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Human immunodeficiency virus (HIV) has a small genome and
therefore relies heavily on the host cellular machinery to replicate.
Identifying which host proteins and complexes come into physical
contact with the viral proteins is crucial for a comprehensive
understanding of how HIV rewires the host’s cellular machinery
during the course of infection. Here we report the use of affinity
tagging and purification mass spectrometry1–3 to determine
systematically the physical interactions of all 18 HIV-1 proteins
and polyproteins with host proteins in two different human cell
lines (HEK293 and Jurkat). Using a quantitative scoring system
that we call MiST, we identified with high confidence 497 HIV–
human protein–protein interactions involving 435 individual
human proteins, with 40% of the interactions being identified
in both cell types. We found that the host proteins hijacked by HIV,
especially those found interacting in both cell types, are highly
conserved across primates. We uncovered a number of host com-
plexes targeted by viral proteins, including the finding that HIV
protease cleaves eIF3d, a subunit of eukaryotic translation ini-
tiation factor 3. This host protein is one of eleven identified in this
analysis that act to inhibit HIV replication. This data set facilitates
a more comprehensive and detailed understanding of how the host
machinery is manipulated during the course of HIV infection.

A map of the physical interactions between proteins within a par-
ticular system is necessary for studying the molecular mechanisms that
underlie the system. The analysis of protein–protein interactions
(PPIs) has been successfully accomplished in different organisms using
a variety of technologies, including mass spectrometry approaches1,3,4

and those designed to detect pairwise physical interactions, including
the two-hybrid yeast system5,6 and protein-fragment complementa-
tion assays7. Although two-hybrid methodologies have been used to
systematically study host–pathogen interactions8,9, so far no systematic
affinity tagging/purification mass spectrometry (AP–MS) study has
been carried out on any host–pathogen system. Here we have targeted
HIV-1 for such an analysis, uncovering a wide variety of host proteins,
complexes and pathways that are hijacked by the virus during the
course of infection.

We aimed to identify host proteins associated with HIV-1 proteins
systematically and quantitatively using an AP–MS approach2,3. To this
end, we cloned the genes corresponding to all 18 HIV-1 proteins and
polyproteins, including the accessory factors (Vif, Vpu, Vpr and Nef),
Tat, Rev, the polyproteins (Gag, Pol and Gp160) and the corresponding
processed products (MA, CA, NC and p6; PR, RT and IN; and Gp120
and Gp41, respectively) (Supplementary Fig. 1 and Supplementary

Table 1). Each clone was fused to a purification tag (consisting of
23Strep and 33Flag) and transiently transfected into HEK293 cells;
each also was used to generate stably expressed, tetracycline-inducible,
affinity-tagged versions of the proteins in Jurkat cells (Fig. 1a and
Supplementary Fig. 2). Following multiple purifications of each factor
from both cell lines, the material on the anti-FLAG or Strep-Tactin
beads, as well as the eluted material, was analysed by mass spectrometry
(Fig. 1a and Supplementary Table 2). Finally, an aliquot of each purified
factor was subjected to SDS–polyacrylamide gel electrophoresis, stained
(Supplementary Fig. 3) and subjected to analysis by mass spectrometry.

For each HIV factor, we identified co-purifying host proteins that
were reproducible regardless of the protocol used (Supplementary
Figs 4, 5 and 7 and Supplementary Data 1). Several scoring systems
can quantify PPIs from AP–MS proteomic data sets, including PE10,
CompPASS4 and SAINT11. For this data set, we devised a scoring
system particularly suited for identifying AP–MS-derived host–pathogen
PPIs, which we call MiST (mass spectrometry interaction statistics). The
MiST score is a weighted sum of three measures: protein abundance
measured by peak intensities from the mass spectrum (abundance);
invariability of abundance over replicated experiments (reproducibility);
and uniqueness of an observed host–pathogen interaction across all viral
purifications (specificity) (Fig. 1b and Supplementary Methods). These
three metrics are summed by principal component analysis into a
composite score (Fig. 1c and Supplementary Data 2). By comparing
our dataset with a benchmark of well-characterized HIV–human PPIs
(Supplementary Table 3), analysis of the MiST scoring system revealed
superior performance on our data set when compared to CompPASS
or SAINT (Supplementary Fig. 6) (and comparable performance using
other data sets (Supplementary Fig. 8)) and allowed us to define a MiST
cut-off of 0.75, corresponding to ,4% of all detected interactions. To
estimate how many interactions would exceed this threshold by chance,
we randomly shuffled our data set 1,000 times. A random MiST score of
0.75 or greater was assigned to an interaction ten times less frequently
than we saw among the MiST scores for the real data, and the
probability of an interaction assignment with a random MiST score
greater than 0.75 was 2.5 3 1024 (Fig. 1d).

At the MiST threshold of 0.75, the number of host proteins we found
associated with each HIV protein ranged from 0 (CA and p6) to 63
(Gp160) (Fig. 1e). In total, we observed 497 different HIV–human
PPIs (347 and 348 identified from HEK293 cells and Jurkat cells,
respectively) (Supplementary Data 3). We detected 196 interactions
(,40%) in both cell types; 150 and 151 were specific to the HEK293
cells and the Jurkat cells, respectively (Fig. 1e). Only some of these
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specificities could be explained by differential gene expression in the
two cell lines (Supplementary Fig. 9). Using antibodies against 26 of
the human proteins, and affinity-tagged versions of an additional 101,
we could confirm 97 of the 127 AP–MS derived HIV–human PPIs
using co-immunoprecipitation/western blot analysis (76% success
rate) (Supplementary Figs 10 and 11), suggesting that we derived a
high-quality physical interaction data set.

We next analysed the functional categories of host proteins associated
with each HIV protein, and in doing so uncovered many expected
connections. These included an enrichment of host factors involved
in transcription physically linked to the HIV transcription factor Tat
and an enrichment of host machinery implicated in the regulation of
ubiquitination associating with Vpu, Vpr and Vif, HIV accessory
factors that hijack ubiquitin ligases12 (Fig. 1f and Supplementary
Data 4). When we considered domain types instead of whole proteins
(Fig. 1g and Supplementary Table 4), we found that host proteins
interacting with IN are enriched in 14-3-3 domains, which generally
bind phosphorylated regions of proteins13, and that proteins contain-
ing b-propellers have a higher propensity for binding to Vpr (for
additional domain enrichment analysis, see Supplementary Fig. 12).

These domain analyses could facilitate future structural modelling of
HIV–human PPIs.

Next we compared our data to other HIV-related data sets, includ-
ing previously published HIV–human PPIs and host factors impli-
cated in HIV function from genome-wide RNA interference (RNAi)
screens. For example, the VirusMint database14 contains 587 HIV–
human literature-curated PPIs (Supplementary Data 5), which are
mostly derived from small-scale, targeted studies. Although the over-
lap between the 497 interactions identified in this work and those in
VirusMint is statistically significant (P 5 8 3 1028), it corresponds to
only 19 PPIs (Fig. 2a and Supplementary Table 5). However, a greater
overlap exists, one that remains statistically significant, when inter-
actions below the MiST threshold of 0.75 are considered using a sliding
cut-off (for example, at a MiST score of 0.2 there exists an overlap of 67
PPIs (P 5 1 3 1023); Fig. 2c, red lines, and Supplementary Data 6).
This overlap indicates that we have indeed identified many inter-
actions that have been previously reported. However, it is likely that
the higher scoring interactions identified here have a greater chance of
being biologically relevant with respect to HIV function than do many
of those in VirusMint.
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Figure 1 | Affinity purification of HIV-1 proteins, analysis and scoring of
mass spectrometry data. a, Flowchart of the proteomic AP–MS used to define
the HIV–host interactome. PAGE, polyacrylamide gel electrophoresis. SF,
23Strep–33Flag affinity tag. b, Data from AP–MS experiments are organized
in an interaction table with cells representing amount of prey protein purified
(for example spectral counts or peptide intensities). Three features are used to
describe bait–prey relationships: abundance (blue), reproducibility (the
invariability of bait–prey pair quantities; red) and specificity (green). c, All bait–
prey pairs are mapped into the three-feature space (abundance, reproducibility
and specificity). The MiST score is defined as a projection on the first principal
component (red line). All interactions, represented as nodes, above the defined
threshold (0.75) are shown in red. This procedure separates the interactions
more likely to be biologically relevant (for example Vif–ELOC (ELOC also
known as TCEB1), Vpr–VPRBP and Tat–CCNT1) from the interactions that
are likely to be less relevant owing to low reproducibility (Vpu–ATP4A) or

specificity (RT–HSP71 (HSP71 also known as HSPA1A) and NC–RL23A
(RL23A also known as RPL23A)). d, The histogram of MiST scores (real data) is
compared with a randomized set of scores obtained from randomly shuffling
the bait–prey table (simulated data). The MiST score threshold (0.75) was
defined using a benchmark (Supplementary Table 3) whereby the predictions
are enriched for these interactions by a factor of at least ten relative to random
predictions (as well as through ROC (receiver operating characteristic) and
recall plots (Supplementary Fig. 6)). e, Bar graph of the number of host proteins
we found interacting with each HIV factor (MiST score, .0.75). The cell type in
which the interaction was found is represented in blue (HEK293 only), yellow
(Jurkat only) or red (both). f, g, Heat maps representing enriched biological
functions (f) and domains (g) from the human proteins identified as interacting
with HIV proteins (Supplementary Methods). ER, endoplasmic reticulum;
mRNA, messenger RNA; tRNA, transfer RNA. TPR, tetratricopeptide repeat;
HTH, helix-turn-helix; SPFH, stomatin–prohibitin–flotillin–HflK/C.
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Recently, four RNAi screens identified host factors that have an
adverse effect on HIV-1 replication when knocked down15–18. In total,
1,071 human genes were identified in these four studies (Supplementary
Data 7), 55 of which overlap with the 435 proteins (P 5 2.7 3 10210;
Fig. 2b, Supplementary Fig. 12 and Supplementary Table 6). Again, this
overlap increases (as does its statistical significance) if we consider
proteins participating in HIV–human PPIs with MiST scores below
0.75 (Fig. 2c, blue lines, and Supplementary Data 8).

To identify the evolutionary forces operating on host proteins inter-
acting with HIV-1, we performed a comparative genomics analysis of
divergence patterns between human and rhesus macaque. The proteins
identified in both HEK293 and Jurkat cell lines had stronger signatures
of evolutionary constraint than those identified exclusively in one cell
line or in VirusMint (Fig. 2d). Points in the lower-right quadrant of
Fig. 2d show signatures of strong purifying selection, whereas the

upper-right quadrant shows signatures more consistent with neutral
evolution. This observation suggests that the PPIs identified in our study,
especially the ones identified in both cell types, are more physiologically
relevant to mammalian evolution than those reported in VirusMint.

We next plotted the 497 HIV–human interactions identified in this
study in a network representation (Fig. 3) containing nodes corres-
ponding to 16 HIV (yellow) and 435 human factors that were derived
from the HEK293 cells (blue), Jurkat cells (red) or both. We also
introduced 289 interactions between human proteins (black edges)
derived from several databases19,20 (Supplementary Data 9). These
human–human interactions helped to identify many host complexes,
including several that have been previously characterized (see
Supplementary Information for a detailed discussion of the HIV–
human interaction data sets). Ultimately, all data will be accessible
for searching and comparison to other HIV-related data sets using
the web-based software GPS-PROT21 (http://www.gpsprot.org/).

Notably, we found that Pol and PR, which we needed to make
catalytically inactive (Supplementary Fig. 1), bound the translational
initiation complex eIF3, a 13-subunit complex (eIF3a to eIF3m). We
detected 12 of the subunits bound to Pol and/or PR, except eIF3j, which
is only loosely associated with the complex22 (Fig. 4a). Even though PR
is the smallest of the pol-encoded proteins, we find it associated with the
greatest number of host factors (Fig. 4a). To determine whether com-
ponents of the translation complex are substrates for PR, FLAG-tagged
versions of ten eIF3 subunits were individually co-transfected, each
with a small amount of active HIV-1 PR, into HEK293 cells. The cell
lysates were analysed by western blotting and only eIF3d was found to
be cleaved (Fig. 4b). Purification of tagged versions of the amino and
carboxy termini of cleaved eIF3d revealed that only the N terminus of
114 amino-acid residues associates with the eIF3 complex (Supplemen-
tary Table 7). The cleavage occurred with an efficiency similar to that of
the processing of the natural PR substrate Gag (Fig. 4c), whereas two
cellular proteins previously described to be cleaved by HIV PR,
PAPBC123 and BCL224, were cleaved only at higher PR concentrations
or not at all, respectively. To confirm this result in vitro, we incubated
purified human eIF3 with active PR, resulting in the removal of a
70-kDa band and the appearance of a ,60-kDa protein product
(Fig. 4d). Analysis of the cleaved product by N-terminal sequencing
revealed a cleavage of eIF3d between Met 114 and Leu 115, which
corresponds to the consensus sequence for HIV-1 protease25 and falls
within the RNA-binding domain (RRM) of eIF3d (ref. 26; Fig. 4d).

Next we used four to six short interfering RNAs against different eIF3
subunits in HIV infectivity assays (Fig. 4e, f, Supplementary Fig. 14 and
Supplementary Table 8). Using a fusion of HIV with vesicular stomatitis
virus glycoprotein (VSV-G), which only allows for a single round of
replication, knockdown of eIF3d, but not other eIF3 subunits, resulted
in an increase in infectivity (Fig. 4e), suggesting that this factor acts in
early stages of infection. In assays requiring multiple rounds of HIV
infection, knockdown of eIF3d, eIF3e and eIF3f enhanced HIV NL4.3
infectivity by a factor of three to five, whereas inhibition of eIF3c, eIF3g
and eIF3i had no promoting effect (Fig. 4f). Consistent with these
results, a previous overexpression screen for factors that restrict
HIV-1 replication identified eIF3f as the most potent inhibitory
clone27. Furthermore, using assays monitoring both early and late
products we found that knockdown of eIF3d results in an increase in
accumulation of reverse transcription product (Fig. 4g and Sup-
plementary Fig. 15). This suggests that eIF3 does in fact have a role
in the early stages of infection, perhaps by binding to the viral RNA
through the RNA-binding domain in eIF3d, and thus inhibiting RT, an
effect that is overcome by PR cleavage of eIF3d (Supplementary Fig. 16).
These results suggest that our data set will be enriched not only for
host proteins the virus requires for efficient replication (Fig. 2b, c),
but also those that have an inhibitory role during infection. Indeed,
we have found that an additional ten factors from our list of inter-
actors, when knocked down by RNAi, produce an increase in HIV
infection (Supplementary Figs 17–19, Supplementary Tables 12
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and 13 and Supplementary Methods). Knockdown of two of these,
DESP and HEAT1, also resulted in an increase in HIV integration
(Supplementary Fig. 20 and Supplementary Table 14), consistent with
their physical association with IN.

As well as performing the systematic AP–MS study reported here,
we explored in further detail the biological significance of two newly
identified HIV–human interactions: HIV protease targeting a com-
ponent of eIF3 that is inhibitory to HIV replication; and CBF-b, a new

component of the Vif–CUL5 ubiquitin ligase complex required for
APOBEC3G stability and HIV infectivity28. Further work will be
required to determine whether, how and at what stage of infection
the remaining host factors impinge on HIV function. Ultimately,
our analysis of the host factors co-opted by different viruses using
the same proteomic pipeline will allow for the identification of protein
complexes routinely targeted by different pathogens, which may rep-
resent better therapeutic targets for future studies.
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Figure 3 | Network representation of the HIV–human PPIs. In total, 497
HIV–human interactions (blue) are represented between 16 HIV proteins and
435 human factors. Each node representing a human protein is split into two
colours and the intensity of each colour corresponds to the MiST score from

interactions derived from HEK293 (blue) or Jurkat (red) cells. Black edges
correspond to interactions between host factors (289) that were obtained from
publicly available databases; dashed edges correspond to interactions also
found in VirusMint14.
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METHODS SUMMARY
More details on experimental assays, plasmid constructs, sequences, cell lines,
antibodies and computational analysis are provided in Supplementary Methods.
Briefly, affinity tagging and purification was carried out as previously described2

and the protein samples were analysed on a Thermo Scientific LTQ Orbitrap XL
mass spectrometer. For the evolutionary analysis, genome-wide alignments to
rhesus macaque were downloaded from the University of California, Santa Cruz
genome browser (http://genome.ucsc.edu/) and evolutionary rates for each group
of genes considered were measured using the synonymous and non-synonymous
rates of evolution. For the in vitro protease assay, maltose binding protein (MBP)-
tagged PR was expressed in BL21 (Gold) DE3 cells in the presence of 100mM
Saquinavir and purified on an MBP trap column. Purified eIF3 was obtained from
J. Cate (University of California, Berkeley). For the infection assays, HeLa P4.R5
cells were transfected with short interfering RNAs and after 48 h infected with
pNL4-3 or a pNL4-3-derived VSV-G-pseudotyped reporter virus. Infection levels
were determined by luminescence read-out.
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