summary of mod-

els is given in Table 1). However, because regional models

were arbitrarily fitted to small geographical domains, they

were not applicable at the global scale.

The goal of this paper was to describe a new regionalized

cluster-based water isotope prediction (RCWIP) approach

for predictive annual, seasonal, and point location estimates

of δ2H and δ18O in precipitation around the globe. In order

to leverage the improved predictive accuracy accrued by re-

gionalized multivariate approaches – and to help bridge the

gap between regionalized or a one-size-fits-all global model

M1 – RCWIP used fuzzy clustering of GNIP stations into

predefined regionalized climatic zones. Statistical climatic

zone clustering was used rather than arbitrary delineation of

geospatial domains (e.g., country or geographic region). The

RCWIP approach was highly flexible, because rather than

applying a single fixed model to each regional domain, a

suite of all possible regression models was tested, with the

best performing model selected. In order to produce a spa-

tially continuous global δ2H or δ18O isotopic map, fuzzifica-

tion was used to weight and amalgamate the climatically re-

gionalized prediction maps into a single thematic global iso-

topic map. A performance assessment of RCWIP was made

by comparing its outputs to the established model M1, and

by using the identical isotopic data sets for all models. Fi-

nally, the comparative predictions of accuracy, precision, and
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Table 1. Examples of global and regional water isotope models and type of predictive spatial and climatic variables used for the isotopic

composition of precipitation and ground water.

Corresponding to

Source Domain Variables model in this paper

Bowen and Revenaugh (2003) Global/single fit Spatiala M1

Liebminger et al. (2006) Regional (Austria) Spatiala + climaticb –

Lykoudis and Argiriou (2007) Regional (eastern Mediterranean) Spatiala + climaticb –

Liu et al. (2008) Regional (China) Spatiala –

Wassenaar et al. (2009) Regional (Mexican groundwaters) Spatiala + climaticb –

Van der Veer et al. (2009)/Bowen (2010) Global/single fit Spatiala + climaticb M2

Delavau et al. (2011) Regional (Canada) Spatiala + climaticb –

IAEA 2012 (unpublished data) Global/regionalized fits Spatiala M3

This study Global/regionalized fits Spatiala + climaticb M4

a Spatial variables shall be defined as any combination of the following: latitude, longitude, and elevation (including derived parameters like squared or absolute

latitude). b climatic variables are defined as any combination of the following: precipitation amount, air temperature, vapor pressure and other climate-related
variables (wind speed, snow amount, relative humidity, precipitable water/moisture residence time, etc.).

uncertainty of precipitation isoscapes were used to illustrate

improved RCWIP outcomes.

2 Materials and methods

RCWIP employed the well-established linear prediction

model based on multiple regressions of station-based precipi-

tation isotope and climatic data and the interpolation of resid-

uals (Bowen and Revenaugh, 2003). RCWIP differed from

this key earlier work in that it used the best performing model

from a suite of regionalized domain multivariate regression

equations to determine the isotopic composition of precipita-

tion at a known location i as a function of the selected pre-

dictor variables available. A comparison between model M1

and the RCWIP approach is described in Fig. 2. To accom-

modate regionalization, RCWIP introduced additional steps

of formation of subsets of station-based data as well as the

gridded data sets according to their climatic clustering prop-

erties, as well as the determination of model parameter set-

tings and the coefficient estimations for each climatic cluster,

as described in turn below.

2.1 δ
2H and δ

18O isotope and spatial data

The precipitation stable isotope data set used was comprised

of monthly composites of δ2H and δ18O in precipitation from

worldwide stations archived in the GNIP database (Aggar-

wal et al., 2010), supplemented by compatible monthly iso-

tope data from published papers (Wang and Peng, 2001; Kra-

lik et al., 2003; Kurita and Ichiyanagi, 2008). The tempo-

ral span of isotopic data records was constrained to 1960–

2009, although fewer than 100 stations were fully contem-

poraneous over this time frame. The longest serving GNIP

stations spanned 20–52 yr of isotopic records. Additionally,

stations that did not have over two years of monthly iso-

topic records were omitted to avoid seasonal biases aris-
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Fig. 2. Workflow of the regression–interpolation models for predict-

ing the isotopic composition of precipitation around the globe. The

upper panel (a) shows the workflow of the fixed regressor, global

domain model M1 (Bowen and Wilkinson, 2002). The lower panel

(b) shows the workflow of RCWIP with the addition of climate data,

regionalization, and the use of flexible regressors (models M2–M4).

ing from incomplete records. The calculation of amount-

weighted annual δ2H and δ18O composites was obtained

from monthly data sets from the GNIP (IAEA/WMO, 2013).

The prescreened water isotope data used comprised δ2H

(> 49 000) and δ18O (> 57 000) records from GNIP stations

collected between 1960 and 2009 (Fig. 1). All spatial vari-

ables (latitude, longitude, elevation) for each station were

www.hydrol-earth-syst-sci.net/17/4713/2013/ Hydrol. Earth Syst. Sci., 17, 4713–4728, 2013
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obtained from the GNIP database or from digital elevation

models.

The stable isotope data in the GNIP database were com-

posed of station-based point measurements with substantial

gaps in spatio-temporal coverage (Rozanski et al., 1993; Ag-

garwal et al., 2010). Concerns surrounding the pooling and

use of noncontiguous data sets for spatial isotope mapping

have previously been discussed (Bowen, 2010). Furthermore,

nearly half of the longest-serving GNIP stations showed time

trends when adjusted for seasonality, although there was no

obvious process to explain the trends. Additionally, for trend-

ing stations, the mean interannual rate of isotopic change was

rather small (δ18O < 0.03 ‰ per year) in comparison to sea-

sonal isotopic fluctuations, historical measurement error, and

methodological changes, but the cumulative decadal change

appeared significant over longer time frames for a few re-

gions (Table S1 in the Supplement). For this paper, we ac-

cepted the spatio-temporal limitations of the GNIP data set

in pooling noncontiguous decadal-scale data sets (Bowen,

2010). However, users of isoscape mapping efforts must re-

main alert to inherent assumption of temporal constancy in

the isoscape maps, particularly when the studies may be sen-

sitive to interannual or stochastic variability (e.g., plant or

food traceability studies).

2.2 Climate data

Climatological variables (monthly precipitation amount, air

temperature, vapor pressure) corresponding to the iso-

tope sampling stations were also obtained from the GNIP

database. When corresponding meteorological data were un-

available, averaged climate data (monthly, annual) was ob-

tained from the nearest station in the Global Historical Cli-

mate Network station (GHCN) (Peterson et al., 1998). If a

nearby GHCN station was not available, climatic parame-

ters were obtained from the CRU-CL 2.1 data set (New et

al., 2002). The precipitation amount data were natural-log-

transformed to achieve normality and to linearize the rela-

tionship with δ2H and δ18O. Point-based data on monthly

mean precipitable water was included into the array of cli-

matic variables as it helped define the mean residence time

of vapor, which had high predictive power for the isotopic

composition of precipitation in tropical regions (Aggarwal et

al., 2012).

Gridded data sets of spatial and climatic variables (mean

monthly/annual temperature, precipitation, and relative hu-

midity) were extracted from the CRU-CL 2.1 data set (New

et al., 2002) at a resolution of 10 arcmin. Vapor pressure

was calculated from temperature and relative humidity us-

ing the equations given by the World Meteorological Organi-

zation (WMO, 2008). Gridded precipitable water data were

obtained by interpolation of point-based information; how-

ever, the use of remotely sensed data (e.g., NASA EOS At-

mospheric Infrared Sounder) is anticipated in the future.

2.3 Climatic zone clustering

Because climatic parameters are spatially continuous,

sharply drawn climatic classification boundaries on a map

pose an unrealistic depiction of their spatially continuous dis-

tribution (McBratney and Moore, 1985). Climatic classes,

however, may be useful in varied forms (e.g., plant hardi-

ness zones). To avoid sharp boundary domain constraints,

fuzzy clustering techniques, including fuzzy c-means (FCM;

Bezdek, 1981; Cannon et al., 1986), were used to (1) sta-

tistically reduce the global climatic data set to a number of

manageable and unique spatial domain clusters and (2) to

seamlessly overlap the determined climatic class boundaries.

Fuzzy clusters used fractional membership values (e.g., a

GNIP station may be 60 % in cluster A and 40 % in cluster

B) rather than a strict binary criterion (whether it belongs or

not) to classify stations or points on the landscape. To achieve

this, the FCM routine randomly seeded cluster centroids in

the data space and iteratively adjusted their positions to min-

imize the total of all distances between the input data points

and the centroids until a convergence criterion (such as min-

imal improvement from one iteration to the next, or preset

number of iterations) was reached. Cannon et al. (1986) de-

fined the fuzzy c-means function by

Jm (U,ϑ) =

n
∑

k=1

c
∑

i=1

(uik)
m (dik)

2, (1)

with U being the fuzzy membership matrix for a set of cen-

troids ϑ = (ϑ1,ϑ2, . . .,ϑc). The distance dik between the kth

data point xk and the ith centroid ϑi was calculated as

d2
ik = ‖xk − ϑi‖

2 . (2)

m ∈ [1,∞] was a fuzzification (i.e., smoothing) factor that

indicated the sharpness of transition between two fuzzy clus-

ters, with m = 1 indicating a crisp boundary line. Cannon et

al. (1986) reported a value of 1.1 < m< 5 as “useful”. For

RCWIP clustering, a factor of m = 1.5 was experimentally

determined as a suitable compromise between fuzzy bound-

aries and spatial explicitness: while a smoothing factor of 1.0

would have resulted in line boundaries (no fuzzy transitions),

we experimented extensively with the smoothing factor and

found out that m > 1.5 would have led to inordinately large

clusters extending, for example, from one continent into an-

other ignoring the ocean in between. Since our approach was

focused on land areas, we empirically found that m = 1.5

was a suitable (albeit arbitrary) compromise to balance be-

tween terrestrially meaningful clusters and obtaining smooth

transitions between them.

In order to build appropriate climatic clusters, data from

GHCN records (n = 5921) were used in 26-dimensional

data space (26 normalized climatic and spatial variables, 12

monthly mean temperatures, precipitation, latitude, and lon-

gitude) and were clustered using weighted FCM. The num-

ber of climatic clusters was restricted to 1.5 times the number

Hydrol. Earth Syst. Sci., 17, 4713–4728, 2013 www.hydrol-earth-syst-sci.net/17/4713/2013/
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Fig. 3. Map of 36 climatic zone domains used in RCWIP, derived by fuzzy clustering but here shown with defined boundaries. The “+”

symbol denotes the spatial location of each climatic zone centroid. The descriptions of each of these climatic zones are denoted by a number

(zone no.) and a Köppen–Geiger climatic zone description (e.g., Dfc). These are fully tabulated in Table 2 and Sheet S2 in the Supplement.

of climatic input variables, although it was generally recom-

mended that the number of clusters be twice the number of

input variables (McBratney and Moore, 1985). Our reason-

ing was practical and by trial and error, because we found

using more climatic clusters led to difficulties in subdivid-

ing the unevenly distributed GNIP data set (Fig. 1). Each

GHCN data point was then assigned a weight based on its

proximity to its nearby stations, whereby a GHCN station’s

average distance to its five closest neighbors was normal-

ized to this parameter’s average over the whole GHCN data

set. Globally, the GHCN data were heavily overrepresented

in some regions, and unconstrained FCM clustering would

have resulted in an excessive number of climatic clusters in

weather-data-rich countries like the USA, Canada, Australia,

and China (Table 2). This exercise resulted in the identifica-

tion of 36 climatic clusters.

The 36 FCM-derived climatic clusters were then subjected

to a first-order evaluation of their appropriateness by compar-

ing their features to the well-known Köppen–Geiger climate

classification scheme (Kottek et al., 2006). Our evaluation

also consisted of determining whether each FCM-defined cli-

mate zone cluster was consistent with the geographical lo-

cation of the cluster centroid. Following this, some offline

manual adjustments were needed. These changes mainly in-

volved manually moving the geographic location of FCM de-

rived climatic centroid to the closest station of the WMO’s

Global Surface Network (GSN). In a few cases (e.g., Antarc-

tica), cluster centroids were moved to entirely new positions

to better cover those areas that were underrepresented by the

automated FCM clustering. A spreadsheet of the FCM out-

puts, as well as the geographical positions and climate data

averages of the 36 centroids along with descriptions of each

climatic zone was tabulated in the supplementary material

(Table S2).

The final positioning of the 36 global climatic zone cen-

troids served as the fundamental basis for defining the

RCWIP subsets, and was applied to the GNIP station data

set as well as the gridded climatic data sets, resulting in each

GNIP station or each CRU grid cell being assigned a fuzzy

cluster membership uik:

uik =

1

d2
ik

(m−1)−1

c
∑

i=1

1

d2
ik

(m−1)−1
. (3)

Membership fractions of < 0.02 were considered insignifi-

cant and omitted in order to give more weight to the main

membership fractions of a data point or grid cell. The re-

maining fractions were renormalized to their sums. Fuzzy

membership fractions were also used to layer-stack the mem-

bership of the GNIP stations to each climatic zone. The cri-

terion used for including a GNIP station in a given climatic

zone regression subset was a minimum membership fraction

of 0.1. A map of the 36 climatic cluster zones used is shown

in Fig. 3. Figure 4 also provides an illustrative example of the

spatial depiction of clustering membership fractions and the

amalgamation for a selected geographical region.

This clustering procedure also provided a useful exercise

for categorization of the GNIP stations, since it afforded a

statistically robust and unbiased (e.g., by arbitrary bound-

aries) means to group subsets of “climatically similar” GNIP

stations. One benefit of this analysis is that it allowed a visu-

alization of climatically similar zones around the Earth that

were (1) overrepresented by current and historical GNIP data

collections (e.g., Europe), (2) lacking in GNIP data to be

targeted for future stations, and (3) historically underrepre-

sented (e.g., compare the GNIP station distribution in Fig. 1

with zones in Fig. 3).

2.4 Regression models

RCWIP tested all of the available regression–interpolation

models, as summarized in Tables 1 and S3. Model M1, as

noted, was the widely used global domain model that uses

www.hydrol-earth-syst-sci.net/17/4713/2013/ Hydrol. Earth Syst. Sci., 17, 4713–4728, 2013
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Table 2. The ID number, geographic centroid location, climatic zone, and WMO station of the climatic clusters used in RCWIP.

Centroid Latitude Longitude WMO Country Station Climate

1 52.210 14.120 10393 Germany LINDENBERG Cfb

2 59.318 39.926 27037 Russia VOLOGDA Dfb

3 58.317 82.950 29231 Russia KOLPASEVO Dfc

4 41.333 69.300 38457 Uzbekistan TASHKENT Csa

5 25.383 68.417 41764 Pakistan HYDERABAD BWh

6 19.961 99.881 48303 Thailand CHIANG RAI Aw

7 43.650 112.000 53068 China ERENHOT BWk

8 29.667 91.133 55591 China LHASA Cwb

9 31.417 121.450 58362 China SHANGHAI (BAOSHAN) Cfa

10 34.300 −6.595 60120 Morocco KENITRA Csa

11 14.900 5.250 61043 Niger TAHOUA BWh

12 31.325 27.222 62306 Egypt MERSA MATRUH BWh

13 −6.167 35.767 63862 Tanzania DODOMA BSh

14 7.350 13.567 64870 Cameroon NGAOUNDERE Aw

15 −25.742 28.183 68262 South Africa PRETORIA EENDRACHT Cwa

16 64.816 −147.877 70261 USA FAIRBANKS/INT., AK Dfc

17 68.776 −81.244 71320 Canada HALL BEACH CLIMATE, NU ET

18 53.217 −105.667 71869 Canada PRINCE ALBERT A, SASK Dfb

19 49.383 −126.545 71894 Canada ESTEVAN POINT CS, BC Cfb

20 32.333 −88.750 72234 USA MERIDIAN/KEY, MS. Cfa

21 40.667 −89.683 72532 USA PEORIA/GREATER PEORIA MUN., IL. Dfa

22 42.917 −112.600 72578 USA POCATELLO/MUN., ID. BSk

23 46.868 −68.014 72712 USA CARIBOU/MUN., ME. Dfb

24 28.667 −106.033 76225 Mexico CHIHUAHUA, CHIH. BSh

25 18.500 −77.917 78388 Jamaica MONTEGO BAY/SANGSTER Aw

26 −10.717 −48.583 83064 Brazil PORTO NACIONAL Aw

27 −3.783 −73.300 84377 Peru IQUITOS Af

28 −17.583 −69.600 85230 Bolivia CHARANA BSk

29 −53.005 −70.839 85934 Chile PUNTA ARENAS Cfc

30 −29.383 −66.817 87217 Argentina LA RIOJA AERO. BSh

31 7.340 134.489 91408 Palau WEATHER SERVICE OFFICE, KOROR, PALAU WCI. Af

32 −9.417 160.050 91520 Solomon Is. HONIARA/HENDERSON Af

33 −17.555 −149.614 91938 French Polynesia TAHITI-FAAA Am

34 −23.795 133.889 94326 Australia ALICE SPRINGS AIRPORT BWh

35 −33.600 150.776 95753 Australia RICHMOND RAAF Cfa

36 −6.183 106.833 96745 Indonesia JAKARTA/OBSERVATORY Am

fixed regressor variables, as described previously (Bowen

and Wilkinson, 2002; Bowen and Revenaugh, 2003). Model

M1 therefore served as the basis upon which to assess

RCWIP performance. Model M2 comprised the same global

domain model of M1, but used a covariate best fit instead

of a fixed regressor combination. To further accommodate

regionalization through the use of the climatic clustering,

model M3 used the same approach as M1, but using fixed

regressors for each of the 36 individual climatic clusters. The

most flexible model of all – model M4 – used all 36 region-

alized climatic clusters and used the best fit of all regressor

variable combinations for each zone. A process flowchart for

RCWIP regression modeling is shown in Fig. 5.

Climatically regionalized best-fit flexible regression mod-

els were derived from all possible combinations of the fol-

lowing variables: latitude, longitude, elevation, air tempera-

ture, precipitation amount, vapor pressure, and precipitable

water. Any of the 120 combinations of these explanatory re-

gressors were tested and ranked according to their coefficient

of determination (R2). For models M2 and M4, the best-fit

combinations were selected if they met an acceptance crite-

rion of R2 of ≥ 0.5, and the number of remaining degrees

of freedom was ≥ 7.5 times the number of independent vari-

ables (for M2, this was always the case). For model M4, this

procedure was performed on all 36 climatic clusters; how-

ever, if no suitable regression equation satisfying the accep-

tance criteria was obtained for a given cluster or month, the

global domain best-fit regression equation (M2) for the corre-

sponding month was applied by default to the cluster/month.

Since M2 was effectively a “backup solution” for preferred

M4 model, it was not discussed further.

The “fixed-regressor” models M1 and M3 were applied to

the same climatic clustering, but their equations were derived

on the general form given by Eq. (4):

δ18O = a
(

lat2
)

+ b |lat| + c (alt) + d, (4)

where δ18O (or δ2H) was the predicted value; a, b, and c

were the regression coefficients; and d denoted the intercept.
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Fig. 4. Example of fuzzy climatic zone layering and amalgamation

for a geographical domain around the Mediterranean–Black Sea re-

gion. The five climatic clusters in this spatial domain (climatic clus-

ters 1, 2, 4, 10, and 12) were overlain, with degree of color satura-

tion of each indicative of the fractional membership for each grid

cell. The GNIP station in Athens (indicated by a small star sign),

Greece, for example, holds membership fractions of 0.14, 0.34, and

0.52 in clusters 1, 10, and 12, respectively.

For model M3, only those models for a given cluster

month that fulfilled the same criteria as M4 were accepted,

otherwise they were substituted by model M1. We found

model M3 had a very high frequency of overlap with M1.

Henceforth, all results and discussions hereafter concerning

“regionalized” and “global” models involve only comparing

the outcomes of model M4 to M1. Figure 5 depicts the deci-

sion tree for each of the M1–M4 regression models used in

the RCWIP approach.

Once optimal regression models were obtained for each

climatic cluster domain, these were applied to the station data

set and to the gridded data, resulting in preliminary regres-

sion estimates (termed pi for the station and px for the grid-

ded data). For the station data set, point-based residuals were

calculated using Eq. (5) for M1 and Eq. (6) for M4:

ei = δi − pi, (5)

ei =
∑

m

(δi − eim)wim. (6)
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Fig. 5. Flowchart of available regression models built into RCWIP.

The left portion of the diagram depicts the fixed explanatory vari-

able regressor models M1 and M3 using a global or climatic cluster

domain. The right portion of the diagram depicts the flexible regres-

sor models M2 and M4 using a global or climatic cluster domains.

For the latter two, the best model outcome is selected on the basis

of the R2 value.

In addition, px of M4 was calculated as a fuzzy

membership-weighted layer stack of the different regression

models (Eq. 7):

px=

∑

m

pxmwxm. (7)

To compare outcomes of model regression performance,

models M1 (global domain, fixed regressors) and M4 (cli-

matic regionalized, flexible regressors) were chosen for com-

parative illustration by illustrating the mean annual precipi-

tation δ18O (δ18OANN) model outputs.

2.5 Kriging

In the final step of the RCWIP workflow, the point-based re-

gression residuals were interpolated using Kriging and added

to the regression surface. The best station-based regressions

obtained were interpolated onto the gridded surface, with

the Kriging results added to the regression surface. Kriging

provided a robust geostatistical interpolation method exploit-

ing the spatial autocorrelation of natural features (Matheron,

1963; Delhomme, 1978). The Kriging input function was

based on the classic variogram model, which describes the

degree of spatial dependence, i.e., the variance between the
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Fig. 6. GNIP station data points per climatic cluster. The blue line indicates the minimum number of data points (15) to successfully derive

a M4 best-fit regression model for a given cluster.

values within a pair of data points (x and y, cf. Eq. 8):

2γ (x,y) = var (Z (x) − Z(y)) . (8)

The resulting semivariance of any particular point pair plot-

ted against the distance between was used to create an empir-

ical variogram, to which an experimental variogram model

was fitted. The fitted function was defined by function type,

nugget, sill, and range, and was used to predict values at

any unknown location within a certain error range. Given

the large heterogeneity of the GNIP data set (e.g., differ-

ent scales for γ using different regression models, differ-

ent months, stable isotopes), the recommended variogram

autofitting function was augmented by a role-based defini-

tion of the modeled variogram that “visually best fit” the

point clouds. Briefly, our variograms were computed with

a reasonable (for hydrologic purposes) cut-off lag distance

of 150◦ (e.g., data points located farther away than 150 spa-

tial degrees from each other exerted no influence on the var-

iogram). A robust variogram estimation was used (Cressie,

1993), whereby the width of the variogram bins was set to

one-hundredth of the cut-off distance. An exponential func-

tion was used to fit the point cloud. The nugget was set to

the minimum of γ , and sill was defined as the minimum γ

plus 2.25 times the standard deviation of γ . The range was

detected automatically when the curve function was fitted to

the variogram data. This parameter setting was chosen to en-

sure that any of the models tested (12 monthly for oxygen

and hydrogen, plus one annual each, for both M1 and M4, in

total 52) were subjected to the principles of identical treat-

ment (PIT). When using the automatic parameter detection

functions of the “gstat” library (Pebesma, 2004), some exper-

imental variograms were found to be singular, with the model

function not matching the curve given by the empirical var-

iogram. Hence, we used a parsimonious PIT approach that

would not result in singular variograms. We are well aware

that this conservative PIT approach might not result in a per-

fect nugget/sill/range combination for each of the 52 models

tested; however, comparability was maintained in all steps

of the prediction/comparison workflow, which we deemed to

be of greater importance for the RCWIP model comparison

approach.

Kriging errors were calculated as the square root of the

variance of the Kriging estimator as output by the “gstat”

library. Kriging model evaluations were conducted by graph-

ical and numerical comparisons of the variograms for the

two core models (model M1 vs. M4). This is a rather simple

approach to quantify the comparative outcomes of different

geospatial models in order to determine which gives a better

result; regression uncertainty may be incorporated as addi-

tional uncertainty estimation into the future versions of the

RCWIP model.

2.6 Confidence intervals

In order obtain a measure of the accuracy of the RCWIP re-

gression and interpolation model prediction outcome, 95 %

confidence intervals (CIs) were determined using the leave-

one-out (n – 1) “jackknife” resampling procedure (Wu, 1986;

Shao and Tu, 1995). The jackknifing method determined the

robustness of model results by running ni iterations, each

time leaving one station data value out (i). In order to re-

duce computational load, these calculations were restricted

to a 2◦ × 2◦ grid, which was sufficient for the determination

of areas potentially deficient in predictive qualities.

Mathematically, the jackknife method was expressed

as θ̂J = f (δ), where θ̂J stands for a jackknife estimator
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function of δ18O (or δ2H), and in which f (δ) encompasses

both multiple regression and Kriging. A pseudo-value leav-

ing out the station i was denoted as θ̂(i) = f (δ(−i)). We cal-

culated the mean θ̂J,x and standard error σ
θ̂J,x

of the jack-

knife for each grid cell x as the mean and standard deviation

of the pseudo-values (Shao and Tu, 1995):

θ̂J,x =

n
∑

i=1

θ̂(i)

n
, (9)

σ
θ̂J,x

=

[

n − 1

n

n
∑

i=1

(

θ̂(−i) − θ̂J,x

)2
]1/2

. (10)

The higher the standard error of the jackknife, the more vul-

nerable a certain grid cell was to leaving that station data out.

This standard error used for the computation of 95 % CIs was

defined as c = (±)1.96σ
θ̂J,x

.

2.7 Data handling and numerical analysis

All isotopic, climatic, and geospatial data were collated

in Microsoft Access databases. The model decision tree

and geostatistical treatments were conducted using the R

Statistical and Computing Environment (R Development

Core Team, 2013) with the following package extensions:

“RODBC”, “e1071”, “gstat” (Pebesma, 2004), and “rgdal”.

Statistical evaluations were done using XLSTAT 2013 (www.

xlstat.com). Plots were made using Grapher 10 (www.

goldensoftware.com). All geospatial mapping was conducted

using ArcGIS 2010 (www.ESRI.com, Redlands CA).

3 Results and discussion

3.1 Climatic clustering of GNIP stations

RCWIP’s data parameterization (i.e., minimum influence

threshold, minimum ratio of remaining degrees of freedom

over independent variables) required that any given climatic

cluster domain needed mean values for a minimum of 15

GNIP stations for the computation of a cluster-specific re-

gression model in model M4. Figure 6 shows the result of a

histogram of the available data points per climatic cluster; the

horizontal threshold line (n = 15) could be compared to the

minimum number of data points required for the computation

of the regionalized model M4. This plot revealed that of the

36 climatic regions defined by fuzzy clustering, 15 zones did

not meet the required data threshold for applying model M4.

For these cases, model M2 was substituted by default. This

graph further illustrated the relative paucity of isotopic data

for specific spatial and climatic regions. For example, areas

that were particularly data deficient in precipitation isotope

data (up to 2009) to allow application of model M4 were

climatic clusters 19 (western coast of Canada), 22 (western
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Fig. 7. (a) Frequency histogram comparing the δ18OANN residuals

of model M1 and M4, as well as excess kurtosis values. (b) Fre-

quency histogram of the δ18OANN residuals’ difference between

M4 and M1 (1e = eM1−eM4; n = 623). Values below zero indicate

a lower residual in model M4 versus model M1. The labels on the x

axis refer to the upper bin limit (i.e., 0.0 indicates −0.5 < 1e < 0.0).

USA), 33 (Pacific islands), and 34 (Australia). These and

the 11 other identified areas could benefit from targeted new

GNIP sampling efforts (Fig. 3). A map indicating the cover-

age of M4 for annual δ18O is available from the Supplement

(S5).

3.2 Evaluation of regression models

3.2.1 Residuals analysis

Comparing the residual statistics of model M4 versus M1 in

Fig. 7a, several indicators of improved performance of model

M4 were identified. The standard deviation of model M4 was

lower than M1 (1.58 vs. 2.31), as was the interquartile range

(1.57 vs. 2.51). The excess kurtosis of M4 exceeded that

of M1 (3.79 vs. 3.19). The difference between model M1

and M4 residuals (1e = eM1 − eM4; n = 623) revealed that

> 67 % of the data point residuals were lower by using M4. A

frequency distribution of 1e is shown graphically in Fig. 7b;

it is skewed to the left (skewness = −1.33), which also indi-

cates that model M4 outperformed model M1. Hence, model
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Fig. 8. Regression model (δ18O) performance comparison based on RMSE (‰, left axis) of models M1 (red) versus M4 (blue) for amount-

weighted monthly predictions for six climatic cluster centroids. Lower RMSE means better performance. Mean monthly precipitation amount

(mm month−1, right axis) is shown by blue bars to indicate the timing of rainy and dry seasons. An ideal model would produce seasonally

consistently low RMSE. That there were flatter monthly patterns and a lower RMSE of M4 compared to M1 shows improved seasonal

predictive outcomes when using regionalized best-fit regressor combinations.

M4 had lower residuals on average combined with a lower

residual spread compared to M1.

3.2.2 Improved monthly predictions

The improved performance of model M4 in establishing re-

gionalized precipitation isotope prediction models was par-

ticularly evident when the time domain of the GNIP data

was reduced to monthly means. The coefficient of determi-

nation (R2) of the regression model for any particular month

was limited by the fact there were fewer underlying data. For

example, model M1 generally produced fairly high R2 val-

ues overall, but it exhibited poorer performance in some ge-

ographical areas like the tropics, and particularly when con-

sidering monthly predictions. The root-mean-squared errors

(RMSE) of model M1 and M4 were examined for each cal-

endar month and for each climatic cluster. The evaluations of

all clusters revealed that the RMSE of model M4 was lower

than M1 in all cases for both δ18O and δ2H, in all 36 clus-

ters for all 12 months, and in all clusters for the mean annual

model. Comparisons for several selected climatic clusters are

illustrated in Fig. 8. However, given the fragmented GNIP

data coverage, it should be noted that suitable model M4 re-

gression models could only be obtained for 56 and 58 % of

the δ18O and δ2H combinations due to underlying data avail-

ability constraints.

To illustrate the prediction precision outcomes, Fig. 8

shows the RMSE for model M1 versus M4 for mean monthly

δ18O for six climatically distinctive subsets that exhibited

disparate seasonal precipitation amount patterns (climatic
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Fig. 9. Empirical (symbols) and the modeled (lines) variograms for δ18OANN of models M1 and M4. Increased predictive precision (e.g.,

lower gamma values) over larger distances (x axis) means better performance.
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Fig. 10. A global map of the difference in prediction uncertainty

between models M1 and M4 (1σ = σM4 −σM1) for δ18OANN (up-

per map, scale) and δ2HANN (lower map, scale), expressed in ‰.

Stations are indicated with “+” signs.

clusters 1, 6, 10, 25, 26, 32). The monthly RMSE patterns are

underlain graphically by the monthly precipitation amounts.

An ideal predictive isotope model would be seasonally flat

and have a low RMSE. In all cases, model M4 obtained lower

monthly RMSE values than model M1. In some cases, for

example cluster 1 (Berlin), model M1 performed much more

poorly in winter or, in the case of cluster 10 (Morocco), had

the higher RMSE during the summer dry season. In short, the

consistently overall lower RMSE of model M4 over M1 indi-

cated that substantially improved seasonal and monthly pre-

dictive outcomes were obtained using the RCWIP approach.

3.2.3 Interpolation

Following the analysis of the multivariate regression results,

an evaluation of the performance of the interpolation meth-

ods was undertaken. To achieve this, we examined the empir-

ical and experimental semivariograms, along with the accom-

panying interpolation uncertainty. For brevity, only models

M4 versus M1 for amount-weighted annual δ18O (δ18OANN)

were illustrated. In Fig. 9, plots of the empirical and the-

oretical variograms of δ18OANN for all GNIP stations are

shown. It is clear in Fig. 9 that the semivariance scatter (γ ) of

model M4 is substantially reduced compared to model M1,

and remains better with increasing lateral spatial distance.

This resulted in a better fit of the variogram function, which

in turn had a positive benefit to the interpolation by lower-

ing the overall Kriging error. The average standard errors

(SE) of model M4 were reported as ±1.01 and ±8.3 ‰ for

the δ18OANN and δ2HANN interpolation models, respectively,
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Fig. 11. The 95 % CIs of model M4 for mean δ2HANN in precipitation. The legend scale is ±δ2H expressed in ‰. The highest CIs (poorest

performance) are clearly observed in the Himalayan region in Asia. See text for discussion.
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Fig. 12. Predicted global amount-weighted δ18OANN of precipitation obtained using RCWIP. The legend is δ18O in ‰ relative to the

VSMOW-SLAP scales.

and clearly indicated superior performance over model M1

(±1.38 and ±11.5 ‰, respectively). Outcomes for monthly

prediction models and a table of the Kriging parameters are

listed in Table S4.

Figure 10 shows a global map of the spatial distribution

of the isotope prediction as the difference between predicted

model outcomes of model M4 versus M1 (1σ = σM4 −σM1)

for the δ18OANN and δ2HANN grids. The predicted isotope

differences varied spatially from little to no difference be-

tween model M4 and M1 (e.g., < 0.2 ‰ for δ18O) to rather

large differences (> 0.7 ‰ for δ18O). Model M4 outper-

formed M1 particularly in data-scarce areas (e.g., in Aus-

tralia, northern and central Asia, and Greenland), but also

in parts of North America and Africa. On the other hand,

any advantages to using RCWIP in isotope data-rich areas

like Europe appeared to be limited (usually less than 0.3 ‰

difference, but see RMSE above).

3.3 Confidence intervals

The 95 % confidence intervals (CI) for δ18OANN and δ2HANN

models were derived as 1.96 times the standard error of the

jackknifing of model M4. For δ2H, the spatial distribution

of CIs is illustrated in Fig. 11. Note that δ2H is shown as

an example and that δ18O would appear accordingly due to

its strong correlation with δ2H (cf. Fig. 1). It was clear that

95 % CIs were below ±1 ‰ for δ2H (e.g., lower than mea-

surement error) for nearly all parts of the world. However,

there were regions of higher CIs in southern and western

Asia, the southern parts of the Arabian Peninsula, and par-

ticularly in the vicinity of the Himalayas (e.g., mainly in

climatic clusters 4, 5, 7, and 8). Higher CIs were also ob-

served for climatic clusters 28 and 29 (southern Andes) and

32 (some Pacific islands). These higher CI anomalies may

be due to the fact these climatic clusters were based on iso-

tope data sets whose size barely exceed model M4 minimum

station threshold (i.e., had there been only one or two sta-

tions less, the cluster would have deferred to model M2),

or in some cases where there were extremes in geograph-

ical characteristics not well served by the spatial grid size

used (e.g., very rapid elevation change in the Himalayas, high

precipitation in Asia, or large distances to neighboring data

points). Furthermore, CIs can also be affected by the RCWIP
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Fig. 13. Comparison of difference (1δ = δM4 − δM1) in predicted

amount-weighted δ18OANN (upper panel, scale) and δ2HANN

(lower panel, scale) comparing model M1 and M4. The isotopic

scale bar and color scheme indicate the extent – positive or nega-

tive – and locations where M4 produced more positive or negative

predicted values than M1.

workflow, whereby data-deficient areas were covered by the

globally parameterized regression model M2, whose size far

exceeds any of the localized climatic subsets, and thereby

precludes changes in the prediction result for any given jack-

knifing pseudovalue. The data scarcity limitation applies, for

example, to climatic clusters 16 and 18–24 (North America),

11 and 14 (western and central Africa), 34 and 35 (Australia,

New Zealand), and 3 (Russia). It was anticipated that 95 %

CIs may be further improved through the targeted collec-

tions of new precipitation isotope data in these regions into

the future.

3.4 Global precipitation isoscape maps

The final outcome of the RCWIP approach was to construct

globally gridded precipitation prediction maps (isoscape

maps) of δ18O and δ2H for the Earth’s land areas (exclud-

ing Antarctica), restricted to a 10 arcmin resolution. These

isoscape map products included precipitation δ18OANN

and δ2HANN, amount-weighted growing-season δ18OGS and

δ2HGS, and amount-weighted monthly grids. A complete

suite of isoscape map products has been made available for

public use as geo-referenced TIFF (GeoTIFF) files, avail-

able from the website of the IAEA Water Resources Program

(www.iaea.org/water/). These GeoTIFF files can be used in

a variety of disciplinary fields of hydrologic and ecological

research.

To provide a few comparative outcome examples, the pre-

dicted global isoscape map for δ18OANN was determined us-

ing the RCWIP approach, and is depicted in Fig. 12. In order

compare the RCWIP approach to model M1, a map show-

ing the isotopic difference (1δ) for δ18OANN and δ2HANN

was constructed, and is illustrated in Fig. 13. Examination

of Fig. 13 reveals several substantial differences between

RCWIP and model M1, in some cases for only one of the iso-

topes. One of the most obvious differences between RCWIP

and model M1 for both isotopes was found in the Arctic re-

gions – particularly Greenland – and for parts of northern

Asia (e.g., Siberia). In these areas, RCWIP consistently pro-

duced more negative δ2OANN and δ2HANN predictions for

precipitation. To a lesser extent, this also held true for the

western Andes and for parts of northern Africa, particularly

the Ethiopian Highlands (Fig. 13). Conversely, RCWIP pro-

duced more positive δ18OANN and δ2HANN predictions than

model M1 in Australia and the Himalayas, as well as over

parts of eastern Asia, to a lesser extent over southwestern

North America, and in parts of the South American lowlands

and the Arabian Peninsula (Fig. 13).

Decoupled isotopic differences (e.g., more enriched or de-

pleted in 18O than 2H than was expected from the GMWL

relationship) in the results of RCWIP compared to model M1

were observed over the Tibetan Plateau, over the Andes, and

in the northern Sahara (Fig. 13). These “decoupled” isotopic

differences generally occurred for climatic cluster domains

for which there were sufficient isotope data to build climate-

cluster-specific M4 regression models for only the one but

not for the other isotope (e.g., Fig. 3), especially climatic

clusters 7, 8, and 29. This observation was corroborated by

correspondingly higher CIs in these same areas (Fig. 11).

We therefore caution isoscape map users, particularly those

working in the geographical areas listed here, to carefully

verify these model results with data in these areas.

Finally, there is tremendous interest in precipitation hy-

drogen and oxygen isoscape maps for use in forensics and

plant and food authenticity, as well as in wildlife and eco-

logical studies. Previous research showed that the δ2H of

plant and wildlife tissue generally showed the strongest cor-

relation with amount-weighted growing-season precipitation

δ2H and δ18O as a result of seasonally relevant water up-

take (growing season here defined as growth months with av-

erage temperatures > 0 ◦C). Thus, growing-season isoscapes

were of great interest to the ecological, food authenticity, and

forensics fields (Cormie et al., 1994; Hobson and Wassenaar,

1997). In Fig. 14, a global isoscape for growing-season δ2H

is shown, and has also been provided as a GeoTIFF on the

IAEA website.

www.hydrol-earth-syst-sci.net/17/4713/2013/ Hydrol. Earth Syst. Sci., 17, 4713–4728, 2013

www.iaea.org/water/


4726 S. Terzer et al.: Global isoscapes for δ
18O and δ

2H in precipitation
❉
✐s❝✉

ss✐♦♥
P
❛♣

❡r
⑤

❉
✐s❝✉

ss✐♦♥
P
❛♣

❡r
⑤

❉
✐s❝✉

ss✐♦♥
P
❛♣

❡r
⑤

❉
✐s❝✉

ss✐♦♥
P
❛♣

❡r
⑤

Fig. 14. Predicted amount-weighted mean growing-season δ2HGS in precipitation obtained using RCWIP. Growing season was defined as

the mean of all months where the average air temperature was > 0 ◦C. Legend is δ2H in ‰, relative to VSMOW-SLAP scales.

4 Conclusions and outlook

A new regionalized cluster-based water isotope prediction

(RCWIP) approach based on over 50 yr of GNIP data was

demonstrated for the purposes of predicting spatio-temporal

patterns of the stable isotope composition (δ2H, δ18O) of pre-

cipitation around the world. Through the use of statistically

defined climatic spatial domains, a series of flexible climatic

and spatial explanatory regressor variables were used for test-

ing all available models (global–regional to fixed–flexible

regressors) in order to obtain the best predictive model for

each climatic cluster. The best individual cluster-optimized

prediction models were seamlessly amalgamated into single

global map products by using fuzzy clustering. Compara-

tive tests revealed that the RCWIP approach outperformed

the previously well-established model M1 > 67 % of the time,

and furthermore clearly improved both our predictive accu-

racy and precision. The main outcome of the RCWIP ap-

proach was to produce improved generalized and discipline-

specific relevant and useful precipitation isoscape map prod-

ucts to be available for download and public use from the

IAEA website.

Some precautionary notes on the use of δ2H and δ18O

isoscape predictive maps must be emphasized. As noted, pre-

cipitation isoscape mapping products were based upon dis-

continuous long-term data sets within the GNIP database,

and therefore these mapping efforts had an inherent assump-

tion of temporal constancy in their predictive outcomes,

which may not be true for some regions of the world. For

many applications, small overall time changes in precipita-

tion isotopes were not likely to be strongly manifested in

some receiving environments of interest. Groundwater, for

example, tended to reflect precipitation events averaged over

years to decades, and so would be slowly responsive to cli-

matically driven or stochastic weather events and isotopic

changes. For other disciplines where there was a strong in-

terest in precipitation isoscapes (e.g., plant or animal ecol-

ogy, food authenticity), there may be highly relevant interan-

nual, stochastic, or seasonal differences in the precipitation

regimes (wet/dry years, ENSO) that could affect the amount

of “relevant” precipitation water entering the soil, food webs,

and biological and plant tissues (and possibly also affected

the isotopic composition). For those disciplines where the

timescales of “which water matters” was critical, the use of

isoscape map products may be useful as a first-order starting

point for predictive modeling, but should be used with great

caution and need to be tested and validated (e.g., annual cal-

ibrations with GNIP data).

Regarding spatial and temporal data coverage, RCWIP

provided a strong and a flexible platform for predicting pre-

cipitation isoscapes, although modeling efforts were only as

good as the supporting foundational data pillars. Spatial gaps

in precipitation isotope collected data at global scales, spa-

tially and temporally, over many decades were inevitable.

Here, the climatic fuzzy clustering of GNIP stations allowed

us to identify particularly relevant and data-deficient areas of

the world. RCWIP thereby provided a basis upon which to

better inform future volunteer efforts in contributing to the

GNIP database. In particular, new multiyear efforts of strate-

gically located GNIP collections would be useful in certain

areas of Africa, central Asia, and in South America.

Although the RCWIP mapping effort presented here was

temporally restricted from the 1960s to 2009, current and up-

to-date isoscape maps will be published online on the IAEA

Water Resources website, with regular updating of RCWIP

to improve both the global spatial coverage of GNIP and

predictive modeling performance outcomes into the future.

This will facilitate improved isoscape modeling for a host

of disciplines and new research. Finally, we encourage users

of isoscape products to become engaged in volunteer efforts

to improve the GNIP coverage, both spatially and tempo-

rally, particularly in those areas that were identified to be

data deficient.
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Supplementary material related to this article is

available online at http://www.hydrol-earth-syst-sci.net/

17/4713/2013/hess-17-4713-2013-supplement.zip.

Acknowledgements. The authors are indebted to the numerous and

invaluable voluntary contributors of precipitation stable isotopic

data to the GNIP database over the past 60 yr from many countries.

Funding for this research was provided by the International Atomic

Energy Agency.

Edited by: C. Stumpp

References

Aggarwal, P., Araguas, L., Groening, M., Kulkarni, K. M., New-

man, B. D., and Vitvar, T.: Global hydrological isotope data net-

works, in: Isoscapes: Understanding movement, pattern, and pro-

cesses on Earth through isotope mapping, edited by: West, J. B.,

Bowen, G. J., Dawson, T. E., and Tu, K. P., Springer, 330050,

2010.

Aggarwal, P. K., Alduchov, O. A., Froehlich, K. O., Araguas-

Araguas, L. J., Sturchio, N. C., and Kurita, N.: Stable isotopes

in global precipitation: A unified interpretation based on at-

mospheric moisture residence time, Geophys. Res. Lett., 39,

L11705, doi:10.1029/2012GL051937, 2012.

Bezdek, J.: Pattern Recognition With Fuzzy Objective Function Al-

gorithms, Plenum, New York, 1981.

Birks, S., Gibson, J., Gourcy, L., Aggarwal, P., and Edwards, T.:

Maps and animations offer new opportunities for studying the

global water cycle, EOS T. Am. Geophys. Un., 83, p. 406,

doi:10.1029/2002EO000298, 2002.

Bowen, G. J.: Statistical and geostatistical mapping of precipita-

tion water isotope ratios, in: Isoscapes: Understanding move-

ment, pattern, and process on Earth through isotope mapping,

edited by: West, J. B., Bowen, G. J., Dawson, T. E., and Tu, K.

P., Springer, London, 139–178, 2010.

Bowen, G. J. and Revenaugh, J.: Interpolating the isotopic compo-

sition of modern meteoric precipitation, Water Resour. Res., 39,

1299, doi:10.1029/2003WR002086, 2003.

Bowen, G. J. and Wilkinson, B.: Spatial distribution of δ18O in me-

teoric precipitation, Geology, 30, 315–318, 2002.

Bowen, G. J., Wassenaar, L. I., and Hobson, K. A.: Global applica-

tion of stable hydrogen and oxygen isotopes to wildlife forensics,

Oecologia, 143, 337–348, 2005a.

Bowen, G. J., Winter, D. A., Spero, H. J., Zierenberg, R. A., Reeder,

M. D., Cerling, T. E., and Ehleringer, J. R.: Stable hydrogen and

oxygen isotope ratios of bottled waters of the world, Rapid Com-

mun. Mass Sp., 19, 3442–3450, 2005b.

Cannon, R. L., Dave, J. V., and Bezdek, J. C.: Efficient Implemen-

tation of the Fuzzy c-Means Clustering Algorithms, IEEE T. Pat-

tern Anal., 8, 248–255, 1986.

Clark, I. D. and Fritz, P.: Environmental Isotopes in Hydrogeology,

Lewis Publishers, New York, 328 pp., 1997.

Cormie, A. B., Schwarcz, H. P., and Gray, J.: Relation between hy-

drogen isotopic ratios of bone collagen and rain, Geochim. Cos-

mochim. Ac., 58, 377–391, 1994.

Craig, H.: Isotopic Variations in Meteoric Waters, Science, 133,

1702–1703, doi:10.1126/science.133.3465.1702, 1961.

Cressie, N. A.: Statistics for Spatial Data, Wiley & Sons, New York,

1993.

Dansgaard, W.: The 18O Abundance in Fresh Water, Geochim. Cos-

mochim. Ac., 6, 241–260, 1954.

Dansgaard, W.: Stable isotopes in precipitation, Tellus, 5, 436–468,

1964.

Delavau, C., Stadnyk, T., and Birks, J.: Model Based Spatial Dis-

tribution of Oxygen-18 Isotopes in Precipitation Across Canada,

Can. Water Resour. J., 36, 313–330, 2011.

Delhomme, J. P.: Kriging in the Hydrosciences, Adv. Water Resour.

Res., 1, 251–266, 1978.

Dutton, A., Wilkinson, B. H., Welker, J. M., Bowen, G. J., and

Lohmann, K. C.: Spatial distribution and seasonal variation in
18O/16O of modern precipitation and river water across the con-

terminous USA, Hydrol. Process., 19, 4121–4146, 2005.

Ehleringer, J. R., Bowen, G. J., Chesson, L. A., West, A. G., Podle-

sak, D. W., and Cerling, T. E.: Hydrogen and oxygen isotope

ratios in human hair are related to geography, P. Natl. Acad. Sci.

USA, 105, 2788–2793, 2008.

Epstein, S. and Mayeda, T.: Variation of 18O content of waters from

natural sources, Geochim. Cosmochim. Ac., 4, 213–224, 1953.

Fraser, I. and Meier-Augenstein, W.: Stable 2H isotope analysis

of human hair and nails can aid forensic human identification,

Rapid Commun. Mass Sp., 21, 3279–3285, 2007.

Friedman, I.: Deuterium content of natural waters and other sub-

stances, Geochim. Cosmochim. Ac., 4, 89–103, 1953.

Froehlich, K. F. O., Gonfiantini, R., and Rozanski, K.: Isotopes in

Lake Studies: A Historical Perspective, in: Isotopes in the Water

Cycle: Past, present and future of a developing science, edited

by: Aggarwal, P. K., Gat, J., and Froehlich, K. F. O., Springer

Netherlands, 139–150, 2005.

International Atomic Energy Agency/World Meteorological Orga-

nization (IAEA/WMO): Global Network of Isotopes in Precipita-

tion, The GNIP Database, available at: http://www.iaea.org/water

(last access: 23 March), 2013.

Heaton, K., Kelly, S. D., Hoogewerff, J., and Woolfe, M.: Verifying

the geographical origin of beef: The application of multi-element

isotope and trace element analysis, Food Chem., 107, 506–515,

2008.

Hobson, K. A. and Wassenaar, L. I.: Linking brooding and winter-

ing grounds of neotropical migrant songbirds using stable hy-

drogen isotopic analysis of feathers, Oecologia, 109, 142–148,

1997.

Kendall, C. and McDonnell, J. J.: Isotope tracers in catchment hy-

drology, Elsevier Science Limited, 1998.

Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World

map of the Koppen-Geiger climate classification updated, Mete-

orol Z., 15, 259–263, 2006.

Kralik, M., Papesch, W., and Stichler, W.: Austrian Network of Iso-

topes in Precipitation (ANIP): Quality Assurance and Climato-

logical Phenomenon in one of the Oldest and Densest Networks

in the World, in: Isotope Hydrology and Integrated Water Re-

sources Management, IAEA, Vienna, 146–149, 2003.

Kurita, N. and Ichiyanagi, K.: Daily basis precipitation sampling

network for water isotope analysis, Institute of Observational Re-

search for Global Change, Japan Agency for Marine-Earth Sci-

ence and Technology, 2008.

www.hydrol-earth-syst-sci.net/17/4713/2013/ Hydrol. Earth Syst. Sci., 17, 4713–4728, 2013

http://www.hydrol-earth-syst-sci.net/17/4713/2013/hess-17-4713-2013-supplement.zip
http://www.hydrol-earth-syst-sci.net/17/4713/2013/hess-17-4713-2013-supplement.zip
http://dx.doi.org/10.1029/2012GL051937
http://dx.doi.org/10.1029/2002EO000298
http://dx.doi.org/10.1029/2003WR002086
http://dx.doi.org/10.1126/science.133.3465.1702
http://www.iaea.org/water


4728 S. Terzer et al.: Global isoscapes for δ
18O and δ

2H in precipitation

Liebminger, A., Haberhauer, G., Papesch, W., and Heiss, G.: Corre-

lation of the isotopic composition in precipitation with local con-

ditions in alpine regions, J. Geophys. Res.-Atmos., 111, D05104,

doi:10.1029/2005JD006258, 2006.

Liu, Z., Tian, L., Chai, X., and Yao, T. D.: A model-based deter-

mination of spatial variation of precipitation δ18O over China,

Chem. Geol., 249, 203–212, 2008.

Lykoudis, S. P. and Argiriou, A. A.: Gridded data set of the sta-

ble isotopic composition of precipitation over the eastern and

central Mediterranean, J. Geophys. Res.-Atmos., 112, D18107,

doi:10.1029/2007JD008472, 2007.

Matheron, G.: Principles of Geostatistics, Econ. Geol., 58, 1246–

1266, 1963.

McBratney, A. B. and Moore, A. W.: Application of Fuzzy-Sets

to Climatic Classification, Agr. Forest Meteorol., 35, 165–185,

1985.

New, M., Lister, D., Hulme, M., and Makin, I.: A high-resolution

data set of surface climate over global land areas, Clim. Res., 21,

1–25, 2002.

Pebesma, E. J.: Multivariable geostatistics in S: the gstat package,

Comput. Geosci., 30, 683–691, 2004.

Peterson, T. C., Vose, R., Schmoyer, R., and Razuvaev, V.:

Global historical climatology network (GHCN) quality control

of monthly temperature data, Int. J. Climatol., 18, 1169–1179,

1998.

Popa-Lisseanu, A. G., Sorgel, K., Luckner, A., Wassenaar, L. I.,

Ibanez, C., Kramer-Schadt, S., Ciechanowski, M., Gorfol, T.,

Niermann, I., Beuneux, G., Myslajek, R. W., Juste, J., Fonder-

flick, J., Kelm, D. H., and Voigt, C. C.: A Triple-Isotope Ap-

proach to Predict the Breeding Origins of European Bats, PLoS

One, 7, e30388, doi:10.1371/journal.pone.0030388, 2012.

R Development Core Team: R: A language and environment for

statistical computing, R Foundation for Statistical Computing,

Vienna, available at: http://www.R-project.org/, 2013.

Rozanski, K.: Deuterium and 18O in European groundwaters – links

to atmospheric circulation in the past, Chem. Geol., 52, 349–363,

1985.

Rozanski, K., Araguas-Araguas, L., and Gonfiantini, R.: Isotopic

patterns in modem global precipitation, in: Climate Change in

Continental Isotopic Records – Geophysical Monograph 78,

edited by: Swart, P. K., Lohman, K. C., McKenzie, J., and Savin,

S., American Geophysical Union, Washington, DC, 1–36, 1993.

Shao, J. and Tu, D.: The Jackknife and Bootstrap, Springer, New

York, 1995.

Sheppard, S. M., Nielsen, R. L., and Taylor, H. P.: Oxy-

gen and Hydrogen Isotope Ratios of Clay Minerals from

Porphyry Copper Deposits, Econ. Geol., 64, 755–777,

doi:10.2113/gsecongeo.64.7.755, 1969.

Soto, D. X., Wassenaar, L. I., and Hobson, K. A.: Stable hydro-

gen and oxygen isotopes in aquatic food webs are tracers of diet

and provenance, Funct. Ecol., 27, 535–543, doi:10.1111/1365-

2435.12054, 2013.

van der Veer, G., Voerkelius, S., Lorentz, G., Heiss, G., and

Hoogewerff, J. A.: Spatial interpolation of the deuterium and

oxygen-18 composition of global precipitation using temperature

as ancillary variable, J. Geochem. Explor., 101, 175–184, 2009.

Wang, C.-H. and Peng, T.-R.: Hydrogen and Oxygen Isotopic Com-

positions of Taipei Precipitation 1990 to 1998, Western Pacific

Earth Sciences, 1, 429–442, 2001.

Wassenaar, L. I., Van Wilgenburg, S. L., Larson, K., and Hobson, K.

A.: A groundwater isoscape (δD, δ18O) for Mexico, J. Geochem.

Explor., 102, 123–136, 2009.

Welker, J. M.: ENSO effects on δ18O, δ2H and d-excess values in

precipitation across the U.S. using a high-density, long-term net-

work (USNIP), Rapid Commun. Mass Sp., 26, 1893–1898, 2012.

World Meteorological Organization (WMO): Guide to Meteorolog-

ical Instruments and Methods of Observation, 7th Edn., World

Meteorological Organization, Geneva, 2008.

Wu, C. F. J.: Jackknife, Bootstrap and Other Resampling Methods

in Regression-Analysis – Rejoinder, Ann. Stat., 14, 1343–1350,

1986.

Yurtsever, Y. and Gat, J. R.: Atmospheric Waters, in: Stable Iso-

tope Hydrology (Tech. Rep. Series 210), edited by: Gat, J. R.

and Gonfiantini, R., International Atomic Energy Agency, Vi-

enna, 103–142, 1981.

Hydrol. Earth Syst. Sci., 17, 4713–4728, 2013 www.hydrol-earth-syst-sci.net/17/4713/2013/

http://dx.doi.org/10.1029/2005JD006258
http://dx.doi.org/10.1029/2007JD008472
http://dx.doi.org/10.1371/journal.pone.0030388
http://www.R-project.org/
http://dx.doi.org/10.2113/gsecongeo.64.7.755
http://dx.doi.org/10.1111/1365-2435.12054
http://dx.doi.org/10.1111/1365-2435.12054

