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We study previously un-researched second order statistics – correlation function of spectral staircase and

global level number variance – in generic integrable systems with no extra degeneracies. We show that the

global level number variance oscillates persistently around the saturation spectral rigidity. Unlike other second

order statistics – including correlation function of spectral staircase – which are calculated over energy scales

much smaller than the running spectral energy, these oscillations cannot be explained within the diagonal ap-

proximation framework of the periodic orbit theory. We give detailed numerical illustration of our results using

four integrable systems: rectangular billiard, modified Kepler problem, circular billiard and elliptic billiard.

I. INTRODUCTION

Interest in semiclassical properties of classically integrable

systems picked up recently with deeper understanding of large

persistent oscillations of the level number variance over an en-

ergy interval as a function of the interval width and of the phe-

nomenon of level repulsion as manifested through deviations

from the Poisson statistics of nearest level spacings. [1–5] The

precise nature of these effects are revealed by the structure of

the correlation function of the level density and all relevant

quantities can be computed both from the periodic orbit (PO)

theory [6] and by direct quantum-mechanical calculation [4].

An early attempt of evaluation of the correlation function of

spectral staircase (SS) [7] and interest in global level number

variance (GV) were motivated by the fluctuations of thermo-

dynamic quantities of mesoscopic electronic systems [8]. For

instance, evaluation of orbital magnetic response in the inte-

grable circumstance [9, 10] calls for performing ensemble av-

eraging (achieved via parametric averaging [1, 2, 4]) prior to

thermal averaging, which, in turn, requires knowledge of the

magnetic field dependence of the correlation function of SS.

The central result of this work is to establish, theoretically

and numerically, that GV exhibits large persistent oscillations

around the saturation spectral rigidity. [1, 2, 4–6] Moreover,

it is shown that these oscillations cannot be described in the

standard framework that utilizes the diagonal approximation

(DA) of the PO theory [6] but rather require an account of

interference between periodic orbits with different winding

numbers. Additionally, we evaluate the correlation function

of SS and show that it can be expressed in terms of interval

level number variance.

This paper is organized as follows. In Sec. II, we evaluate

GV and the correlation function of SS using the PO theory.

In Sec. III, we present numerical evaluation of the GV vis-a-

vis the saturation spectral rigidity for the rectangular, circular

and elliptic billiards (RB, CB, EB) and the modified Kepler

problem (MK). For RB, we proceed with a more extended

analysis of the SS, its correlation function and interference

effects in GV.

∗Electronic address: serota@ucmail.uc.edu

II. THEORY

A. Correlation Function of Spectral Staircase

In PO theory, the fluctuating part of SS, δN (ε)≡N (ε)−
〈N (ε)〉, is found as a sum over POs and their time-reversals

[6]:

δN (ε) =
2

h̄µ ∑
j

δj
A j(ε)
Tj(ε)

sin(S j(ε)/h̄), (1)

where µ = (N − 1)/2 with N the dimensionality of the po-

sition space [6] and δj = 1/2 if the PO and its time-reversal

coincide and 1 otherwise. Fluctuations of SS and fluctuations

of level density δρ(ε) are related via [6]

∂δN (ε)
∂ε

= δρ(ε) =
2

h̄µ+1 ∑
j

δjA j(ε)cos
S j(ε)

h̄
, (2)

with the use of Tj = dS j/dε and on the account of the fact

that the dominant contribution comes from differentiation of

the oscillating term.

The correlation function of SS is found from (1) as

KN (ε,ω) ≡ 〈δN (ε1)δN (ε2)〉

=
2

h̄2µ ∑
j

δ2
j

A2
j(ε)

T 2
j (ε)

[

cos
ωTj(ε)

h̄
− cos

2S j(ε)
h̄

]

≈ 2

h̄2µ ∑
j

δ2
j

A2
j(ε)

T 2
j (ε)

cos
ωTj(ε)

h̄
,

(3)

where ε = (ε1 + ε2)/2 and ω = ε2 − ε1 ≪ ε. For integrable

systems, ensemble averaging is understood as the parametric

averaging [1, 2, 4] and the second, rapidly oscillating cosine

was dropped in (3) as it produces a negligible contribution

upon such averaging insofar as ω-dependence is concerned.

In what follows, unless explicitly stated otherwise, we drop

the argument of A j and Tj. We notice that the (interval) level

number variance over the energy interval of width ω is given

by [2]

Σ(ε,ω) =
4

h̄2µ ∑
j

δ2
j

A2
j

T 2
j

(

1− cos
ωTj

h̄

)

. (4)
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Consequently, combining (3) and (4), we have [7]

KN (ε,ω) = ∆∞
3 (ε)−

1

2
Σ(ε,ω)

≈ ∆∞
3 (ε)−

|ω|
2∆

, |ω| ≪
√

ε∆
(5)

where ∆ is the mean level spacing and ∆∞
3 (ε) is the saturation

spectral rigidity given by [2]

∆∞
3 (ε) =

2

h̄2µ ∑
j

δ2
j

A2
j

T 2
j

. (6)

Below, it is ordinarily assumed that ω ≥ 0. As expected, dif-

ferentiation on ε1,2 inside the cosine of the last equation of

(3), also gives the correlation function of the level density [2],

which can also be obtained directly from (2).

B. Global Level Number Variance

We now turn to GV of SS, which is defined as follows: [7]

Σg(ε)≡ 〈[δN (ε)]2〉 ≡ 〈[N (ε)−〈N (ε)〉]2〉. (7)

Formally, GV is a particular case of KN (ε,ω) in (3) with

ω = 0. We point out, however, that (3) was obtained using

DA, which is sufficient for evaluation of the ω-dependence of

KN (ε,ω) for a given ε (see supporting numerical evidence

below). [12] However, it breaks down when the ε-dependence

of Σg(ε) is considered. Whereas DA yields, upon averaging,

Σg(ε) = ∆∞
3 (ε)−

2

h̄2µ ∑
j

A2
jδ2

j

T 2
j

cos
2S j

h̄
≈ ∆∞

3 (ε), (8)

interference between POs in accordance with (1)

Σg(ε) =
4

h̄2µ

(

∑
j

A jδj

Tj
sin

S j

h̄

)2

, (9)

must be considered to account for the full ε-dependence of

Σg(ε) obtained in the numerical calculation below – namely,

the persistent oscillations of Σg(ε) around ∆∞
3 (ε).

Indeed, the off-diagonal contribution to GV contains, per

(9), the following term:

sin
S j(ε,α )

h̄
sin

Si(ε,α )

h̄
=

1

2

[

cos
S j(ε,α )− Si(ε,α )

h̄
− cos

S j(ε,α )+ Si(ε,α )

h̄

] (10)

where the dependence of the action on the system parameter

α is explicitly indicated. Parametric averaging involves inte-

gration over the distribution function ρ(α ), such as a Gaus-

sian distribution centered around the central value α0. [4]

Ordinarily, such integration with rapidly oscillating terms in

(10) produces negligible contributions (as is the case with the

dropped term in (3) and (8) as well as with the off-diagonal

contribution when ω 6= 0). The notable exception occurs when

∂α (S j(ε,α )± Si(ε,α ))|α=α0
= 0 and the arguments of the

cosines scale as (α − α0)
2. Below we illustrate this circum-

stance on RB.

1. Rectangular Billiard

For a particle of mass m in a RB with sides a and b, the

amplitude, period and action of a PO with winding numbers

M = (M1,M2) are given respectively by [6]

A2
M = m2a2b2/π3εTM

TM = [2m(M2
1 a2 +M2

2b2)/ε]1/2

SM = 2εTM.

(11)

Consider, for instance, interference terms between M =
(M1,M2) and Mp = (M2,M1). Setting h̄ = 1 for simplicity,

the cosine arguments in (10) have the following form:[1, 4]

S± = 2ε(TM±TMp)

2εTM = 2[2mabε(M2
1α 1/2 +M2

2α−1/2)]1/2
(12)

where α = a2/b2 is the aspect ratio of RB. [6] It is then triv-

ially seen that at α0 = 1 and for M1 6= M2, ∂α S− 6= 0 while

∂α S+ = 0.

Parametric averaging is performed via integration with the

Gaussian distribution function ρ(α ) whose width is ≪ 1, cen-

tered at α0 = 1. [4] Clearly, for a square, M and Mp represent

the same orbit per a 90◦ rotation; for RB with aspect ratios

close to unity, that is a near square shape, we observe inter-

ference from geometrically similar orbits with nearly equal

lengths. We emphasize that since it is the near equality of

lengths that matters, this argument can be easily extended to

an arbitrary aspect ratio.

III. NUMERICAL RESULTS

In what follows, we express all energies in units of the mean

level spacing ∆ by setting ∆ = 1.

A. Global Level Number Variance

In Fig. 1, we plot Σg(ε) vis-a-vis ∆∞
3 (ε) [13] for RB, MK,

CB and EB respectively. [14] We observe that ∆∞
3 (ε) ∼

√
ε

in RB. [1, 6] In MK, the saturation spectral rigidity exhibits

quantum jumps to higher plateaus, while it experiences an

overall growth as ∆∞
3 (ε) ∼ ε1/3. [1, 4] In CB and EB, while

scaling overall as ∆∞
3 (ε)∼

√
ε, as expected in a hard-wall bil-

liard, the rigidity exhibits a far more complex behavior than

in RB. [5] While not fully understood, we speculate that its

origin may lie in the coherent effects of type-R orbits [11]

of approximately equal length – or length multiples – giving

rise to global fluctuations of the level density. [5] [15] As

was already mentioned above, persistent oscillations of Σg(ε)
around ∆3 observed in Fig. 1 cannot be explained in the DA

framework. Below, we concentrate on RB in order to explicate

the nature of these oscillations.
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FIG. 1: Comparison between global level number variance and saturation spectral rigidity. Blue line: Σg(ε) of rectangular

billiard, modified Kepler problem, quarter circular billiard, and quarter elliptic billiard. Black line: ∆∞
3 (ε).

B. Rectangular Billiard

1. Spectral Staircase

In Figs. 2a-2b, SS is shown respectively over a shorter

and longer energy scales for several values of aspect ratio

α . The former reveals noticeable oscillations around the 45◦

straight line. To further emphasize this point, in Fig. 2c, we

plot N (ε)− ε for these α ’s. It is natural to anticipate that

upon α -averaging, N (ε)−ε and the theoretical evaluation of

δN (ε) using (1) should vanish. However, numerical simula-

tion shows neither to be the case, as seen from Fig. 2d. While

a translation of the latter downward and rightward bring the

two into congruence, as seen from Fig. 2e, we do not fully

understand the nature of this phenomenon [16]. Clearly, it is

inherent to the nature of parametric averaging and of the PO

theory and is not an artifact of the numerical calculation. We

remark that the proximity of 〈N (ε)〉− ε to 0 can be seen as

a measure of performance of parametric averaging in attain-

ing ensemble averaging. Comparing its magnitude to that of

N (ε)− ε indicates that it does quite well.

2. Global Level Number Variance and Correlation Function of
Spectral Staircase

In Fig. 3a, we plot Σg(ε). Theoretical fit of the numerical

data is quite good – given the limitations discussed above –

and underscores importance of the non-diagonal terms.

In Fig. 3b, we plot KN (ε,ω). Theoretical and numerical

curves are in excellent agreement, which proves applicability

of DA (5). We specifically point out the small ω behavior

in the insert of Fig. 3b, which is described by the small ω
expansion in (5) and corresponds to the δ(ω) term in the level

density correlation function. [1, 2]

IV. SUMMARY

We examined the global level number variance and the cor-

relation function of spectral staircase in generic integrable

systems with no extra degeneracies. We demonstrated that

the global level number variance exhibits persistent oscilla-

tions around the saturation spectral rigidity. These oscillations

cannot be explained in the diagonal approximation framework

and require an account of interference terms.

Conversely, the correlation function of spectral staircase

is well explained by the diagonal approximation. The latter

points to the subtlety of the ω → 0 limit since mathematically

interference is destroyed by a finite ω.

In the future, we need to gain greater insight into integrable

systems beyond the better understood rectangular billiards.

For instance, we need to develop a quantitative description

of the interference effects leading to the oscillations of the

global level number variance in the modified Kepler problem.

Larger-scale oscillations of the saturation spectral rigidity in

circular and elliptic billiards, which also appear to be a prod-

uct of the periodic orbit interference and are thus outside of the
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range of applicability of the diagonal approximation frame-

work, are of great interest and call for further investigation.

Properties of the spectral staircase, as well as its description

using parametric averaging, require a closer examination as

well.
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FIG. 2: Rectangular Billiard: (a-b) Spectral staircase for six aspect ratio α ’s. Different colors encode different aspect ratios. (c)

N (ε)− ε for six α ’s. (d-e) Blue line: N (ε)− ε calculated by averaging over 105 α ’s. Red line: theoretical δN (ε) calculated

from (1) and averaged over α ’s and in (e) the theoretical line is shifted 1 downward and 30 rightward.
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FIG. 3: Rectangular billiard: (a) Comparison between numerical and theoretical Σg. Black line: saturation spectral rigidity.

Blue line: numerical Σg calculated from 〈[N − ε]2〉. Green line: numerical Σg calculated from 〈[N −〈N 〉]2〉. Purple line:

theoretical Σg calculated from (9) after averaging over aspect ratios. Red line: theoretical Σg calculated from diagonal

approximation plus interference between terms (M1,M2) and (M2,M1) with M1 6= M2. (b) Correlation function of spectral

staircase with ε = 105; insert shows small ω behavior. Blue line: calculated from 〈(N (ε1)− ε1)(N (ε2)− ε2)〉. Green line:

calculated from 〈(N (ε1)−〈N (ε1)〉)(N (ε2)−〈N (ε2)〉)〉. Purple: theory with diagonal approximation and parametric

averaging.


