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Global link between deformation and volcanic
eruption quantified by satellite imagery
J. Biggs1, S.K. Ebmeier1, W.P. Aspinall1, Z. Lu2, M.E. Pritchard3, R.S.J. Sparks1 & T.A. Mather4

A key challenge for volcanological science and hazard management is that few of the world’s

volcanoes are effectively monitored. Satellite imagery covers volcanoes globally throughout

their eruptive cycles, independent of ground-based monitoring, providing a multidecadal

archive suitable for probabilistic analysis linking deformation with eruption. Here we show

that, of the 198 volcanoes systematically observed for the past 18 years, 54 deformed, of

which 25 also erupted. For assessing eruption potential, this high proportion of deforming

volcanoes that also erupted (46%), together with the proportion of non-deforming volcanoes

that did not erupt (94%), jointly represent indicators with ‘strong’ evidential worth.

Using a larger catalogue of 540 volcanoes observed for 3 years, we demonstrate how this

eruption–deformation relationship is influenced by tectonic, petrological and volcanic factors.

Satellite technology is rapidly evolving and routine monitoring of the deformation status of all

volcanoes from space is anticipated, meaning probabilistic approaches will increasingly

inform hazard decisions and strategic development.
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V
olcanic unrest is characterized by changes in seismicity,
deformation, gas emissions or fumarolic activity1. An
unrest episode may, or—sometimes crucially—may not

lead to eruption2. When changes do occur, any lack of baseline
information complicates the task of distinguishing between
background and precursory activity. Satellite radar (InSAR) can
provide high-resolution maps of deformation, allowing the
detection of unrest at many volcanoes that may otherwise go
unrecognized3. At a well-studied volcano, these data form one
part of a multiparameter assessment, but are often the only source
of information for remote or inaccessible volcanoes4.

Although InSAR is burgeoning as a retrospective scientific tool
for understanding magmatic plumbing systems5, uptake of such
data by volcano observatories has been restricted1. Critical and
timely decisions are often required based on uncertain data and
probabilistic tools, such as event trees6 and Bayesian Belief
Networks7, which provide impartial, quantified and defensible
information8. Only a few frequently erupting and well-monitored
volcanoes have a recorded history spanning sufficient periods of
unrest and eruption to populate probability tables based on their
past behaviour alone.

Rather than relying on this small number of systems, we assess
the global statistical relationships using remote observations.
Although the multidecadal or shorter timescale of InSAR
observations is short compared with many volcano repose
periods, by observing a large number of volcanoes at different
stages of their eruptive cycle, we adopt an ergodic assumption and
substitute geographic coverage for catalogue time length. We then
show how tectonic, petrological and volcanic factors influence
this relationship.

Results
Global contingency table. For each of the 540 volcanoes that
comprise systematic InSAR studies (Fig. 1), we define two distinct
underlying traits of each volcano: whether they deformed and
whether they erupted, and we then use deformed state as a
diagnostic test indicator for the probability of at least one erup-
tion having occurred during the period of InSAR observation
(Fig. 2). Further details of the catalogue and definitions are
provided in the Methods section. To provide global statistics, we
select the 198 volcanoes for which there is a full 18-year obser-
vation history. Of these, 25 are classified as DE (deformed and
erupted: in diagnostic test terms, true positives. Supplementary
Table 2); 29 are D�E (deformed but did not erupt; false positives;
Supplementary Table 3); 9 are �DE (erupted, but did not deform;
false negatives; Supplementary Table 4) and 135 are �D�E (did not
deform or erupt; true negatives; Supplementary Table 5). Thus, of
the 54 volcanoes that deformed, 25 (46%) also erupted during the
InSAR observation window, while the proportion of false nega-
tives, �DE=�D, is very low (B6%). From a hazard perspective, false
negatives are especially concerning due to potential high impacts
associated with unanticipated eruptions. Given typically long
repose periods9 and relatively short observation window, it is not
surprising that the most common classification is �D�E (68% of
volcanoes), but we think this is likely to decrease as observations
continue.

From these values, we can quantify the statistical link10

between deformation and eruption for the available InSAR
data. Following terminology from medical diagnostic testing, we
describe this association in terms of positive and negative
predictive values (hereafter referred to as PPV and NPV), but
note that ‘predictive’ in this context refers to trait associations and
does not imply deformation precedes eruption. The PPV of the
contingency table (the proportion of volcanoes that deformed
between 1992 and 2010 that also erupted; DE/D) is 0.46.

The NPV, that is, the proportion of ‘non-deformed’ volcanoes
that did not erupt in the same period (�D�E=�D), is 0.94.

Removing cases of deformation attributed to settling and
cooling of recent deposits or removing the B25% of volcanoes at
which measurements are not possible even in systematically
studied regions11 from the �D�E category does not push PPV or
NPV outside their 95% confidence intervals.

Volcanological and tectonic influences. The petrological,
volcanological and tectonic characteristics of volcanoes vary
greatly, and we expect these factors to influence the relationship
between deformation and eruption. In the simplest conceptual
model routinely applied to geodetic observations, magma supplied
to a crustal reservoir from beneath is stored within an elastic
medium such that surface deformation rate depends on magma
supply rate and storage depth alone12. In reality, petrological
properties, phase changes, rheological variations, fluid flow, local
stress fields and other processes occurring within the complex
volcanic environment may also influence or drive deformation.
Therefore, numerous factors, some observable but others not, may
be expected to correspond with observed deformation patterns to a
greater or lesser extent. These include crustal thickness and storage
depth; magma composition and volatile content; edifice type and
repose period; tectonic setting and plate motion; stress and strain
rates; rheology and observations of seismicity and gas release.

In order to obtain sufficient sampling across all categories, we
use an additional 306 tropical volcanoes that were observed for the
3-year period 2007–2010 and select the corresponding 3-year
period from the 198 volcanoes that were used for the global
compilation. The PPV of the 3-year data set of 504 volcanoes is
0.28 and the NPV 0.95. Figure 3 then subdivides this catalogue
according to volcano type, plate tectonic setting, magma composi-
tion and eruptive history13 to compare with the 95% confidence
intervals of the PPV (0.20–0.36) and NPV (0.94–0.97) values.

The proportion of eruptions is higher when there has been a
historically recorded eruption (0.45), regardless of whether
deformation was observed (Fig. 3). Deformation and eruption
are most directly linked (a higher PPV) for hotspot regions (0.33),
basaltic (0.29) and andesitic compositions (0.34). Low volatile
content and high magma supply rates contribute to the elastic
storage of low compressibility magma in a shallow chamber for a
short period before eruption.

The PPV is lowest for rhyolite/dacite compositions (0.17),
calderas (0.25) and rift settings (0.13). No phonolite or trachyte
composition volcanoes deformed during 2007–2010, but the
18-year record shows a low PPV for this category too. Magmatic
processes associated with the long-term storage of large
magma volumes in the shallow crust may produce surface
deformation without ensuing eruption (at least within a multi-
decadal timescale)14. Rift settings and low magma flux are
associated with longer magma residence times in the shallow
crust, more fractionation and crustal assimilation, formation of
more evolved magmas and more calderas but less frequent
eruptions9,15,16.

We find low NPVs for stratovolcanoes (0.94) and those with
basaltic (0.93) and andesitic compositions (0.94) due to a high
proportion of �DE volcanoes. Eruptions involving little or no
juvenile material17, highly compressible gas-rich magmas or
rapid ascent from great depth may occur with little or no
deformation on the weekly to monthly timescales it is possible to
detect with InSAR11,14. Stratovolcanoes are more common on
continental crust where the stress field, rigidity contrasts and high
parental water contents may contribute to deep storage or
compressible magmas, which accommodate pressure changes
with little surface deformation11,18. Processes associated with
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conduit pressurization and lava dome extrusion also present
challenges for InSAR detection19.

Relative timing of deformation and eruption. So far, we consider
the states ‘deformed’ and ‘erupted’ as two independent, underlying
traits, yet defining the temporal and causal links between deforma-
tion and eruption is essential for using geodetic observations in a
predictive sense. Altering our definitions such that only pre-eruptive
deformation is considered a true positive for the 18-year data set
(leaving 13 classified as DE, and 12 as �DE) gives a PPV value of 0.31
and a NPV of 0.92. Both these values are within the 95% confidence
intervals of the PPV and NPV values for the unfiltered data set.
Detailed investigation of the timescale of pre-eruptive deformation

based on InSAR observations reveals the strong publication bias
towards reporting periods of deformation. Figure 4 covers both
individual and systematic studies of DE volcanoes and includes all
eruptions for which more than 3 years of InSAR data are reported,
excluding lava lakes, frequent eruptions (more than one every 3
years) and continuous effusion (Supplementary Table 7). It shows 13
volcanoes that deformed continuously throughout their eruptive
cycle and a further 16 where observations began during or after
eruption. Deformation is reported to have begun less than a year
prior to eruption at Alu in Ethiopia20, El Hierro in the Canaries21

and Eyjafjallajökull in Iceland5. Interestingly, although Alu and
Dalafilla erupted simultaneously, Alu showed pre-eruptive
deformation but Dalafilla did not20. Eyjafjallajökull is unique at
present in the InSAR record in that it shows multiple short pulses of
uplift, two of which did not end in eruption within a year and one
that did5,22. Time periods during which no deformation occurred
(black bars) are rarely reported explicitly. It is likely that observations
continued for over 3 years at several of the volcanoes that were
excluded from our analysis but only the time periods during which
deformation occurred were reported. Infrequent SAR acquisitions
may also obscure the temporal relationship between deformation
and eruption, especially where deformation is short-lived.

Discussion
Volcanoes that erupted during the observation window are B4
times more likely to have recorded deformation than not (the
positive likelihood ratio), meaning this information provides
‘strong’ evidential worth23. However, a PPV of 0.46 indicates that
deformation alone, while worthy of concern, should not be
considered a strong diagnostic of imminent eruption. Moreover,
the much greater NPV is important because although much
emphasis is placed on the ability of volcanologists to predict
eruptions, often the ability to make a valid negative deduction can
be very valuable for hazard and risk decisions.

Statistical tests on ground-based data (primarily seismicity)
indicate that pre-eruptive unrest duration varies between volcano
types: from 2 days at complex13 volcanoes to 5 months at shield
volcanoes24. Radar images of the majority of the world’s
volcanoes are only acquired a few times per year, so
deformation on these timescales is only resolvable at the
handful of volcanoes for which multiple satellite constellations
provide frequent revisits or those with permanent ground-based
deformation monitoring. Due to the publication bias towards
periods of deformation, we are not yet able to quantify the causal
or temporal relationships between the extent, rates, timing,
amount and duration of deformation and subsequent eruption
using InSAR alone. The forthcoming launches of Sentinel-1 and
ALOS-2 will greatly increase temporal and spatial resolution and
coverage, enabling more subtle distinctions to be incorporated
into pattern analysis.

Nonetheless, even with the current data set it is clear that,
although the behaviour of individual plumbing systems is often
poorly characterized, the statistics for some subsets of global
volcanoes (for example, those on rifts, andesite versus rhyolite
and so on, Fig. 3) lie outside the global confidence intervals and
are consistent with current understanding of tectonic, petrological
and volcanological influences. The short eruption cycles at
hotspot volcanoes and those of basaltic and andesitic composition
mean that the satellite record typically spans both deformation
and eruption resulting in a high PPV. For volcanoes with long
eruption cycles, the satellite record tends to capture either
deformation or eruption but rarely both. In the case of rhyolitic,
dacitic, phonolitic and trachytic volcanoes and calderas, the inter-
eruption period is characterized by shallow magmatic storage
producing regular deformation episodes with infrequent

Observations

Eruptions

Deformation

a

b

c

Figure 1 | Global distribution of volcanoes. Locations of 1390 named

subaerial Holocene volcanoes from the Global Volcano Database13

(all symbols) showing (a) published satellite studies (filled dark blue:

systematic studies including null results; filled pale blue: studies of

individual volcanoes, 78% of which report eruption or deformation);

(b) volcanic eruptions in the Global Volcano Database during the satellite

era (filled red), and (c) 165 published reports of deformation, including

uplift, subsidence, flow compaction, edifice instabilities and all phases of

the eruptive cycle (filled green). See Supplementary Tables 1–5.
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eruptions, resulting in low PPVs. In the case of stratovolcanoes,
the inter-eruption period is characterized by storage at a range of
levels within a thick crust and compressible magmas, producing a
high proportion of eruptions without deformation and a relatively
low NPV. For volcanoes monitored using satellites alone and
lacking field measurements, the variation in such diagnostic test
statistics associated with globally mapped volcanological and
tectonic factors could provide a solid footing for hazard analysis.

The strength of InSAR lies in its global coverage and remote
monitoring capabilities; here we quantify the global link between
eruption and deformation on multidecadal hazard assessment
timescales. Upcoming technological developments promise to
improve the frequency of available images and allow us to
quantify the causal or temporal relationships between the extent,
rates, timing, magnitude and duration of deformation on shorter
timescales. Global studies of volcano deformation have potential
to be incorporated into strategic hazard assessments25,
particularly in regions with short historical records15.

Methods
Volcano catalogue. There are 1390 named subaerial Holocene volcanoes13 of
which 161 have InSAR-based reports of deformation to date and 620 have reported
InSAR observations (Fig. 1). Table 1 and Supplementary Table 1 list systematic
studies that include discussion of null results: together they cover 4500 volcanoes
in the Andes, Central America, Alaska, Africa, Indonesia, Iceland and the
Galapagos. The volcanoes in Iceland are not covered by a single systematic study
but 85% of them have been included in separate studies of volcanic, seismic,
cryospheric or geothermal processes26–29 and those in Galapagos are sufficiently
close together to be covered by a single satellite frame. InSAR studies outside these
regions tend to focus on individual events, such that the proportion of volcanoes
that erupted (32%) or deformed (59%) is significantly higher than the
corresponding values of 12% and 17% for the systematic studies. Ground-based
geodetic networks provide valuable information at higher temporal resolution and
over a longer time period than is accessible using InSAR. However, due to the high
logistical and financial overheads, they exist only for a small number of volcanoes,
often those that are known to be deforming or erupting. Due to the bias away from
‘null results’ associated with individual studies and ground-based networks,
we base our subsequent analysis on systematic InSAR studies alone (Table 1).

Due to the high spatial resolution and coverage, InSAR has been very successful
in detecting deformation within volcanically active regions. Sometimes, however,
this deformation is up to 25 km from any catalogued volcano summit13. In
these cases, the deformation has been attributed to the closest listed volcano.
Supplementary Table 6 lists deformation attributed to a volcano not in the GVP list
of Holocene volcanoes.

25 29

9 135
Non-deformed

Deformed

Non-EruptedEruptedSystematic
Coverage

True positive False positive

False negative True negative

DE

DE

DE

DE

Figure 2 | Contingency table linking volcanoes that deformed and

erupted. The table reports the number of occurrences in each category

out of the 198 systematically observed volcanoes over 18 years (Table 1,

Supplementary Table 1). A volcano that ‘deformed’, D, is one where at least

one period of deformation has been observed with InSAR, while ‘not

deformed’, �D, means InSAR measurements were made, but that no

deformation was reported. ‘Erupted’, E, and ‘not erupted’, �E, volcanoes are

those that erupted or not13. See Supplementary Tables 2–5 for details of

individual volcanoes.
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(red) tectonic setting (subduction, rift, hotspot); (green) eruptive history13; (purple) magma composition13 (basalt, andesite, rhyolite-dacite, trachyte-

phonolite). Left side: proportion of volcanoes that deformed that also erupted during the observation period (PPV); right side: proportion of volcanoes that

did not deform that also did not erupt during the observation period (NPV). Coloured bars show values for the 3-year period 2007–2010 for all 540

systematically covered volcanoes and the numbers give the sample size for each category; black outlines show the combined 18- year and 3-year data sets.

Black vertical bars mark the 95% confidence bounds on the global values (enclosed white bar) on the 3-year data set, vertical dashed line indicates the

global values for the combined data sets.
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Detection limits. Although InSAR offers an order of magnitude increase in the
number of volcanoes that can be observed, several factors limit its ability to detect
magmatic processes. The two major limiting factors are as follows: (i) phase delays
caused by atmospheric water vapour, particularly the topographically correlated
component, and (ii) the loss of signal coherence around snow-capped summits,
dense vegetation or steep-sided edifices30. Deep sources may cause small

magnitude deformation signals that fall below the level of atmospheric noise. For
shallow processes, such as the emplacement of viscous plugs, the spatial extent of
the signal may be restricted to an incoherent area near the vent19. If the system has
an air–magma interface or the magma is compressible18, volume changes can be
accommodated with little or no surface deformation.

Unfortunately, the systematic studies are not uniform in either methodology or
error reporting making it difficult to assess how many ‘hidden’ deformation signals
exist. Some studies use individual interferograms31,32, others time series
methods11,33,34; some report noise thresholds for each volcano11, while others
estimate a single value for the survey as a whole31,33, and some do not mention
errors at all35. In Central America, time series noise increases by 2 cm for every
1 km of edifice height and measurements are not possible for B25% of volcanoes
covered30. However, there are statistically significant variations in the relationship
between the numbers of deformation episodes and historically active volcanoes at
volcanic arcs that cannot be attributed to InSAR measurement limitations alone11.

Definitions. Volcanoes show episodic behaviour on timescales ranging between
seconds to hundreds of thousands of years9 and unrest can take many forms:
pulsatory, prolonged, sporadic, reawakening and intra-eruptive24. Deformation can
occur in the weeks preceding eruption5, many years earlier22 and for months or
years afterwards36. Despite this, there is a tendency to conflate the term
‘deformation’ with ‘precursory inflation’, even though many sources of volcano
deformation are non-magmatic36 and few are directly followed by an eruption.

Although using the satellite archive allows us to consider a large set of
volcanoes, the newness of the technology restricts the timescales observed. The
current satellite-based deformation record spans 20 years in some temperate
regions but only 3 years in the tropics (Table 1) providing a limited snapshot,
especially at volcanoes with long eruption cycles. Conversely, rapid cycles of
deformation and eruption may not be captured by satellite repeat intervals of
35–46 days19,37,38. Therefore, our initial analysis above avoids subjective
judgements regarding the temporal and causal links between deformation and
eruption by combining pre-, co- and post-eruptive deformation into a single
category, initially discarding for our current purposes the notion of ‘precursory
inflation’.

A volcano that ‘deformed’, D, is one where at least one period of deformation
has been observed with InSAR, while ‘not deformed’, �D, means InSAR
measurements were made, but that no deformation was reported. We use the
satellite observation windows defined in Table 1 and eruption reports from the

Table 1 | List of regional InSAR studies.

Region Time period Number References

East African Rift 1997–2010 38 3,15

Alaska 1992–2010 90 39,40

Central America 2007–2010 117 11,41

Northern Andes 2007–2010 36 32,42

Central Andes 1992–2010 68 31,32,33

Southern Andes 2007–2010 75 31,43

Indonesia 2007–2010 76 33,44

Galapagos 1992–2010 13 45–49

Iceland 1992–2010 27 5,20,22,49–50

These studies report observations at all volcanoes, including those at which no deformation is
observed and are compiled to form the catalogue of 540 systematically studied volcanoes used
for the statistical analysis of the link between deformation and eruption. Each volcano is
assigned two distinct states: either ‘deformed’ or ‘not deformed’ and either ‘erupted’ or ‘not
erupted’ which apply to the entire time period regardless of the temporal relationship of
deformation and eruption. Further details are given in Supplementary Table 1.

Observation window (years)

0

1

60

D

E

NPV

PPV

N
um

be
r

P
ro

po
rt

io
n

0

3 9 12 15 186

Figure 5 | Effect of observation window length. The effect of observation

window length is shown on the number of deforming and erupting

volcanoes and the values of PPV and NPV, calculated using subsets of

the 198 volcanoes for which there is an 18-year catalogue. We expect

the PPV to increase to one over geological timescales, but for the timescales

over which decisions are required, it stabilizes at values slightly greater

than 0.4 for observation windows 49 years. (a) Number of volcanoes that

erupted (red squares) and number of volcanoes that deformed (green

squares). (b) Values of PPV (red circles) and NPV (blue circles) with

95% confidence intervals.

E
ruption 

+
5

+
10

+
15–5

–10

–15

Years before Years after Refs

Alu, 2008
Dalaffilla, 2008

 1997
2008

 1995
Fernandina, 2005

 2009
Augustine, 2006

Hekla, 2000
 2003

Llaima, 2007
2008

Sierra Negra, 2005
 1998
 2008

Alcedo, 1993
Akutan, 1992

Westdahl, 1991
Kanaga, 1994
Seguam, 1993
Gareloi, 1996

Fourpeaked, 2006
Fogo, 1995

Eyjafjallajokull, 2010
El Hierro, 2012
Dabbahu, 2005

Manda Harraro, 2007-

Amukta, 1996

2006
1998

1992
1994

 1995
2000

 2000
 2002

Tinguiririca, 1994
 Chillan, 2003
Chaiten, 2008
Kizimen, 2010

Okmok, 

Cerro Azul,

Atka, 

Copahue, 

Sabancaya,

5

45

46

47

48

49

21
51
52
53

54-56

60

57

59

60

61

62

64
63

40

40

40

40

40

40

34
Maule earthquake

31,34

Figure 4 | Relative timing of deformation and eruption for volcanoes. For

volcanoes where both deformation (measured by InSAR) and eruption are

recorded and more than 3 years of observations are reported (See

Supplementary Table 7). Volcanoes with persistent lava lakes, continuous

effusion or eruptions more than once per 2–3 years are excluded as

continuous ground-based data are more appropriate in these cases. Red

bar¼deformation; black bar¼ no deformation; no bar¼observation not

reported. Volcano name and year of the eruption is given to the left of the

figure, references are given to the right of the figure. Note: We use the

names from the Global Volcano Database13 and refer to the entire region

containing ‘Dabbahu’, ‘D’Ure’ and ‘Gabho’ as ‘Dabbahu’; the region around

‘Ado Ale’ and ‘Wal’is’ as ‘Manda Hararo’, and ‘Korovin’ and ‘Atka’ as ‘Atka’.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4471 ARTICLE

NATURE COMMUNICATIONS | 5:3471 | DOI: 10.1038/ncomms4471 | www.nature.com/naturecommunications 5

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Global Volcano Database13 to classify each volcano as ‘erupted’, E, or ‘not erupted’,
�E during the observation period. The resulting four classifications shown in Fig. 2,
‘deformed and erupted’ (DE), ‘deformed but not erupted’ (D�E), "not deformed but
erupted" (�DE) and ‘not deformed and not erupted’ (�D�E) do not imply any causal
link, or even a temporal relationship between any specific eruptions and episodes of
deformation (Fig. 2). The subset of observations where deformation precedes
eruption is also discussed above.

Observation window. To test the influence of the length of the observation
window, we subdivide the observations at the 198 temperate zone volcanoes with
an 18-year record into shorter observation windows (3, 6, 9, 12, 15 and 18 years
since 1992). The number of volcanoes that deformed and erupted rise as obser-
vation window length increases, with a particularly rapid increase over the first 3–6
years (Fig. 5). Over geological timescales, we expect the PPV to tend to 1; on
shorter timescales, over which hazard decisions are made, the PPV is slightly
greater than 0.4 for observation windows 49 years (Fig. 5).
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