
http://www.diva-portal.org

Postprint

This is the accepted version of a paper published in IEEE Transactions on Medical Imaging. This
paper has been peer-reviewed but does not include the final publisher proof-corrections or journal
pagination.

Citation for the original published paper (version of record):

Magnusson, K., Jaldén, J., Gilbert, P., Blau, H. (2014)

Global linking of cell tracks using the Viterbi algorithm.

IEEE Transactions on Medical Imaging

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-159230

1

Global linking of cell tracks

using the Viterbi algorithm
Klas E. G. Magnusson, Student member, IEEE, Joakim Jaldén, Senior member, IEEE,

Penney M. Gilbert, and Helen M. Blau

Abstract—Automated tracking of living cells in microscopy
image sequences is an important and challenging problem. With
this application in mind, we propose a global track linking
algorithm, which links cell outlines generated by a segmentation
algorithm into tracks. The algorithm adds tracks to the image
sequence one at a time, in a way which uses information from
the complete image sequence in every linking decision. This is
achieved by finding the tracks which give the largest possible
increases to a probabilistically motivated scoring function, using
the Viterbi algorithm. We also present a novel way to alter
previously created tracks when new tracks are created, thus
mitigating the effects of error propagation. The algorithm can
handle mitosis, apoptosis, and migration in and out of the imaged
area, and can also deal with false positives, missed detections, and
clusters of jointly segmented cells. The algorithm performance is
demonstrated on two challenging datasets acquired using bright-
field microscopy, but in principle, the algorithm can be used with
any cell type and any imaging technique, presuming there is a
suitable segmentation algorithm.

Index Terms—Cell Tracking, Multiple Target Tracking, Data
Association, Track Linking, Viterbi Algorithm, Dynamic Pro-
gramming

I. INTRODUCTION

IN cell and developmental biology, different cell types are

studied either in cell cultures (in vitro), in live organisms

or embryos (in vivo), or in live tissue (in situ). The biological

questions can be extremely different from one another, but

time-lapse microscopy is often a very important and powerful

technique to study and analyze the cells [1]. Time-lapse

microscopy can be used to characterize and quantify many

different aspects of cell behavior, such as proliferation [2],

mitosis (cell division) [3], [4], apoptosis (cell death) [5],

K. E. G. Magnusson and J. Jaldén are with the Department of Signal
Processing, ACCESS Linnaeus Centre, KTH Royal Institute of Technology,
100 44 Stockholm, Sweden

P. M. Gilbert is with the Institute of Biomaterials and Biomedical Engi-
neering, University of Toronto, Toronto, ON, M5S 3G9 Canada, and with
the Donnelly Centre for Cellular and Biomolecular Research, University of
Toronto, Toronto, ON, M5S 3E1 Canada, and also with the University Health
Network Arthritis Program, Toronto, ON, M5G 2M9 Canada

H. M. Blau is with the Baxter Laboratory for Stem Cell Biology, De-
partment of Microbiology and Immunology, and the Institute for Stem Cell
Biology and Regenerative Medicine, Stanford University School of Medicine,
Stanford, CA 94305, USA

This work was supported by the Swedish Research Council (VR) grant 621-
2011-5884, the National Institutes of Health (NIH) grant 1R01 HL096113, and
California Institute for Regenerative Medicine (CIRM) grant RT1-01001-1.

This work was published in part at the 2012 9th IEEE International
Symposium on Biomedical Imaging (ISBI), Barcelona

Copyright (c) 2014 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

migration [6], and morphology [7], that are important in the

study of cancer [8], [9], embryogenesis [10], [11], stem cells

[12]–[14], and many other topics in the fields of cell and

developmental biology. In early works like [5], [10] cells were

observed using transmission microscopy, and the images were

sketched by hand at appropriate time intervals, or recorded

on video tape in cases where all cells of interest were in the

same focal plane. Nowadays, a large number of microscopy

techniques are available, the cells or their nuclei can be labeled

using fluorescent proteins or dyes, and sequences of 2D images

or 3D z-stacks can be recorded by digital cameras. The

analysis of the time-lapse sequences is however still performed

manually in most cases, and is often very demanding [1].

Manual analysis is generally very time consuming, hard to

reproduce, and can sometimes be subjective or biased by

the expectations of the person performing the analysis. For

these reasons, there is a large demand for automated or semi

automated methods to perform the analysis.

Automated cell tracking algorithms can reduce the man-

ual labor required, and make the analysis more quantitative

and reproducible. Frequently, automated analysis not only

reduces manual labor, but also enables experiments that would

have been too labor intensive to perform using manual tech-

niques. A good example of this can be found in [3], where

∼190,000 image sequences were analyzed automatically to

search through the entire human genome for genes associated

with mitosis, migration, and survival. Furthermore, automated

algorithms can be used to analyze subtle changes that are hard

for a human to observe or quantify, as done in [15], where the

fates of neural progenitor cells were predicted by looking at

their appearances and motions. The cell tracking problem is

however very challenging, and more research is required, as

existing automated methods are still considered too error-prone

for most long-term imaging experiments [1].

Reviews of existing automated cell tracking methods can

be found in [16]–[19]. The authors of [17] and [18] also

review particle tracking, which is a related field where sub-

cellular particles are tracked in fluorescence microscopy [20],

[21]. In particle tracking, the tracked objects are usually small

enough to be represented as point objects, and they usually

interact less with each other than cells do, but the tracking

problem is similar to cell tracking in many other aspects.

Cell tracking algorithms are normally classified into model

evolution algorithms, where mathematical models of the cells

are propagated in time [22]–[24], and tracking by detection

algorithms, where the tracking problem is separated into

finding the outlines of the cells (segmentation) and linking the

2

detected outlines into tracks (track linking, data association, or

tracking) [2], [25]–[27].

Model evolution is fundamentally different from tracking

by detection in that mathematical representations of the en-

tire objects are tracked, instead of just the object locations.

This makes model evolution well suited for studies of mor-

phological changes of cells imaged in high magnification.

Model evolution algorithms generally require a high imaging

frequency, but can use temporal information to increase the

segmentation accuracy in cases where, due to low image

quality or cell-cell contact, it is hard to segment the cells based

on information from a single image. Initialization of new cells

that appear in the first image or that migrate into the imaged

area is however problematic and often requires a separate

segmentation algorithm which operates on a single image.

Model evolution algorithms often evolve mathematical repre-

sentations of the contours of the cells by minimizing an energy

functional. This is normally done by solving a PDE, and

that is typically very time consuming, making the algorithms

slow compared to tracking by detection algorithms. Faster

model evolution algorithms have however been presented in

the last few years [28], [29]. In [28], 3D contours of cells are

represented using discrete meshes, so that fast algorithms and

hardware normally used for computer graphics can be used for

processing. In [29], the energy functional is minimized without

solving a PDE, by applying the fast level set-like framework

and graph cuts. Tracking by detection algorithms can get by

with lower imaging frequencies and are well suited for studies

of migration and lineages of cells imaged in low magnification.

The algorithms can use temporal information to find out where

the cells go, by doing advanced data association. Another

advantage of tracking by detection is that it breaks the tracking

problem into the separate problems of segmentation and track

linking, which can be solved independently. This often makes

it possible to apply a track linking algorithm to new tracking

applications simply by replacing the segmentation algorithm.

In this publication we focus on tracking by detection, and

present an algorithm that can be used to solve the track

linking problem. The main challenge of the track linking

problem is to perform data association despite errors in the

segmentation. The segmented outlines in a single image can

often be ambiguous in the sense that it is hard or impossible

to determine how many cells the outlines contain, and the

ambiguities can often persist for a large number of images.

This makes it desirable to use information from a large number

of future images, or ideally the entire image sequence, when

the track linking is performed. An algorithm which makes use

of the entire image sequence is called a batch algorithm [30].

Examples of batch algorithms can be found in [27], [30]. In

cell tracking applications, the image sequences are normally

recorded ahead of time and analyzed later, so there is very

little explicit demand for algorithms that process the image

sequences sequentially and causally, like conventional multiple

target tracking algorithms used in for example surveillance

applications. Despite this, there are to date almost no prior

batch algorithms for cell tracking.

Given the above, we propose a batch algorithm for track

linking, which uses information from all images in the image

sequence in a probabilistic manner to make individual track

linking decisions. The algorithm incorporates mitosis, apop-

tosis, and other events into the same probabilistic framework

without using heuristic post processing algorithms or separate

detection algorithms that make hard detection decisions ahead

of time. The algorithm can handle false positive detections

(also referred to as spurious detections or clutter), missed

detections, and clusters of cells that are segmented jointly.

Many existing track linking algorithms for cell tracking

perform the linking image by image. The algorithms thereby

create tracks sequentially in time and extend the tracks in

one image to detections in the next image, often by solving

integer programming problems [9], [25]. Sometimes, informa-

tion from future images is incorporated into the track linking

using heuristics for initiation and termination of tracks, or

using heuristic post processing algorithms. The capabilities

of these methods are however limited, and the number of

future time-points that can be considered is usually small.

There are examples of more sophisticated algorithms where

information from all future images can be used to make

tracking decisions [27], [31], but the use of information from

future images is still limited. In [27], track fragments with

a low level of ambiguity are created using image by image

matching and then the fragments are linked into longer tracks

using integer programming. In [31], cell outlines are grouped

into spatiotemporal tubes and then the tubes are either merged

or split to maximize a set of likelihoods. Both [27] and [31]

optimize tracks over the entire image sequence, but [27] makes

final choices for most track linking decisions when the track

fragments are created, and [31] is limited in the types of

operations that can be performed on the spatiotemporal tubes.

The method that we propose performs global optimization over

all track linking decisions of the entire image sequence, and

can thereby make use of more information from future images

than [27], [31].

In addition to performing global data association using

information from all time-points, the proposed algorithm can

handle joint segmentation of multiple cells in clusters. Joint

segmentation of multiple cells has been identified as the most

problematic segmentation error for cell tracking [2], and is

seldom treated explicitly by track linking algorithms. An

example of an algorithm that can handle joint segmentation

is [31], where outlines can be split at branching points where

two outlines in one image overlap with the same outline in

the prior or following image. Another example can be found

in [6], [14], where extreme points on cell boundaries in one

image are matched to extreme points on cell boundaries in the

following image, to break clusters of cells. The method that

we propose incorporates jointly segmented cells into the global

track linking algorithm and does not rely on having accurate

cell outlines, or outlines that overlap in adjacent images.

The proposed track linking algorithm starts with the hypoth-

esis that there are no cells in the image sequence and then adds

one cell track at a time, in a greedy way, which maximizes a

probabilistically motivated scoring function in each iteration.

The algorithm stops when the scoring function can not be

further increased by adding an additional track. Every track

addition is however optimal in the sense that no other single

3

track addition can increase the scoring function more. This

optimality is ensured by solving a dynamic programming prob-

lem over a state space diagram using the Viterbi algorithm. We

also introduce a novel way of altering preexisting tracks at the

same time as a new track is created, by introducing a notion

of swap operations.

The idea of using dynamic programming to create entire

tracks that are optimal with respect to some scoring function

has been used for tracking of a single biological particle in

[32]. Furthermore, the authors of [32] emphasize the power

of the global track linking and they also call for a dynamic

programming algorithm that can be used to track multiple

objects, thereby providing inspiration for the algorithm we

now present.

Dynamic programming has also been used to track multiple

objects in [33], [34], where people are tracked in video

recordings, with good results. In [33], [34] tracks are added

one at a time using dynamic programming, without editing

of previously generated tracks. This works well for tracking

of people, but it often gives rise to a lot of tracking errors

in cell tracking applications where a large number of cells

are tracked. In [34], the authors also present an alternative

dynamic programming algorithm which allows some editing

of previously generated tracks. That algorithm is however

not well suited for tracking of dividing cells, as the editing

mechanism would not enforce the constraint that a daughter

cell of a mitotic event must have a mother cell and a sister cell.

Furthermore, the algorithm of [34] does not allow multiple

objects to occupy the same detection, which is important

for tracking of cells that form clusters. The use of dynamic

programming is also well established in tracking for defense

applications. The states in the state space diagram can in

these applications correspond to discrete target states [35],

manoeuvres of a target [36], or as in our case, to measurements

[30]. In [30], two different multiple target tracking algorithms

are presented. The first algorithm is similar to [33] in that there

is one state space trellis per target, but the tracks are generated

in parallel. The trellises are updated in a random order and a

detection is included in a trellis if it fits the motion model

of the tracked target sufficiently well. When a detection is

included in a trellis, it can not be used in other trellises. The

other algorithm tracks all of the targets using a single trellis.

In this case, the states of the trellis represent data associations

between all targets and all measurements. Gating is used to

reduce the computational requirements of the algorithm, but

the algorithm is still too computationally expensive to be

suitable for cell tracking where there is a large number of

targets. Furthermore, the algorithm would need to be extended

to handle an unknown number of targets and initialization

and termination of tracks, and that would most likely come

at a very high computational price. Finally, it is unclear if

cell tracking specific challenges like mitosis and groups of

cells occupying the same detection could be incorporated into

the algorithm. In general, traditional multiple target tracking

algorithms designed for defense and surveillance applications

perform poorly on biological tracking problems [21]. This is

because they assume that the tracked targets exhibit smooth

and predictable trajectories, while the motion of cells and other

biological objets is very erratic and unpredictable [21].

A precursor to the algorithm proposed herein was presented

in [37]. The prior algorithm has now been extended to handle

cells that enter and leave the field of view, missed detections,

and situations where the daughter cells in a mitotic event

are not segmented in the same outline. Furthermore, we

present a version of the algorithm with reduced complexity,

which allows image sequences with thousands of cells to be

processed, without sacrificing performance. We participated,

with two different precursors of the algorithm described here,

in the ISBI 2012 Particle Tracking Challenge [38] and in the

ISBI 2013 Cell Tracking Challenge [39].1 We also participated

in the ISBI 2014 Cell Tracking Challenge [40] with the

algorithm that we propose in this paper, but the results of

that challenge have not yet been presented in a scientific

publication. In the ISBI 2013 Cell Tracking Challenge, our

full cell tracking system had outstanding performance, due

primarily to the track linking algorithm, and in the ISBI 2014

Cell Tracking Challenge, an updated version of the system

achieved better performance than all other systems on all of

the challenge datasets [40]. Furthermore, a very early version

of the proposed track linking algorithm was used in [13] to

investigate how the rigidity of the culture substrate affects the

stemness and viability of Muscle Stem Cells (MuSCs). These

examples show that the track linking algorithm that we propose

can be applied to a broad range of tracking problems and that

it can be used to answer biologically relevant questions. The

unpublished version of the algorithm being presented here is

more versatile than its precursors and therefore has an even

broader applicability.

In Section II we formulate the track linking problem in

more precise terms, and in Section III we describe the scoring

function used to score different solutions to the track linking

problem. The track linking algorithm, which is the main

contribution of this work, is described in Section IV. We then

test the algorithm in Section V on two very challenging 2D

datasets with MuSCs and primary myoblasts imaged using

bright-field microscopy and compare our tracking results to

tracking results produced using CellProfiler [41]. We also

briefly discuss suitable algorithms for segmentation and scor-

ing of tracking hypotheses. We do however stress that the

proposed track linking algorithm also can be used to track

other cell types imaged using other imaging techniques in

both 2D and 3D, as was done in [39], as long as a suitable

segmentation algorithm is available. The scoring function

can, just like the segmentation algorithm, be replaced by a

different scoring function, as long as it satisfies certain Markov

properties described in Section III-B, but the described scoring

function is much less sensitive to variations in the data than

the segmentation algorithm is.

II. PROBLEM STATEMENT

The proposed algorithm can be used to link a set of detected

cell outlines, produced by an application specific cell segmen-

1In [38] and [39], the focus is on datasets and performance measures that
can be used to compare different algorithms for segmentation and tracking,
and therefore the publications only provide high level descriptions of the
precursors to the algorithm presented here.

4

tation algorithm, into tracks. We assume that the segmentation

algorithm outputs a set of detections D = {Dt,i}t=1:T,i=1:Nt
,

where Dt,i is detection number i in image t, Nt is the

number of detections in image t, and T is the length of the

image sequence. Every detection is a representation of an

object in the image. Round cells are often represented using

centroid coordinates and radii [26], while cells with variable

morphology are often represented using pixel or voxel regions

in the image or z-stack [25], but other representations are also

possible. In tracking by model evolution, cells are usually

represented using contours described by either parametric

functions or by the zero level set of a scalar function defined

over the image or z-stack [16], but such representations are

not normally used for tracking by detection.

Ideally, every detection should correspond to exactly one

cell. In all non-trivial cell tracking problems, there are however

errors in the segmentation, so that a detection can correspond

to zero cells, a single cell, or multiple cells. Fig. 1 shows

an example with detections generated using the segmentation

algorithm described in Section V-C.

50 µm

Dt,1

Dt,2

Dt,3

Dt,4

Fig. 1. Detections of MuSCs imaged using bright-field microscopy, generated
using the segmentation algorithm described in Section V-C. Detection Dt,1

contains two cells, detection Dt,2 is a false positive containing no cells, and
detections Dt,3 and Dt,4 are both detections containing a single cell.

A. Representation of tracks

Given the set of detections D, we try to generate an accurate

set of cell tracks. We represent a set of cell tracks and the

mother-daughter relationships between them using an acyclic

graph F with one or more connected components. Such a

graph is usually referred to as a forest, or as a tree if it consists

of a single connected component. The nodes of F represent

individual cells at different time-points, and are labeled with

the indices of the detections that the cells occupy at those

time-points. Furthermore, the last node of cells that undergo

apoptosis are marked with a black cross, to differentiate

them from cells that leave the imaged area. Cell migration

is represented by links between pairs of nodes, and mitotic

events are represented by two links from the last node of the

mother cell, to the first nodes of the respective daughter cells.

Fig. 2 shows an example of a forest graph F representing a

set of cell tracks.

t = 1

t = 2

t = 3

t = 4

D1,1 D1,2

D2,1 D2,2

D3,1 D3,1 D3,2

D4,1 D4,2

Fig. 2. A forest graph F representing a set of 4 cell tracks in an image
sequence with 4 images. In the first image, there are two cells that occupy
detections D1,1 and D1,2 respectively. The cell that starts in D1,2 migrates
through detections D2,2 and D3,2 in images 2 and 3 and then undergoes
apoptosis. The cell that starts in D1,1 first migrates to detection D2,1 in
image 2 and then undergoes mitosis between image 2 and image 3. In image
3, the daughter cells are segmented jointly in D3,1 and in image 4, they have
migrated to D4,1 and D4,2 respectively.

III. SCORING FUNCTION

In order to score different solutions to the tracking problem,

we introduce a set of event variables E = {Em}m=1:|E|, that

represent possible events that can take place in the image

sequence. For every set of proposed tracks F , there is a

unique set of assignments to the event variables E(F) =
{Em(F)}m=1:|E|. We then define a score g(F) for the set of

tracks F , as the sum of the logarithmic probabilities of the

assignments to the individual event variables, i.e.,

g(F) =

|E|
∑

m=1

log(Pr(Em = Em(F))) . (1)

If all event variables are assumed to be a priori independent,

the scoring function corresponds to the logarithm of the

probability of the joint assignment to the set of event variables,

required to produce the set of tracks F . In reality, there

will surely be some dependence between the variables, but

the forced independence assumption gives a scoring function

which can be optimized effectively and which still has a strong

probabilistic motivation.

A. Events

The set of event variables should be defined so that it

contains events associated with cell counts in detections,

migrations, and all mechanisms by which cells appear and

disappear in the image sequence. In this paper, we include

event variables associated with the number of cells in each

detection (Ct,i), migrations inside the imaged area (Mt,i,j,τ),

mitotic events (St,i), apoptotic events (At,i), migrations into

the imaged area (It,i), and migrations out of the imaged area

(Ot,i). The different variable types are explained further in

Table I. The time index t goes between 1 and T for Ct,i,

between 2 and T for It,i, and between 1 and T − 1 for all

other event variables. Apoptotic events are not considered in

the last image, as it is impossible to determine if a cell is dead

one time step after the last time point. The detection indices

i and j go from 1 to Nt and from 1 to Nt+1 respectively.

Missed detections are handled by letting a migration event

occur between detections in images that are τ = 1, . . . , τmax

time-points apart. A mitotic event that takes place between

time t and time t+1, where the mother cell occupies Dt,i and

5

the two daughter cells occupy detections Dt+1,j and Dt+1,k,

is represented by the mitotic event St,i and the two migration

events Mt,i,j,1 and Mt,i,k,1. In the event variables associated

with the forest F in Fig. 2, M1,1,1,1 = 1, as there is a cell

migrating between D1,1 and D2,1, S2,1 = 1 and M2,1,1,1 = 1,

as there is a mitotic event in D2,1 after which both daughter

cells occupy D3,1, and M1,1,2,1 = 0, as there is no cell

migrating between D1,1 and D2,2.

To optimize the performance of the track linking algorithm,

it is judicious to include only the event types that occur in

the data to be processed. If it is known a priori that none of

the cells undergo mitosis, the mitotic events do not need to

be included in E , if no cells undergo apoptosis, the apoptotic

events do not need to be included, if the cells are confined to

some type of microwell the event variables for entering and

leaving the field of view do not need to be included, and if

there are no missed detections, τmax should be set to 1.

B. Scoring function requirements

All track linking algorithms have some kind of explicit or

implicit scoring of tracks to choose between different linking

options, and different track linking strategies impose different

constraints on how the tracks can be scored. The proposed

track linking algorithm, described in Section IV, requires a

scoring function which is memoryless in the sense that the

score associated with an event in a cell track does not depend

on prior events in the track. This is equivalent to a Markov

property saying that the event following the current time-point

is independent of prior states of the cell, given the current state

of the cell. For migration probabilities based on the locations

of detections, the Markov property requires that the score

associated with the migration Mt,i,j,τ must not depend on the

location of the cell in images prior to image t, given that the

location in image t is known. In many other tracking problems,

this would be a severe limitation, as it effectively precludes the

use of dynamic motion models. In cell tracking however, there

is not a lot of performance to be gained from using a dynamic

motion model, as cells frequently violate the assumption of

smooth motion made by dynamic motion models. The Markov

property also precludes the probability of mitosis, apoptosis,

and other events from depending on the cells age, motility, or

other properties that require data from multiple time-points.

The scoring function proposed in (1) is not the only possible

scoring function satisfying the necessary Markov properties,

but we have found that it is a good choice, as it defines

an easily interpreted probabilistic framework and achieves

high tracking performance. The event probabilities in the

individual terms of the scoring function can be computed from

the detections using either parametric probabilistic models

for the different events, or classification algorithms, such

as (multiclass) logistic regression and Gaussian discriminant

analysis, trained on a manually generated ground truth dataset.

The probabilities can also be replaced by heuristically chosen

functions of detection features, as done in for example [9].

In Section V-D, we present suggested parametric models for

the migration probabilities and for the probabilities that a cell

enters or leaves the field of view in a particular detection.

In Section V-E we present a way to model probabilities

of cell counts in detections, mitosis, and apoptosis, using

logistic regression. The models described in Section V have

been shown to work well for tracking of adherent cell types

imaged using bright-field microscopy, but they might require

some modifications to handle other cell types and microscopy

techniques.

IV. TRACK LINKING ALGORITHM

Given a set of detections D and the scoring function (1),

the problem of generating an optimal set to tracks is a

combinatorial optimization problem which can not be solved

exactly, except for extremely small tracking problems. The

track linking algorithm that we propose in this paper finds

an approximate solution to this optimization problem by

iteratively adding individual tracks to the image sequence in a

greedy way. The following sub-sections explain the algorithm

in detail.

A. Generating tracks using operations

The addition of a track to F can be broken down into

a sequence of operations, where each operation adds an

additional node to F , links it to a preexisting node if necessary,

and updates the appropriate event variables. If we assume

that the track linking algorithm has created two of the three

tracks in Fig. 2, so that there is one track passing through the

detections D1,1, D2,1, D3,1, and D4,1, and one track passing

though the detections D1,2, D2,2, and D3,2, the third track

can be created using a sequence of two such operations. The

first operation adds an additional node labeled D3,1, creates

a link from the node labeled D2,1 to the new node, changes

the value of the mitosis variable S2,1 from 0 to 1, indicating

that a mitotic event occurs in detection D2,1, and increases the

value of the count variable C3,1 from 1 to 2. The value of the

migration variable M2,1,1,1 is already 1, so it is not changed.

The second operation adds a node labeled D4,2, creates a link

from the node added by the first operation to the new node,

and increases the value of the migration variable M3,1,2,1 and

the count variable C4,2 from 0 to 1. The change in the scoring

function is induced by the changes to the values of the event

variables. The set of allowed operations at a certain position in

the sequence of operations is restricted based on the previous

operation. For example, the second operation described above

can not be replaced by an operation which adds a migration

from D3,2 to D4,2, as the first operation created a cell in D3,1.

These restrictions ensure the internal consistency of F after

each addition of a track. The set of allowed operations and the

constraints that the sequence of operations has to satisfy can

be represented nicely using a state space diagram, as described

in the next section.

B. State space diagram

The track linking algorithm that we propose starts from an

empty set of tracks F and adds one track at a time until the

scoring function can not be increased further by adding an

additional track. In each image, an added track can either

6

TABLE I
EVENT VARIABLES IN THE SCORING FUNCTION. IF MULTIPLE CELLS MEET THE CRITERIA OF A BINARY EVENT VARIABLE, THE VALUE IS 1.

Variable Event Values

Ct,i cell count The number of cells in detection Dt,i.
Mt,i,j,τ migration 1 if a cell migrates between Dt,i and Dt+τ,j , 0 otherwise.
St,i mitosis 1 if a cell divides in Dt,i so that the daughter cells appear in image t+ 1, 0 otherwise.
At,i apoptosis 1 if a cell undergoes apoptosis (dies) in Dt,i, 0 otherwise.
It,i migration into image 1 if a cell is outside the imaged area at time t− 1 and migrates into Dt,i, 0 otherwise.
Ot,i migration out of image 1 if a cell is in Dt,i at time t and has left the imaged area at time t+ 1, 0 otherwise.

pass through one of the detections, not be present because

the cell has yet to appear in the image sequence, or not be

present because it has disappeared from the image sequence.

These possibilities can be represented as states in a state

space diagram, as shown in Fig. 3. A track also has the

possibility to skip one or multiple images where the cell is

missing from the segmentation, but that is represented using

arcs spanning multiple layers of the state space diagram, as

described later in this section. The state space diagram has

one state associated with each detection Dt,i in the image

sequence, a chain of ”born later” states Yt for cells that have

not yet appeared, a chain of ”dead” states Xt for cells that

have disappeared, a starting state A and an ending state B.

The detection states have the same labels as the detections

themselves. The arcs that leave a state represent the operations

that can be performed on F , when a track under creation

is in that state, so that every track that can be added to F
corresponds to a path from A to B in the state space diagram.

The operations associated with the arcs can either start the

creation of a new track in F , append an additional node to

the end of the track under creation, or end the track under

creation. Every such operation is associated with a change to

the scoring function and that score change is placed as a utility

on the arc in the state space diagram. The total change in the

scoring function, that occurs when a particular track is added

to F can therefore be computed as the sum of the utilities

on the arcs in the corresponding path through the state space

diagram.

An operation that initiates a track in detection i of the

first image corresponds to an arc from state A to state D1,i,

and an operation that initiates a track that enters the field

of view in detection i of image t corresponds to an arc

from state Yt−1 to state Dt,i. An operation that terminates

a track in detection i of image t, through either apoptosis

or migration out of the field of view, corresponds to an arc

from state Dt,i to state Xt+1. An arc between two detection

states Dt,i and Dt+τ,j represents an operation which appends

detection Dt+τ,j after Dt,i in the track under creation. Mitotic

events are introduced by creating an additional branch from

a preexisting tree of nodes in F . If the mitotic event to

be created occurs in detection Dt,i, which is already linked

through migration to Dt+1,j , one of the daughter cells has

to appear in Dt+1,j , and the other daughter cell can appear

in any detection Dt+1,k of the next image. Operations which

add such branches to F have arcs that go from Yt to Dt+1,k,

and a utility which reflects the changes in St,i and Mt,i,k,1.

Note here also that the introduction of a mitotic event in

a preexisting track corresponding to a single cell creates a

mother cell and two daughter cells in F : The mother cell and

one of the daughter cells simply inherit the former and latter

parts of the preexisting track, respectively, while the track of

the second daughter cell is created by the remaining linking

operations. Mitotic events can not be added at the end points

of preexisting tracks. In Section IV-D, we define an additional

type of arcs called swap arcs, which allow links in preexisting

tracks to be changed during the creation of a new track. The

main ideas of the algorithm are however easier to describe

without swap arcs, so we save the description of them for

later.

Given that the scoring function (1) has one term associated

with every event variable, the utilities of the arcs in the state

space diagram will involve only a small number of terms

associated with the relevant event variables. For example, the

utility associated with a migration arc between the detections

Dt,i and Dt+τ,j corresponds to updating the values of the

migration variable Mt,i,j,τ and the count variable Ct+τ,j , and

can be written as

∆g = log(Pr(Mt,i,j,τ = 1))

− log(Pr(Mt,i,j,τ = Mt,i,j,τ (F)))

+ log(Pr(Ct+τ,j = Ct+τ,j(F) + 1))

− log(Pr(Ct+τ,j = Ct+τ,j(F))) . (2)

The first two rows of (2) correspond to changing Mt,i,j,τ from

its current value to 1, and the last two rows correspond to

adding 1 to Ct+τ,j . The score updates associated with other

event types are a little more complicated, but follow the same

pattern and can be found in Appendix A.

C. Finding the highest scoring path

In the previous section, we showed that the change in the

score of F , that occurs when a track is added, can be computed

as the sum of the arc utilities along the corresponding path

through the state space diagram. This means that finding the

track which increases the score of F the most is equivalent

to finding the path from A to B in the state space diagram,

with the highest summed utility. This is equivalent to solving

an instance of the well known shortest path problem. Given

that the state space diagram has a trellis structure, we can

solve the problem with linear complexity in T using a dynamic

programming algorithm known as the Viterbi algorithm [42]

in the communications literature. The value and computational

efficiency of the Viterbi algorithm becomes evident when

considering that the number of possible paths from A to

7

50 µm

t = 1 t = 2 t = 3

D1,1

D1,2

D2,1

D2,2

D2,3

D3,1

D3,2

D3,3

(a)

A

D1,1

D1,2

Y1

D2,1

D2,2

D2,3

Y2

X2

D3,1

D3,2

D3,3

Y3

X3

B

(b)

Fig. 3. State space diagram (b) for the addition of a track to an image sequence with 3 images (a). There is a preexisting track shown in blue, and the state
space diagram describes all the possible ways to add a second track. The roles of the nodes and the arcs between them are explained in Section IV-B. The
arrows that go out of the ”born later” states Y1, Y2, and Y3 represent both mitosis arcs and arcs for migration into the field of view. The arrows that go
into the ”dead” states X2 and X3 represent both apoptosis arcs and arcs for migration out of the field of view. Note that there is no X1 state, as we do not
include cells in the tracking if they are dead in the first image. To avoid cluttering the state space diagram, we have set τmax to 1 so that only migrations
between detections in adjacent images appear in the trellis. Even though this is a very small example with only 3 images and τmax = 1, there are 42 different
paths through the state space diagram, assuming that only the maximum utility arcs between pairs of nodes are included in the trellis, so that each arrow
represents a single arc. The path going through the 3 ”born later” states represents the option of not adding a second track at all, but all of the other paths
represent different ways in which a second track can be added. The correct way to add a second track, as sharing D1,1 with the blue track and then passing
through D2,2 and D3,2 is shown as a green dashed track through the image sequence and a corresponding green path through the state space diagram.

B grows exponentially with T : A sequence with T = 100
images and 10 detections per image allows for more than 10100

different tracks in any iteration of the algorithm, even without

considering swaps.

The Viterbi algorithm finds a solution to the optimization

problem by using the fact that only the highest scoring path

from A to an arbitrary state of image t can be the beginning of

the highest scoring path from A to B. We let Et,i denote state

number i at time-point t, and let Jt be the number of states

at this time-point. The time index t goes from 0 to T + 1, as

there is a state A before the first image and a state B after

the last image. There can be multiple arcs between a pair of

states, but only the arc with the highest utility can be a part

of the optimal path from A to B, so we define the arc set

A, containing the maximum utility arcs between all pairs of

states. A path from A to an arbitrary state E corresponds to a

set of operations that can be performed on F . We let gmax(E)
denote the score of F after the operations corresponding to

the maximum utility path from A to E have been performed.

Furthermore we let the utility of an arc in A, between the

states Et,i and Et+τ,j , be denoted by ∆g(Et,i, Et+τ,j). The

Viterbi algorithm starts from the beginning of the state space

diagram and finds the optimal paths to the states at each time-

point. For t = 0, the optimal path consists of only the state A,

and for subsequent time-points, the algorithm uses the fact that

the optimal paths to states at earlier time-points are known.

For each state Et,i at time t > 0, the algorithm determines the

second to last state, denoted φ(Et,i), in the optimal path. The

second to last state is found by comparing all candidates E, for

which there is an arc (E,Et,i) in A, and choosing the one for

which gmax(E)+∆g(E,Et,i) is maximal. When the algorithm

reaches B, the second to last state in the optimal path to every

8

node is known, so then the algorithm can back-track from

B to A to recreate the optimal path through the state space

diagram, P = {A, . . . , φ(φ(B)), φ(B), B}. Pseudo-code for

the Viterbi algorithm can be found in Fig. 4. If gmax(B) >
g(F), the sequence of operations corresponding to the optimal

path are applied to F , the state space diagram is updated,

and another iteration of the Viterbi algorithm is performed.

Otherwise, g(F) can not be increased by adding an additional

cell, P will be {A, Y1, . . . , YT , B}, gmax(B) will be equal to

g(F), and the track linking algorithm is terminated.

Find the optimal utilities of paths from A to the other states

and keep track of the second to last state in each path.

gmax(A)← g(F)
for t = 1, . . . , T + 1 do

for i = 1, . . . , Jt do

gmax(Et,i)← max
E:(E,Et,i)∈A

gmax(E) + ∆g(E,Et,i)

φ(Et,i)← argmax
E:(E,Et,i)∈A

gmax(E) + ∆g(E,Et,i)

end for

end for

Back-track through the state space diagram to recreate the

optimal path P from A to B.

Emax ← B
P ← {Emax}
while Emax 6= A do

Emax ← φ(Emax)
P ← {Emax,P}

end while

Fig. 4. Description of the Viterbi algorithm, which is used to find the highest
scoring path from A to B in the state space diagram.

While the states in the trellis are the same for each appli-

cation of the Viterbi algorithm, the possible arcs and the arc

utilities are changed in each iteration due to the change in

F induced by the track added to F following the previous

application of the Viterbi algorithm. It is also important to

note that while the Viterbi algorithm solves the shortest path

problem in a sequential manner from A to B (and then back

to A in the back-tracking step), this does not mean that the

track linking itself is causal or sequential in time: The Viterbi

algorithm achieves a globally and non-causally optimal track

by propagating all candidates for the optimal track, and could

have been implemented in the reverse order to find the optimal

path from B to A, without altering the final solution.

D. Swaps

The state space diagram described in Section IV-B does

not allow previously created tracks to be altered. This is

problematic because track linking errors in preexisting tracks

can not be corrected, and furthermore, incorrect links can

hinder the creation of correct tracks in subsequent iterations,

as illustrated in Fig. 5. In order to mitigate these problems, we

introduce a swap operation, which modifies links in preexisting

tracks during the creation of a new track. This is done by

splitting a preexisting track in two parts and linking the second

part of the preexisting track to the end of the track under

creation. The same operation will also link a new state to

the end of the first half of the preexisting track, so that the

track linking algorithm can continue from there and generate

a new continuation of the preexisting track. The scores at

subsequent time-points are the same when a preexisting track

is extended, as when a new track is extended, so the highest

scoring way to modify F can still be found using the Viterbi

algorithm, as described in Section IV-C. The only difference is

that the added track can consist of multiple fragments linked

to preexisting tracks at the time-points when swap operations

are performed. In this way, the swap operation lets the track

under creation take over a path which is already occupied by

the second half of a preexisting track, and starts the process

of finding a new continuation for that preexisting track.

To formalize what a swap operation does, we consider a

swap arc between the trellis states Dt,i and Dt+τ1,j , which

removes a link between detections Dt+τ1−τ2,m and Dt+τ1,n

from a preexisting track. The procedure is exemplified in

Fig. 5, for τ1 = τ2 = 1. In the general case, the track

under creation, to which Dt,i was appended by the previous

operation, takes over the second half of the preexisting track,

starting with detection Dt+τ1,n. Detection Dt+τ1,j is appended

after Dt+τ1−τ2,m at the end of the first half of the preexisting

track, which will be extended further or possibly terminated

by the next operation.

The swap operation described above adds two new mi-

gration events and removes a preexisting migration event.

The swap operations can however be generalized to allow

other types of events to be added and removed. We do this

by thinking of the beginnings of preexisting tracks as links

from ”born later” states to detection states in the state space

diagram, and the terminations of tracks as links from detection

states to ”dead” states. This lets us treat the ”born later” states

and the ”dead” states like detection states in the description

above, so that swap events can change how and if tracks begin

and end. As an example, the track under creation can take

over the second half of a preexisting track and make the first

half end in an apoptotic event. A more formal definition of

generalized swap operations can be found in Appendix A.

E. Complexity and implementation

If we assume that the length of the image sequence is T , that

the maximum number of detections in an individual image is

N , and that the number of tracks to be created is proportional

to N , the worst case complexity of a naive implementation

of the algorithm described above is O
(

τmaxTN
4
)

. This is

because the complexity of the Viterbi algorithm is linear in

T , there can be N2 pairs of detections in images t and

t + τ , for τ = 1, . . . , τmax, and every such pair can have

as many swap arcs between them as there are preexisting

tracks. Since the number of tracks to be created is proportional

to N , the average number of preexisting tracks will also be

proportional to N , and the overall complexity of the algorithm

will therefore be O
(

τmaxTN
4
)

.

In practice, one can however restrict the number of mi-

gration and mitosis arcs entering and exiting detection states

9

D1,1

D1,2

D2,1

D2,2

D3,1

D3,2

D4,1

D4,2

(a)

D1,1

D1,2

D2,1

D2,2

D3,1

D3,2

D4,1

D4,2

✂

(b)

50 µm

D1,1

D1,2

D2,1

D2,2

D3,1

D3,2

D4,1

D4,2

(c)

Fig. 5. Illustration of a swap operation. The first row (a) shows the tracks before the swap operation is performed. The detection D3,2 should be linked to the
end of the green track under creation, but the incorrect preexisting blue track prevents this from being done using a migration arc in the state space diagram,
as increasing the count variable C3,2 to 2 would lower the scoring function significantly. Instead, the shortest path through the state space diagram goes
through a swap arc from D2,2 to D3,1. The swap operation associated with that arc links D3,2 to the end of the green track and changes the incorrect link
between D2,1 and D3,2 in the blue track at the same time, as shown in (b). First the swap operation removes the incorrect link. Then it appends the second
half of the preexisting blue track to the end of the green track under creation, and links D3,1 to the end of the first half of the preexisting blue track. The
tracks after the swap operation are shown in (c). The next arc in the shortest path through the state space diagram determines how the blue track continues
from D3,1, so to produce a correct tracking result, the next arc should be the migration arc from D3,1 to D4,1.

in the state space diagram. This can be done by discarding

all but the L most likely migration events from and to every

detection and the L most likely mitotic events for entering

and leaving of any detection state. This reduces the number

of swap arcs associated with a time-point in a preexisting

track from O
(

N2
)

to O
(

L2
)

, and the overall complexity of

the modified algorithm is therefore O
(

TN2L2
)

, where the

constant L needs to be chosen so that correct events are not

discarded when the set of arcs is pruned. In the experiments in

Section V, and in many other cell tracking problems that we

have worked on, L = 3 results in a very fast algorithm with

the same performance as with larger values of L. With L = 3,

the algorithm is fast enough to track thousands of objects in

the same field of view.

Further, as the state space trellis changes from one iteration

to the next, one can either generate a new trellis in each

iteration (i.e., application of the Viterbi algorithm) or modify

the trellis from the previous iteration, to reflect the changes

that were made to F . The algorithm complexity is the same

in both cases, but the run time is lowered significantly if the

trellis is kept in memory and updated iteratively.

F. Post processing

When detections are assigned more than one track in the

solution of the tracking problem, it is often necessary to split

the detections so that each cell gets an outline of its own for

the subsequent data analysis. Before the detections are split,

the track links entering (or leaving) a detection with multiple

cells can be interchanged without changing the assignments to

10

the event variables, and consequently, by the structure of (1),

without changing the score of F . After the splits, the different

linking choices will however have different scores and it can

therefore be necessary to change the links generated by the

initial track linking in addition to just splitting the detections.

If the detections are represented using pixel or voxel regions,

the problems of splitting detections and changing associations

can be solved using the algorithm described in Section V-G,

which splits detections using k-means clustering and changes

the associations by solving an assignment problem. This

chooses the best linking alternative for tracks through detec-

tions with multiple cells, based on the scoring function (1)

and can also correct some tracking mistakes which can not be

corrected by swap operations. The splitting of detections and

the changes of assignments can however be performed using

other algorithms. In [14], the problem of splitting outlines with

multiple cells is solved by matching extreme points on the

outline boundaries in adjacent images. The method in [14]

has the potential to separate the cells more accurately than the

method presented in Section V-G, but the algorithm requires

that the number of cells in each detection is small and that the

cell outlines have been segmented accurately. The algorithm

in Section V-G does not suffer from these limitations and has

the advantage that it can be used on both 2D images and 3D

z-stacks.

V. EXPERIMENTS AND REAL LIFE PERFORMANCE

To test the proposed track linking algorithm, we imple-

mented it in C++ and incorporated it into a cell tracking system

that we have developed in Matlab. The track linking algorithm

is most easily implemented in an object oriented language

and we chose C++ because of its efficiency. The cell tracking

system is called the Baxter Algorithms, and we are currently

working towards making the full software publicly available.

The track linking algorithm was tested on two datasets with

MuSCs and myoblasts respectively. The datasets are described

in Section V-A, preprocessing of the images is described in

Section V-B, the segmentation algorithm used to generate

the detections is described in Section V-C, and the tracking

performance is evaluated in Section V-H.

A. Data

For the performance evaluation, we use two bright-field

microscopy datasets with MuSCs and myoblasts respectively.

We chose these cell types because they are challenging to

track due to their changing morphology, their motility, and

the fact that the cells form clusters that are hard for seg-

mentation algorithms to separate into individual cells. Bright-

field microscopy was chosen because it gives less contrast

than most other imaging techniques and therefore serves as

a good benchmark. For display purposes, we have adjusted

the brightness and contrast of the example images included in

the paper to improve legibility. To someone who is used to

looking at raw bright-field images, the problem of segmenting

the cells may therefore seem easier than what it actually is.

100 µm

Fig. 6. Image from the end of the MuSC dataset.

1) MuSCs: In the first dataset, we use murine MuSCs,

isolated and cultured according to protocols described in [13].

The MuSC data has previously been used for performance

evaluation in [37] and it was analyzed from a biological

perspective in [13], using an earlier version of the cell tracking

system described here. In [13], the authors look at how the

rigidity of the culture substrate affects the stemness and viabil-

ity of MuSCs in culture, by culturing the cells on tissue culture

plastic and a Poly Ethylene Glycol hydrogel respectively. The

cells therefore come from two different culturing conditions,

but that does not impact the performance evaluation.

The cells are confined in circular microwells, with a di-

ameter of 600 µm, so that they can not leave the field of

view. The dataset consists of 115 sequences of 1388 x 1040

pixel 8-bit images with cells imaged every 3 minutes for 33

hours, using bright-field microscopy with 10x magnification.

The image sequences start with 0-2 live cells and end with

0-14 live cells. When the fields of view to be imaged were

chosen, they all contained at least one live cell, but a few of

the cells died before the imaging started, and therefore there

are a few image sequences without live cells. Image sequences

where all cells die are truncated about 100 minutes after the

last cell dies. Fig. 6 shows an image with 14 live cells and 1

dead cell at the end of the experiment.

The MuSC dataset is challenging to process because the

cells move a lot and adhere to each other so that they can

not be segmented into individual detections. In addition to

this, there are a lot of background features and debris from

the isolation procedure that can give rise to false positive

detections. Furthermore, it is challenging to detect mitotic

and apoptotic events as the events lack distinctive features in

bright-field microscopy.

To estimate the parameters in the motion model described

in Section V-D and to train the classifiers described in Section

V-E, we use a separate training dataset with 52 image se-

11

100 µm

Fig. 7. Image from the end of the myoblast dataset.

quences of MuSCs isolated, cultured, and imaged in the same

way as in the test dataset. The training dataset is 23 hours

long and has ground truth tracks generated through manual

correction of tracks created using an earlier version of the

algorithm described in this paper.

2) Myoblasts: To show that the algorithm can handle denser

cultures and cells that enter and leave the field of view, we

have also included a dataset with murine primary myoblasts,

isolated and cultured according to the protocols described in

[43]. The dataset consists of 3 sequences of 1384 x 1036 pixel

8-bit images with myoblasts imaged every 3 minutes for 24

hours using bright-field microscopy with 10x magnification.

The image sequences start with 25-32 live cells and end with

74-92 live cells. Fig. 7 shows an image with 92 cells at the

end of one of the image sequences. A fourth training image

sequence generated in the same way as the others was used to

estimate parameters and train classifiers. This image sequence

was first tracked using the parameters and the classifiers from

the MuSC dataset and then corrected manually to produce a

ground truth.

The myoblast dataset can be segmented with fewer false

positive detections than the MuSC dataset, as there is no mi-

crowell and significantly less debris. Furthermore, the tracking

is made easier by the fact that the number of apoptotic events

is negligible. The high cell number in combination with rapid

movement, severe clustering, and mitotic events that are hard

to detect does however make the myoblast dataset slightly

more challenging than the MuSC dataset. The proposed track

linking algorithm does however perform well on this dataset

as well.

B. Preprocessing

The MuSC dataset has circular microwells that need to be

removed before the images can be segmented. To do this

we first align the images in the image sequences using the

Image Stabilizer plugin for ImageJ [44]. Then we detect the

microwell border using a Hough transform for circular objects,

applied to a gradient magnitude image computed using the

Sobel operator, and crop the image to get a slightly smaller

image with the microwell in the center. In the next step, we

generate a background image by computing the median image

through the time dimension of the image sequence. If Pt,i is

pixel i in image t, the pixels of the static background image

are given by

P bg
i = median

t
Pt,i . (3)

To speed up the processing, we only include every dth image,

where d = max{1, floor(T/50)}, in the median computation.

Finally, the background image is subtracted from every image

in the sequence to produce a background subtracted image

sequence. The illumination intensity in the images varies

slightly over time, so to prevent this from causing problems

in the background subtraction, the images are shifted using

additive offsets so that they all have a mean intensity of 127.5.

C. Segmentation

To segment the images, in both datasets, we compute the

standard deviation of the pixels in a small square region around

every pixel and threshold the standard deviation image, as de-

scribed in [45]. After that, we fill holes in the binary segmen-

tation mask, apply morphological erosion [46] to compensate

for the spread caused by the size of the square region, and

remove small objects to reduce the number of false positive

detections. This is a simple segmentation algorithm which

performs reasonably well on most transmission microscopy

images.

To separate clusters of cells into individual cells, we apply a

watershed transform [46] to the standard deviation image. The

watershed transform is confined to the foreground pixels of the

binary segmentation mask and to avoid over-segmentation we

apply some Gaussian smoothing and an h-minima transform

[46] before the watershed transform is computed. To further

reduce over-segmentation, we merge watershed regions with-

out cells into adjacent watershed regions with cells, once the

tracking has been performed.

D. Motion model

There is no problem with missed detections in either of the

datasets that we process in this section, and therefore we set

τmax = 1, and consider only migrations between detections

in adjacent images. To simplify the notation, we drop the

last subscript on the migration variables and let Mt,i,j denote

Mt,i,j,1.

In traditional multiple target tracking used in for example

radar surveillance applications, it is very important to use an

accurate dynamic motion model where the motion in one

time-step depends on the motion in earlier time-steps. In

cell tracking however, the objects to be tracked move very

randomly and can make sudden large moves in unexpected

directions, so there is not a lot to be gained from using a

dynamic motion model.

We therefore model the motion of a cell as a Brownian

random walk performed by its centroid. If xt is the centroid

position of a cell in image t, the probability density of the

centroid location in image t+1 is assumed to follow a uniform

12

Gaussian distribution with the mean xt and the covariance

matrix σ2
I2, where I2 is the 2 x 2 identity matrix and σ2 is

the variance of the cell displacement, projected on one of the

coordinate axes. The probability density at a candidate location

xt+1 in image t+ 1 is therefore given by

f(xt+1;xt, σ
2
I2) =

1

2πσ2
exp

(

||xt+1 − xt||
2

2σ2

)

. (4)

At the same location, the distribution of detections coming

from other cells, debris, and background features is modeled

as a uniform distribution over the image,

fu(xt+1) = 1/A , (5)

where A is the area of the image.

If we assume that the prior probability for migration Mt,i,j

to occur is pMt,i,j
, we can use Bayes’ rule to compute a

posterior probability for the migration, given the distance

between the centroids of Dt,i and Dt+1,j . If the centroids

of Dt,i and Dt+1,j are denoted xt,i and xt+1,j , the posterior

probability can be written

Pr(Mt,i,j = 1) =

pMt,i,j
f(xt+1,j ;xt,i, σ

2
I2)

pMt,i,j
f(xt+1,j ;xt,i, σ2I2) + (1− pMt,i,j

)fu(xt+1,j)
. (6)

The prior probability pMt,i,j
is taken to be independent of t,

i, and j, and is estimated from detection pairs in the training

data.

Both datasets contain a lot of stationary or slowly moving

debris, which fits the above motion model very well. To

prevent such objects from giving rise to tracks, we truncate

the posterior migration probabilities at 0.5, so that adding a

migration (i.e., changing Mt,i,j from 0 to 1) can not increase

the scoring function in and of itself. This prevents tracks

through detections that look like debris based on the count

classifier from being created due to positive migration arc

utilities. The truncation of the migration score is however

removed when the assignment problem described in Section

IV-F is solved, as the algorithm will otherwise be unable to

distinguish between different migrations with positive scores.

The probability that a cell in detection Dt,i migrates out of

the field of view between time t and time t + 1 is computed

as the product between a prior probability, pOt,i
, that there is

a cell migrating out of Dt,i, and the probability that a cell

migrating out of Dt,i ends up outside the field of view. The

probability that the cell ends up outside the field of view is

estimated as the fraction of the probability density, for the

predicted centroid location in image t+ 1, that is outside the

imaged area. This gives the expression

Pr(Ot,i = 1) =

pOt,i

(

1−

∫

image

f(xt+1;xt,i, σ
2
I2)dxt+1

)

, (7)

where the prior probability pOt,i
is estimated from the data,

and is taken to be independent of t and i. The probability

Pr(It,i = 1), that a cell migrates from outside the imaged

area into Dt,i is set equal to Pr(Ot,i = 1), as the cell culture

is assumed to have the same properties on both sides of the

image borders.

E. Classification

To estimate the probabilities of cell counts, apoptosis, and

mitosis, we compute 74 different features for each detection

and then use (multiclass) logistic regression [47] to compute

posterior probabilities for different assignments to the event

variables, given the features. The feature set is based on the

feature set described in [7], but has some additional features

described in Appendix B.

It is hard to train accurate cell count classifiers for detections

with many cells, because the number of training examples is

very small or even 0, and the features in different classes have

similar values. To avoid these problems, we pool all of the

training examples with K or more cells, so that the classifier

returns the posterior probabilities Pr(Ct,i = 0), Pr(Ct,i =
1), . . . , Pr(Ct,i ≥ K). We then assume that the cell counts

in the last class with probability Pr(Ct,i ≥ K) are given by a

geometric distribution, so that

Pr(Ct,i = k) = Pr(Ct,i ≥ K)g(k −K), for k ≥ K , (8)

where

g(κ) = ρ(1− ρ)κ. (9)

In the experiments presented herein we choose K = 2, and

the parameter ρ is computed from the training dataset using

maximum likelihood estimation. The use of the geometric

distribution can be motivated by assuming that single cells

attach to other cells or clusters of cells at a rate λ and that

cells leave the clusters at a higher rate µ. This implies that the

number of surplus cells in each detection follows a birth-death

process, with a birth rate of λ and a death rate of µ, which

results in a the geometric distribution (9), with ρ = λ/µ [48].

The apoptotic events are also hard to classify, because it is

often hard to determine the exact time-point of apoptosis, and

because the changes in the cell appearance are often subtle.

Because of this, and the fact that the mitosis classifier can

have false positives, the scoring function can sometimes be

increased by adding a mitotic event followed by an apoptotic

event killing one of the daughter cells one or a few time-

steps later. To prevent this from happening, we truncate the

classification probabilities for apoptosis at 0.5, just like we do

with the probabilities for migration, so that the introduction

of an apoptotic event (i.e., changing At,i from 0 to 1) can not

increase the scoring function in and of itself. In a case where

a cell actually undergoes apoptosis, the apoptotic event will be

introduced by the algorithm anyway to avoid the decrease in

the scoring function that would be associated with continuing

the track through detections of other cells or detections that

should not have any cells at all.

F. Track linking

For the track linking, we used the algorithm described in

Section IV. In the MuSC dataset, the cells were confined

to microwells and therefore we did not include variables

for migration into and out of the field of view in the set

of event variables. In the myoblast dataset, there were only

two apoptotic events, and therefore we did not include any

apoptosis variables in the set of event variables. We use the

13

generalized form of swap events, described in Section IV-D,

that can change how preexisting tracks begin and end, but to

simplify the implementation we do not allow swap operations

to create new mitotic events. We do however allow swap

operations to remove mitotic events and thereby change the

origin of one of the daughter tracks and link the other daughter

track to the end of the mother track using a migration event.

G. Post processing

To solve the post processing problem described in Section

IV-F and give cells in detections with multiple cells separate

outlines, we split the binary segmentation masks of the de-

tections using k-means clustering [47] applied to the x- and

y-coordinates of the mask pixels. The seeding of the clusters

is done randomly with one seed per cell, and once the pixel

clusters have been determined, they are assigned to the cells in

the previous image by solving an assignment problem using

the Hungarian algorithm [49]. Migrations in and out of the

imaged region are handled by introducing dummy cells and

dummy pixel clusters with matching-scores that correspond

to migration in and out of the imaged region respectively. To

keep the problem simple, we do not change the identities of

the cells that undergo mitosis and apoptosis. The mother cells

in mitotic events are however entered twice into the matching

problem, so that the identities of the two daughter cells can be

determined based on the migration distances from the mother

cell, in accordance with how mitotic events are scored in

Section III.

H. Algorithm performance

The tracking results on representative image sequences of

the MuSC dataset and the myoblast dataset are shown in Fig. 8

and Fig. 9 respectively. In both figures, the tracks and the

outlines of the cells at the end of the image sequence are

overlayed on the last image. For the MuSCs, the tracks of

the entire image sequence are shown, but for the myoblasts,

only the last 100 time-points of the tracks are shown, as the

tracks would otherwise cover most of the image, making the

figure hard to interpret. The tracking results shown in Fig. 8

and Fig. 9 can be viewed in their entirety in Supplemental

Video 1 and Supplemental Video 2 respectively. The images

and the videos provide some qualitative evidence that the

proposed algorithm performs well on both cell types, but

we will also provide quantitative performance measures to

show that the method works well on all image sequences

of the datasets, and provide some means to compare the

algorithm performance to existing and future works. We also

compare our tracking results with tracking results produced

using CellProfiler [41]. In Section V-H1 we describe how

CellProfiler was used to track the cells, in Section V-H2,

we evaluate tracking performance, and in Section V-H3 we

evaluate run time.

1) Tracking using CellProfiler: In order to compare the

proposed method to existing methods and software, we used

the freely available software CellProfiler [41] to process our

datasets. We saved the segmentation results produced by the

algorithm described in Section V-C to images with object

100 µm

(a)

Time (hours)

0 5 10 15 20 25 30

(b)

Fig. 8. Representative tracking result from the MuSC dataset. The image
(a) shows the tracks and the outlines at the end of the image sequence,
overlayed on the last image of the sequence. The same image is shown
without annotation in Fig. 6, and the entire image sequence can be viewed
with annotation in Supplemental Video 1. The plot (b) shows the lineage
tree corresponding to the tracks. Mitotic events are shown as black dots and
apoptotic events are shown as black crosses.

labels and loaded these into CellProfiler, so that we would be

able to evaluate the tracking performance in isolation from

the segmentation performance. For track linking, we used

the LAP method in the TrackObjects module, which is an

implementation of the track linking method presented in [20].

The algorithm is similar to [27] in that it first links detections

into tracklets and then links the tracklets into longer tracks

by solving a combinatorial optimization problem. In [20],

the tracklets are created and linked into tracks by solving

two different Linear Assignment Problems (LAPs). Like most

other existing tracking systems, CellProfiler can not reason

about the probability that a detection is a false positive.

To increase the tracking performance, we therefore removed

all objects with an area smaller than 250 pixels prior to

14

100 µm

(a)

Time (hours)

0 5 10 15 20

(b)

Fig. 9. Representative tracking result from the myoblast dataset. The image
(a) shows the last 100 time-points of the tracks, and the outlines at the end of
the image sequence, overlayed on the last image of the sequence. The same
image is shown without annotation in Fig. 7, and the entire image sequence
can be viewed with annotation in Supplemental Video 2. The plot (b) shows
the lineage trees corresponding to the tracks. Mitotic events are shown as
black dots. Line segments that start after the first image, without a mitotic
event, represent cells that migrate into the imaged area. Line segments that
end before the last image represent cells that migrate out of the imaged area.

tracking. We also introduced a minimum cell lifetime of 10

frames, so that short tracks caused by false positives would be

excluded. Further, we disallowed merging of cells and adjusted

parameters expressed in pixels to the scale of the the images.

Once we had made these relatively natural problem specific

adjustments, we spent several days testing different values

for the remaining parameters, to maximize the performance

measures described in Section V-H2. There were too many

parameters to cover the entire parameter space in a systematic

search, but nevertheless we are confident that all parameters

were given sensible values. CellProfiler project files, contain-

ing all of the tracking parameters used for tracking of MuSCs

and myoblasts are available to the reader as Supplemental

File 1 and Supplemental File 2 respectively. Furthermore,

tracking results for MuSCs and myoblasts, generated from

the same image sequences as Supplemental Video 1 and

Supplemental Video 2, can be viewed in Supplemental Video

3 and Supplemental Video 4 respectively.

2) Tracking performance: To evaluate the tracking perfor-

mance, we compare the computer generated tracks and the

ground truth objects using a number of different performance

measures. The overall accuracy of the tracks is measured using

the track purity [50] and the object purity [50]. The accuracies

with which the algorithms determine how many cells each

detection contains is evaluated by looking at the confusion

matrices for classification of detections into detections with 0,

1 and 2 or more cells. The accuracies by which mitotic and

apoptotic events are detected are measured using the precision

and the recall, with which the events were detected. The

precision and the recall are defined as

precision =
tp

tp+ fp
(10)

and

recall =
tp

tp+ fn
, (11)

where tp is the number of correctly detected events (true

positives), fp is the number of falsely detected events (false

positives), and fn is the number of events that were not

detected (false negatives).

There is not yet any consensus, in the field of cell track-

ing, about what performance measures should be used to

evaluate algorithm performance. We chose the parameters

presented above because they are easy to compute and because

they capture the most important aspects of the track linking

performance. Another important reason for choosing these

performance measures is that they make it possible to compare

our results to the results presented in [37] and [27]. The

performance measures track purity, object purity, and mitosis

recall are used for performance evaluation in [27], but in [27],

object purity is referred to as target effectiveness and the

mitosis recall is referred to as mitosis branching correctness.

We think that it is important to strive for a consensus

about which performance measures to use for evaluation of

cell tracking algorithms. The Cell Tracking Challenges [39],

[40] is a great initiative to achieve this goal. In [39], [40],

many different types of tracking errors are combined into a

single performance measure called TRA. We however chose

not to use this measure in this paper, because we want to study

different aspects of the tracking performance separately. Fur-

thermore, the TRA measure is designed to indicate how much

time it would take for a human to correct all tracking errors,

and therefore the measure gives high weights to tracking errors

where cells are missing, and lower weights to linking errors.

The TRA measure is therefore an appropriate measure when

entire systems for cell tracking are evaluated, but given that the

focus of this paper is on track linking, we found the measures

presented above to be more appropriate.

Track purity is a measure of the degree to which the

computer generated tracks follow ground truth objects and

object purity is a measure of the degree to which the ground

truth objects are followed by computer generated tracks. The

track purity of a single track is computed by finding the object

that the track follows in most images and dividing the number

of images where the object is followed by the length of the

15

track in frames. Object purity is computed in the same way,

but with the roles of the tracks and the objects reversed. This

means that the object purity of a single object is the largest

number of images that it is followed by the same track, divided

by the length of the object trajectory in frames.

For simplicity, a track is said to be following an object in

a frame if its outline overlaps with the outline of the object

in at least one pixel in that frame. This corresponds to an F -

measure coverage threshold of 0 in [50]. This allows cells to

be misplaced inside clusters, as long as the outlines overlap

in at least one pixel. The outlines of cells which are not in

clusters are the same in the ground truth and in the tracking

results, so they either overlap in all pixels or in no pixels. To

formalize this, we let ni and nj denote the lengths (in frames)

of track i and object trajectory j respectively. Further, we let

nij denote the number of images in which track i follows

object j, and let nji denote the number of images in which

object j is followed by track i. Then the track purity of track

i can be written as [50, Eq. (9)]

TPi =
maxj nij

ni

(12)

and the object purity of object j can be written as [50, Eq.

(10)]

OPj =
maxi nji

nj

. (13)

The track or object purity of a set of tracks or objects is

computed by averaging the values of the individual tracks

or objects in the set. We use a weighted average where

the trajectories are weighted by their length to prevent short

trajectories of cells that move back and forth across the image

boundary from skewing the results. For two mitotic events to

be considered matching, they are not allowed to be separated

in time by more than 50 minutes, the mother cells have to

match in the last image of the mother cell that divided first,

and each daughter cell has to match the corresponding ground

truth daughter cell, in the first image of the cell that appears

last of the two cells to be matched. The threshold of 50 minutes

is taken from [27], so that our results can be compared to

the results in that publication. For two apoptotic events to be

considered matching, they are not allowed to be separated in

time by more than 50 minutes, and the cells have to match

in the last image of the cell that dies first. For mitotic and

apoptotic events, cells can be considered to match if their

outlines overlap in at least one pixel, but an event in the

computer generated tracks can only match one ground truth

event and vice versa.

The performance measures achieved by the proposed al-

gorithm and by CellProfiler on the MuSC dataset and the

myoblast dataset are shown in Tables II and III respectively2.

2If the track purities and the object purities of the individual tracks or
objects are not weighted by the lengths of the trajectories, the average track
purities of the proposed method would be 0.90 and 0.78, and the average
object purities would be 0.84 and 0.90, for MuSCs and myoblasts respectively.
For the MuSC dataset, the un-weighted measures are very close to the
weighted measures, as most tracks are of similar length. For the myoblast
dataset however, the un-weighted measures are slightly different, as equal
emphasis is put on long tracks and short track fragment at the image boundary.
We think that the weighted measures are more appropriate, but we present
the un-weighted measures as well, to allow comparisons with as many other
works as possible.

The track and object purities of the proposed algorithm are

very high on both datasets considering the challenges of

false positive detections and clustering of cells. CellProfiler

achieves lower (worse) values on both measures in the MuSC

dataset. On the myoblast dataset CellProfiler achieves a track

purity comparable to the track purity of the proposed method

at the cost of a significantly lower object purity. Both the

precision and the recall of mitotic events are high on the MuSC

dataset for the proposed method. The performance measures

for mitosis are slightly lower on the myoblast dataset, but the

performance is still good considering that the cell density is

much higher and that there is more clustering of cells than in

the MuSC dataset. When the cell culture is dense and has a

lot of clusters, it becomes very challenging to detect mitotic

events as the tracks in adjacent images provide less context

and as the mitotic cells that are segmented jointly with other

cells are very hard to identify using classification techniques.

As noted above, the problem of detecting apoptotic events

correctly is more challenging than detecting mitotic events,

as the changes in appearance when the cell dies are often

very subtle. Therefore the proposed method achieves slightly

lower precision and recall for apoptosis than for mitosis in

the MuSC dataset. The performance is however still very

good considering that classification of dead and live cells

can be challenging even for a human observer. CellProfiler

detects many of the mitotic events in both datasets and even

has a higher mitosis recall than the proposed method in the

myoblast dataset. CellProfiler does however introduce a lot of

incorrect mitotic events as well, so the mitosis precision is

very low on both datasets. Typically, the algorithm generates

a lot of spurious tracks by introducing mitotic events and

later the tracks disappear through incorrect apoptotic events.

Like almost all other cell tracking algorithms, CellProfiler does

not model apoptotic events explicitly, and therefore both the

precision and the recall are very low for apoptosis. The mitotic

events that were correctly detected by the proposed algorithm

in the MuSC dataset had delays with an average and a standard

deviation of 2.0 ± 9.1 min and the corresponding delays for

apoptotic events were 0.35±16 min. For CellProfiler, the same

delays were 27± 13 min and 5.5± 26 min. On the myoblast

dataset, the mitosis delays were −0.78± 12 min and 5.7± 19
min for the proposed method and CellProfiler respectively.

From the delay values it is clear that the proposed method

is a lot better at determining the exact time of the different

events and that it is harder to determine the exact time of an

apoptotic event than a mitotic event. The detection of mitotic

events is very often delayed in CellProfiler as a result of the

two daughter cells being segmented together in a number of

images following the mitotic event. In the myoblast dataset, the

amount of apoptosis was negligible, and it was therefore not

meaningful to include any performance measures for apoptosis

in Table III.

Even though we optimized the settings in CellProfiler

for our datasets, we recognize that the developers of the

algorithms and the CellProfiler software were not using our

datasets during the development phase of their cell tracking

method. We do however still believe that the comparison

supports our claim that the tracking results that we have

16

TABLE II
TRACKING PERFORMANCE ON THE MUSC DATASET.

Parameter proposed CellProfiler

track purity 0.92 0.68
object purity 0.83 0.69
mitosis precision 0.79 0.17
mitosis recall 0.80 0.55
apoptosis precision 0.72 0.01
apoptosis recall 0.66 0.10

TABLE III
TRACKING PERFORMANCE ON THE MYOBLAST DATASET.

Parameter proposed CellProfiler

track purity 0.85 0.86
object purity 0.81 0.54
mitosis precision 0.59 0.17
mitosis recall 0.60 0.67

TABLE IV
CONFUSION MATRICES FOR THE NUMBER OF CELLS IN EACH DETECTION

IN THE MUSC DATASET.

tr
u

e
0 64249 1009 252 39884 25626 0

1 9422 68986 253 4522 74139 0
≥ 2 172 1167 4166 0 5505 0

0 1 ≥ 2 0 1 ≥ 2

estimated # estimated #
proposed method CellProfiler

TABLE V
CONFUSION MATRICES FOR THE NUMBER OF CELLS IN EACH DETECTION

IN THE MYOBLAST DATASET.

tr
u

e
0 3012 336 41 2071 1318 0

1 1716 39472 2809 1048 42949 0
≥ 2 3 2189 11520 3 13709 0

0 1 ≥ 2 0 1 ≥ 2

estimated # estimated #
proposed method CellProfiler

produced can not be achieved using existing methods and

software. To give the reader an additional indication about

what the numbers in Tables II and III mean in terms of

tracking performance, we note that the method presented in

[27] achieves a track purity of 0.81, an object purity of 0.87,

and a mitosis recall of 0.65. The method in [27] achieves

very good tracking results on cells from the cell line C2C12

imaged using phase-contrast microscopy, and is shown to

outperform the highly cited, earlier work [23]. Given that we

have applied our algorithm to other datasets, we can not ob-

jectively compare our performance values to the performance

values in [27]. The fact that the proposed method achieves

similar and in some cases higher performance values than

the method in [27] does however support our claim that the

proposed method produces tracks of high quality. Furthermore,

phase-contrast microscopy is normally preferred to bright-field

microscopy for cell tracking applications as it gives higher

image contrast and as mitotic events can be identified by

an increased brightness. It is therefore noteworthy that our

algorithm produces good tracking results, and especially that

mitotic events are identified with both high precision and high

recall. In [27], mitotic events are handled using a mitosis

detection algorithm specifically designed for phase-contrast

microscopy [4]. Compared to the method used in [27], the

proposed algorithm for handling of mitotic events has the

advantages that it is independent of the microscopy technique

used, and that it treats mitotic events in a probabilistic manner

without making hard classification decisions before the track-

ing is started.

For further comparisons with other track linking algorithms,

we refer the reader to [39], where an earlier version of the

proposed track linking algorithm is compared on equal terms

to 5 other methods on 8 different datasets of real and simulated

fluorescence microscopy images. In [39], the different track

linking algorithms were used together with different segmenta-

tion algorithms, so good tracking performance was somewhat

dependent on having a good segmentation algorithm. The

earlier version of our algorithm did however achieve the

highest track linking performance of the 6 methods, on 5 of

the 8 datasets, in combination with a simple segmentation

algorithm based on Gaussian bandpass filtering followed by

thresholding and separation of cells in clusters using the

watershed transform. A compiled version of the software that

we used to process the datasets was made available when

[39] was published, and can be downloaded from [40]. In

the ISBI 2014 Cell Tracking Challenge, the algorithm that

we propose herein was compared to 7 other methods on 14

different datasets generated using fluorescence microscopy,

phase contrast microscopy, differential interference contrast

(DIC) microscopy, and simulated fluorescence microscopy.

The bandpass filtering algorithm described above was used

to process most of the datasets, but a segmentation algorithm

based on local variance (similar to the one described in Section

V-C) was used on a phase contrast dataset and a segmentation

algorithm based on ridge detection was used on a DIC dataset.

Our cell tracking system achieved the highest performance of

all the competing systems on all 14 datasets [40].

3) Run time: To give the reader a rough idea about the

run time of the proposed algorithm we measured the time it

took to process the MuSC dataset and the myoblast dataset.

The processing was done on a desktop computer with an Intel

Core i7-3930K 3.2 GHz processor with 6 cores, and 64 GB

of RAM memory, running Matlab 2013b in Windows 7. It

took 26 hours and 48 minutes to process the MuSC dataset

and 1 hour and 6 minutes to process the myoblast dataset.

This corresponds to 1.6 seconds per image for the MuSC

dataset, and 2.8 seconds per image for the myoblast dataset.

Table VI shows how this run time was distributed among

different processing tasks. Most of the time was spent on

image stabilization, segmentation, and feature computation. In

the myoblast dataset, no image stabilization was performed,

and the segmentation took less time than in the MuSC dataset

as no background subtraction was performed, but the myoblast

dataset still took almost twice as long to process per image,

as the feature computation took much longer due to the large

number of detections. In both datasets, the time consumed

by the track linking algorithm was negligible compared to

the other tasks, showing that it would be possible to process

datasets where the number of cells per image is significantly

17

higher, before the processing power becomes the limiting

factor. The track linking algorithm itself processed 65 images

per second in the myoblast dataset and 12 000 images per

second in the MuSC dataset.

TABLE VI
RUN TIMES OF DIFFERENT PROCESSING STEPS, IN SECONDS PER IMAGE.

Task MuSCs Myoblasts

stabilization 0.47 NA
cropping 0.067 NA
segmentation 0.54 0.44
feature computation 0.48 1.7
computation of scores 0.0068 0.18
track linking 0.000082 0.015
post processing 0.0053 0.25
other 0.048 0.15
all 1.6 2.8

In the run time evaluation, we processed a single image

sequence at a time, to simplify the evaluation and the inter-

pretation of the results. By processing one image sequence on

each processor core, the run time for the MuSC dataset was

reduced to 7 hours and 44 minutes and the run time for the

myoblast dataset was reduced to 24 minutes, corresponding

to speed-ups by factors of 3.5 and 2.8 respectively. For the

MuSC dataset, the speed-up was much less than a factor

of 6, indicating that the processor speed is not the limiting

factor when all 6 cores are used in parallel, but the limited

speedup is partly explained by the fact that the segmentation

algorithm is implemented using the Fast Fourier Transform,

which has built in parallelization in Matlab. CellProfiler uses

parallel processing by default, and required 35 hours and

26 minutes to process the MuSC dataset and 44 minutes

to process the myoblast dataset, even though the tasks of

stabilization, cropping, and segmentation had been replaced

by loading of label images. This shows that our cell tracking

system as a whole is competitive when it comes to run time.

VI. CONCLUSIONS

We have presented a global track linking algorithm for cell

tracking, which uses information from all images in an image

sequence to make local linking decisions. The algorithm can

handle false detections, missed detections, detections contain-

ing multiple cells, mitosis, apoptosis, and cells migrating in

and out of the field of view. All of the different types of events

are incorporated into the same probabilistic framework and

there is no need for heuristic post processing algorithms or

hard decisions made by detection algorithms, to handle for

example mitosis or apoptosis.

The algorithm starts from an empty set of tracks and adds

one track at a time in a greedy way which gives the maximum

increase to a probabilistically motivated scoring function, until

the scoring function can not be increased further by adding

an additional track. During the addition of a new track,

preexisting tracks can be modified, so that a large number

of cells can be tracked without problems with incorrect tracks

blocking the creation of correct tracks in subsequent iterations.

In each iteration, the track to be added is found by solving an

optimization problem using the Viterbi algorithm. The track

linking algorithm can be made to have linear complexity in

the number of images and quadratic complexity in the number

of detections in each image, and it is therefore suitable for

tracking in long image sequences with a large number of cells

in each image. The track linking algorithm is independent of

the method used for image segmentation and can therefore

be applied to a broad spectrum or problems in both 2D and

3D. The algorithm has been shown to give good performance

on two very challenging datasets with MuSCs and myoblasts

imaged using bright-field microscopy.

ACKNOWLEDGEMENTS

We thank the reviewer who alerted us to the prior work

on Viterbi algorithms in tracking for defense applications,

and the reviewer who suggested expanding the performance

evaluation with information about how well the proposed

algorithm determines how many cells each detection contains.

We would also like to thank the reviewers who prompted the

inclusion of the comparison with CellProfiler.

REFERENCES

[1] D. L. Coutu and T. Schroeder, “Probing cellular processes by long-term
live imaging – historic problems and current solutions,” J. Cell Sci., vol.
126, no. 17, pp. 3805–3815, 2013.

[2] D. H. Rapoport, T. Becker, A. M. Mamlouk, S. Schicktanz, and C. Kruse,
“A novel validation algorithm allows for automated cell tracking and the
extraction of biologically meaningful parameters,” PLoS One, vol. 6,
no. 11, p. e27315, 2011.

[3] B. Neumann, T. Walter, J.-K. Hériché, J. Bulkescher, H. Erfle, C. Conrad,
P. Rogers, I. Poser, M. Held, U. Liebel, C. Cetin, F. Sieckmann,
G. Pau, R. Kabbe, A. Wünsche, V. Satagopam, M. Schmitz, C. Chapuis,
D. Gerlich, R. Schneider, R. Eils, W. Huber, J.-M. Peters, A. Hyman,
R. Durbin, R. Pepperkok, and J. Ellenberg, “Phenotypic profiling of the
human genome by time-lapse microscopy reveals cell division genes,”
Nature, vol. 464, no. 7289, pp. 721–727, 2010.

[4] S. Huh, S. Eom, R. Bise, Z. Yin, and T. Kanade, “Mitosis detection for
stem cell tracking in phase-contrast microscopy images,” in Proc. 2011

IEEE Int. Symp. Biomedical Imaging: From Nano to Macro. IEEE,
2011, pp. 2121–2127.

[5] H. M. Ellis and H. R. Horvitz, “Genetic control of programmed cell
death in the nematode C. elegans,” Cell, vol. 44, no. 6, pp. 817–829,
1986.

[6] R. Bise, T. Kanade, Z. Yin, and S.-i. Huh, “Automatic cell tracking
applied to analysis of cell migration in wound healing assay,” in Proc.

2011 Annu. Int. Conf. IEEE Engineering in Medicine and Biology

Society (EMBC). IEEE, 2011, pp. 6174–6179.
[7] D. H. Theriault, M. L. Walker, J. Y. Wong, and M. Betke, “Cell morphol-

ogy classification and clutter mitigation in phase-contrast microscopy
images using machine learning,” Mach. Vis. Appl., vol. 23, no. 4, pp.
659–673, 2012.

[8] X. Chen, X. Zhou, and S. T. Wong, “Automated segmentation, classi-
fication, and tracking of cancer cell nuclei in time-lapse microscopy,”
IEEE Trans. Biomed. Eng., vol. 53, no. 4, pp. 762–766, 2006.

[9] F. Li, X. Zhou, J. Ma, and S. Wong, “Multiple nuclei tracking using
integer programming for quantitative cancer cell cycle analysis,” IEEE

Trans. Med. Imag., vol. 29, no. 1, pp. 96–105, 2010.
[10] J. E. Sulston, E. Schierenberg, J. G. White, and J. Thomson, “The

embryonic cell lineage of the nematode Caenorhabditis elegans,” Dev.

Biol., vol. 100, no. 1, pp. 64–119, 1983.
[11] P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer, “Reconstruc-

tion of zebrafish early embryonic development by scanned light sheet
microscopy,” Science, vol. 322, no. 5904, pp. 1065–1069, 2008.

[12] H. M. Eilken, S.-I. Nishikawa, and T. Schroeder, “Continuous single-cell
imaging of blood generation from haemogenic endothelium,” Nature,
vol. 457, no. 7231, pp. 896–900, 2009.

[13] P. M. Gilbert, K. L. Havenstrite, K. E. G. Magnusson, A. Sacco,
N. A. Leonardi, P. Kraft, N. K. Nguyen, S. Thrun, M. P. Lutolf, and
H. M. Blau, “Substrate elasticity regulates skeletal muscle stem cell
self-renewal in culture,” Science, vol. 329, no. 5995, pp. 1078–1081,
2010.

18

[14] R. Bise, K. Li, S. Eom, and T. Kanade, “Reliably tracking partially
overlapping neural stem cells in DIC microscopy image sequences,” in
MICCAI Workshop on Optical Tissue Image Analysis in Microscopy,

Histopathology and Endoscopy, OPTMHisE, 2009.

[15] A. R. Cohen, F. L. Gomes, B. Roysam, and M. Cayouette, “Computa-
tional prediction of neural progenitor cell fates,” Nat. Methods, vol. 7,
no. 3, pp. 213–218, 2010.

[16] C. Zimmer, B. Zhang, A. Dufour, A. Thébaud, S. Berlemont, V. Meas-
Yedid, and J.-C. Marin, “On the digital trail of mobile cells,” IEEE

Signal Process. Mag., vol. 23, no. 3, pp. 54–62, 2006.

[17] E. Meijering, O. Dzyubachyk, I. Smal, and W. A. van Cappellen,
“Tracking in cell and developmental biology,” Semin. Cell Dev. Biol.,
vol. 20, no. 8, pp. 894–902, 2009.

[18] K. Rohr, W. J. Godinez, N. Harder, S. Wörz, J. Mattes, W. Tvaruskó,
and R. Eils, “Tracking and quantitative analysis of dynamic movements
of cells and particles,” Cold Spring Harb. Protoc., vol. 2010, no. 6, p.
pdb.top80, 2010.

[19] T. Kanade, Z. Yin, R. Bise, S. Huh, S. Eom, M. F. Sandbothe, and
M. Chen, “Cell image analysis: Algorithms, system and applications,”
in WACV2011. IEEE, 2011, pp. 374–381.

[20] K. Jaqaman, D. Loerke, M. Mettlen, H. Kuwata, S. Grinstein, S. L.
Schmid, and G. Danuser, “Robust single-particle tracking in live-cell
time-lapse sequences,” Nat. Methods, vol. 5, no. 8, pp. 695–702, 2008.

[21] N. Chenouard, I. Bloch, and J.-C. Olivo-Marin, “Multiple hypothesis
tracking for cluttered biological image sequences,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 35, no. 11, pp. 2736–2750, 2013.

[22] C. Zimmer, E. Labruyere, V. Meas-Yedid, N. Guillen, and J.-C. Olivo-
Marin, “Segmentation and tracking of migrating cells in videomi-
croscopy with parametric active contours: A tool for cell-based drug
testing,” IEEE Trans. Med. Imag., vol. 21, no. 10, pp. 1212–1221, 2002.

[23] K. Li, E. D. Miller, M. Chen, T. Kanade, L. E. Weiss, and P. G.
Campbell, “Cell population tracking and lineage construction with
spatiotemporal context,” Med. Image Anal., vol. 12, no. 5, pp. 546–566,
2008.

[24] O. Dzyubachyk, W. A. van Cappellen, J. Essers, W. J. Niessen, and
E. Meijering, “Advanced level-set-based cell tracking in time-lapse
fluorescence microscopy,” IEEE Trans. Med. Imag., vol. 29, no. 3, pp.
852–867, 2010.

[25] O. Al-Kofahi, R. J. Radke, S. K. Goderie, Q. Shen, S. Temple, and
B. Roysam, “Automated cell lineage construction: A rapid method to
analyze clonal development established with murine neural progenitor
cells,” Cell Cycle, vol. 5, no. 3, pp. 327–335, 2006.

[26] N. N. Kachouie, P. Fieguth, J. Ramunas, and E. Jervis, “Probabilistic
model-based cell tracking,” Int. J. Biomed. Imaging, vol. 2006, pp. 1–10,
2006.

[27] R. Bise, Z. Yin, and T. Kanade, “Reliable cell tracking by global data
association,” in Proc. 2011 IEEE Int. Symp. Biomedical Imaging: From

Nano to Macro. IEEE, 2011, pp. 1004–1010.

[28] A. Dufour, R. Thibeaux, E. Labruyere, N. Guillen, and J.-C. Olivo-
Marin, “3-D active meshes: Fast discrete deformable models for cell
tracking in 3-D time-lapse microscopy,” IEEE Trans. Image Process.,
vol. 20, no. 7, pp. 1925–1937, 2011.

[29] M. Maška, O. Daněk, S. Garasa, A. Rouzaut, A. Munoz-Barrutia, and
C. Ortiz-de Solorzano, “Segmentation and shape tracking of whole
fluorescent cells based on the Chan-Vese model.” IEEE Trans. Med.

Imag., vol. 32, no. 6, pp. 995–1006, 2013.

[30] G. Pulford and B. La Scala, “Multihypothesis Viterbi data association:
Algorithm development and assessment,” IEEE Trans. Aerosp. Electron.

Syst., vol. 46, no. 2, pp. 583–609, 2010.

[31] D. Padfield, J. Rittscher, and B. Roysam, “Spatio-temporal cell segmen-
tation and tracking for automated screening,” in Proc. 2008 IEEE Int.

Symp. Biomedical Imaging: From Nano to Macro (ISBI). IEEE, 2008,
pp. 376–379.

[32] D. Sage, F. R. Neumann, F. Hediger, S. M. Gasser, and M. Unser,
“Automatic tracking of individual fluorescence particles: Application
to the study of chromosome dynamics,” IEEE Trans. Image Process.,
vol. 14, no. 9, pp. 1372–1383, 2005.

[33] J. Berclaz, F. Fleuret, and P. Fua, “Robust people tracking with global
trajectory optimization,” in Proc. 2006 IEEE Computer Society Conf.

Computer Vision and Pattern Recognition Workshops (CVPR Work-

shops), vol. 1. IEEE, 2006, pp. 744–750.

[34] H. Pirsiavash, D. Ramanan, and C. C. Fowlkes, “Globally-optimal
greedy algorithms for tracking a variable number of objects,” in Proc.

2011 IEEE Computer Society Conf. Computer Vision and Pattern

Recognition Workshops (CVPR Workshops). IEEE, 2011, pp. 1201–
1208.

[35] Y. Barniv, “Dynamic programming solution for detecting dim moving
targets,” IEEE Trans. Aerosp. Electron. Syst., no. 1, pp. 144–156, 1985.

[36] G. W. Pulford and B. F. La Scala, “MAP estimation of target manoeuvre
sequence with the expectation-maximization algorithm,” IEEE Trans.

Aerosp. Electron. Syst., vol. 38, no. 2, pp. 367–377, 2002.

[37] K. E. G. Magnusson and J. Jaldén, “A batch algorithm using iterative
application of the Viterbi algorithm to track cells and construct cell
lineages,” in Proc. 2012 9th IEEE Int. Symp. Biomedical Imaging (ISBI).
IEEE, 2012, pp. 382–385.

[38] N. Chenouard, I. Smal, F. de Chaumont, M. Maška, I. F. Sbalzarini,
Y. Gong, J. Cardinale, C. Carthel, S. Coraluppi, M. Winter, A. R.
Cohen, W. J. Godinez, K. Rohr, Y. Kalaidzidis, L. Liang, J. Duncan,
H. Shen, Y. Xu, K. E. G. Magnusson, J. Jaldén, H. M. Blau, P. Paul-
Gilloteaux, P. Roudot, C. Kervrann, F. Waharte, J.-Y. Tinevez, S. L.
Shorte, J. Willemse, K. Celler, G. P. van Wezel, H.-W. Dan, Y.-S. Tsai,
C. Ortiz de Solórzano, J.-C. Olivo-Marin, and E. Meijering, “Objective
comparison of particle tracking methods,” Nat. Methods, vol. 11, no. 3,
pp. 281–289, 2014.

[39] M. Maška, V. Ulman, D. Svoboda, P. Matula, P. Matula, C. Ederra,
A. Urbiola, T. España, S. Venkatesan, D. M. W. Balak, P. Karas,
T. Bolcková, M. Štreitová, C. Carthel, S. Coraluppi, N. Harder, K. Rohr,
K. E. G. Magnusson, J. Jaldén, H. M. Blau, O. Dzyubachyk, P. Křı́žek,
G. M. Hagen, D. Pastor-Escuredo, D. Jimenez-Carretero, M. J. Ledesma-
Carbayo, A. Muñoz Barrutia, E. Meijering, M. Kozubek, and C. Ortiz-de
Solorzano, “A benchmark for comparison of cell tracking algorithms,”
Bioinformatics, vol. 30, no. 11, pp. 1609–1617, 2014.

[40] “Cell Tracking Challenge (Second Edition),” http://www.codesolorzano.
com/celltrackingchallenge/Cell Tracking Challenge/Welcome.html, ac-
cessed: 2014-07-22.

[41] A. E. Carpenter, T. R. Jones, M. R. Lamprecht, C. Clarke, I. H. Kang,
O. Friman, D. A. Guertin, J. H. Chang, R. A. Lindquist, J. Moffat,
P. Golland, and D. M. Sabatini, “Cellprofiler: Image analysis software
for identifying and quantifying cell phenotypes,” Genome Biol., vol. 7,
no. 10, p. R100, 2006.

[42] G. D. Forney Jr, “The Viterbi algorithm,” Proc. IEEE, vol. 61, no. 3,
pp. 268–278, 1973.

[43] T. A. Rando and H. M. Blau, “Primary mouse myoblast purification,
characterization, and transplantation for cell-mediated gene therapy.” J.

Cell. Biol., vol. 125, no. 6, pp. 1275–1287, 1994.

[44] K. Li, “The image stabilizer plugin for ImageJ,” http://www.cs.cmu.edu/
∼kangli/code/Image Stabilizer.html, Feb. 2008.

[45] K. Wu, D. Gauthier, and M. D. Levine, “Live cell image segmentation,”
IEEE Trans. Biomed. Eng., vol. 42, no. 1, pp. 1–12, 1995.

[46] P. Soille, Morphological image analysis: principles and applications.
Springer-Verlag New York, Inc., 2003.

[47] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine

learning. Springer New York, 2006.

[48] D. Gross, J. F. Shortle, J. M. Thompson, and C. M. Harris, Fundamentals

of queueing theory. Wiley, 2013.

[49] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization:

algorithms and complexity. Courier Dover Publications, 1998.

[50] K. Smith, D. Gatica-Perez, J.-M. Odobez, and S. Ba, “Evaluating multi-
object tracking,” in Proc. 2005 IEEE Computer Society Conf. Computer

Vision and Pattern Recognition Workshops (CVPR Workshops). IEEE,
2005, pp. 36–43.

APPENDIX A

SCORING FUNCTION UPDATES

This appendix describes the utilities of the different arc

types in the state space diagram described in Section IV-B.

These utilities are equal to the change in the scoring function

g(F), that occurs when the operation associated with the arc

is performed on F .

An arc from A to Dt,i represents adding a new cell, which

is present in the first image, to F , and has the utility

∆g = log(Pr(Ct+1,j = Ct+1,j(F) + 1))

− log(Pr(Ct+1,j = Ct+1,j(F))) . (14)

A migration arc from Dt,i to Dt+τ,j represents appending

the detection Dt+τ,j to the end of the track under creation,

19

which currently ends in detection Dt,i, and has the utility

∆g = log(Pr(Mt,i,j,τ = 1))

− log(Pr(Mt,i,j,τ = Mt,i,j,τ (F)))

+ log(Pr(Ct+τ,j = Ct+τ,j(F) + 1))

− log(Pr(Ct+τ,j = Ct+τ,j(F))) . (15)

A mitosis arc from Yt to Dt+1,j represents adding a new

daughter cell starting in detection Dt+1,j , by introducing a

mitotic event in a preexisting track. This breaks the preexisting

track into two segments, where the first segment becomes

the mother cell, and the second segment becomes the other

daughter cell. This corresponds to adding an additional branch

to one of the trees in F . If the preexisting track that will

become the mother cell passes through detection Dt,i, the

utility of the arc is given by

∆g = log(Pr(St,i = 1))

− log(Pr(St,i = St,i(F)))

+ log(Pr(Mt,i,j,1 = 1))

− log(Pr(Mt,i,j,1 = Mt,i,j,1(F)))

+ log(Pr(Ct+1,j = Ct+1,j(F) + 1))

− log(Pr(Ct+1,j = Ct+1,j(F))) . (16)

An apoptosis arc from Dt,i to Xt+1 represents terminating

the cell under creation with an apoptotic event, and has the

utility

∆g = log(Pr(At,i = 1))− log(Pr(At,i = At,i(F))) . (17)

An arc from Yt to Dt+1,j for migration into the image adds

a new cell to F , and has the utility

∆g = log(Pr(It+1,j = 1))

− log(Pr(It+1,j = It+1,j(F)))

+ log(Pr(Ct+1,j = Ct+1,j(F) + 1))

− log(Pr(Ct+1,j = Ct+1,j(F))) . (18)

An arc from Dt,i to Xt+1 for migration out of the image

terminates the track under creation, and has the utility

∆g = log(Pr(Ot,i = 1))− log(Pr(Ot,i = Ot,i(F))) . (19)

A swap arc from Dt,i to Dt+τ1,j , which breaks a migration

link between detections Dt+τ1−τ2,m and Dt+τ1,n in a preex-

isting track, will append the later section of the preexisting

track after Dt,i at the end of the track under creation, append

Dt+τ1,j at the end of the first section of the preexisting track,

and let the now extended first section be the new track under

creation. This arc has the utility

∆g = log(Pr(Mt,i,n,τ1 = Mt,i,n,τ1(F)))

− log(Pr(Mt,i,n,τ1 = Mt,i,n,τ1(F
′)))

+ log(Pr(Mt+τ1−τ2,m,j,τ2 = Mt+τ1−τ2,m,j,τ2(F
′)))

− log(Pr(Mt+τ1−τ2,m,j,τ2 = Mt+τ1−τ2,m,j,τ2(F)))

+ log(Pr(Mt+τ1−τ2,m,n,τ2 = Mt+τ1−τ2,m,n,τ2(F
′)))

− log(Pr(Mt+τ1−τ2,m,n,τ2 = Mt+τ1−τ2,m,n,τ2(F)))

+ log(Pr(Ct+τ1,j = Ct+τ1,j(F) + 1))

− log(Pr(Ct+τ1,j = Ct+τ1,j(F))) , (20)

where F ′ is a modified version of F , where the swap operation

has been performed.

In a generalized swap, which can change if and how a

preexisting track starts and ends, the three migrations can

be replaced by migration into the field of view, mitosis

followed by migration, migration out of the field of view,

and apoptosis. In particular, the first migration Mt,i,n,τ1 can

be replaced by It+1,n, St,k1
followed by Mt,k1,n,1, Ot,i, or

At,i, the second migration Mt+τ1−τ2,m,j,τ2 can be replaced by

It+τ1,j , St+τ1−1,k2
followed by Mt+τ1−1,k2,j,1, Ot+τ1−1,m, or

At+τ1−1,m, and the third migration Mt+τ1−τ2,m,n,τ2 can be

replaced by It+τ1,n, St+τ1−1,k3
followed by Mt+τ1−1,k3,n,1,

Ot+τ1−1,m, or At+τ1−1,m, where k1 ∈ [1, . . . , Nt] and

k2, k3 ∈ [1, . . . , Nt+τ1−1]. To produce a valid swap operation,

the third event must start in the same state of the state space

diagram as the second event and end in the same state as the

first event.

APPENDIX B

FEATURES USED FOR CLASSIFICATION

For classification of cell counts, mitosis, and apoptosis, we

use the feature set described in [7], combined with some

additional features. The feature set in [7] has 18 shape-

based features derived from the binary segmentation mask

and 21 appearance-based features derived from the pixel

intensities inside the segmented outline. Out of the 18 shape-

based features, 13 are based on different image moments of

the whole pixel region and 5 are based on the boundary

of the region. The appearance-based features are the mean,

standard deviation, and skew of the image itself, the gradient

computed at 3 different scales, and the Laplacian computed

at 3 different scales. The feature set in [7] was designed

to classify morphologies of individually segmented cells and

identify false positive detections. Therefore we had to extend

the feature set for detection of temporal events like mitosis

and apoptosis, and for classification of detections containing

multiple cells.

To increase the classification performance in cell tracking

applications, we removed the cell centroid from the original

feature set, for classification of myoblasts. For classification

of MuSCs we instead replaced the centroid by the distance

between the centroid and the center of the microwell. Further-

more, we extended the appearance-based features by using the

minimum, maximum, mean, standard deviation, and skew of

the image itself, the gradient and Laplacian images described

above, the background image, the difference between the

previous image and the current image, and the difference

between the next image and the current image. In addition

to these features, we also added the mean absolute difference

from the mean intensity, of the image itself, and the two

difference images.

We also added the two features f⊥(Dt,i) and f‖(Dt,i),
which measure the amounts of image gradient that are per-

pendicular and parallel, to the boundary of detection Dt,i,

respectively. To compute the features, we first compute the

distance transform of the segmented pixel region, where the

pixel values of the transform represent the distance to the

20

closest background pixel. Then we compute the gradient

components of the distance transform, Gd
x(x, y) and Gd

y(x, y),
and use them together with the gradient components of the

original image, Gx(x, y) and Gy(x, y), to define the features

f⊥(Dt,i) =

mean
(x,y)∈Dt,i

∣

∣

∣

∣

∣

∣

Gd
x(x, y)Gx(x, y) +Gd

y(x, y)Gy(x, y)
√

Gd
x(x, y)

2
+Gd

y(x, y)
2

∣

∣

∣

∣

∣

∣

(21)

and

f‖(Dt,i) =

mean
(x,y)∈Dt,i

∣

∣

∣

∣

∣

∣

Gd
y(x, y)Gx(x, y)−Gd

x(x, y)Gy(x, y)
√

Gd
x(x, y)

2
+Gd

y(x, y)
2

∣

∣

∣

∣

∣

∣

, (22)

where (x, y) represents pixel coordinates. These two features

can for example be used to identify detections with multiple

cells, as the image gradients at the borders between the

cells have large components that are parallel to the detection

boundary. A similar idea is used in [26], where the amount

of false positive detections is reduced by observing that the

image intensity is close to constant along the boundaries

of Hematopoietic Stem Cells imaged using phase-contrast

microscopy.

