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Global land use changes are four times greater than
previously estimated
Karina Winkler 1,2✉, Richard Fuchs 2, Mark Rounsevell2,3,4 & Martin Herold 1

Quantifying the dynamics of land use change is critical in tackling global societal challenges

such as food security, climate change, and biodiversity loss. Here we analyse the dynamics of

global land use change at an unprecedented spatial resolution by combining multiple open

data streams (remote sensing, reconstructions and statistics) to create the HIstoric Land

Dynamics Assessment+ (HILDA+). We estimate that land use change has affected almost

a third (32%) of the global land area in just six decades (1960-2019) and, thus, is around four

times greater in extent than previously estimated from long-term land change assessments.

We also identify geographically diverging land use change processes, with afforestation and

cropland abandonment in the Global North and deforestation and agricultural expansion in

the South. Here, we show that observed phases of accelerating (~1960–2005) and decel-

erating (2006–2019) land use change can be explained by the effects of global trade on

agricultural production.

https://doi.org/10.1038/s41467-021-22702-2 OPEN

1 Laboratory of Geoinformation and Remote Sensing, Wageningen University & Research (WUR), Wageningen, The Netherlands. 2 Land Use Change &

Climate Research Group, IMK-IFU, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. 3 Institute of Geography & Geo-ecology (IFGG), Karlsruhe

Institute of Technology (KIT), Karlsruhe, Germany. 4 School of GeoSciences, University of Edinburgh, Edinburgh, UK. ✉email: karina.winkler@kit.edu

NATURE COMMUNICATIONS |         (2021) 12:2501 | https://doi.org/10.1038/s41467-021-22702-2 | www.nature.com/naturecommunications 1

12
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22702-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22702-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22702-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22702-2&domain=pdf
http://orcid.org/0000-0002-2591-0620
http://orcid.org/0000-0002-2591-0620
http://orcid.org/0000-0002-2591-0620
http://orcid.org/0000-0002-2591-0620
http://orcid.org/0000-0002-2591-0620
http://orcid.org/0000-0003-3830-1274
http://orcid.org/0000-0003-3830-1274
http://orcid.org/0000-0003-3830-1274
http://orcid.org/0000-0003-3830-1274
http://orcid.org/0000-0003-3830-1274
http://orcid.org/0000-0003-0246-6886
http://orcid.org/0000-0003-0246-6886
http://orcid.org/0000-0003-0246-6886
http://orcid.org/0000-0003-0246-6886
http://orcid.org/0000-0003-0246-6886
mailto:karina.winkler@kit.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


A
bout three-quarters of the Earth’s land surface has been
altered by humans within the last millennium1,2. Suc-
cessfully tackling global sustainability challenges such as

climate change, biodiversity loss and food security depends on
land use change, since it strongly affects carbon sources3 and
sinks4,5, causes habitat loss6 and underpins food production7. In
particular, the mitigation potential of land use activities, including
those related to forests and agriculture, has been recognised as
essential in meeting climate targets under the Paris Agreement,
making land use a central component of many international
policy debates2,8. Therefore, quantifying and understanding glo-
bal land use change and its spatiotemporal dynamics is critical in
supporting these debates.

Yet, in spite of its societal relevance, understanding how global
land use/cover (LUC) has changed across space and through time
is limited by a lack of comprehensive data and the large uncer-
tainties within existing LUC reconstructions9,10.

Even in the age of satellites, ‘big data' and a growing trend of
opening access to information, LUC data are still constrained by
fragmented content, varying scales, a lack of spatial or temporal
detail and inconsistent time series11,12. Satellite remote sensing
refers to land cover (the biophysical properties of a land surface,
e.g. grassland) and provides high spatial resolution, but short
temporal coverage. In contrast, inventories and statistics mostly
concern land use (the purpose for, and activities by which
humans utilise land, e.g. grazing, cropping), encompass long time
spans, but are bound to administrative units and, thus, lack
spatial detail. Each data source on its own lacks one critical
component—space, time or theme—and, thus, is unable to cap-
ture the full scale of land use dynamics.

Existing global, long-term land use reconstructions often rely
on only a few observational data streams and are built on
assumptions concerning, for example, the allocation of cropland
(HYDE3.213, LUH214) or wood harvests (LUH214). They also
have rather coarse spatial resolutions of up to 0.25 degree
(LUH214) and limited land use categories (SAGE cropland15,
HYDE3.213). Although recent progress was made by GLASS-
GLC16 in assessing long-term, land cover change at an unpre-
cedented spatial resolution (5 km) and temporal coverage
(1982–2015), GLASS-GLC only refers to land cover (not land
use) and relies on a single satellite sensor (AVHRR) as a data

source. More importantly, none of the existing data on land use
change fully account for gross change, in other words, all of the
land transitions between LUC categories that occur during a
given time period. However, identifying gross changes in land use
dynamics is essential when quantifying the climatic and envir-
onmental impact of LUC change9.

To analyse and better understand the spatiotemporal dynamics
of global land use change, we combined multiple, high-resolution
remote sensing data (see Supplementary Table 1) with long-term
statistical data streams (FAO land use17 and population18) to
assess annual changes in LUC from 1960 to 2019 at a spatial
resolution of 1 km. Based on open datasets, we developed a model
called HILDA+ (Historic Land Dynamics Assessment+ , https://
landchangestories.org/hildaplus-mapviewer/), which harmonises
spatially explicit LUC information with land use inventories at
the national scale and allocates these changes to the global land
surface. The approach fully incorporates data-derived, annual
gross changes between six LUC categories: urban, cropland,
pasture/rangeland, forest, unmanaged grass/shrubland, sparse/no
vegetation (see Supplementary Table 2). This enables the quan-
tification of the spatial extent of land use change in unprece-
dented detail and provides tracking of the annual dynamics
through time.

In this paper, we present the gains and losses in major LUC
categories, identify different land use change patterns and com-
pare these across the globe.

Results and discussion
Spatial extent and diverging patterns of global land use change.
We estimate that 17% of the Earth’s land surface has changed at
least once between the six land categories from 1960 to 2019 (see
Fig. 1). When summing all of the individual change events
(including areas of multiple change), the total land change extent
is 43 million km², which is almost a third of the global land
surface. This means that, on average, a land area of about twice
the size of Germany (720,000 km²) has changed every year since
1960.

We identify a global net loss of forest area of 0.8 million km²,
but an expansion in global agriculture (i.e. cropland and pasture/
rangeland) of 1.0 and 0.9 million km², respectively. However, the

Gross change 

Net change 

Fig. 1 Spatial extent of global land use/cover change. Share of the total land surface without (net change) and with consideration of multiple changes

(gross change) between six major land use/cover categories (urban area, cropland, pasture/rangeland, forest, unmanaged grass/shrubland, non-/sparsely

vegetated land) in 1960–2019. The spatial extent of land use/cover change is displayed in yellow (areas with single change events) and red (areas with

multiple change events).
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global trends in land use change conceal many regionally
different trajectories. Whereas forest areas in the Global North
(including China) have increased, forest areas in developing
countries of the Global South have strongly decreased. The
North-South difference in gains and losses of forests, is the
opposite for global cropland areas, which have decreased in the
Global North and increased in the Global South. The difference
between North and South is less pronounced for pasture/
rangeland change, since pasture expansion both in China and
Brazil accounts for a major part of the global land area (see
Fig. 2). These globally diverging land use change processes are
supported by numerous studies, e.g. forest gain caused by political
reforestation incentives in China19–21, agricultural land abandon-
ment in Europe22 and the United States23–25, climate-induced
vegetation shifts in Siberia26–28 and woody encroachment of
rangelands in the United States 29and Australia30. Conversely,
tropical deforestation has occurred for the production of beef,
sugar cane and soybean in the Brazilian Amazon31,32, oil palm in
Southeast Asia33–36 and cocoa in Nigeria and Cameroon37–39.
Furthermore, rangelands have expanded widely into marginal
lands in China19,40.

By separating land use change into areas with a single change
(e.g. deforestation) or multiple change events (e.g. crop-grass
rotation), we see clear patterns across the globe (see Fig. 1). Of all
land transitions, 38% are single change events, which are most
evident in developing countries of the Global South. Around half
of the areas with single change events (48%) comprise agricultural
expansion, which can be seen, for example, in the expanding
pastureland of China or in tropical deforestation in the Amazon.
Multiple change events make up 62% of all land transitions. In
contrast to single changes, multiple changes dominate in the
developed countries of the Global North (e.g. in Europe, the
United States, Australia) and rapidly growing economies (e.g.
Nigeria, India). Here, agricultural intensification, as in the EU and
the United States and/or major transitions in the agricultural
sector, for example, the switch from subsistence to commodity
crops in Nigeria41, have taken place over the last decades. Of all
multiple change events, 86% are agricultural land use changes
(land transitions related to cropland or pasture/rangeland). Some
of these changes are directly or indirectly linked to land
management and agricultural intensification. Cropland-pasture/
rangeland transitions (11% of all multiple change events) can
indicate areas of crop rotation or mixed crop-livestock systems as
in the United States, Australia and in Europe42,43. Most multiple
changes (75%) take place between managed and unmanaged land
such as the abandonment of cropland, e.g. due to agricultural
intensification on more suitable land as in Post-Soviet Eastern
Europe44, rangeland-shrub encroachments as in rotational
grazing systems in Australia45 or the Mediterranean as well as
transitions between agricultural land and forest as in agroforestry
systems in western Europe46.

Temporal dynamics of global land use change and its relation
to globalised markets. The rate of global land use change was not
constant over time. In analysing the temporal dynamics, we
identify two different phases: (1) an acceleration phase with an
increasing rate of change from 1960 to 2004; and (2) a decreasing
rate of change from 2005 to 2019 (see Fig. 3). The transition from
constant to rising rates of land use change has been discussed in
the context of shifting global food regimes and coincides with a
period when global food production changed from agro-
technological intensification (driven by the Green Revolution in
the 1960s) to the production for globalised markets and
increasing trade, especially during the 1990s47,48. We find this
acceleration phase to be more distinct in regions of the Global

South, as observed in South America, Africa and Southeast Asia
(see Fig. 3), where production and export of commodity crops
have increased, most strikingly since the 2000s (see Supplemen-
tary Figs. 1 and 2). The growing influence of tele-connected
markets is found to be a major driver of land use change, parti-
cularly deforestation for commodity crops in the Global South39.
This offshoring of land use change from the Global North to the
South is evident in the growing proportion of cropland in the
countries of the Global South used for export and consumption
outside of their territories49.

However, the data suggest a rather abrupt change to decreasing
rates of land use change in the period from 2005, which is most
evident in Africa and South America (see Fig. 3), regions of the
Subtropics and Tropics (see Supplementary Fig. 3). We
hypothesise that the transition from accelerating to decelerating
land use change is related to market developments in the context
of the global economic and food crisis 2007–2009. Before the
crisis, rising demand for food, animal feed and biofuels as well as
increasing oil prices (reaching an all-time high in 2008 at $145.31
per barrel of Crude50) stimulated global agricultural production,
which enhanced global land use change51. In particular, high oil
prices made bioenergy crops more competitive and profitable
compared to fossil fuels. Increasing demand, mostly in the
developed countries of the Global North, spurred bioenergy crop
expansion in the Global South (e.g. production of oil crops in
Ghana, Argentina, Brazil and Indonesia, see Supplementary
Fig. 1). Biofuel policies, climatic extremes and export bans led to
global food price spikes in 2007–200852 and in 201053,54, which
raised concerns about food security in many import-dependent
countries and rapidly growing economies (e.g. the EU, China or
India). A wave of large-scale, transboundary land acquisitions and
foreign investments in agriculture emerged, mostly targeting sub-
Saharan Africa, Southeast Asia and South America48,55,56. This
development is reflected in the sudden increase in the rate of land
use change (during 2000–2005), ensuing fluctuations (during
2006–2010) and sharp decrease (after 2010) in countries of the
Global South, e.g. Brazil, Argentina or Ethiopia (see Supplemen-
tary Fig. 4). We find that the observed slowdown of global land
use change after the economic crisis 2007–2009 is mainly caused
by a decline in agricultural expansion in the countries of the
Global South, particularly pronounced in Argentina, Ghana and
Ethiopia (see Supplementary Fig. 5). We postulate that the global
deceleration of land use change is related to market mechanisms
during the economic crisis. With the economic boom coming to
an end during the Great Recession, the global demand for
commodities dropped. Countries which focussed on the produc-
tion of commodity crops for global markets prior to the crisis (e.g.
Argentina, Brazil, Ghana or Indonesia), no longer found buyers
for their goods, reduced agricultural production and, thus, the
rate of agricultural land expansion. The observed sharp decline in
the rate of land use change, especially in Africa (see Fig. 3), may
be further caused by a decrease in the number and size of global
land acquisitions after the financial crisis in 2007–2009. Since
then, hedge funds in land became less common57 and concerns
were raised about unsustainable practices related to transbound-
ary land acquisitions (e.g. land/water degradation and displace-
ment of rural labour)52,57. Resulting incentives from international
organisations and exporting countries to limit land trade may
have led to the recent decline in large-scale land acquisitions57.

Aside from globalised trade, other important drivers of land
change dynamics, which have increasingly influenced the rate of
land use change during the deceleration phase, are climate change
and its associated impacts such as extreme events, drought and
floods. Agricultural land use has been affected by droughts in
West58 and Eastern Africa59 during the 2000s, which can be
observed in the strong decline in the rate of land use change in
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Fig. 2 Global forest, cropland and pasture/rangeland change. Spatial distribution of a forest, b cropland and c pasture/rangeland extent (stable area) and

change (gain and loss) between 1960 and 2019. Area charts on the right show the stacked share of gains, losses and multiple change area (on which both

gains and losses have occurred) related to the total area under the respective LUC category along each geographic latitude.
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Ethiopia after the 2010/11 drought (see Supplementary Fig. 4).
Furthermore, land degradation, caused by both climatic varia-
bility and human activities, has often been associated with
cropland abandonment, subsequent expansion of agricultural
land and deforestation elsewhere, as widely observed in tropical
regions60.

When analysing the temporal dynamics of global land use
change per LUC category, we find large annual variability in
agricultural land use change. While global forest area shows a
rather steady annual net decrease, which accelerated during the
1990s (see Fig. 4a), croplands and pasture/rangeland show large
fluctuations over time; about four times higher than observed for
forests. This difference likely derives from a combination of the 5-
yearly reporting scheme of the FAO/FRA forest data and the
quicker response times of agricultural land use change to socio-
economic developments. In particular, the rate of agricultural
land use change can be affected by political regime shifts (e.g.
land abandonment after the collapse of the Soviet Union in
1990)61, disruptions in globalised supply chains (e.g. the US
embargo on soybeans against Russia in 1980)62,63, nature
conservation incentives (e.g. avoided deforestation as in REDD
policies)7, natural hazards and extreme events such as
droughts59,64. High inter-annual change dynamics in global
agricultural land mainly emerged in the 1990s after a long period

of net expansion. This matches the period when major
geopolitical shifts (particularly the collapse of the USSR) took
place and market-driven food production gained in importance.
Whereas pasture/rangelands show a downward trend, which has
been attributed to technology advances in the livestock sector65,
global croplands, by contrast, experienced waves of increasing
expansion since 2000 (see Fig. 4b, c).

Comparing the rate of global land use change. Comparing the
HILDA+ annual change rates with previous land use recon-
structions (see Fig. 4) demonstrates that the area affected by
global land use change is nearly four (3.7) times greater than
previously thought. A comparison of the rates of land use change
between HILDA+ and other land use/cover datasets is presented
in Fig. 5. Corresponding annual change rates and considered
periods are listed in Table 1. Specifically, the mean land use
change rate from HILDA+ is 2.4 times as high as that of
LUH214, 4.4 times as high as that of HYDE3.2 and 1.3 times as
high as that of SAGE cropland (update from15). This deviation is
the effect of considering gross changes derived from Earth
observation data in HILDA+ , which are not or only partially
included in the other datasets.

Land cover change rates derived from higher-resolution remote
sensing datasets such as Hansen GFC66, ESA CCI67 and

AfricaS-America

C-E-Asia

SE-Asia and Australia

N-C-America Europe

Global

Fig. 3 Rate of land use change. Annual rate of land use/cover change between 1960 and 2019 for different world regions and the globe. Global trends

are depicted for phases 1: 1960–2004 and 2: 2005–2015. Grey lines show the annual change, black lines show the smoothed annual change based on a

3-year moving average. The map shows the spatial extent of the presented world regions in different shades of grey.
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MODIS68 are on average about the same order of magnitude (1.1
times) as for HILDA+ . In particular, the HILDA+ annual
change rate is on average 1.3 times greater than from remote
sensing datasets, with MODIS68 deviating by +90% ESA CCI67

deviating by −60% and Hansen GFC66 deviating by 0% from
HILDA+ change rates. These differences are most evident for
annual forest change rates (see Fig. 4a) and can be explained by
different land cover classes on which the original datasets are
based, their diverse semantics and delimitations (see Supplemen-
tary Tables 1 and 3).

Since HILDA+ is built on multiple heterogeneous datasets,
errors inherent in single datasets are attenuated during the
change allocation procedure. By harmonising multiple informa-
tion in the change allocation procedure, we build on a confluence
of evidence. Thus, HILDA+ can be seen as a synthesis product of
quality-tested, recognised LUC datasets. To assess the uncertainty
of HILDA+maps of global land use change, we analysed the
agreement of the used input datasets and the area fraction for
each indicated LUC category on an annual basis (see Supple-
mentary Table 4 and Supplementary Figs. 6, 7). Dataset
agreement differs per LUC category. Forests and areas with
sparse/no vegetation show the highest agreements. On the other
hand, dataset deviation is larger in agricultural LUC categories
cropland and pasture/rangeland. Especially in heterogeneous
landscapes, which hold a mix of managed and unmanaged lands,
e.g. savannahs of Sub-Saharan Africa, rangelands in Australia or
the grassy steppes of Central Asia, but also in the sparse taiga of
eastern Siberia and the transition between Canadian boreal forest
and tundra, LUC class coverage is ambiguous (lower area
fractions) and, thus, dataset information deviates.

The results of the HILDA+ land use change reconstruction
show how synergistic information from Earth Observation data,
reconstructions and national statistical inventories can be used to
identify the spatial patterns and temporal dynamics of global land
use change at unprecedented levels of detail. This study shows the
benefit of using multiple, data-driven resources, which is needed for
comprehensive land change assessment at a global scale. This gives
more detailed insights into both the spatial patterns and the
temporal dynamics of land use change across the Earth. We identify
diverging processes of deforestation and agricultural expansion and
demonstrate that the rate and extent of global land use change is
responsive to socio-economic developments and disruptions such
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Fig. 4 Comparison of forest, cropland and pasture/rangeland changes. Global comparison of annual change of a forest, b cropland and c pasture/

rangeland (c) (gain, loss and net change area per year) from HILDA+ , different Earth observation (EO)-based land cover datasets (ESA CCI67, MODIS-

LC68, Hansen GFC66), land use reconstruction models (SAGE cropland, update from15), HYDE3.213, LUH214) and FAO land use statistics41.

Fig. 5 Comparison of change rates. Comparison of mean annual gross land

use/cover (LUC) change of different LUC change datasets (light grey bars)

with HILDA+ (dark grey bars). Error bars represent the standard deviation.
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as the global economic crisis 2007–2009. The results suggest that
global trade, affecting agriculture, has been one of the main drivers
of global land use change over the last six decades.

The HILDA+ data have implications for the assessment of
climate change, biodiversity loss and food security, especially in
estimating carbon budgets, forest management and biomass. Due
to its consistent and data-driven change allocation, HILDA+ is
suited to global time series analysis. Although not free from
potential data artefacts, inconsistencies of single datasets are
attenuated through the use of multiple data sources. We aim to
bridge the gap between long-term FAO-based land use trends,
which lack spatial explicitness, and remote sensing-based
observational land cover classifications, which lack long-term
temporal consistency. Through the synergistic use of observational
data and the provision of annual uncertainty measures, HILDA+
goes beyond conventional land use reconstructions that often rely
on individual datasets, give an incomplete picture of LUC
dynamics and lack information about uncertainty. HILDA+
provides a consistent time series of global LUC change that
provides new possibilities for the analysis of global time series, the
identification of possible drivers, impacts and correlations in the
context of land use change. Thus, the HILDA+ data can
contribute to better understanding the environmental impacts of
land use change in the past by providing more detailed land
change trajectories (e.g. affecting carbon pools) and their temporal
classification. It can further improve the assessment of land use
strategies in the future in support of policy, e.g. the Paris Climate
Targets, the Sustainable Development Goals and the post-2020
agenda of the Convention on Biological Diversity.

Methods
We reconstructed LUC change dynamics for six LUC categories (urban, cropland,
pasture/rangeland, forest, unmanaged grass/shrubland, sparse/no vegetation) based
on multiple sources of observational data, from which country-scale change extents
and mean fractional area were derived per 1 × 1 km grid cell from 1960 to 2019. We
calculated the country- and year-specific areas of change for each land transition
between these categories. A base map for the year 2015 served as a starting point
for the change allocation procedure, which, at first, runs backward in time
(2015–1960) and, subsequently, forward in time (2015–2019). For each time step
and country, LUC change was allocated to selected candidate pixels by using
ranked gridded class fractions and the data-derived change extents. Each of these
iterative procedures yielded a global LUC map, which served as the new base map
for the next time step. A visualisation of the HILDA+ reconstruction framework,
which evolved from the approach of the HILDA over Europe11, is given in the
Supplementary Fig. 8. Methodological steps of the involved change allocation
procedure are shown in Supplementary Fig. 9.

Pre-processing of remote sensing-based LUC data. The HILDA+ reconstruc-
tion was derived from multiple, openly available global, continental, regional and
national LUC datasets (see Supplementary Table 1).

Harmonisation of LUC maps. We defined a common generalised classification
scheme for harmonising the remote sensing-based LUC products. The

classification scheme was based on six LUC classes that aim to encompass the
major land use changes caused by people and, at the same time, to find a common
ground for the input datasets that differ in thematic detail. This classification
relates to the FAO land use definitions17 and the LCCS land cover classification
scheme69 and, thus, combines land cover with land use information. Accordingly,
the available LUC maps were reclassified based on their inherent classification
schemes (see Supplementary Table 3). The reclassified maps were converted into
binary masks for each of the generalised land cover categories. Subsequently, these
were reprojected and resampled into the target projection (Eckert IV), the final
spatial extent and grid resolution (1 × 1 km) by proportional averaging of the pixel
values. Maps of area fractions under each land cover category from Supplementary
Table 3 are the result of this processing step.

For those years when no observational datasets were available, remote sensing
products with a sufficiently long time series (ESA CCI, MODIS MCD12Q1, GLAD
UMD VCF) were back-casted in a stepwise manner, based on a linear extrapolation
of the mean trend of the first five observed values in time.

Probability maps for LUC categories. For each of the harmonised land cover
categories (see Supplementary Table 3) and year of the study period, we derived
maps of the average area fractions per grid cell if more than one data source was
available. All available datasets were treated as equal. Note that data-inherent
uncertainties such as misclassifications, over- and underrepresentation of certain
LUC categories in individual datasets are propagated to some degree. However,
such inconsistencies are attenuated by relying on multiple datasets instead of a
single data source.

Based on the resulting maps of area fractions, we derived probability maps for
our final LUC categories (see Supplementary Table 2), which were the basis of the
change allocation procedure. The rules for assembling these class probability maps
and, on this, converting the generalised land cover maps (see Supplementary
Table 3) to our target LUC categories (see Supplementary Table 2) are displayed in
Supplementary Table 5.

For separating managed from unmanaged grasslands, we first combined the
maps for grassland and shrubland by calculating the mean of their area fractions.
We used the resulting maps as probability layers for LUC category 5: Unmanaged
grass-/shrubland. For generating the probability layers of LUC category 3: Pasture/
rangelands, we used the Gridded Livestock World v3 (GLW, see Supplementary
Table 1), which indicates the density of ruminants for the reference year 2010, as an
additional indicator of pasture usage. We calculated the mean of the GLW
ruminant densities and the area fraction of combined grassland and shrubland
categories and used the resulting maps as probability layers for LUC category 3:
Pasture/rangelands. Note that, in contrast to grass- and shrubland area fractions,
ruminant density information is static (year 2010). Changes in ruminant numbers
over time were not considered.

Base map calibration. We used the recently released Copernicus LC100 Global
Land Cover map for the reference year 2015 to generate a base map for the
subsequent reconstruction of LUC change. After reclassifying the map into the
generalised land cover categories (see Supplementary Table 3), we reprojected and
resampled it into the targeted projection (Eckert IV), spatial extent and grid
resolution (1 × 1 km) using majority cell values (mode), resulting in a preliminary
land cover map. We calibrated this preliminary base map to FAO national land use
statistics for forest, cropland and pasture area17 using the derived area fractions for
each category. The rules applied for the base map calibration procedure are given
in Supplementary Table 6.

Preparing datasets for national LUC change matrices. The absolute matrices of
LUC change, and the land area in each LUC category that changes into another
category in a specific country and year, were generated from two different data
streams: FAO statistics and remote sensing products. First, we prepared tables of
FAO land use area17 and population statistics18 per country and year of the study

Table 1 Comparison of land use/cover datasets.

Dataset LUC categories included Compared time
period

Annual gross land use change
(mean ± standard deviation in 103 km2 a−1)

HILDA+

LUH214 All 1960–2015 302 ± 125 721 ± 88
HYDE3.213 cropland Cropland (2) 1960–2015 187 ± 82 246 ± 41
HYDE3.213 pasture Pasture/rangelands (3) 1960–2015 57 ± 25 420 ± 71
SAGE cropland15 Cropland (2) 1960–2011 203 ± 74 253 ± 37
Hansen GFC forest66 Forest (4) 2000–2012a 265 ± 27 270 ± 21
ESA CCI67 All with combined grassland (3+ 5) 1992–2015 249 ± 165 578 ± 40
MODIS68 All with combined grassland (3+ 5) 2001–2015 1123 ± 44 574 ± 43

Comparison of annual gross land use/cover (LUC) change (all transitions between included LUC categories or sum of gains and losses for individual LUC categories) of different LUC change datasets

with HILDA+ for corresponding periods.
aHansen GFC covers forest gain only between 2000 and 2012 (no annual dynamics).
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period. The country extents in the year 2015 were used to ensure a consistent
country-specific reconstruction. Thus, land use and population values were com-
pleted for countries that have changed in area over the period of 1960–2015 based
on trends in the FAO recorded values for the former country before the respective
year of change (see Supplementary Table 7). For Europe, LUC values derived from
the predecessor HILDA dataset11 were used to complete the table for periods
without FAO data records (e.g. forest before 1990, agricultural areas before 1961).
We filled data gaps in the land use table by linear temporal intra- and extrapolation
for each country. Secondly, we derived country-specific gross change ratios from
transition matrices based on temporally-consistent, long-term, remote sensing-based
land cover maps: ESA CCI Land Cover and regional high-resolution datasets for
specific regions (CORINE, MoEF Indonesia, AAFC Land Use Canada, NLCD Land
Cover, and Australia DLCD). For each country, a mean transition matrix was cal-
culated across all available time steps in the original spatial resolution of the datasets.

Change calculation. We derived net changes in the categories 2: Cropland, 3:
Pasture/rangelands and 4: Forest from the FAO land use inventories (Arable land
and Permanent cropland, Permanent meadows and pastures, Forest), applying the
relative changes to the areas from the base map, respectively. We used the base map
and the relative population development from FAO (Total population) as a proxy
for net urban area change (LUC 1: Urban areas). The remaining land portion (FAO
land area minus Urban, Cropland, Pasture/rangelands and Forest area) was divided
proportionally into LUC category 5: Unmanaged grass/shrubland and 6: Sparse/no
vegetation according to the area ratio of these categories in the base map.

During the change allocation procedure, a new transition matrix including all
gross changes between the LUC categories was iteratively built for each time step,
each country and each land transition based on the minimum ratio of gross change
to class area from the data-derived country-specific mean transition matrix. This
ratio represents the average share of land under a specific LUC category that is
converted to another category, either a gain or a loss in LUC category.

Change allocation. Based on the recalculated country- and year-specific transition
matrices, the magnitude of LUC change was distributed over the grid by means of
corresponding probability maps for each LUC category. This was carried out in
three consecutive steps: First (round 1), change was assigned if the respective LUC
categories held the highest area fraction and were greater than 0.1. Second (round
2), if no candidate pixels were found in round 1, change was allocated to grid cells
where the area fraction of the respective LUC category was greater than 0.4. Round
3 applied if no candidate pixels were existent after rounds 1 and 2. In the end, no
changes were allocated in this step. This procedure was undertaken iteratively for
each year (in a back- and forward mode starting from the base year 2015,
respectively), for each individual country and for each land transition between two
LUC categories. The output of each change allocation step of the annual loop was a
new global map of LUC, which served as the base map for the next processing step.

Change analysis. The output of the HILDA+ change allocation procedure are
annual maps of global LUC states (the distribution of LUC categories) and tran-
sitions. The transition layers served as the basis for analysing spatial extent, pat-
terns, rates and dynamics of global land use change. Looping through all transition
layers, we classified the coded transitions into change and non-change events and
counted their occurrence per pixel. The sum of all change occurrences represents
the total amount of gross LUC change for the study period. Similarly, LUC
category-specific changes were derived by classifying the coded land transitions
into gain, loss or stable/non-change events within the respective LUC category.
Again, we summed up the occurrences of the different events iteratively through
time. Based on the resulting frequencies, we assigned LUC category-specific change
on the global grid: gain (single change event), loss (single change event), both gain
and loss (multiple change events).

Uncertainty assessment. In order to analyse the uncertainty and assess the
reliability of the resulting HILDA+ dataset, we derived annual layers of uncer-
tainty information based on the available input LUC datasets. The number of
available datasets, the maximum deviation in class area fraction and the mean class
area fraction from all available datasets per year were used to generate per-pixel
quality information. Based on the multi-year mean of dataset agreement (max-
imum deviation) and class coverage (mean class area fraction), global quality flags
were derived and mapped across the globe (see Supplementary Table 4, Supple-
mentary Figs. 5 and 6).

Data availability
Source data from remote sensing, land use reconstructions and statistics used in the
HILDA+model are listed and described in Supplementary Table 1. The dataset
generated and analysed during the current study, the HILDA+Global Land Use Change
dataset (vGLOB-1.0), is available in the PANGAEA repository, (https://doi.org/10.1594/
PANGAEA.921846) as Open Data70. Visualisation of the HILDA+Global Land Use
Change data is provided in form of an interactive map viewer (https://landchangestories.
org/hildaplus-mapviewer/). Further background information and stories accompanying
the HILDA+ project are published on a blog, www.landchangestories.org.

Code availability
The reconstruction modelling and analyses were performed using Python 3.7. Computer
codes for the development and analyses are available upon request to the corresponding
author. Future releases will be communicated through the HILDA+map viewer (https://
landchangestories.org/hildaplus-mapviewer/).
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