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*e recent proposed Spatial-Temporal Residual Network (ST-ResNet) model is an effective tool to extract both spatial and
temporal characteristics and has been successfully applied to urban traffic status prediction. However, the ST-ResNet model only
extracts the local spatial characteristics and ignores the very important global spatial characteristics. In this paper, a novel Global-
Local Spatial-Temporal Residual Correlation Network (GL-STRCN) model is proposed for urban traffic status prediction to
further improve the prediction accuracy of the existing ST-ResNet model. *e GL-STRCN model firstly applies Pearson’s
correlation coefficient method to extract high correlation series. *en, considering both global and local spatial properties, two
components consisting of 2D convolution and residual operation are used to capture spatial features. After that, based on Long
Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU), a novel long-term temporal feature extraction component is
proposed to capture temporal features. Finally, the spatial and temporal features are aggregated together in a weighted way for
final prediction. Experiments have also been performed using two datasets from TaxiCD and PEMS-BAY. *e results indicated
that the proposed model produces a better prediction performance compared with the results based on other baseline solutions,
e.g., CNN, ST-ResNet, GL-TCN, and DGLSTNet.

1. Introduction

Real-time and accurate traffic prediction is one of the most
important aspects in Intelligent Transportation Systems
(ITS) [1]; it can provide traffic managers with traffic in-
formation in the near future. Knowing reliable traffic in-
formation (e.g., flow, velocity, density, and status) in
advance can help traffic managers make scientific traffic
signal interval, guide travellers to carry out better routing
plans, ease traffic congestion, and eventually reduce carbon
emissions. *erefore, it is pivotal to have high accuracy
traffic prediction model in modern ITS [2, 3].

*e performance of traffic prediction models is affected
by both internal and external factors. *e internal factors are
indicated by the spatial-temporal characteristics, and the
external factors include uncertain events such as weather,
accidents, and festivals.*e purpose of traffic prediction is to
use historical data and take the above factors into account to

predict the traffic status in the near future. However, traffic
prediction is a challenging issue in practice, affected by the
following specific complex factors:

Historical data correlation: the future traffic data is
predicted by the model based on historical data. How to
scientifically select historical data is very important.
Generally, if we want to predict the traffic flow on
Wednesday, we use data from Monday or Tuesday into
the model, and the accuracy of prediction is expected to
be higher than using data from the previous weekend.
At present, most of the current methods ignore the
relevance of historical data and lack the scientific nature
of data filtering.
Global spatial correlation: most of the existing works on
spatial feature extraction focus on local features and
ignore global features. For example, when a traffic
congestion occurs at a cross section, there will be a
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significant increase of vehicles at the surrounding
intersections, but the total number of vehicles on the
whole road network is still constant. In this case, the
method of extracting only local features will think that
the global traffic flow is also increasing, which is in-
consistent with the actual situation.
Long-term temporal correlation: urban traffic data not
only have random characteristics in the short term, but
also have periodic characteristics in the long term. For
example, a traffic congestion at an intersection lasts for
only a short period. Observing over a long-time in-
terval, the vehicle volume at the intersection is still in a
stable periodic pattern. Some traditional methods use
convolution to extract temporal features, which is good
for capturing short-term features, but it is easy to lose
long-term features.

A large number of traffic prediction methods have been
proposed in the last few decades. Based on different pre-
diction intervals, these methods can be divided into long-
term and short-term ones. *e long-term traffic prediction
focuses on the establishment of macroplanning for the
development of traffic facilities, and the short-term traffic
prediction tries to make estimate traffic data for the next
hour [4].

According to different theoretical structures, these
methods can be generally divided into two categories [5, 6],
i.e., the model-drivenmethods and the data-drivenmethods.
*e former category is based on mathematical theory, which
uses a small amount of data samples to determine model
parameters. *e common model-driven methods include
Autoregressive Integrated Moving Average model (ARIMA)
[7], Kalman filter model [8], and grey model [9]. However,
these methods are generally presented by simplified and
solidified model structure involving ideal hypothesis.
*erefore, the prediction accuracy of model-driven methods
is not high when they are applied in practice. Different from
the model-driven methods, the data-driven methods are
based on real-time traffic data and use the machine learning
technique to process the data [10]. *e data-driven methods
can be further divided into traditional machine learning
methods and deep learning methods [11, 12].

Traditional machine learning methods include Bayesian
model [13] and support vector machine (SVM) [14]. *e
traditional machine learning methods can deal with the
traffic routine better in contrast to model-driven methods.
However, its effectiveness is limited when it is used to
process high-dimensional data [15].*e rise of deep learning
theory makes it possible to process high-dimensional traffic
data [16]. In recent years, deep learning based traffic pre-
diction methods have been developed rapidly [17, 18]. Li
et al. proposed a model based on ensemble empirical mode
decomposition and random vector functional link network
to predict travel time [19]. In order to avoid the influence of
imbalance and lack of large training samples for the model,
Lin et al. proposed incident detection framework based on
generative adversarial network (GAN) [20]. *ese methods
can effectively deal with high-dimensional traffic data and
show higher prediction accuracy for expressway and carriage

way [21]. However, unlike highways and carriage roads,
urban traffic data has complex spatial-temporal correlation
[22]. Due to the simple structure of the models mentioned
above, it is difficult to investigate the spatial-temporal
characteristics for complex road networks [23].

Effective extraction of spatial-temporal characteristics is
essential to improve the performance of traffic prediction
models. *e past research focused on extracting the spatial
features of traffic data; the spatial structure can be divided
into Euclidean structure and non-Euclidean structure
[24, 25]. Since the structure of the Euclidean urban traffic
data is similar to storage structure of images, and the
convolutional neural network (CNN) is one of the most
popular models for processing image data [26], CNN has
been widely applied to extract spatial characteristics of
Euclidean urban traffic data. Khajeh et al. [27] considered
the spatial relationship between traffic data, used this spatial
information to train CNN, and obtained satisfactory pre-
diction results. CNN has good ability of extracting spatial
feature when Euclidean data structure is employed, but it
cannot directly process non-Euclidean structure data [28].
To extract spatial characteristics from data of non-Euclidean
structure, motivated by CNN [29], Graph Neural Network
(GNN) [30] and Graph Convolutional Network (GCN) [31]
had been proposed to investigate complex spatial topological
structure. *e methods mentioned above only focused on
the spatial feature extraction but neglected the important
temporal features. To remedy this, Recurrent Neural Net-
work (RNN) [32] and its two variants, i.e., LSTM [33] and
GRU [34], are widely used to capture the temporal char-
acteristics. However, urban traffic data has complex spatial-
temporal characteristics because interdependence, CNN,
GCN, LSTM, and GRU have not considered the joint in-
fluence of spatial-temporal characteristic [35], which is one
of the main reasons for its low accuracy.

To explore the influence of spatial-temporal character-
istics, a spatial-temporal hybrid model Convolutional LSTM
(ConvLSTM) was proposed [36]. He et al. [37] added re-
sidual units to solve the problem that effectiveness of pre-
diction deteriorated with the depth of the model network.
Zhang et al. [38] proposed the ST-ResNet, which trans-
formed urban traffic situation into raster data of Euclidean
structure and improved the model’s ability of capturing both
the spatial and temporal characteristics. To improve the
model’s ability of automatically capturing spatial-temporal
characteristics, Bao et al. [39] considered the influence of bad
weather on traffic flow in the model. *en, Guo and Zhang
[40] further considered external factors such as weather and
holidays to achieve the prediction accuracy under external
disturbances. Experiment results showed that ST-ResNet
and derived variations can effectively extract both spatial and
temporal characteristics of urban traffic data. However, the
original ST-ResNet and its variations can only extract the
local spatial features, neglecting the joint influence of the
global and local spatial features.

In order to consider the impact of global spatial features
on traffic data, Ren et al. [41] proposed global-local temporal
convolutional network (GL-TCN) to capture global and
local dynamics, but they ignored the analysis of data
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correlation in their work. Feng et al. [42] proposed Dynamic
Global-Local Spatial-Temporal Network (DGLSTNet) to
derive the global and local information simultaneously from
both spatial and temporal perspectives, but they ignored the
capture of long-term temporal features. *erefore, how to
improve correlation in traffic data and long-term temporal
correlation is very important to improve performance of
traffic prediction model.

To overcome the above shortcomings and extract the
correlation information in traffic data, global spatial cor-
relation, and long-term temporal correlation of urban traffic
data, a novel Global-Local Spatial-Temporal Residual Cor-
relation Network (GL-STRCN) is proposed. Our work in
this paper focuses on prediction method on urban traffic
status; the main contributions are the following:

(i) A spatial-temporal correlation feature extraction
component is proposed to ensure that the data
processed by the model is coherent.

(ii) We design global, local, and temporal feature ex-
traction components to capture spatial-temporal
feature of traffic data.

(iii) We design a comfort function to quantitatively
measure additional factors such as weather and
accidents.

(iv) We use TaxiCD and PEMS-BAY datasets to verify
the accuracy of the newly proposed GL-STRCN
model. Experimental results show that the predic-
tion performance of our proposed model is the best
one when compared with other baseline models,
including CNN, ST-ResNet, GL-TCN, and
DGLSTNet.

2. Problem Description

In this section, we first review the definition of traffic raster
data, then discuss the spatial-temporal characteristics of
urban traffic data, and finally analyze the impact of global-
local spatial characteristics.

2.1. Definition of Traffic Raster Data. *ere are many kinds
of spatial-temporal data in our world, Atluri et al. [43]
divided spatial-temporal data into four categories, i.e., event
data, trajectory data, point reference data, and raster data.
Urban traffic data is a typical spatial-temporal data. In this
article, we mainly study the traffic data with a raster
structure. *e definition of raster data is shown in Figure 1.

We firstly transform urban traffic data into an I∗ J
Euclidean structural based on latitude and longitude. *us,
each position in the network is regularly distributed. *e
relationship between points is similar to that of pixels in an
image. Secondly, we record the traffic data of each location in
the network at a fixed time interval ∆t. x

i,j
t represents the

urban traffic data collected in the location (i, j) at time t, the
urban traffic data of the network area I∗ J is represented by
Xt ∈RI∗J, and Xt is named as the traffic raster data.

2.2. Problem Definition. After conversion in Section 2.1, the
traffic prediction problem is transformed into the given
historical traffic raster data {Xt| t� 0, . . ., k} and then they are
used to derive the data Xk+∆t at a later time interval k+∆t,
where k is the last time node for traffic raster data. Traffic
raster data not only has traditional spatial-temporal char-
acteristics, but also has significant global-local spatial
characteristics. Accurate learning of these characteristics is
essential to improve the prediction accuracy of the model.

2.3. Spatial-Temporal Characteristics Analysis. Urban traffic
data is used to generate spatial-temporal characteristics. In
the spatial dimension, due to the interconnection between
urban road networks, when traffic congestion occurs in a
certain area of the road network, the congestion status will
be postponed to the surrounding areas, as shown in
Figure 2(a). In the temporal dimension, urban traffic data is
affected by historical traffic data, and the daily traffic data has
some similarity, as shown in Figure 2(b). *erefore, the
traffic data at the next moment in a certain area of the urban
road is not only related to the traffic data at the previous
moment, but also related to the traffic data in the nearby
area. Considering a single feature of the urban traffic data
only has obvious defects and often results in low prediction
accuracy.

2.4. Global-Local Spatial Characteristics Analysis of Urban
TrafficData. Urban traffic data is affected by both global and
local spatial features. From the perspective of the overall
traffic status of urban traffic data, during the peak period, the
whole urban road network is in a status of congestion, as
shown in Figure 3. On the contrary, outside the peak period,
the urban traffic status is smooth. *erefore, urban traffic
data has significant global spatial characteristics. Urban
traffic data also has obvious local spatial characteristics. For
instance, if a traffic accident occurs, then the trend of traffic
data in its local areas will be greatly changed.*erefore, if we
only consider one of the global or local characteristics, the
corresponding prediction model may have low accuracy.

3. Methodology

In this section, the fundamental architecture of the original
ST-ResNet is briefly reviewed first. *en, the framework of
proposed GL-STRCN is introduced in detail.

3.1. Structure of Classical ST-ResNet. We introduce the
classical ST-ResNet for making the paper self-contained. It
is easy to see that the ST-ResNet consists of 2D convolution
and residual unit. As discussed in Section 1, ST-ResNet
used 2D convolution to extract the spatial characteristics of
urban traffic data and combine 2D convolution and re-
sidual unit to extract the temporal characteristics; the
structure of ST-ResNet is shown in Figure 4.
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A: Congestion point
B: Congestion propagation point 1
C: Congestion propagation point 2
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Figure 2: Spatial-temporal characteristics analysis of urban traffic data. (a) Spatial dimension. (b) Temporal dimension.
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Figure 3: Global spatial characteristics of urban traffic data.
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Figure 1: Definition of the raster data.
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3.2. Global-Local Spatial-Temporal Residual Correlation
Network

3.2.1. Basic Structure. As described in Section 2.1, we trans-
form the urban traffic data into traffic raster data and generate
traffic raster sequence according to time. *rough the estab-
lishment of spatial-temporal correlation extraction component,
the correlation analysis of historical traffic raster series is
carried out, and the series data with high correlation degree is
generated into spatial-temporal series. Two kinds of convo-
lution kernels are designed to construct global and local spatial
feature extraction components. *e global and local spatial
features of urban traffic raster data are captured, respectively,
and the two features are fused to obtain the spatial feature.
Using the temporal feature capture capabilities of LSTM or
GRU models, we construct a long-term temporal feature ex-
traction component to obtain the temporal characteristics of
traffic raster data. Finally, the spatial and temporal features are
weighted out, and the final predicted value is obtained through
the activation function. *e structure of the GL-STRCN is
shown in Figure 5. According to different temporal feature
extraction components, two models of GL-STRCN (LSTM)
and GL-STRCN (GRU) are obtained.

3.2.2. Spatial-Temporal Correlation Feature Extraction
Component. In order to improve the correlation of the input
data, Pearson’s correlation coefficient method [44] is in-
troduced. Pearson’s correlation coefficient formula is

ρx,y �
􏽐

n
i�1 xi − x( 􏼁 yi − y( 􏼁􏼂 􏼃

σxσy􏼐 􏼑
, (1)

where xi and yi (i� 1, . . ., n) are the target traffic raster data
and the traffic raster data to be compared, respectively, n is
the number of traffic rasters to be selected, σx is the sample
population standard deviation of the target traffic raster data,
and σy is the sample population standard deviation of the
traffic raster data to be compared. According to Pearson’s
correlation coefficient method, the original traffic raster data
can be divided into spatial sequence input XinS and temporal
sequence input XinT.

3.2.3. Global Spatial Feature Extraction Component. Take
the traffic raster data dimension M1 ∗ M1; for example,
convolution kernel dimension is set to M1, step is set to 0,

and no pooling is done. *e global spatial feature convo-
lution operation is shown in Figure 6. *e global spatial
feature convolution formula is defined as

X
l
G � fAF fEN W

l
G ∗X

l−1
G + b

l
G􏼐 􏼑􏼐 􏼑, l � 1, . . . , LG, (2)

where Xl−1
G and Xl

G are the input and output of the l-th layer
of the global spatial feature extraction component, respec-
tively, Wl

G is the global convolution kernel, bsl is the bias
term of the l-th global feature extraction convolutional layer,
and LG is the number of layers that the global spatial feature
extraction component needs to convolute. fEN represents a
size enlargement operation, enlarging the dimension from
1 ∗ 1 to the dimension of the traffic raster data. fAF is the
activation function.

To avoid the prediction accuracy that decreases as the
depth of the convolution layer increases, we introduce re-
sidual units to improve the sensitivity of our model to
decrease changes in data; the residual operation is shown in
Figure 7. *e output Xl

G of the global convolution com-
ponent is input to the residual unit, and the residual op-
eration of the spatial feature extraction component is defined
as

X
l
S � X

l−1
S + FR X

l−1
S ; θl

S􏼐 􏼑, l � 1, . . . , LR, (3)

where Xl−1
S and Xl

S are the input and output of the l-th
residual unit, respectively, θl

S is the set of learnable pa-
rameters in the l-th residual unit, FR is the residual mapping
of the global spatial feature extraction component, and LR is
the number of residual layers required for global compo-
nents. After the output of the global convolution component
is processed by residual operation, the global spatial feature
output XsG is obtained.

3.2.4. Local Spatial Feature Extraction Component. We also
construct a local spatial feature extraction component to
extract the local spatial characteristics of the traffic raster
data. To avoid the insufficient dimensionality, as described in
Section 3.2.3, we only convolute the traffic raster data and do
not reduce the dimension. We set the size of convolution
kernel of local spatial features smaller than the dimension of
data to capture local spatial features. *e local spatial feature
convolution is shown in Figure 8. *e local spatial feature
convolution formula is defined as

X
l
L � fAF W

l
L ∗X

l−1
L + b

l
L􏼐 􏼑, l � 1, . . . , LL, (4)

where Xl−1
L and Xl

L are the input and output of the l-th layer
of the local spatial feature extraction component, respec-
tively, Wl

L is the local convolution kernel, bLl is the bias term
of the l-th local feature extraction convolutional layer, and LL
is the number of layers that the local spatial feature ex-
traction component needs to convolute.

Similar to global convolution component, the output Xl
L

of the local convolution component is input to the residual
unit. After the output of the local convolution component is
processed by residual operation, the local spatial feature
output XsL is obtained.
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Figure 4: Structure of ST-ResNet.
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3.2.5. Long-Term Temporal Feature Extraction Component.
Urban traffic data is affected by spatial and temporal
characteristics in daily operations. *e original ST-ResNet
lacks the ability of capturing the long-term characteristics of
traffic data, and it is easy to lose the rules of urban traffic
data. *is paper designs long-term temporal feature ex-
traction components based on LSTM and GRU, respectively,
and defines the operation of the time feature extraction
component as

Xtem � fRe2 fLSTM/GRU fRe1 X
(m,n)
tem􏼐 􏼑􏼐 􏼑􏼐 􏼑, (5)

where X
(m,n)
tem is the traffic raster data with dimension (m, n),

fRe1 is a matrix change operation that changes the dimension
of the matrix from (m, n) to (1,m ∗ n), f LSTM is the forward
calculation of LSTM, f GRU is the forward calculation of
GRU, fRe2 is a matrix change operation that changes the
matrix dimension from (1, m ∗ n) to (m, n), and Xtem is the
final output of the temporal feature extraction component.

3.2.6. Fusion of Spatial-Temporal Characteristics. We adopt
a parameter matrix fusion method to perform weighted
fusion of the global spatial feature output XsG, local spatial
feature output XsL, and long-term temporal feature output

Xtem. *e weight value is dynamically adjusted according to
model training. *e formula is

XFusion � f WsG ∗XsG + WsL ∗XsL + Wtem ∗Xtem( 􏼁, (6)

where WsG, WsL, and Wtem represent the proportions of
global spatial features, local spatial features, and long-term
temporal features, respectively. f is a sigmoid function.

3.2.7. Loss Function. *e index mean square error (MSE) is
used as the loss function to evaluate the errors between the
real values and predicted values in model training

LMSE �
􏽐

n
i�1 XT − XP

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

n
, (7)

where XT and XP are the real value and predicted value,
respectively, and n is the total number of samples.

4. Experiments

In order to evaluate the effectiveness of the proposed model,
a series of experiments have been conducted. *ey are or-
ganized into the following steps.

Local spatial
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Figure 5: Structure of Global-Local Spatial-Temporal Residual Correlation Network.
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4.1. Data Collection

4.1.1. TaxiCD. *e experimental data records the posi-
tioning data of Chengdu taxis from 6:00 a.m. to 12:00 p.m.
every day. *e specific date is from August 3, 2014 to August
23, 2014, totally 21 days.*e data format is shown in Table 1.
We use TaxiCD data to verify the prediction accuracy of
Euclidean structure models.

4.1.2. PEMS-BAY. PEMS-BAY is the traffic data collected by
the performance measurement system of California trans-
portation department. *ere are totally 325 sensors, which
collect traffic data for five months (January 1, 2017 ∼May 31,

2017). *e time interval of data is 5min. PEMS-BAY is
mainly used to verify the prediction accuracy applicable to
non-Euclidean structural models.

4.2. Construction of Traffic Raster Data. Based on the dis-
tribution of vehicles, the original data is converted into
traffic raster data by latitude and longitude. Generate traffic
raster data at 5-minute sampling intervals. *e traffic raster
structure of the two datasets is shown in Table 2. To de-
termine whether the latitude and longitude of the vehicle are
within the raster range, the discriminant function for
mapping the original data to the traffic raster network is
designed as follows:

Xl-1 XlActivation
function 2D conv 2D conv

Activation
function

F (Xl-1; θl)

...

Figure 7: Residual structure.
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Figure 6: Global spatial feature extraction.
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Figure 8: Local spatial feature extraction.
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f Dlon,lat(n), xi,j􏼐 􏼑 �
Min lon xi,j􏼐 􏼑􏼐 􏼑<Dlon(n) <Max lon xi,j􏼐 􏼑􏼐 􏼑 i ∈ I, j ∈ J

Min lat xi,j􏼐 􏼑􏼐 􏼑<Dlat(n) <Max lat xi,j􏼐 􏼑􏼐 􏼑 i ∈ I, j ∈ J

⎧⎪⎨

⎪⎩
, (8)

where Min (lon (xi,j)) and Max (lon (xi,j)) represent the
minimum andmaximum longitude of the location of the traffic
raster network xi,j, respectively, and Dlon (n) represents the
longitude of the original data. *e notations in the second line
of the above formula have the same meanings for the latitude.

After the traffic raster data is generated, we need to
standardize the traffic raster data to reduce the influence of
different dimensions between the data, and the calculation
formula is as follows:

X
n
nor �

X
n
real − Xreal( 􏼁

σx
, (9)

where Xn
real is the n-th data in the traffic raster data, Xreal is

the average value of all traffic raster data, and σx is the
standard deviation of the overall traffic raster data.

4.3. Extraction of Spatial-Temporal Correlation Sequence.
After the generation of traffic raster data, we take the raster
data x0,17 of TaxiCD as an example and use spatial-temporal
correlation feature extraction component to analyze its
correlation. *e correlation curve is shown in Figure 9, and
the time step in Figure 9 is five minutes. Figures 9(a) and
9(b) show the spatial and temporal correlation of traffic data
over a day, respectively. As shown in Figure 9, the smaller the
time interval to the time node to be predicted, the higher the
spatial-temporal correlation between the traffic raster data.

4.4. Model Parameter Settings. *e new proposed GL-
STRCN is built based on the deep learning framework
PyTorch, and the experiment is carried out on a computer

equipped with GPU computing.*e Adam optimizer is used
to optimize the model parameters. *e training step is set to
0.0001, the number of batches is set to 20, and the maximum
number of iterations is set to 800; the convolution kernels
and residual cells are initialized by random functions. Other
structure parameters of the model are shown in Table 3.

5. Results

*e experiments have been performed based on the steps
outlined in Section 4. *e performance of the proposed GL-
STRCN model is compared with that of four baseline
models, e.g., CNN [26], ST-ResNet [38], GL-TCN [41], and
DGLSTNet [42]. In particular, the global-local features of the
collected data have been analyzed separately. *e possible
network topologies to be employed in the proposed model
and its impact on the results are also investigated. In ad-
dition, the reliability of the results is analyzed by considering
some external factors.

5.1. ?e Global-Local Predictions Based on the GL-STRCN.
*e abovementioned GL-STRCN was used as the initial
instrument to make predictions. After the initialization
process was completed, the parameters of the model are
trained with a training set. We take x10,10 of TaxiCD in traffic
raster data as an example. Figures 10(a) and 10(b) show the
local prediction effect of the GL-STRCN in the test set and
the training set, respectively. Figure 11 shows the global
prediction effect of the GL-STRCN in the test set. In both
scenarios, it is observed that the traffic volume on 19 August,
2014 starts from a peak and gradually flattens at the later

Table 1: Original data format of TaxiCD.

Label Explanation
Taxi_ID *e number of taxis
Lon *e longitude of taxi
Lat *e latitude of taxi
Up_down Get on or off
Time Record time

Table 2: Format of traffic raster data.

Type TaxiCD PEMS-BAY
Location In Chengdu, China In California, USA
Date August 3, 2014, to August 23, 2014 January 1, 2017, to May 31, 2017
Time interval 5 minutes 5 minutes
Raster size 24 ∗ 24 24 ∗ 24
Number of available time intervals 4536 43200
Area of the raster 648 square kilometres 354 square kilometres
Longitude (min) 103.945689 −122.078275
Longitude (max) 104.204976 −121.805543
Latitude (min) 30.585958 37.249226
Latitude (max) 30.786707 37.416413
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hours of the day. *ere is a minor fluctuation at the mid-day
time. At the final hours of the day, the fluctuation is be-
coming stronger. Note that there is no marked discrepancy
in raster data found from 12:00 to 12:30 on 19 August, 2014.

5.2. Evaluation by Comparing the Results from Two Classical
Baseline Models. We choose the CNN and the original ST-
ResNet as the template baseline models to evaluate the re-
sults from the proposed model. Root Mean Square Error

(RMSE) and Mean Absolute Error (MAE) are used to
evaluate the prediction performance of above models.
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Figure 9: Comparison of temporal and spatial correlation. (a) Spatial correlation. (b) Temporal correlation.

Table 3: Model structure parameters.

Parameter GL-STRCN
Input size [Batch size, 1, 24, 24]
Number of residual units 8
Convolution kernel size of global components 24× 24
Convolution kernel size of local components 3× 3
Convolution kernel step size of global components 0
Convolution kernel step size of local components 1
Dimensions of the LSTM/GRU input layer 1× 576
Number of hidden layers of LSTM/GRU 12
Dimensions of the LSTM/GRU output layer 1× 576
Activation function Residual unit: ReLu; other: sigmoid
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Figure 10: Local predictive effect of GL-STRCN. (a) Predictive effect of model on training set. (b) Predictive effect of model on test set.

Computational Intelligence and Neuroscience 9



where yi is the true value of traffic data, yi is the traffic data
predicted by the model, and m is the number of samples.

*e baseline models were trained and tested by using the
data from TaxiCD, and the parameter settings for each
baseline model are the same as those for GL-STRCN (GRU).
*e prediction results of different models in the test set are
shown in Table 4. Figure 12 shows the results of different
models for predicting traffic data on a random day in a test
set. It can be seen from Table 4 and Figure 12 that the
prediction results of GL-STRCNmodel are more convergent
than CNN and ST-ResNet.

In order to measure the prediction accuracy of the model
in greater detail at a local domain, we investigated five small
areas in the raster data; they are location A: Chengdu East
Station (x18,16), location B: Wangjiang Tower Park (x17,13),
location C: ChengduWest Railway Station (x9,5), location D:
Chengdu Zoo (x8,15), and location E: West China Campus of
Sichuan University (x16,12). *e distribution of the specific
coordinate points is illustrated in Figure 13.

*e RMSE values of different prediction models are
listed in Table 5. In Table 6, we list the MAE values. Based on
the experimental results in Tables 5 and 6, GL-STRCN has
the best predictive effect, and the best value is shown in bold.
Compared with other baseline models, our model has better
accuracy in predicting local traffic status.

To validate the effect of time intervals on model pre-
dictions, we increase the prediction interval from 5 minutes
to 1 hour to assess the long-term predictive performance of
GL-STRCN. Figure 14 shows the traffic data prediction
results for location A. From the graph, the prediction ac-
curacy of all models decreases with the increase of the
prediction interval. As the prediction interval increases, the
GL-STRCN proposed by the authors always maintains a
good prediction accuracy.

5.3. Analysis of the Model considering Global-Local Features.
In order to verify the superiority of GL-STRCN in global-
local spatial feature extraction, we select GL-TCN and
DGLSTNet as baseline models for comparison. *e pa-
rameter settings of all models are basically the same. We use
data of TaxiCD and PEMS-BAY to train and test all models.
*e structures of TaxiCD and PEMS-BAY are shown in
Figure 15.

*e prediction results of the discussed three models are
shown in Table 7. We see that, for Euclidean and non-
Euclidean traffic data, GL-STRCN (GRU) and DGLSTNet
have the best prediction accuracy, respectively.

5.4. Network Configuration of the GL-STRCN. In order to
verify the influence of the number of convolution layers on
the GL-STRCN model, we increase the number of convo-
lution layers from 2 to 10. It can be seen from Figure 16(a)
that when the number of convolution layers is 5, the RMSE
error is the smallest; when the convolution layers is set
greater than 5, the accuracy of the proposed model decreases
gradually. By changing the size of the convolution kernel, as
shown in Figure 16(b), we find that when the size of the
convolution kernel is between 3 and 7, the RMSE accuracy of
the model has little difference.

5.5. Uncertainty due to the External Factors. *e daily traffic
conditions are complex and unstable. In order to improve
the adaptability of the model, we expand the components of
GL-STRCN and introduce the external interference module.
*e structure of external interference module is shown in
Figure 17.

In this section, we define a comfort function
fcomfort ∈ [0, 1] . When the current weather or traffic
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Figure 11: Global predictive effect of GL-STRCN.
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Table 4: Comparison of prediction results of different models in the test set (global).

Model
TaxiCD (test set)

RMSE (average) MAE (average)
CNN 4.8555 3.8283
ST-ResNet 4.3478 3.5459
GL-STRCN (LSTM) 4.2578 3.3197
GL-STRCN (GRU) 4.0295 3.2349
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Figure 12: *e prediction performance of the four models. (a) CNN. (b) ResNet. (c) GL-STRCN (LSTM). (d) GL-STRCN (GRU).
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Figure 13: Five typical local regions are used to verify the local feature extraction capabilities of GL-STRCN.
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Table 5: RMSE results of different prediction models.

Location
Model

CNN ST-ResNet GL-STRCN (LSTM) GL-STRCN (GRU)
A 5.7329 4.4519 3.7151 3.6552
B 13.4603 13.7236 6.1164 6.8788
C 6.0828 5.2430 4.6727 4.3122
D 8.9210 4.9526 4.6857 4.5555
E 19.4317 15.9623 5.5641 6.3349

Table 6: MAE results of different prediction models.

Location
Model

CNN ST-ResNet GL-STRCN (LSTM) GL-STRCN (GRU)
A 4.6274 4.3776 3.6265 3.5050
B 10.6201 13.4834 6.0850 6.8516
C 4.8593 5.1226 4.5506 4.1562
D 6.3986 4.8172 4.5520 4.3585
E 14.9280 15.6158 5.5062 6.2832
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Figure 14: *e prediction interval was extended from 5 minutes to 1 hour to verify the long-term prediction ability of GL-STRCN.

TaxiCD PEMS-BAY

Figure 15: *e structures of TaxiCD and PEMS-BAY.
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condition is satisfactory, fcomfort � 1; otherwise it is 0. We
use TaxiCD to verify the accuracy of the improved model
and use the crawler written in Python to crawl the corre-
sponding weather data of Chengdu. *e definition of
comfort corresponding to weather is shown in Table 8.

After the weather data processing is completed, it is
transformed into a satisfaction matrix with dimensions of
(24, 24), and the training accuracy comparison of the test
set model is obtained, as shown in Table 9. *e model
considering additional factors has higher accuracy.

5.6. Discussion. From the numerical results shown in Sec-
tions 5.1–5.5, we see that our proposed GL-STRCN model
shows a significant improvement on the prediction accuracy.
In particular, when extracting both global and local features
from traffic data, the GL-STRCN (GRU) model shows ex-
cellent performance. CNN, as a well-known prediction
model, is difficult to effectively extract the temporal char-
acteristics of urban traffic data.

When processing spatial-temporal raster data, the
original ST-ResNet lost the long-term temporal character-
istics of traffic data due to failing to capture the time trends.
LSTM and GRU, as improved models of RNN, effectively

Table 7: Comparison with the model considering global-local features.

Model TaxiCD PEMS-BAY
RMSE (average) RMSE (average)

GL-TCN 4.0955 2.7335
DGLSTNet 4.1032 2.6956
GL-STRCN (GRU) 4.0295 2.7224
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Figure 16: Effect of different network configuration.
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Figure 17: *e structure of external interference module.

Table 8: Comparison of model accuracy after considering external
factors.

Weather Comfort
Sunshine fine 1
Cloudy 0.8
Overcast sky 0.7
Sprinkle 0.5
Middle rain 0.4
Drencher 0.3
Cyclone 0.1

Table 9: Comparison with the model considering external factors.

Model RMSE in TaxiCD
GL-STRCN (no external factors) 4.1437
GL-STRCN (external factors) 4.0233
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solve the problem of gradient disappearance and gradient
explosion in RNN. However, the GRU structure is simpler
and easier to train than LSTM, which can reduce redun-
dancy and improve training efficiency of the model.

Due to lack of the ability of analyzing historical data
association and capturing long-term time characteristics by
using the GL-TCN and the DGLSTNet, the prediction ac-
curacy of the above two models in urban road environment
datasets is not as good as that of GL-STRCN.

It is noted that choosing the appropriate network pa-
rameters is critical to the prediction performance of GL-
STRCN. If the interference of external factors is ignored, the
prediction performance of the model will also be reduced.

In summary, through a number of experimental com-
parisons, it is found that the GLSTRCN model proposed in
this paper has better prediction performance in urban envi-
ronment. Compared with other baseline models, GL-STRCN
not only effectively extracts global-local spatial-temporal
features, but also has the ability of extracting long-term
temporal features. *erefore, the GL-STRCN model pro-
posed in this paper is more suitable for urban road network
traffic prediction.

6. Conclusion

In this paper, we investigated the methods for traffic flow
status prediction and proposed a Global-Local Spatial-
Temporal Residual Correlation Network (GL-STRCN).
Spatial-temporal correlation feature extraction component
was built to implement historical data correlation. Global
and local spatial feature extraction component was con-
structed to capture spatial association. Long-term temporal
feature extraction component was constructed by using the
strong time feature capture capabilities of LSTM or GRU to
acquire dynamic time evolution. Two traffic datasets are
adopted to verify the prediction accuracy of the proposed
GL-STRCN model. Experimental results demonstrated the
effectiveness of the new proposed model over the existing
methods, in particular in an urban environment. *e future
work will focus on capturing the spatial-temporal correla-
tion of models in complex traffic environments to improve
the accuracy of traffic prediction.
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