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Global land mapping of satellite-observed CO2 total columns using spatio-

temporal geostatistics 

This study presents an approach for generating a global land mapping dataset of the satellite 

measurements of CO2 total column (XCO2) using spatio-temporal geostatistics, which makes 

full use of the joint spatial and temporal dependencies between observations. The mapping 

approach considers the latitude-zonal seasonal cycles and spatio-temporal correlation structure 

of XCO2, and obtains global land maps of XCO2, with a spatial grid resolution of 1° latitude by 

1° longitude and temporal resolution of 3 days. We evaluate the accuracy and uncertainty of 

the mapping dataset in the following three ways, (1) in cross-validation, the mapping approach 

results in a high correlation coefficient of 0.94 between the predictions and observations, (2) 

in comparison with ground truth provided by the TCCON, the predicted XCO2 time series and 

those from TCCON sites are in good agreement, with an overall bias of 0.01 ppm and a 

standard deviation of the difference of 1.22 ppm, and (3) in comparison with model 

simulations, the spatio-temporal variability of XCO2 between the mapping dataset and 

simulations from the CT2013 and GEOS-Chem are generally consistent. The generated 

mapping XCO2 data in this study provides a new global geospatial dataset in global 

understanding of greenhouse gases dynamics and global warming.  

Keywords: XCO2, ACOS-GOSAT, Spatio-temporal geostatistics, global mapping, geospatial 

dataset 

1 Introduction 

The concentration of atmospheric carbon dioxide (CO2), the most important anthropogenic 

greenhouse gas, has increased by 40% since pre-industrial times as a result of the burning of 

fossil fuels, cement production and deforestation (IPCC 2013). While the surface carbon 

dioxide monitoring network (e.g., GLOBALVIEW-CO2) provides in situ measurements of 

CO2, the spatio-temporal variability and distribution of CO2 sources and sinks are still not 

fully understood mainly due to the sparseness and spatial inhomogeneity of the network 

(Heimann, 2009; Ciais et al, 2014). Satellite observations of CO2 columns, because of their 

global coverage and high measurement density, can complement the surface network and be 

used to advance our understandings of the carbon cycle and its changes (McKain et al., 2012; 

Duren and Miller, 2012). The Japanese Greenhouse gases Observation SATellite (GOSAT), 

the world’s first spacecraft dedicated to quantify the atmospheric CO2 and methane 
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concentrations, was successfully launched in 2009 (Yokota et al., 2009). The Atmospheric 

CO2 Observations from Space (ACOS) project team from NASA’s Orbiting Carbon 

Observatory (OCO), applied the OCO calibration, validation, and remote sensing retrieval 

algorithm to analyze the GOSAT Level 1B data products, and obtain the column-averaged 

CO2 dry air mole fraction (XCO2) data products (Wunch et al., 2011a;  O’Dell et al., 2012). 

These ACOS retrievals from GOSAT are hereafter referred to as ACOS-GOSAT. Other 

satellite instruments, including SCIAMACHY (Bovensmann et al., 1999) and OCO-2 (Crisp 

et al., 2004; Boesch et al., 2011), and the forthcoming CarbonSAT (Bovensmann et al., 2010) 

and TanSAT (Liu et al., 2013), are also aiming at measuring global greenhouse gases.  As 

more data from these satellites are becoming available, global analysis of XCO2 by applying 

methods for data modeling, validation and comparison, ranging from simple spatial and 

temporal averaging to sophisticated data assimilation approaches, have become possible (e.g., 

Buchwitz et al., 2005; Schneising et al., 2008, 2011, 2014; Morino et al., 2011; Wunch et al., 

2011b; Katzfuss and Cressie, 2011; Reuter et al., 2013; Buchwitz et al., 2013). 

However, due to constraints such as cloud coverage and GOSAT Fourier Transform 

Spectrometers (FTS) observation mode (NIES GOSAT Project, 2010), the number of 

available GOSAT XCO2 retrievals are largely reduced and irregularly distributed in space and 

time, which make it difficult to directly interpret their scientific significance without further 

data analysis. Furthermore, the large gaps between satellite observations provide a challenge 

for study areas with insufficient data (Kort et al., 2012). One solution is the development of a 

statistical mapping method, which generates a regular distribution map of XCO2 from the 

irregular observations, to improve the spatio-temporal coverage. This mapping dataset can 

potentially provide us a new way to evaluate the roles of anthropogenic emissions (sources) 

on atmospheric CO2 enhancement and biopheric activities (sinks) on global CO2 seasonal 

cycle. As shown in Keppel-Aleks et al. (2011, 2012), the total column carbon dioxide XCO2 

retrieved from satellite has a larger footprint than conventional surface data because the 

column data is a combination of not only boundary layer CO2 but also free troposphere CO2. 

Therefore, variations in XCO2 are primarily determined by large-scale flux patterns. As a result, 

significant correlation exits between XCO2 data (Keppel-Aleks et al., 2011). Therefore, a 

geostatistical approach (Cressie, 1993; Cressie and Wikle, 2011), which uses the inherent 

autocorrelation between satellite-observed XCO2 data to make optimal predictions and is 

flexible in handling irregular datasets, can be exploited to meet the requirements of filling 

gaps and mapping XCO2 at high spatio-temporal resolution. 
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    The mapping of satellite observations of XCO2 has been investigated in several studies from 

different perspectives (Hammerling et al., 2012a; Nguyen et al., 2014; Zeng et al., 2014). 

Spatial-only kriging, a conventional geostatistical method, was widely adopted to generate the 

XCO2 mapping data products (Tomosada et al., 2008, 2009; Liu et al., 2012; Watanabe, 2015). 

Hammerling et al. (2012a, 2012b) and Tadić et al. (2014) extended the spatial-only kriging 

method to a global scale using a moving window technique. This conventional spatial-only 

geostatistical method, which only makes use of spatial correlation, does not take into account 

the temporal correlation structure of the CO2 data, and therefore the dynamic CO2 temporal 

variations including the annual increase and seasonal cycles (WMO, 2014; Schneising et al., 

2014) are not fully considered. By incorporating the temporal variability of XCO2, Zeng et al. 

(2013, 2014) extended this method into the spatio-temporal domain to generate XCO2 maps at 

high spatio-temporal resolution, and illustrated the effectiveness of the method by applying it 

to China as a study region. The advantages of this spatio-temporal geostatistical approach lie 

in (1) the utilization of the joint spatial and temporal dependences between observations to 

provide a probabilistic framework for data analysis and prediction, and (2) inclusion of a 

larger dataset both in space and time to support stable parameter estimation and prediction 

(Cressie and Wikle, 2011; De Iaco et al., 2012).  

Building on the regional mapping method using spatio-temporal geostatistics developed by 

Zeng et al. (2014), this study aims to develop a global land mapping method for the ACOS-

GOSAT XCO2 dataset. However, the extension from the regional method to the global case is 

not straightforward, since the assumptions of a uniform spatio-temporal trend and spatio-

temporal correlation structure in the regional dataset are often violated in the global case. As a 

solution, we use the long-term CarbonTracker CT2013 XCO2 data and global annual CO2 

growth rate calculated from surface observation sites to constructe the spatio-temporal 

deterministic trend of XCO2, including latitude-zonal seasonal cycle and global annual increase, 

and then remove the trend from the ACOS-GOSAT data. The correlation structures of the 

XCO2 data are then calculated and modeled for each latitude zone. Finally, the spatio-temporal 

geostatistical prediction approach is implemented to obtain the global land mapping of XCO2, 

and quantify the corresponding prediction uncertainties. The resulting dataset is assessed in 

three ways. Firstly, cross-validation technique (Arlot, 2010) for accuracy assessment of 

statistical models is applied to assess the prediction accuracy of this mapping approach. 

Secondly, a comparison with Total Carbon Column Observing Network (TCCON) data is 

performed to validate the mapping results at global TCCON sites. Finally, we investigate the 
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similarities and discrepancies between the mapping dataset and model XCO2 calculations from 

both CarbonTracker CT2013 and GEOS-Chem by comparing their spatio-temporal variations. 

As suggested by Hammerling et al., (2012a), the mapping dataset will provide a useful 

complement to studies of carbon flux inversion with modeled CO2 fields generated by carbon 

flux estimates coupled with an atmospheric transport model. 

Production of global geospatial data plays a key role in supporting the development of 

digital earth (Guo et al., 2010), and application of these global geospatial data in global 

change research has been an important goal for “Digital Earth” (Shupeng and Genderen, 

2008). Our study contributes to these two topics by demonstrating (1) how to effectively and 

precisely produce a global geospatial dataset of CO2 column distribution at high spatio-

temporal resolution, and (2) how these data can be used to analyze the spatio-temporal 

variations of CO2. The mapping approach developed in this study can be further incorporated 

with “Digital Earth” framework for geospatial data production in diverse global change 

studies. 

    In Sect. 2, we provide a description of the data from satellite, ground observation and 

model simulations used in this paper. We then introduce the basic theories of spatio-temporal 

geostatistics, and the global land mapping approach in Sect. 3. The results of applying the 

approach are illustrated and discussed in Sect. 4, and conclusions follow in Sect. 5. 

2 Data 

2.1 ACOS-GOSAT data product 

The v3.3 ACOS-GOSAT XCO2 data, spanning from 01 June 2009 to 15 May 2013, are used in 

this study. Because of some potential deficiencies identified in land median-gain and ocean 

glint retrievals (Nguyen et al., 2014), only the land high-gain data are used. In comparison 

with the TCCON, the v3.3 data show a mean global bias of about 1.34 ppm and a standard 

deviation of 1.83 ppm (ACOS Data User’s Guide, 2014). Following the data user guide, data-

filtering and bias-correction are carried out before the following science analysis. 

The mapping dataset has a temporal resolution of 3 days determined by the GOSAT 3-day 

orbiting period. Therefore, in this study we set the basic time unit to be 3-day. In general, 

there are nearly 122 time-units in 1 year (365/3 ≈ 122), and from 01 June 2009 to 15 May 

2013, 483 time-units of ACOS-GOSAT v3.3 data are used in this study. The basic statistics 



 7 

for the XCO2 data used each year are listed in Table I. The standard deviations for the four 

years are almost the same, while the annual mean value increases steadily, with an average 

annual increase of 2.03 ppm, which is in good agreement with the global mean annual 

increase of about 2 ppm from the GLOBALVIEW surface in situ flask network (WMO, 2014; 

Wunch et al., 2011b). Figure 1 shows the monthly global distribution of the ACOS-GOSAT 

XCO2 retrievals, taking four months (July 2009, October 2009, January 2010 and April 2010) 

in four different seasons for the first year of ACOS-GOSAT measurements as examples. The 

study area of global land region for mapping covers land regions between 40°S and 70°N, as 

shown in grey in Figure 3. It can be inferred from Figure 1 that the satellite retrievals are 

irregularly distributed globally, and the available retrievals also change with observation time. 

Large gaps between satellite observations can be found in some key regions, such as over the 

forests in southern China, where net ecosystem production is high but there are few satellite 

observations in summer, mainly due to the frequent cloudy weather. Figure 2 shows the 

spatial distribution and temporal variation of the number of available satellite observations 

after data filtering. The numbers of retrievals are irregularly distributed both in space and time. 

As shown in Figure 2 (a), it can be seen that the number of retrievals is greater over the 

southern regions of South America, North America and Africa, as well as over Central 

Eurasia and Australia. However, data over northern Africa (around the Sahara desert) and 

parts of the central Australia, where data are measured with median-gain (Crisp et al., 2012), 

are excluded by the data filtering approach. From Figure 2 (b), the largest number of 

measurements is available around August and smallest around January, with an obvious 

annual cycle. 

Table 1. Annual statistics for the ACOS-GOSAT v3.3 XCO2 global land data used in this study after 

filtering and bias-correction. 

 Number of 

Retrievals 

Minimum 

(ppm) 

Maximum 

(ppm) 

Mean 

(ppm) 

Standard  

Deviation 

(ppm) 

June 2009 to May 2010 58437 355.89 403.65 386.73 3.11 

June 2010 to May 2011 67840 375.72 406.60 389.01 2.92 

June 2011 to May 2012 67987 357.58 404.66 390.73 2.94 

June 2012 to May 2013 65360 378.92 408.14 392.82 2.95 
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(a) July 2009 

 

(b) October 2009 

 

(c) January 2010 

 

(d) April 2010 

 

 

Figure 1. Example of the spatial distribution and variation of the used ACOS-GOSAT XCO2 retrievals 

for four months of (a) July 2009, (b) October 2009, (c) January 2010 and (d) April 2010 over global 

land. 

 

Figure 2. (a) Global spatial distribution density of the used ACOS-GOSAT XCO2 retrievals (after 

filtering) from June 2009 to May 2013 in terms of available data number in grids of 5°longitude by 

5°latitude, and (b) temporal variation of available ACOS-GOSAT retrievals (after filtering) in each 3-

day interval. The dashed rectangle area in (a) from 5 to 15°N and 20°W to 40°E covers the tropical 

region in central Africa, which will be used in Sections 4.5 and 4.6. 

(a) 
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Figure 3. Global distribution of the 16 TCCON sites used for the comparison with the mapping dataset, 

and the global land study area for mapping in grey.  

2.2 The Total Carbon Column Observing Network 

The Total Carbon Column Observing Network (TCCON), a global network of ground-based 

FTS established for the validation of near-infrared total-column measurements from satellite 

observations (Wunch et al., 2011b; see TCCON Data Access in the references for detail), is 

collected for the validation of the global land mapping dataset. Based on comparisons with 

integrated aircraft profiles, TCCON has a high accuracy of approximately 0.25% in XCO2 

(Wunch et al., 2010). The TCCON data has been used to calibrate the ACOS-GOSAT 

retrievals (Wunch et al., 2011a). In this study, the 2012 release version of the TCCON data   

(”GGG2012”) for 16 sites is used. For each TCCON site, we use all available data within the 

period from June 2009 to May 2013. Figure 3 shows the spatial distribution of the TCCON 

sites used in this study. More detailed information about the TCCON sites is given in Table 4 

in Section 4.4. TCCON sites at high north latitudes (>70° N) and the ocean are not considered 

in this study. 

2.3 CarbonTracker CT2013 and GEOS-Chem model calculations of XCO2 

Both the XCO2 data from CarbonTracker CT2013 and GEOS-Chem model are used in this 

study, in order to investigate the similarities and differences between the global land mapping 

dataset and the modeled XCO2 and provide potential evidences for further improvement of the 

satellite retrievals and model simulations. 
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2.3.1 CarbonTracker CT2013 XCO2 dataset 

CarbonTracker is a modeling system for atmospheric CO2 developed by the National Oceanic 

and Atmospheric Administration (NOAA). Coupled with an atmospheric transport model, 

CarbonTracker assimilates global atmosphere CO2 observations from ground surface air 

samples, tall tower and aircrafts to simulate the global CO2 distribution and to track global 

CO2 sources and sinks (Peters et al., 2007). The 2013 release of CarbonTracker, CT2013, 

combines observations and flux estimates through the end of 2012 to produce estimates of 

global atmospheric CO2 and surface-atmosphere fluxes from January 2000 to December 2012 

(see CarbonTracker CT2013 Data Access in the references for detail). The model produces 

regularly gridded CO2 at a spatial resolution of 2° in latitude by 3° in longitude with 25 

vertical levels before 2006 and 34 vertical levels after 2006, and with a high temporal 

resolution of 3 hours. CarbonTracker is widely used in analyzing global CO2 with satellite 

observations (e.g., Schneising et al., 2008, 2014; Nguyen et al., 2014). In this study, we use 

the long-term CT2013 data from January 2000 to December 2012 to model the deterministic 

spatio-temporal trend of XCO2. Besides, we use the CT2013 data from June 2009 to December 

2012 for comparison with the original satellite retrievals and the corresponding mapping 

dataset. The CO2 profile data from the model are transformed to CO2 dry air mole fractions, 

XCO2, by using the pressure-averaged method described by Connor et al. (2008). 

2.3.2 GEOS-Chem XCO2 dataset 

The GEOS-Chem model (http://geos-chem.org) is a global 3-D chemical transport model for 

simulating atmospheric composition using assimilated meteorological inputs from the 

Goddard Earth Observing System (GEOS-5) of the NASA Global Modeling and Assimilation 

Office. A recent update of the atmospheric CO2 simulations using GEOS-Chem was 

developed by Nassar et al. (2010). GEOS-Chem is widely used in analyzing global CO2 with 

satellite observations (e.g., Feng et al., 2009; Cogan et al., 2012). Deng et al. (2014) employed 

the GEOS-Chem four-dimensional variational (4D-Var) data assimilation system to assimilate 

ACOS-GOSAT XCO2 from June 2009 to December 2010 for quantifying monthly and regional 

estimates of CO2 fluxes for the year 2010. In this study, we used the a posteriori atmospheric 

CO2 distributions from Deng et al. (2014), which were produced by assimilating ACOS-

GOSAT v2.10 data at a horizontal resolution of 4° by 5°.  Only the data for 2010 are available 

in this study. The CO2 profiles from the a posteriori GEOS-Chem simulation were 

transformed to XCO2 using the pressure-averaged method described by Connor et al. (2008). 

http://gmao.gsfc.nasa.gov/
http://gmao.gsfc.nasa.gov/
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3 Methodologies 

As an extension of spatial geostatistics, the application of spatio-temporal geostatistics in data 

analysis has become common in recent years (Cressie and Wikle, 2011; De Iaco et al., 2012). 

Zeng et al. (2014) proposed the use of spatio-temporal geostatistics in generating regional 

satellite-observed XCO2 maps at high spatio-temporal resolution, and illustrated the method by 

applying it to the study area of China. However, extending this regional spatio-temporal 

geostatistical approach to the global land case is not straightforward, since the regional 

approach depends on uniform spatio-temporal trends and spatio-temporal correlation 

structures in the regional dataset. This assumption for global XCO2 is often violated, as shown 

by Alkhaled et al. (2008). Instead of assuming a uniform trend as in the regional study, in this 

study we construct the spatio-temporal trend of XCO2, including latitude-zonal seasonal cycle 

and global annual increase, by incorporating precise ground-based observations and model 

simulated data, which are shown to have well reproduced large scale features of the 

atmospheric CO2 distribution (Cogan, 2012). We use the NOAA Earth System Research 

Laboratory (ESRL) global annual CO2 growth rate (Conway and Tans, 2013) to determine the 

annual increase of XCO2 as in Wunch et al. (2013), and fit the CT2013 XCO2 time series in each 

latitude band using a set of annual harmonic functions to construct the latitude-zonal seasonal 

cycle. After detrending the data by excluding the modeled trend to get the residual dataset, we 

then calculate the spatio-temporal correlation structures between XCO2 data in each 10° 

latitude zone since the variations in XCO2 are similar zonally (Wunch et al., 2011a; Schneising 

et al., 2014). Finally the space-time kriging with a moving flexible kriging neighborhood 

(Haas, 1995) is implemented to obtain the global land maps of XCO2. A brief introduction of 

spatio-temporal geostatistics is furnished in this section, followed by a introduction of the 

global land mapping approach for the ACOS-GOSAT XCO2 data. The spatial-only method, as 

a comparision with spatio-temporal method, is also briefly introduced. 

3.1 Spatio-temporal geostatistics for global land mapping 

3.1.1 Spatio-temporal random field model 

In spatio-temporal geostatistics, XCO2 data (Z) can be modeled as a partial realization of 

spatial (s) and temporal (t) random functions                        where   is the 

real set. The spatio-temporal variation of global land XCO2 data can be further modeled by 
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decomposing it into an inherent and deterministic trend component ( ) and the residual 

component ( ), given by,                                                                       (1) 

where        is a deterministic space-time mean component that models the spatial trend and 

temporal trend including the seasonal cycle and annual increase, and        is a stochastic 

residual component that represents an intrinsically stationary space-time error process (De 

Iaco et al., 2012), which will be used in the following geostatistical analysis.  

3.1.2 Modelling of global land temporal trend of XCO2 

The deterministic spatio-temporal trend of XCO2 consists of the inherent seasonal CO2 cycle 

mainly affected by the biosphere activities (Wunch, 2013; Schneising, 2014) and an annual 

CO2 increase mainly due to the anthropogenic fossil fuel emissions (IPCC, 2013). We use the 

long-term CT2013 data from the year 2000 to 2012 in each 2° latitude band to determine the 

latitude-dependent seasonal cycle. Following Wunch et al. (2013), we use the ESRL global 

annual CO2 growth rate (Figure 4; Conway and Tans, 2013) to determine the annual increase 

of XCO2 in the trend.  As a result, the temporal trend in each latitude band can then be modeled 

by a simple linear function plus a set of annual harmonic functions (Kyriakidis and Journel, 

1999; Tsutsumi et al., 2009). The spatial trend within each latitude zone is not considered here. 

The trend component   in Equation (1) can therefore be described as follows,                                                                            (2) 

where        and   is period of 122 time-units, t is time in time-unit, and   ,      and      

are parameters to be estimated.    is the cummulative annual increase for each time-unit 

determined by the ESRL global annual CO2 growth rate.   is the order of the harmonic 

functions, and we use 4 orders here to specially fit the annual cycle (Wunch et al., 2013), 

semi-annual oscillation (Jiang et al., 2012), seasonal variation and monthly variation of XCO2 

(Keppel-Aleks et al., 2011). The estimated trend component is then subtracted from the full 

dataset to yield the spatio-temporal residual component       . 
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Figure 4. NOAA Earth System Research Laboratory (ESRL) annual mean global CO2 growth rate for 

the year 2000 to 2013, published in ESRL-NOAA webpage: 

http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html. 

3.1.3 Modelling of spatio-temporal correlation structure 

In spatio-temporal geostatistical analysis, the optimal kriging prediction of          at an 

unobserved position (     ) can be calculated as the linear weighted sum of the ACOS-

GOSAT XCO2 values that minimizes the mean squared prediction error. The weights for the 

observations are determined by the geometry of observations and the spatio-temporal 

covariance or variogram model, which characterizes the spatio-temporal correlation structure 

of the data. Therefore, estimating and modeling the covariance function or variogram of XCO2 

are crucial steps in kriging prediction for the global land mapping. Due to the non-uniform 

correlation structure of global XCO2 variation (Alkhaled, 2008), in this study we divide the 

global land region into 10° bins, producing 11 latitude zones from 40°S to 70°N, and assume 

that the spatio-temporal correlation structures of the ACOS-GOSAT XCO2 data within each 

zone are homogeneous and locally stationary (Haas, 1990, Schabenberger and Gotway, 2004) 

for the mapping method. The spatio-temporal empirical variogram (Cressie and Wikle, 2011; 

Zeng et al., 2014) of ACOS-GOSAT XCO2 data is calculated from the residual component        in each 10° latitude zone. The empirical variogram value             at the lag         
is given by                                                                               (3) 

where      ,     , and           is the cardinality of the set:                                  such that                           (   ,   ) are the spatial 

tolerance and temporal tolerance. Once the empirical variogram has been constructed, a 

spatiotemporal variogram model,           , is fitted to it. As in Zeng et al. (2014), the 

spatio-temporal variogram model adopted here is a combination of the product-sum model 
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(De Iaco et al., 2001 and 2010) and an extra global nugget model to capture the nugget effect 

(Cressie 1993; Cressie and Wikle, 2011), given by                                                                                                       (4) 

The following exponential model for the marginal variogram model        and        is 

adopted, 

                                                                          (5) 

where           and           are the marginal spatial and temporal variograms, [  ,   ,  ,    ]=[  ,   ,    ,   ,  ,    ] are parameters to be estimated, and      ≥ 0,   ≥ 0,   ≥ 0. In the 

exponential model,   is called the range, where the variogram value stabilized at a value,  , 

the partial sill.     is called nugget effect, which is the semi-variance value when spatial and 

temporal lag are closest to 0. The nugget effect is an important variogram parameter 

characterizing both the measurement error and micro-scale variability of the data (Cressie, 

1993; Chatterjee et al., 2010). A larger nugget effect value typically indicates larger overall 

variability of microstructure in the data. For each latitude zone, the empirical variogram is 

calculated from Equation (3) and modeled using the variogram model provided by Equations 

(4) and (5). To avoid biased result in the edges of the study area, a 5° buffer zone is added in 

each latitude zone in both the south and north directions. All parameters are estimated 

simultaneously to overcome the limitation of conventional product-sum fitting (Josh et al., 

2005). The nonlinear, weighted least square estimation technique (Cressie, 1985; Zeng et al., 

2014) was used for parameter estimation in this study. 

3.1.4 Prediction using space-time kriging with moving cylinder kriging neighbourhood 

Based on the spatio-temporal variogram model, space-time kriging predictes the value          at unobserved location (      ), from the stochastic residual component                    }. Suppose that           is a prediction of         , the kriging 

method predicts           as a linear weighted sum of residual data within a kriging 

neighborhood (Cressie, 1993; De Iaco et al., 2012) in space and time relative to the prediction 

location        . Assume that the used data number is         , then                                        ,                              .                (6) 
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where           is the weight assigned to a known observation          so as to minimize the 

prediction error variance while maintaining unbiasedness of the prediction. The prediction 

error variance, which is a measurement of prediction uncertainty, is given by 

                              ,                                                  (7) 

where                           ,                           , and   is     unit 

vector. To reduce computational complexity and preserve local variability, data used in the 

prediction were searched within an appropriate spatio-temporal neighborhood centered on the 

predicting point, called the kriging neighborhood (Cressie, 1993; De Iaco et al., 2012; Chiles 

and Delfiner, 2012). Following the prediction approach in Zeng et al. (2014), the kriging 

neighborhood used will be a cylinder in space and time as described in Hass (1995). The radii 

of the initial search range are set to 300 km in space and 20 time-units, the increment lags are 

10 km and 1 time-unit for each search process if the number of observations in the cylinder 

neighborhood is less than 20, and the search range radii limits are set to 500 km and 40 time-

units. The position to be predicted will be left as missing data if the available data number 

within the search range of limit radius is less than 20 points, a threshold value adopted by 

NIES GOSAT Project (2011), which has been shown to be an appropriate number for XCO2 

mapping by Zeng et al. (2014). In kriging, extremely-high or -low data values may have a 

significant impact on the prediction if there are no other data nearby (NIES GOSAT Project, 

2011) in space and time. In this study, we used the bias removal method recommended by 

Tukey (1977) and Hoaglin et al. (1986), based on the quartile of the data, to remove the 

extreme values of the residual component in each latitude zone, before implementing the 

space-time kriging prediction approach. 

3.2 Spatial-only geostatistics for global land mapping 

The spatial-only method implemented here for comparison is similar to that for generating 

monthly GOSAT Level 3 data (Watanabe et al., 2015). The whole XCO2 dataset is firstly 

grouped into monthly datasets (4 years = 48 months), and then the spatial variogram for each 

month is calculated and modeled by the exponential variogram model (as in equation (5)). 

Finally, based on the monthly modeled variograms, spatial-only kriging is applied for 

mapping global land XCO2 in each month. 
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3.3 Cross-validation based on Monte Carlo sampling 

Cross-validation is a widely used method for assessing prediction accuracy of statistical 

models (Arlot, 2010), and it can therefore be used to assess the prediction accuracy of the 

global land mapping approach based on spatio-temporal geostatistics in this study. As above, 

we use the ACOS-GOSAT XCO2 dataset                              . The Cross-

validation is implemented by first removing a a small ratio of observation data                  and then making its prediction                   using the remaining dataset. 

Finally, two data sets, the predicted data set {                } and the corresponding 

original data set {               } are obtained. In this study, the following four 

summary statistics from cross-validation were derived to assess prediction precision using the 

above two data sets: the correlation coefficient (r
2
), the mean absolute prediction error 

(MAPE), the root mean square error (RMSE), and the percentage of estimation error (PEE) 

less than 1 ppm. MAPE and RMSE are defined by                                                                               (8) 

                                                                             (9) 

A larger r
2
 means a stronger linear association between the predictions and observations. Both 

MAPE and RMSE measure model accuracy, and conceptually MAPE provides a measurement 

of average bias for an individual prediction. Smaller values for these two variables indicate 

better performance. Moreover, the percentage of prediction error (PPE) less than 1 ppm 

provides a detailed description of the prediction errors. In this study, we carry out a Monte 

Carlo study by randomly sampling 5% of the data that will be left out in cross-validation, and 

repeating this process for 100 times. With the ensemble outputs from this Monte Carlo study, 

we can further assess the uncertainties in these four statistics from cross-validation and 

uncertainties in parameter estimation for variograms. This study is carried out for both spatial-

only and spatial-temporal method, and we further conduct a comparison between them based 

on all the statistics from cross-validation. 
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3.4 Implementation workflow 

In this study, multi-source datasets and different data processing techniches have been used to 

generate and evaluate the global land mapping dataset of XCO2 from satellite observations 

using spatio-temporal geostatistics. As a conclusion of all the used methodologies, figure 5 

shows a workflow chart for the spatio-temporal mapping process and the evaluation of the 

mapping data products.  

 

Figure 5. Workflow chart for the spatio-temporal mapping process and the evaluation of the 

mapping data products in this study. The input datasets are displayed in bold and the numbers 

in the boxes denote the section numbers in the manuscript. 

4 Results and discussions 

4.1 Spatio-temporal trend of XCO2 

As shown in Equation (1), the spatio-temporal trend of XCO2 represents the deterministic mean 

component of the XCO2 data, and can be obtained by fitting the model in Equation (2) to the 

CT2013 time series data in each latitude band and then combined to form the spatio-temporal 

trend component. The parameters in Equation (2) are estimated using CT2013 data from 

January 2000 to December 2012 and then used to calculate the trend component from June 

2009 to May 2013. Figure 6(b) shows the estimated spatio-temporal trend from CT2013 XCO2 
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data as a function of latitude and time. As a comparison, figure 6(a) shows the corresponding 

spatio-temporal distribution of XCO2 from original ACOS-GOSAT data aggregated with a grid 

resolution of 5° in latitude and one month in time. From the figure we find that the two 

figures are generally in agreement, indicating the estimated trend from the CT2013 data well 

reproduce the spatial and temporal variation of XCO2 from satellite observations. The results 

are also consistent with that from Schneising et al. (2014) based on long-term SCIAMACHY 

XCO2 data and from WMO (2014) based on ground-based CO2 observations. Stronger seasonal 

cycles can be identified in the Northern Hemisphere than in the Southern Hemisphere, 

indicating a stronger effect of the temporally varying imbalance between photosynthesis and 

respiration of vegetation in the North Hemisphere (Keppel-Aleks et al., 2011). In the Southern 

Hemisphere, the seasonal variation is relatively weak. An overall global annual increase can 

be clearly observed at a rate of about 2 ppm from both the CT2013 trend data and ACOS-

GOSAT data, which is primarily caused by the world-wide consumption of fossil fuels (IPCC, 

2013). 

 

(a) 

 

(b) 

 

Figure 6. (a) Overview of the global spatio-temporal distribution of XCO2 as a function of latitude and time from 

original ACOS-GOSAT data aggregated with a grid resolution of 5° in latitude and one month in time, and (b) 

the corresponding deterministic spatio-temporal trend calculated from model simulation of CarbonTracker 

CT2013 XCO2 data with a grid resolution of 2° in latitude and one time-unit (3-day) in time. 
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Table 2. Zonal statistics for the 11 bands, including the central latitude of each 10° latitude zone, the number of 

available data, the median and standard deviation of the ACOS-GOSAT XCO2 data from June 2009 to May 2013 

in the corresponding zone, the parameters of the spatio-temporal variogram model of the ACOS-GOSAT data, 

and the corresponding nugget/sill ratios in space and time, respectively. Uncertianties of the variogram related 

parameters, quantified by one standard deviation, are derived from the Monte Carlo study described in Section 

3.3. 

 

Zone 

Center 

Latitude 

 

Number 

of Data 

Median 

(ppm) 

Standard 

Deviation 

(ppm) 

Estimated Parameters for 

Variogram Model  

[   ,    ,     ,    ,   ,     ]  

Spatial Ratio 

Nugget/Sill 

Temporal 

Ratio 

Nugget/Sill 

Zone 1 65° N 10462 387.76 4.73 

[1.84±0.02, 170.73±4.15, 

3.82±0.04, 13.08±0.22, 

0.26±0.00, 1.22±0.02] 

0.40±0.01 0.24±0.00 

Zone 2 55° N 16461 389.02 4.59 

[1.43±0.01, 238.22±3.49, 

2.44±0.02, 14.70±0.14, 

0.27±0.00, 1.28±0.01] 

0.47±0.00 0.34±0.00 

Zone 3 45° N 49821 389.88 4.20 

[1.35±0.01, 319.44±4.91, 

1.84±0.01, 13.26±0.13, 

0.34±0.00, 1.30±0.01] 

0.49±0.00 0.41±0.00 

Zone 4 35° N 44095 390.65 3.82 

[1.31±0.01, 261.64±6.97, 

2.04±0.01, 16.31±0.19, 

0.41±0.00, 1.21±0.01] 

0.48±0.00 0.37±0.00 

Zone 5 25° N 18374 391.23 3.58 

[1.13±0.01, 167.18±4.65, 

3.16±0.05, 42.15±0.92, 

0.32±0.00, 1.03±0.01] 

0.48±0.00 0.25±0.00 

Zone 6 15° N 8571 391.82 3.68 

[1.44±0.01, 172.63±4.04, 

2.75±0.14, 20.82±1.53, 

0.32±0.00, 0.87±0.01] 

0.38±0.00 0.24±0.01 

Zone 7 5° N 2774 391.81 3.57 

[2.38±0.07, 384.00±19.16, 

2.36±0.21, 17.02±2.31, 

0.38±0.01, 0.62±0.02] 

0.21±0.01 0.21±0.01 

Zone 8 5° S 6678 390.22 2.67 

[1.24±0.01, 397.80±5.41, 

1.37±0.04, 23.60±0.97, 

0.63±0.00, 0.74±0.00] 

0.37±0.00 0.35±0.01 

Zone 9 15° S 31771 389.77 2.69 

[0.91±0.00, 235.32±2.58, 

1.14±0.02, 15.57±0.46, 

0.79±0.00, 0.70±0.00] 

0.43±0.00 0.38±0.00 

Zone 10 25° S 44436 389.38 2.73 

[0.90±0.00, 184.73±1.74, 

1.21±0.03, 17.04±0.56, 

0.78±0.00, 0.66±0.00] 

0.43±0.00 0.35±0.00 

Zone 11 35° S 20754 389.05 2.78 

[0.98±0.01, 129.41±2.17, 

1.34±0.02, 18.35±0.53, 

0.69±0.00, 0.58±0.01] 

0.37±0.00 0.30±0.00 
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Table 2 summarizes the zonal statistics of all the 10° latitude zones for modelling the 

spatio-temporal XCO2 correlation structure, including the zonal central latitudes and the 

medians and standard deviations of the ACOS-GOSAT data in each latitude zone from June 

2009 to May 2013. These description statistics are derived only from ACOS-GOSAT XCO2 

data over land since the ocean glint data are not recommended for science analysis (Nguyen et 

al., 2014). It is clear from Table 2 that the standard deviations gradually decrease from north 

to south, indicating the ACOS-GOSAT XCO2 data have larger variability in the north, mainly 

due to a stronger seasonal cycle than that in the south (Miller et al., 2007). The median values 

in the Northern Hemisphere are generally larger than those in the Southern Hemisphere. 

However, in the high latitude of the Northern Hemisphere the median values are 

underestimated because fewer ACOS-GOSAT XCO2 retrievals are available in this region 

during winter when XCO2 is high. The uncertainties in the estimated variogram parameters are 

quantified by one standard deviation (±1 ), and uncertainty value of 0.00 in Table 2 means 

that the uncertianty is acturally less than 0.005. From Tabel 2, we find that most of  

uncertianties are around 1% and all of them are smaller than 5%, indicating a robust 

variogram modelling for all the latitudinal zones. 

4.2 Spatio-temporal empirical variogram and variogram modelling 

Figure 7 shows the spatio-temporal empirical variograms calculated from full ACOS-GOSAT 

dataset for the 11 latitude zones, and the corresponding spatio-temporal variogram models 

fitted by the product-sum model as described in Equations (4) and (5). The statistics for the 11 

latitude zones are given in Table 2. As shown in Cambardella et al. (1994) and Fu et al. 

(2014), the ratio of nugget to sill, expressed as percentage, can be used as an indicator to 

classify data dependence. In general, a ratio of less than 25% indicates a strong spatial or 

temporal dependence, between 25% and 75% indicates a moderate spatial or temporal 

dependence, and larger than 75% indicates a weak spatial or temporal dependence. The ratios 

of nugget to sill of both space and time for the 11 latitude zones are listed in Table 2. All the 

ratio values are less than 0.5 indicating all the zonal XCO2 data show either moderate or strong 

spatial and temporal dependences. Moreover, the temporal ratio values are all lower than the 

spatial ratio values in the same latitude zone, showing stronger dependences in time between 

XCO2 data than in space, justifying the use of spatio-temporal geostatistics in this study, which 

makes full use of the joint spatial and temporal dependencies between observations. 
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Zone 1                                                                    Zone 2 

      
              Zone 3                                                                   Zone 4 

      
Zone 5                                                                   Zone 6 

      
Zone 7                                                                Zone 8 

     
Zone 9                                                                Zone 10 

      
                              Zone 11 

 
Figure 7. For each latitude zone, the left plot shows the spatio-temporal empirical variogram of the 

ACOS-GOSAT XCO2 residual data after the spatio-temporal trend is excluded, and the right plot 

shows its fitted variogram model using product-sum model in Equation (4). 
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    From the estimated parameters for spatio-temporal variogram models shown in Table 2 and 

the experimental variograms and the corresponding fitted models in Figure 7, we find that the 

spatial and temporal marginal variogram models shown in Equation (5) vary considerably 

between latitude zones, and all the joint spatio-temporal variograms present different shapes, 

indicating differences of spatio-temporal correlation structure for different latitude zones. 

These differences illustrate the spatial heterogeneity of the observed space–time correlation 

structure in global ACOS-GOSAT XCO2 data. From Table 2, furthermore, we find that the 

nugget effects, a measure of both the measurement error and micro-scale variability of the 

XCO2 data, in the Northern Hemisphere are generally greater than that in the Southern 

Hemisphere, which indicates greater overall data variability in the Northern Hemisphere. 

4.3 Cross-validation and comparison with spatial-only method 

Results from cross-validation based on Monte Carlo sampling are shown in Table 3. For our 

developed spatio-temporal method, the r
2
 is 0.94±0.00, indicating a very strong correlation 

between the original ACOS-GOSAT data and the predictions. Moreover, the MAPE is 

0.93±0.01 ppm, indicating the averaged absolute error of each prediction is less than 1 ppm. 

From the prediction errors, we find that more than 65.53±0.42% of the prediction errors are 

less than 1 ppm. These summary statistics from cross-validation for the global land with four 

years of ACOS-GOSAT data are better than those found for China as a study region with only 

two years of ACOS-GOSAT data by Zeng et al. (2014). The improvement may be due to the 

facts that in this study more satellite data are available, and the zonal characteristics of XCO2 

are fully considered, while Zeng et al. (2014) simply assumed a uniform spatio-temporal trend. 

All the statistics from this cross-validation study indicate that the global land mapping method 

based on spatio-temporal geostatistics is effective, and we can therefore generate precise maps 

of XCO2 using this method from the full dataset of ACOS-GOSAT observations.  

Moreover, we compare prediction precision between the spatio-temporal and spatial-only 

method in terms of cross-validation statistics. For spatial-only method, the four statistcs are 

shown Table 3, and these statistics indicate less precision and larger prediction error for the 

spatial-only mehtod than the spatio-temporal method. Therefore, these statistics justify the 

improvement of the developed spatio-temporal method over the traditional spatial-only 

method in terms of cross-validation. 

 



 23 

Table 3. Summary statistics for the developed spatio-temporal method and spatial-only method from 

global land cross-validation based on Monte Carlo samping technique, including correlation 

coefficient (r
2
), Mean Absolute Prediction Errors (MAPE), Root Mean Square Error (RMSE), and 

Percentage of Prediction Error within 1 ppm (PPE1) for the global mapping approach. Both mean and 

one standard deviation of the ensemble outputs from cross-valiation are shown. 

r
2
 

MAPE 

(ppm) 

RMSE 

(ppm) 

PPE1 

(%) 

Spatio-temproal method 

0.94±0.00 0.93±0.01 1.28±0.01 65.53±0.42 

Spatial-only method 

0.92±0.00 1.06±0.01 1.41±0.01 58.62±0.43 

4.4 Comparison with the Total Carbon Column Observing Network (TCCON) 

TCCON provides an essential data source for validating satellite XCO2 retrievals and the data 

have been widely used for validation of satellite XCO2 retrievals using different retrieval 

algorithms in several previous studies (e.g., Morino et al., 2011; Wunch et al., 2011a; Butz et 

al., 2011; Cogan et al., 2012; Nguyen et al., 2014; Dils et al., 2014). In this study, we perform 

comparison between TCCON XCO2 data and the XCO2 time series reconstructed using the 

developed global land mapping approach from ACOS-GOSAT XCO2 observations. As 

suggested by Rodgers and Connor (2003), when comparing two observations from different 

instruments, the retrievals should be calculated using a common a priori profile, and the 

smoothing effect of the retrievals should be considered by applying the averaging kernels. A 

detailed description of the use of the averaging kernel for comparing ACOS-GOSAT and 

TCCON data can be found in Wunch et al. (2011a) and Nguyen et al. (2014). Following the 

instructions in Sect. 2.1 of Nguyen et al. (2014), we apply the ACOS-GOSAT averaging 

kernel equation to TCCON data from the 16 chosen sites to obtain what ACOS-GOSAT 

would have retrieved at the TCCON sites assuming the TCCON profile as “truth”. The 

TCCON data are chosen using coincidence criteria of within ±2 hours of GOSAT overpass 

time, which is about 13:00 local time for most sites, and 3-day (one time-unit) median is 

calculated for the comparison if the observation number within the time-unit is at least 3. 

Since the XCO2 estimates at each TCCON site are obtained from a kriging neighborhood 

within 500 km in space, as described in Section 3.1, the original ACOS-GOSAT XCO2 data 

within 500 km of each TCCON site will be chosen, and similarly, the 3-day median will be 
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calculated for comparison. As a result, Figure 8 shows the comparison of the XCO2 estimates 

from this study, the coincident TCCON XCO2 3-day median data, and the coincident ACOS-

GOSAT XCO2 observations and their 3-day medians. 

As the global land mapping method is a data-driven prediction approach, the resulting 

predictions will rely heavily on the original data. From Figure 8, it can be observed that the 

predictions go through the original satellite observations and agree well with the median data. 

Table 4 gives a more detailed summary statistics in terms of number of coincident data pairs, 

averaged bias, averaged absolute bias and standard deviation of the bias between the mapping 

dataset and TCCON (hereafter referred to as Mapping-TCCON), as well as between ACOS－

GOSAT 3-day median and TCCON (hereafter referred to as ACOS-TCCON). From Table 4, 

we find that the numbers of coincident data pairs for Mapping-TCCON range from 32 at 

Influx to 416 at Lamont, while the numbers for all sites are smaller for ACOS-TCCON which 

is based on the 500 km geographical coincident criteria. The difference of numbers of 

coincident data pairs can be obviously seen in Figure 9, which shows plots of the statistics in 

Table 4. For Mapping-TCCON the averaged biases, except Four Corners (1.62 ppm), are 

within 1 ppm, and standard deviations for all the sites are close, ranging from 0.66 to 1.58 

ppm. In terms of averaged absolute biases, Mapping-TCCON  are smaller than ACOS-

TCCON for 13 out of 16 stations. Overall, the XCO2 predictions at all TCCON sites are in 

good agreement with the TCCON data, with overall averaged bias of 0.01 ppm, overall 

averaged absolute bias of 0.94 ppm and standard deviation of 1.22 ppm. For ACOS-TCCON, 

the overall averaged bias is -0.35 ppm and the corresponding standard deviation is 1.38 ppm, 

which is consistent with result from the ACOS-GOSAT XCO2 data after filtering and bias 

correction as described in ACOS data user’s guide (pp. 13). Unfortunately, both TCCON and 

ACOS-GOSAT observation are affected by clouds, so when few ACOS-GOSAT data are 

available, few TCCON retrievals are available either. However, with all possible plots and 

statistics given, we believe Figure 8 and Table 4 have provided a robust assessment of the 

mapping dataset compared to TCCON. 
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Bremen                                                         Karlsruhe 

     
Orleans                                                           Garmisch 

     
Park Falls                                                             Influx 

    
Four Corners                                                        Lamont 

    
Tsukuba                                                         JPL/Caltech 

  
Saga                                                                 Darwin 

    
Wollongong                                                         Lauder 

     
Figure 8. Temporal variation comparison for the 16 TCCON sites. As shown in these panels, the 

original ACOS-GOSAT XCO2 retrievals within 500 km of the TCCON site are in grey dots, the 

corresponding medians are in black dots when at least 3 data points are available within the time-unit. 

The TCCON data, smoothed by applying the ACOS-GOSAT averaging kernel, are indicated by blue 

circles. The data are chosen using coincidence criteria of within ±2 hours of GOSAT overpass time, 

and a 3-day (one time-unit) median is calculated for the comparison if the number of data points 

within the time-unit is at least 3. The predicted TCCON site XCO2 time series using the global land 

mapping approach are indicated by the red line. 
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Figure 9. Statistics of comparison between the geostatistical mapping results and the TCCON data 

(smoothed by applying the ACOS-GOSAT averaging kernel), and between the ACOS-GOSAT 3-day 

median XCO2 data and TCCON data, hereafter referred to as Mapping-TCCON and ACOS-TCCON, 

respectively. The statistics are also shown in Table 4. The top panel shows the comparison of XCO2 

biases between Mapping-TCCON and ACOS-TCCON, while the down panel shows the comparison 

of numbers of coincident data pairs between them. 

From Figure 9, the averaged biases of Mapping-TCCON for most sites are generally closer 

to zeros than ACOS-TCCON, with overall averaged bias of 0.01 ppm for Mapping-TCCON 

and -0.35 ppm for ACOS-TCCON. It indicates that the mapping dataset is more accurate than 

ACOS-GOSAT median data when compared to TCCON. However, the standard deviations of 

the bias are almost the same between Mapping-TCCON and ACOS-TCCON, with overall 

standard deviation of 1.22 ppm and 1.38 ppm, respectively. Moreover, the dependence of the 

developed mapping method on the original satellite data can be clearly observed in Figure 9, 

where the averaged bias of Mapping-TCCON is positively correlated to that of ACOS-

TCCON, indicating that the prediction precision of the global land mapping will increase as 

XCO2 retrieval precision of ACOS-GOSAT improves. 

Furthermore, the global land mapping method developed in this study also provides an 

effective spatio-temporal geostatistical method for collocating satellite XCO2 data with the 

ground observations, as investigated in Nguyen et al. (2014). More ground observations 

should be used to validate this mapping dataset as more and more TCCON sites are available 
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in the future, particularly for the vast region in Africa and Asia where TCCON data are still 

unavailable.  At the same time, the quality of TCCON retrievals is also improving and 

therefore provide more accurate data for validation of the satellite retrievals. For example, as 

noted in the data description in TCCON website (https://tccon-wiki.caltech.edu/), all Four 

Corners TCCON GGG2012 version XCO2 retrievals are high biased by ~0.28% or ~1.1ppm 

due to an error in the surface pressure used in the retrievals. The error will be fixed in the new 

version and this will lead to a ~1.1 ppm offset from the absolute bias (1.68 ppm) compared 

with satellite data as shown in Table 4. 

Table 4. Statistics of comparison between the geostatistical mapping results and the TCCON data 

(smoothed by applying the ACOS-GOSAT averaging kernel), and between the ACOS-GOSAT 3-day 

median XCO2 data and TCCON data, hereafter referred to as Mapping-TCCON and ACOS-TCCON, 

respectively. The statistics include the location information, and statisics of the differences computed 

by subtracting the TCCON median XCO2 from the mapping predictions and ACOS-GOSAT XCO2 3-

day medians, respectively, at the corresponding TCCON sites.  

 

   Mapping－TCCON  ACOS－TCCON 

Sites Location 

[longitude, 

Latitude] 

coincident 

data pairs 

Averaged 

biases 

(ppm) 

Averaged 

Absolute 

bias (ppm) 

Standard 

deviation 

(ppm) 

 coincident 

data pairs 

Averaged 

biases 

(ppm) 

Averaged 

Absolute 

bias (ppm) 

Standard 

deviation 

(ppm) 

Sodankylä [26.63, 67.37] 204 0.72 1.05 1.22  50 0.62 1.18 1.22 

Bialystok [23.03, 53.23] 171 -0.56 1.30 1.58  47 -0.47 0.77 0.96 

Bremen [8.85, 53.10] 86 -0.72 1.28 1.51  38 -0.76 1.17 1.43 

Karlsruhe [8.44, 49.10] 190 -0.30 0.97 1.17  86 -0.52 1.09 1.42 

Orleans [2.11, 47.97] 150 -0.47 0.97 1.10  56 -0.72 1.28 1.45 

Garmisch [11.06, 47.48] 253 0.57 1.02 1.14  100 0.56 1.09 1.26 

Park Falls [-90.27, 45.94] 371 0.22 0.78 0.97  123 0.30 0.82 1.05 

Influx [-86.00, 39.86] 32 -0.26 0.63 0.76  23 -0.04 1.02 1.42 

FourCorners [-108.48, 36.80] 206 -1.62 1.68 1.05  151 -1.72 1.72 1.00 

Lamont [-97.49, 36.60] 416 -0.41 0.79 0.90  320 -0.60 0.91 1.00 

Tsukuba [140.12, 36.05] 225 0.86 1.29 1.37  43 2.24 2.24 1.24 

JPL/Caltech [-118.18, 34.20] 148 -0.21 0.90 1.11  99 -1.19 1.58 1.44 

Saga [130.29, 33.24] 135 -0.01 0.67 0.83  12 -0.86 1.21 1.39 

Darwin [130.89, -12.43] 270 0.69 0.91 0.84  118 -0.10 0.66 0.85 

Wollongong [150.88, -34.41] 327 0.14 0.76 0.91  167 -0.00 0.88 1.11 

Lauder [169.68, -45.05] 281 -0.01 0.53 0.66  23 0.16 0.71 0.92 

Overall  3465 -0.01 0.94 1.22  1456 -0.35 1.10 1.38 
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4.5 Assessment of mapping results 

4.5.1 Generated mapping dataset 

Examples of spatial distribution of the mapping XCO2 data from 2010 to 2012 are shown in 

Figure 10 by taking their seasonally-mean values. In summer, globally, a relatively lower 

XCO2 value can be observed in the high latitude region of the Northern Hemisphere than that 

in the low latitude region, mainly due to the large CO2 uptake by the growing forest in North 

Hemisphere. In other seasons, the XCO2 value is higher in the Northern Hemisphere than that 

in the Southern Hemisphere. The geostatistical mapping data show wider coverage and more 

detailed spatial distributions of XCO2, especially in some key regions, such as south China and 

Central Asia, than the original satellite retrievals with sparse coverage as shown in Figure 1. 

4.5.2 Prediction uncertainty 

For each geostatistical prediction, the corresponding kriging variance, defined in Equation (7), 

can be obtained at the same time as a measure of prediction uncertainty. Kriging variance is 

calculated without the knowledge of the true XCO2 distribution, and it is determined by both 

the density of ACOS-GOSAT XCO2 observations and the data variability in the neighborhood 

of the prediction location. Generally speaking, areas with more homogeneous XCO2 variation 

and denser observations surrounding the prediction location will have lower prediction 

uncertainty (Hammerling et al., 2012a; Chiles and Delfiner, 2012). Figure 11 shows the 

spatial and temporal variations of the prediction uncertainty from the global land mapping. 

The prediction uncertainty is unevenly distributed in space, which is generally in negative 

correlation with the spatial distribution of observation number density as shown in Figure 2(a).  

Predictions in the Southern Hemisphere, where large number of observations are available 

with lower variability, present a relatively smaller uncertainty, which can clearly be seen in 

Figure 11(b). However, regions with fewer observations and larger variability present a larger 

prediction uncertainty, as in the high latitude Northern Hemisphere. Temporally, the time 

series of spatial averaged prediction uncertainty vary from 1.0 to 2.6 ppm and we find them 

negatively correlated with time series of available ACOS-GOSAT XCO2 data number in all 

latitudinal zones (not  shown).  

To assess how well the prediction uncertainties describe the prediction errors, we use the 

ensemble outputs from cross-validation based on Monte Carlo sampling technique, and 

calculate the coverage percentage of prediction errors by the prediction uncertainties for our 
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developed spatio-temporal method. This coverage percentage is 70.35±0.39%, which indicates 

more than 70% of the prediction errors can be constrained by the prediction uncertainty map 

shown in Figure 11. For the spatial-only method, it is 69.04±0.42%, which slightly smaller but 

no significat difference from that for the spatio-temporal method. 
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(a)             Spring 2010                                  Summer 2010                               Autumn 2010                               Winter 2010 

 

 (b)           Spring 2011                                  Summer 2011                              Autumn 2011                                Winter 2011 

 

 (c)           Spring 2012                                  Summer 2012                               Autumn 2012                               Winter 2012 

 

 

Figure 10. Spatial distribution of seasonally-mean XCO2 from global land mapping for three years of 2010 in panel (a), 2011 in panel (b) and 

2012 in panel (c). Four images in each panel corresponds to spring, summer, autumn and winter from left to right, respecitvely. These global 

land mapping seasonally averaged results in 1° by 1° grid are obtained by calculating the seasonal mean from the geostatistical mapping 

results when at least one data is available for each of the three months in that season. As usual, the season spring includes three months of 

March, April and May, summer includes June, July and August, autumn includes September, October and November, and winter includes 

December, next year January and February. 
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(a) 

 

(b) 

 

Figure 11. Kriging standard deviations of prediction, a measurement of prediction uncertainty. (a) 

spatial distribution, which is obtained by averaging the kriging standard deviations over all time-units 

in the global land. (b) Temporal distribution for the 11 zones, which are averaged for each time-unit of 

each zone from June 2009 to May 2013. For each time-unit and each zone, the averages are calculated 

only when more than 50% of the data are available. 

 

4.6 Comparison with model simulations of XCO2 

We compare the original ACOS-GOSAT XCO2 data, the global land mapping XCO2 dataset, 

and the model simulations of XCO2 from CT2013 and GEOS-Chem by illustrating and 

analyzing their spatio-temporal variation as a function of latitude and time. The XCO2 value for 

each specific latitude bin and time bin is obtained by calculating the zonal mean of XCO2 

within the time lag. Figure 12(a) shows the result for the global land mapping data, with 

latitude bins of 1 degree and temporal bins of 3-day. The zonal mean data in Figure 12(a) in 

the subtropical region are excluded when the available data number within the zonal band are 

less than 15, which is the number of pixels of equatorial Africa, to avoid bias in calculation 

especially around the equatorial region where few mapping data are available. Figure 12(b) 

shows the result from original ACOS-GOSAT XCO2 observations, with latitude bins of 5 

degree and temporal bins of one month, which is the same with Figure 6(a). Figure 12(c) and 

(d) are the results for CT2013 from June 2009 to December 2012 and GEOS-Chem for 2010, 

respectively. Strong seasonal XCO2 variations in northern high and mid-latitudes can be 

observed from these panels, but in the Southern Hemisphere they are indistinct. In addition, 

the steady annual increase of global XCO2 mainly due to the burning of fossil fuels can be 

easily identified in both the Northern and Southern Hemisphere. 
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(a)     Global land mapping dataset                 (e)   Global land mapping diff. CT2013 

 
    (b)   Original ACOS-GOSAT XCO2              (f)  Global land mapping diff. GEOS-Chem 

 
       (c)      CarbonTracker CT2013                    (g)  Original ACOS-GOSAT diff. CT2013 

 
       (d)      GEOS-Chem in 2010                        (h) Original ACOS-GOSAT diff. GEOS-Chem 

 
 

Figure 12. Overview of the global spatio-temporal distribution of XCO2 as a function of latitude and 

time, from (a) global land mapping dataset with a grid resolution of 1° in latitude and one time-unit in 

time, (b) original ACOS-GOSAT data with a grid resolution of 5° in latitude and one month in time, 

and model simulations from both (c) CarbonTracker CT2013 data with a grid resolution of 2° in 

latitude and one time-unit in time and (d) GEOS-Chem data in 2010 with a grid resolution of 4° in 

latitude and one time-unit in time, and an overview of the differences of global spatio-temporal 

distribution of XCO2 between (e) global land mapping dataset and CarbonTracker2013 data, (f) global 

land mapping dataset and GEOS-Chem data, (g) original ACOS-GOSAT data and CarbonTracker 

CT2013 data, and (h) original ACOS-GOSAT data and GEOS-Chem data. 
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Figure 13. The panel shows the XCO2 time series in central Africa within 5°N to 15°N in latitude and 

20°W to 40°E in longitude. The original ACOS-GOSAT data indicated by grey dots and its mean in 

black dots calculated when at least 3 data points are available within the time-unit, The mapping 

dataset mean is indicated by the blue line, CarbonTracker CT2013 data mean by the red line and 

GEOS-Chem data mean by the green line. 

 

(a) ACOS-GOSAT XCO2 in 1°x1° 

Grids 

(b) Deterministic Trend 

Component from CT2013 

(c) Stochastic Predicted Residual 

Component 

Spring 2010 

   

Autumn 2010 

   

  

Figure 14. (a) Original ACOS-GOSAT XCO2 distributions averaged over 1°x1° grids, and the 

corresponding mapping decompositions, including (b) averaged deterministic trend component from 

CT2013 and (c) averaged stochastic residual component for Spring 2010 and Autumn 2010, respectively. 

 

Figure 12(e) and (f) show the differences by subtracting CT2013 in Figure 12(c) and 

GEOS-Chem in Figure 12(d) respectively from the mapping dataset in Figure 12(a). For most 

regions, the differences are generally within 2 ppm, indicating the spatio-temporal variation of 
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the mapping dataset and the model simulations are in agreement for most of the region. 

However, large difference of 3-4 ppm can be identified in the region of 5-15° N during late 

winter (January and February) and early spring (March) each year. This latitude zone mainly 

covers the central African tropical region. A similar result can also be concluded from Figure 

12(g) and (h), which show the difference by subtracting the result of both models from the 

original ACOS-GOSAT dataset in Figure 12(b). In Figure 13, we specifically analyze the data 

in this central African land region within 5 to 15° N in latitude and 20°W to 40°E in longitude 

as specified in Figure 2(a), by comparing the time series of the original satellite observations, 

mapping dataset, CT2013 data and the GEOS-Chem data. As expected, the predictions are 

consistent with the original satellite observations and their mean values, indicating the data-

driven feature of the geostatistical prediction method although the trend component is derived 

from the CT2013 model simulation data. Moreover, the satellite data and model simulations 

generally agree during summer time, while larger difference can be observed from January to 

March, which is consistent with the conclusions from Figure 12. This difference may be due 

to the deficiency of CarbonTracker in constraining tropical biomass burning CO2 fluxes 

because of the lack of atmospheric observations due to the sparse observational network in 

this region (Peter et al., 2007). Moreover, the thin clouds that often occur in the tropics may 

have an impact on the retrievals of satellite CO2 and contribute to the XCO2 difference in the 

tropical region, as described in the study comparing XCO2 data from SCIAMACHY and 

CarbonTracker by Heymann et al. (2012). 

From Figure 13, we can see that there is a big difference in the amplitude of seasonal cycle 

between CT2013 data and the mapping data eventhough the temporal trend in the 

geostatistical prediction is derived from CT2013. To understand more on the trend data, 

Figure 14 shows the decomposition of the mapping data into trend component and residual 

component for two seasons of Spring 2010 and Autumn 2010, when the differences are the 

largest and smallerst, respectively. We can see that the trend component (panel (b)) generally 

represents the global meridian trend of the original data (panel(a)), and the predicted residual 

component, on the other hand, well presents the local variation of XCO2. In Spring 2010, large 

residual value can be seen in central Africa and southern and eastern Asia because the trend 

components are not well capturing the small scale variations in these two regions where 

strong natural emission and anthropogenic emission domitate, respectively. While in Autumn 

2010, the residuals are small, indicating consistency between the model simulation and 

satellite observations, which can also be seen from Figure 13. Figure 14 indicates that the 
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contribution of predicted residual component depends on the performance of the trend 

componen. If the trend component do not performs well then the residual component 

contribution will be large so that the final prediciton results will always be consistent with the 

observations.  

5 Conclusions 

Global geostatistical mapping of satellite-observed XCO2 data is a useful gap-filling method 

for dealing with satellite data that are sparse and irregularly distributed in space and time. In 

this study, we have demonstrated a valid method based on spatio-temporal geostatistics for 

global land mapping of satellite XCO2 observations from ACOS-GOSAT. We find that the 

method presents a significant high correlation coefficient of 0.94 between the predictions and 

observations in cross-validation, and moreover, the mapping results are in good agreement 

with the data from TCCON sites with overall bias of less than 0.01 ppm and standard 

deviation of the difference of 1.22 ppm, which show the effectiveness of the global land 

mapping method developed in this study. Furthermore, we demonstrate the difference and 

similarity between the geostatistical mapping of satellite data and model simulations of XCO2 

data from CarbonTracker2013 and GEOS-Chem by analyzing their spatio-temporal 

distribution. From the comparison, we find that the model outputs and the satellite data show 

consistent spatial patterns in most regions, except in tropical central Africa where there is a 

large discrepancy during late winter and early spring. This discrepancy may result from two 

possible causes related to model simulations and satellite retrievals. First, the lack of 

atmospheric observations in this region leads to the deficiency of CarbonTracker in 

constraining tropical biomass burning CO2 fluxes (Peter et al., 2007). Second, the retrievals of 

XCO2 in this region may be affected by thin clouds that often occur in the tropics (Heymann 

et al., 2012). Further investigation and validation are needed to explain the underlying causes 

of this discrepancy. We can see that the relatively high spatio-temporal resolution of the 

global land mapping dataset enables us to identify the locations and times of the discrepancies 

between the satellite retrievals and model simulations. Such detailed comparisons can provide 

potential evidences for further improvement of both satellite data and model data. Moreover, 

in this study, the spatio-temporal geostatistical prediction method has been used to reconstruct 

time series of XCO2 at TCCON sites, making it an effective method for collocating satellite 

XCO2 data with ground-based data (e.g. Nguyen et al., 2014).  
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The generated global land mapping XCO2 data in this study, with continous data distribution 

in space and time, well present the spatio-temporal variations of XCO2 that are hard to directly 

inferred from the sparse coverage of original satellite data retrievals. Therefore, it provides a 

new global geospatial dataset in global understanding of greenhouse gase dynamics and 

global warming. Specifically, the mapping dataset will play potential roles in evaluating the 

modelled CO2 fields from carbon flux estimates coupled with an atmospheric transport model, 

as discussed in Hammerling et al. (2012b), detection of atmospheric CO2 enhancement due to 

anthropogenic emissions, as discussed in Keppel-Aleks et al. (2013) and assessment of 

biospheric activities in the global scale, as discussed in Schneising et al. (2014). Recently, Liu 

et al. (2015) has shown an promising application of the mapping data in viewing the spatial 

patterns of CO2 sources and sinks. 

Some gaps still exist in the mapping dataset, because (1) there are areas where no 

observations are available, such as the Sahara desert area where data observed in median-gain 

mode were filtered before further analysis, and (2) we limit the kriging neighborhood to a 

spatial range of 500 km in order to make predictions efficiently using the most related 

surrounding dataset to the predictors. As a potential solution, the strength of the model data 

may be further incorporated in a data assimilation way to map some areas where data are 

extremely sparse (e.g. van de Kassteele et al., 2009; Chatterjee et al., 2010) since the model 

can well reproduce the large-scale features of atmospheric CO2. Furthermore, the global land 

mapping method developed in this study depends on the assumption of uniform spatio-

temporal correlation structures in the same latitudinal zone. As more satellite XCO2 data 

become available in the future, we will be able to investigate the characteristics of correlation 

structures within each zone over different time interval, such as every season. Moreover, in 

comparison between spatio-temporal and spatial-only approcah using cross-validation, 

leaving out larger regions would conceivably better highlight the advantage of a spatio-

temporal approach where temporal correlation can provide large benefits given the lack of 

nearby data. This will also be our future work. 
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