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Abstract

This paper presents a method to localize a robot in a global coordinate frame based on a sparse 2D map containing outlines of 

building and road network information and no location prior information. Its input is a single 3D laser scan of the surround-

ings of the robot. The approach extends the generic chamfer matching template matching technique from image processing 

by including visibility analysis in the cost function. Thus, the observed building planes are matched to the expected view 

of the corresponding map section instead of to the entire map, which makes a more accurate matching possible. Since this 

formulation operates on generic edge maps from visual sensors, the matching formulation can be expected to generalize 

to other input data, e.g., from monocular or stereo cameras. The method is evaluated on two large datasets collected in dif-

ferent real-world urban settings and compared to a baseline method from literature and to the standard chamfer matching 

approach, where it shows considerable performance benefits, as well as the feasibility of global localization based on sparse 

building outline data.

Keywords Global localization · Semantic mapping · Hybrid mapping · Point clouds

1 Introduction

Accurate localization in urban environments is a crucial 

dependency of many emerging robotic applications, such as 

autonomous vehicles, delivery and service robots, or aug-

mented reality applications. While systems like the global 

navigation satellite system (GNSS) or localization based on 

wireless signals are sufficient for many applications, there 

is a benefit to a robot being able to localize based purely on 

its own sensors in cases these external services are unavail-

able or lacking in accuracy. In urban and highly structured 

environments, large, usually artificial, planar structures 

provide robust features for localization and registration of 

3D sensor data (Pathak et al. 2010). Many vertical planes 

in urban environments are represented in human-readable 

maps as building outlines, such that a mapping between the 

two allows to localize a robot in the global map coordinate 

frame. This paper describes a method to perform this locali-

zation based on data from a 3D laser range finder, for exam-

ple for a robot travelling in an urban environment, in a 2D 

map containing building outlines. Such map information 

is freely available from common online map sources like 

OpenStreetMap (Haklay and Weber 2008), Google Street 

Maps or official municipal cadastral maps. The proposed 

localization method uses only information about building 

outlines and the street network, which keeps its demands 

for storage capacity or bandwidth low. It is based on the 

geometry of the environment alone, without the requirement 

of visual features such as appearance or texture data. Thus, 

it is largely independent from seasonal variation or variation 

based on the time of day. The matching procedure needs a 

single 3D laser scan as input. Therefore, no odometry or 

time series of measurements is necessary. As a global locali-

zation method using an external map, it is not necessary 

for the robot to have visited the location before or to build 

a feature database for the purpose of localization, since all 

necessary map information is freely available online.

The localization problem as posed here is an instance of 

the template matching problem: finding a relation between 

the query features, consisting of the planar segments in the 

robot observation, and the building outlines in the map. 
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Theoretically, this problem could be solved by knowing the 

correspondence between a single observed plane and one 

building edge in the map; however, this correspondence 

problem is highly nontrivial, especially when no appear-

ance information is used.

As for all localization methods, the environment needs 

to contain a sufficient amount of salient information to 

uniquely distinguish it; the lack of this uniqueness is known 

as perceptual aliasing. For a localization method that builds 

on geometry alone, this means it will not perform well in 

very highly structured or highly artificial environments, but 

our experiments show that there is sufficient information 

contained for the method to work for a large part of two dif-

ferent real-life urban environments containing scenes with 

varying urban characteristics such as streets with high build-

ing density, tunnels, courtyards and open spaces.

This paper is structured as follows: in Sect. 2, the pro-

posed method is categorized with respect to the different 

localization tasks important in robotics, and an overview 

over related work is given. Section 3 describes in detail the 

steps performed to estimate the robot pose in the building 

outline map. The approach is experimentally evaluated on 

two datasets and compared to a baseline method in Sect. 4. 

Section 5 concludes the paper.

2  Related work

Localization is a field of research that, due to its crucial 

importance for the successful operation of autonomous 

robots, has received extensive attention from the scientific 

community. For a categorization of the different methods 

and approaches discussed in this overview over related work, 

it is helpful to distinguish a number of related robotics prob-

lems associated with localization.

– Place recognition is the problem of matching sensor data 

collected in a place to a database of features collected in 

a number of distinct places, and retrieving the correct 

one. To build this database, the robot has to have visited 

all eligible places before.

– Simultaneous localization and mapping (SLAM) 

describes the process of building a consistent metric map 

of an environment, which then can be used for localiza-

tion. The input usually consists of a sequence of distance 

measurements from a laser scanner or similar sensor and 

odometry information, while other sensor measurements, 

for example about appearance, can be incorporated as 

well. An initial pose estimate, e.g., the result of a global 

localization method, is needed for starting the SLAM 

process.

– Semantic localization is sometimes used for the process 

of labeling the surroundings of the robot based on sensor 

data (image or otherwise) with semantic categories (Vas-

udevan and Siegwart 2008; Rubio et al. 2016; Drouilly 

et al. 2014). Even though this is not a problem of local-

izing a robot on a map, its result can be used as part of 

such a localization method as an additional feature.

– Global localization or the kidnapped robot problem, 

which is the topic of this work, describes the task of 

localizing a robot on a map in a global frame without any 

prior information. For general applicability, it is desir-

able that the map comes from an external source, such 

as a topographical or cadastral map, and does not have 

to be built based on sensor measurements specifically 

for the purpose of localization. Usually, global localiza-

tion should work from a single sensor measurement or 

a short sequence of measurements, such that it can be 

used as initialization procedure, for example for SLAM 

as described above.

Further distinctions between localization methods for robots 

in urban environments can be made based on the sensors 

that are used to provide observations about the environment. 

Many robots are equipped with a GPS sensor, which often 

provides information about the global location of the robot, 

which however may be noisy or temporarily unavailable due 

to obstructions in the environment. Other methods are based 

on camera images, either from monocular cameras or images 

with attached depth information from stereo cameras. Laser 

distance measurements and odometry measurements are 

often used as inputs in SLAM localization methods, while 

visual SLAM relies on monocular or stereo camera images.

The following gives an overview over different recent 

attempts at localization in urban areas, moving from appear-

ance-based methods to ones that use semantic features of the 

environment. Finally, the approaches that localize on maps 

of building outlines, such as the one presented in this work, 

are surveyed.

For global localization approaches, different kinds of 

maps have been considered as a reference against which to 

determine the location of the robot. Many approaches have 

focused on using appearance data for localization. Com-

mon to these is a databases of sensory images annotated 

with location information, against which a query image is 

matched to retrieve the camera location. The following para-

graph gives an overview over these approaches.

Aerial images have been used as prior information for 

localization in approaches such as the one by Leung et al. 

(2008), which extracts line segments from street-level 

images and matches the geometric relationships derived 

from them to aerial orthoimagery using a particle filter. 

Another example for this group of methods is the work 

by Kümmerle et al. (2011), which presented a SLAM sys-

tem that uses aerial images as a global prior. It matches 

structures found in aerial images to laser data, and uses the 
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relationships as constraints in graph-based SLAM. Agar-

wal et al. (2015) showed how to improve an approximate 

location estimate by matching short series of camera views 

with Google Street View panoramic images. This method 

enables global localization in an area of about 1 km radius. 

Majdik et al. (2013) presented a similar approach for the 

localization of flying vehicles in the Google Street View 

image database, where the difference in viewpoint between 

the images taken from the street level and the images from 

flying height constitutes a challenge. Localization in indoor 

environments modeled by a database of 2.5D images was 

shown by Liang et al. (2015). Their approach divides the 

localization problem into a place recognition step, where 

a template image is retrieved from the database, and a sub-

sequent pose matching between the query and the template 

image. Cappelle et al. (2007) compared robot observations 

with images sampled from a highly accurate dataset of 3D 

geometry and RGB appearance data to determine the robot 

position in cases where for example GPS is not available. 

A database of street-level image data augmented with 3D 

building models was used in the work of Baatz et al. (2012) 

to localize a device just from monocular images, where the 

geometry of the query image is approximated with vanishing 

point detection.

A second group of approaches does not rely on appear-

ance data, but uses sparser maps containing different sets 

of semantic features of urban environments for localiza-

tion. For moving robots with the capability of estimating 

their trajectory, this knowledge can be used to localize the 

robot by comparing the travelled path with the paths that 

are feasible in the road network. Lee et al. (2007) integrated 

approximate digital maps of the road network as additional 

constraints with a SLAM framework based on traditional 

on-board sensors. The OpenStreetSLAM system (Floros 

et al. 2013) uses chamfer matching to compare a trajectory 

of a robot, which is determined with visual odometry, to 

street map information. It localizes the robot by tracking 

pose hypotheses in a particle filter and selecting those which 

fit best with the paths traversable on the road network. Gupta 

and Yilmaz (2016) and Brubaker et al. (2013) followed sim-

ilar approaches, but used different representations for the 

travelled trajectories, which allowed for different matching 

formalisms. Irie et al. (2016) presented a localization mecha-

nism on high-level street maps containing street as well as 

sidewalk outlines that relies on labeling streets in images and 

retrieving a matching map position using a dependence max-

imisation approach. The method put forward by Ruchti et al. 

(2015) also depends on the labeling of areas as street or non-

street in laser scans. The semantic labeling results are used 

as sensor measurements in Monte Carlo localization on a 

map containing the street network of an urban environment. 

In a different approach presented by Hentschel and Wagner 

(2010), buildings extracted from OpenStreetMap were used 

as the reference map in a Monte Carlo localization frame-

work. Vysotska and Stachniss (2016) used building outlines 

retrieved from laser scan data to improve the localization 

in a SLAM framework. In that work, the matching of local 

surrounding buildings with a 2D map was performed using 

the ICP algorithm (Besl and McKay 1992), which was used 

to provide additional constraints for a graph-based SLAM 

formulation. In contrast to these approaches, the localiza-

tion method presented here aims at global localization, 

where no sequence of observations and no odometry data 

are available.

Building outlines in urban environments provide a sali-

ent source of geometric information, which has also been 

used for pose estimation with a single frame of sensor data. 

Many of these approaches have been based on estimating 

the geometry of the surroundings of the robot from camera 

images, and then estimating the camera pose in the map 

by finding matches with elements from the map data. For 

example, Antigny et al. (2016) used distinctive objects with 

the same appearance and constant, known dimensions (bill-

boards etc.) which are contained in semantically annotated 

maps, and localized with respect to them. This allows users 

to refine a rough position estimate, which is used to select 

the road furniture object, to an accurate pose. Cham et al. 

(2010) performed localization in a 2D map based on a sin-

gle omnidirectional ground level image, where the geometry 

of buildings was estimated using line and vanishing point 

detection, and geometric hashing was used to look up the 

transformation of the camera pose with respect to the map 

frame. The work presented by Chu et al. (2014) builds on 

this approach, but uses a similar method to refine the posi-

tion retrieved from a GPS device, i.e., localize in a smaller 

area around a given position. The method also relies on 

extracting building edges from a monocular camera image 

and matching the resulting geometry of a single building 

to buildings contained in a 2D map. Arth et al. (2015) used 

monocular images and an initial GPS fix to localize in a 

2.5D map. The ground plane of the map contains the build-

ing outlines contained in OpenStreetMap, whereas building 

heights were manually annotated. Matching was done by 

extracting lines from the camera images and matching them 

to the 2.5D map; additional filtering was executed by per-

forming a semantic segmentation of the image and matching 

this against OpenStreetMap information.

This paper is most closely related to the approach of 

Cham et al. (2010), but it works on data from a laser scanner 

instead of on omnidirectional images, and uses the fact that 

building outlines are made up from line segments, for which 

the chosen matching method of chamfer matching is suited 

well. Furthermore, the proposed method includes visibil-

ity analysis for a more accurate matching between expected 

and actual observations. It also relaxes the assumption that 

multiple corners of a building need to be visible at the same 
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time, which can be difficult in urban scenarios with large 

buildings, and particularly with occlusions. While the results 

presented in that work show that it is possible to reduce 

the number of candidate poses with the method presented 

there, a reliable global localisation without additional infor-

mation cannot be based on it alone. Similar differences exist 

between the present work and the approach of Chu et al. 

(2014), which furthermore has the different goal of refining 

the position estimate received from a GPS device, and not 

global localization. This is also a relevant difference between 

the work presented here and the approach of Arth et al. 

(2015), where again the localization problem is solved for 

the case where monocular images of a location are available 

along with a location estimate from GPS or a similar sensor. 

Arth et al. (2015) also performed a step of rescoring pose 

hypotheses by comparing the input data with the content of 

the map that is visible from the candidate location, which 

is related to the formulation of the cost function taking into 

account visibility information put forward in this article. 

However, their method relies on performing a semantic clas-

sification of an input camera image and comparing it with a 

backprojection of map data including building height, which 

is different from the information available in the scenario 

envisioned here. In this work, the input data is given by a 3D 

laser scans, and the matching is done against building out-

line data alone. Evaluation shows that the method performs 

well in a region significantly bigger than the typical error of 

a GPS device, such that the method can be said to perform 

global localization on an urban scale, rather than GPS pose 

refinement using additional sensor data.

3  Description of the localization method

3.1  Method overview

The global localization method described in this paper uses 

3D laser scans as sensor input data. It is matched against a 

2D map of an urban environment, which contains informa-

tion about building outlines as well as the street network. 

Data of this type can be retrieved from various sources, such 

as Google Maps, official cadastral maps or the OpenStreet-

Map project, which is used for the evaluation in this article.

The sensor data used for localization in this article comes 

from a 3D laser scanner. Only distance data is used, although 

appearance data in the form of laser intensities is often also 

available. Since the localization problem as discussed here 

is a 2D template matching problem, the initially 3D sensor 

data is reduced to a 2D representation by extracting vertical 

planar segments from the data, and reducing it further to a 

set of line segments representing these presumed building 

outlines. Matches between the building edges from the sen-

sor data and the 2D building outline map are computed using 

a fast and simple template matching procedure known from 

image processing. Since the template matching problem 

for mapping has special properties which are not taken into 

account by standard procedures, the results of this approach 

can be improved upon. Information from the building map 

and street network are also used to further reduce the number 

of candidates valid for subsequent processing. The remain-

ing candidate poses are then further refined by a variation of 

the chamfer matching procedure, which takes into account 

visibility considerations particular to the laser data match-

ing problem, and penalizes matches where buildings that 

are absent in the sensor data appear in the corresponding 

map section. The result of this computation is used to rank 

the candidates and either extract the top candidate as the 

estimated pose, or use a ranked set of candidates for further 

processing, e.g., for the initialization of a SLAM system. 

The sequence of processing steps is also illustrated in Fig. 1.

3.2  Point cloud processing and building outline 
segment detection

Before the template matching problem of localizing the 

robot on the building outline map can be addressed, the 

input data must be reduced to a set of lines representing the 

presumed building outlines in the sensor’s field of view. To 

this end, the very dense point clouds are reduced in size as 

a first step. For this, the rectangular cuboid approximation 

framework (RMAP) (Khan et al. 2014) is used to convert 

the point cloud into an occupancy grid consisting of cuboid 

cells at a lower resolution, and reduce the number of noisy 

observations. In this data structure, normal vectors can be 

efficiently computed for each occupied cuboid cell. Since 

we are interested in building outlines, and the roll and pitch 

angles of the robot travelling on the street can be assumed 

to be known, vertical surfaces can be extracted from the 

Laser scans

RMAP &
Normal

computation

2D grid
extraction

Edge
Extraction

OSM map

Standard FDCM

Candidate
Filtering

Pose

Candidates

compute
symmetric

FDCM
costs

Visible
Building
Segments

final

candidate

score

Fig. 1  Sequence of operations performed for localization on the 

building outline map
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occupancy grid by selecting cuboid cells that have a normal 

vector parallel to the ground plane.

These vertically oriented cuboid cells are then projected 

to the ground plane by setting their z coordinate to zero, and 

the number of cells per area unit is counted. The result is a 

histogram of the vertically oriented cuboid cells in the sen-

sor range of the robot. For the goal of extracting building 

outlines from this representation, the normal information 

from the point cloud should be preserved, since only points 

that have a similar normal direction can belong to a common 

planar surface. We use this information by binning the yaw 

angles of the cuboid cells and creating separate histograms 

for each angle range. In each of these histograms, line seg-

ments are extracted using the Probabilistic Hough Trans-

form (Matas et al. 2000). Parallel line segments with small 

distances between them and collinear lines with small gaps 

are merged to reduce noise in the resulting set of edges. The 

building outline extraction process is illustrated in Fig.  2, 

which shows both the histograms of oriented cuboids, and 

the line segments computed based on them.

3.3  Adapting directional chamfer matching 
to the localization problem

After the building outlines have been retrieved from the laser 

data, retrieving the robot pose in the building map becomes 

a template matching problem. Chamfer matching (Barrow 

et al. 1977) is a well-established method for template match-

ing, which is especially suitable to find correspondences 

between sets of line segments. This section describes the 

idea of chamfer matching and extensions of its original cost 

function to adapt it to the problem of matching templates 

for localization.

Chamfer matching is designed to find a transforma-

tion of a template edge map in the robot coordinate frame 

U =

{

�
i

}

, i = 1,… , n such that it optimally matches a sec-

tion of a query edge map V =

{

�
i

}

, i = 1,… , m in the map 

coordinate frame. This transformation is a 2D Euclidean 

transformation � ∈ SE(2) , where � = (�, tx, ty) . It can be 

interpreted to define a pose of the robot in the coordinate 

frame of the map, where its location is given by (tx, ty) , and 

its heading by � . The effect of this transformation on the 

robot measurements can be calculated by a rotation and a 

subsequent translation as

The optimal alignment of the query edge map with the tem-

plate map is the result of the transformation which mini-

mizes a distance function d between the two maps

In the following, let the transformed query edge set �(U, s) 

be denoted by Û.

Different distance functions can be used. For standard 

Chamfer matching, the distance function is given by the 

minimal distances to a template edge point for each point 

in the query edge map

For edge maps consisting of linear segments, it is more 

robust and efficient to consider the orientation for the edge, 

and penalize matches between edge points with different 

directions. This reasoning leads to the distance function of 

directional Chamfer Matching (DCM) (Liu et al. 2010)

(1)�(�; �) =

(

cos(�) − sin(�)

sin(�) cos(�)

)

� +

(

tx

ty

)

(2)
�̂ = argmin

�∈SE(2)

d(�(U, s), V).

(3)
dCM

(
Û, V

)
=

1

n

∑

�̂i∈Û

min
�j∈V

|||
�̂i − �j

|||
.

(4)

dDCM

(
Û, V

)
=

1

n

∑

�̂i∈Û

min
�j∈V

|||
�̂i − �j

|||
+ �

|
|
|
�(�̂i) − �(�j)

|||
,

Fig. 2  Illustration of the line 

segment extraction based on 

normal direction. The elements 

in the plots are colored accord-

ing to the orientation of their 

normal vector

(a) Histogram of cuboid cells (b) Extracted lines
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where an edge orientation � is determined for each edge 

point, and the distance of the orientations is determined as 

the minimal rotation necessary between them. In applica-

tions where it is acceptable to discretize the space of edge 

orientations, the optimization (2) can be efficiently com-

puted by computing a distance transform tensor, which con-

tains the cost contributions for each query edge point. This 

approximation is formulated in the fast directional chamfer 

matching (FDCM) method (Liu et al. 2010). In cases where 

the template and query edge maps can be represented as 

sets of linear segments, the summation of individual con-

tributions per point can be replaced by computations only 

involving the end points of the line segments by computing 

an integral distance transform.

These cost functions are designed for the task of find-

ing simple query edge maps in template edge maps derived 

from cluttered images. It is expected that, for a good match 

between template and query edge map transformation, each 

edge in the query edge map is close to a matching edge 

in the template edge map. All edges at larger distances are 

not considered for cost computation. For the application of 

localizing a set of building edges in a building outline map, 

where, due to the structured nature of typical building maps, 

there can be many areas that are similar to parts of what 

the robot sensors observe, it is desirable to also penalize 

matches where some part of the template that should exist 

in the query is not there. This is illustrated in Fig. 3, which 

shows two possible transformations of a template edge map, 

both of which result in the same (D)CM cost values, but 

one of them is clearly a worse match than the other, since 

the building edges derived from the scan do not contain a 

building that would be expected to be observed.

While this information about which edges of the template 

map should be matched to edges in the query map is not 

available in a general template matching task, an estimate 

of the expected observation for the localization task can be 

generated by extracting all the lines visible in the map from 

a given robot pose. We denote this set of edges visible from 

a position (tx, ty) by Ve(tx, ty) . With this definition, a forward 

cost function that takes only the expected observations for a 

given robot position into account can be defined as

Furthermore, knowledge about the expected observation also 

allows to define a reverse cost function that describes the 

extent to which the expected observation V
e
 is represented 

in the actual observation Û

Finally, the forward cost (5) and reverse cost (6) can be 

combined to form a cost function that is symmetric in the 

expected template edge map and the query map

A directional extension of these latter three cost functions 

similar to (4) is possible analogously.

Computing the optimization  (2) for these latter cost 

functions is significantly more complex than the cost func-

tions (3) and (4), as the set of visible edges, which constitute 

the template edge map used in the computation of the cost 

function, depends on the translation of the considered coor-

dinate frame transformation. This means that a computation 

of a distance transform tensor, which is independent of the 

coordinate transformation and allows the efficient computa-

tion in the FDCM approach, is not possible when the area 

covered by the template map is large. Even though visibil-

ity analysis can be implemented efficiently using a Binary 

Space Partition (BSP) tree (Fuchs et al. 1983), a brute force 

optimization of (2) with either cost function df  , dr
 , or d

s
 can 

be prohibitively computationally expensive. For this reason, 

in this work we adopt a heuristic approach by assuming that 

minimizers of these cost functions also result in low values 

of the simpler cost function d
DCM

 , if not the globally opti-

mal ones. Under this assumption, the FDCM method can 

be used in a first pass to generate a set of pose candidates 

C = {�i} = {(�i, tx,i, ty,i)}, i = 1,… , nC that result in values 

of d
DCM

 within a given factor of its global minimum. Only 

for these transformations, the visible lines are computed, and 

the more complex cost functions are evaluated.

(5)df

(
Û, V , �

)
=

1

n

∑

�̂i

min
�j∈Ve(tx,ty)

|||
�̂i − �j

|
|
|
.

(6)dr

(
Û, V , �

)
=

1

n

∑
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min
�j∈Û

|||
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|
|
|
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(7)ds

(

Û, V , �
)

=
1

2

(
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(

Û, V , �
)

+ dr

(

Û, V , �
))

.

Fig. 3  Illustration of examples for street corners with identical CM 

score, even though there are no sensor percepts of the building on 

the top left in the left-hand example. The candidate robot position 

is marked with a circle. Building outlines contained in the map are 

drawn dotted in grey, and their visible part in black. Lines extracted 

from a laser scan a drawn dashed in red. The street center lines are 

drawn in grey



435Global localization of 3D point clouds in building outline maps of urban outdoor environments  

1 3

3.4  Filtering position candidates using 
OpenStreetMap information

The number of poses to consider for valid localization can-

didates can be restricted further with additional knowledge 

available from the building map. For instance, poses that lie 

inside buildings can be discarded. Furthermore, if, like in 

our case, the robot travels alongside the road, poses that are 

more than a given distance removed from any edge of the 

road network can be discarded as well. For the experiments 

carried out in this paper, we consider only pose candidates 

that are less than 12 m removed from street elements in the 

OpenStreetMap network. Of the many candidate poses gen-

erated by the first FDCM optimization, many are invalid 

according to either their position inside a building or their 

distance from a marked road, and thus do not have to be 

considered for further evaluation. This is illustrated in Fig. 4, 

which shows the positions of candidate poses for an input 

scene that produces many matches within the area consid-

ered for localization. The figure visualizes which points are 

considered as valid candidates and which ones are discarded 

based on the criteria laid out above.

4  Experiments

The global localization method described above was evalu-

ated extensively for localization accuracy. Data from two 

different datasets of urban environments with different char-

acteristics were used for the evaluation. A baseline approach 

from literature was implemented for comparison, and the 

benefit of using the extended cost functions described 

in Sect. 3.3 over the standard DCM approach is shown.

4.1  Dataset

The global localization method described in Sect. 3 was 

evaluated on 3D laser scans from two datasets. The Munich 

Urban Dataset (Wollherr et al. 2016) contains 80 scans cov-

ering an area around the inner city campus of the Technical 

University of Munich. It was recorded with a Zoller and 

Fröhlich 5010C 3D laser range finder and also contains RGB 

data. Scans were manually registered by annotating salient 

points in overlapping scans and finding the transformation 

that minimizes the error between the transformed positions 

of these scans. The Jacobs University Bremen dataset1 cov-

ers the campus of that university with 132 scans and was 

recorded with a Riegl VZ-400 laser scanner. The scans in 

this dataset were registered using reflective markers. Both 

datasets were manually aligned with the data retrieved from 

OpenStreetMap in a global coordinate frame.

4.2  Experimental setup

As template data for the localization experiments, map data 

from OpenStreetMap was downloaded for a rectangular area 

of about 2 km width around the area covered by each dataset. 

This was used to generate the template building outline edge 

maps. The implementation of FDCM from Liu et al. (2010) 

was used to obtain the candidate poses with quantization of 

line orientations to 12 different direction channels. The grid 

size for the discretization of the positions that are searched 

by FDCM was set to 0.5 m. All poses that yielded a cost 

within a factor of 1.6 of the globally optimal FDCM cost 

were considered as candidate poses for further processing. 

The three cost functions newly proposed in Sect. 3.3 as well 

as the original FDCM cost were used to compute a final 

ranking of the pose candidates.

To the best of the authors’ knowledge, the only method 

from literature that has the same goal of global localization 

on building outline data alone and can thus serve as a base-

line is the template matching method based on geometric 

hashing from Cham et al. (2010). Later methods that are 

based on this (Chu et al. 2014; Arth et al. 2015) use a simi-

lar matching method, but with added information in form 

of a GPS estimate, which is not available for the purpose 

of global localization. For a comparison with these prior 

methods, we implemented a hashing-based method simi-

lar to the one used in Cham et al. (2010) to be used with 

scale-invariant laser data, and measurements from the urban 

environments represented in the experimental datasets. It 

relies on extracting building corners from the building out-

line map, which are indexed with a hash function encoding 

building side length and the angle between the two sides 

belonging to the corner.

To localize a scan using the baseline method, first, the 

same edge extraction process as described for the proposed 

method is applied. Then, corners are found in the extracted 

line segments, and all matching corners from the map are 

retrieved using the hash index. The transformation between 

the corner and the laser scanner position is computed and 

applied to all matching corners from the map. The resulting 

poses are recorded in an accumulator, such that poses where 

multiple corners in the map are observed from the same 

scanner pose receive a higher score. From this accumula-

tor, the cells with the highest scores of matching positions 

are retrieved as final scanner pose estimates. The param-

eters for quantizing the accumulator were optimized in a 

coarse grid search on the experimental data to a cell size of 

5 m and a pose quantization that distinguishes six different 
1 by Prashant K.C., Dorit Borrmann, Jan Elseberg, and Andreas 

Nüchter, retrieved from the robotic 3D scan repository http://kos.

informatik.uni-osnabrueck.de/3Dscans/.

http://kos.informatik.uni-osnabrueck.de/3Dscans/
http://kos.informatik.uni-osnabrueck.de/3Dscans/
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Fig. 4  Filtering results for 

one scan with a large number 

of pose candidates from the 

Munich (top) and Bremen (bot-

tom) datasets, respectively. Pos-

sible robot positions are marked 

with dots in red for invalid and 

blue for valid locations. The 

actual area covered by the cor-

responding scan is marked with 

a blue frame
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orientations. Localization candidates were determined for 

each scan in both datasets using this baseline method.

4.3  Experimental results

For the evaluation of the proposed localization methods, we 

focus on the error in the pose of the lowest-cost pose can-

didates. For this analysis, a pose candidate for which both 

the displacement as well as the rotational error with respect 

to the ground truth pose are below a threshold is denoted as 

accurate. For the proposed methods, these thresholds were 

chosen as 4 m and 0.2 radians as maximum displacement 

and rotational error, respectively. For the hashing-based 

method, the thresholds for determining whether a candidate 

is accurate were chosen to reflect the size of the grid used 

for the accumulator, which results in a maximal distance of 

5 m and an allowed rotation of �∕6 . Note that this pair of 

thresholds is less strict than the one used for the proposed 

method. These numbers were chosen to allow for some error 

in the ground truth registration with respect to the Open-

StreetMap map data, and to be significantly smaller than the 

typical error of GPS localization in urban areas (Zandbergen 

and Barbeau 2011).

For each dataset, the evaluation is performed in the num-

ber of scans N
accurate

 for which the set of k candidates with 

the lowest cost within a circular area of radius w around the 

ground truth position contains a candidate with an accu-

rate pose. Thus, for the strictest evaluation criterion k = 1 , 

a match means that the candidate pose with the lowest cost 

is accurate with respect to the given thresholds; for k = 5 it 

means that there is at least one accurate candidate among the 

5 candidates with least costs.

The proposed method with the chosen parametrization 

produced a set of pose candidates containing an accurate 

pose candidate for 73 of the 80 scans in the Munich dataset, 

and for 119 of the 132 scans in the Bremen dataset. The 

average number of candidates per scan for the full map 

used for the experiments before filtering was 1845, and 

472 after filtering based on street and building data for 

the Munich dataset; for the Bremen dataset these numbers 

were 13,254 and 5581, respectively. Forward and sym-

metric costs were computed for a maximum of 500 pose 

candidates with the lowest FDCM costs per scan because of 

their high computational demands with the current imple-

mentation; all other pose candidates were not evaluated 

for these costs.

Fig. 5  Numbers of accurately 

localized scenes using two dif-

ferent DCM cost functions for 

both datasets. Results obtained 

using the reverse cost function 

d
r
 are drawn using solid lines, 

and those from the standard 

directional chamfer matching 

cost function d
DCM

 are drawn 

dotted. The plot indicates the 

number of scans N
accurate

 where 

one among the k best-rated 

candidates within a radius of a 

given size w around the ground 

truth position is accurate

(a) Localization results for the Bremen Dataset

(b) Localization results for the Munich Dataset
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This evaluation of the results of the proposed localiza-

tion methods is visualized in Fig. 5. It compares the num-

ber of accurate best-ranked scans, depending on the size of 

the search area, for the standard cost function d
DCM

 , and 

the newly proposed reverse cost function d
r
 . The results 

for the other two newly defined cost functions df  and d
s
 

were slightly worse than with the reverse cost function, 

but still outperformed the standard DCM cost d
DCM

 , so the 

individual results are omitted for brevity. Fig. 6 presents a 

comparison of the hashing-based baseline method and the 

DCM method using the reverse cost function using the same 

analysis method.

Figure 7 gives an overview over the variability of scans 

contained in the dataset and an illustration of the nature of 

the results of the localization procedure. The first two rows 

show scans from the Munich data set where the localization 

provides accurate candidates, while the scans in the second 

two rows cover wide open areas that do not provide a suf-

ficient number of salient features to allow the retrieval of 

accurate pose candidates, so the localization fails in these 

two cases. The fifth, sixth and seventh row show examples 

of successful localization from the Bremen dataset. The bot-

tom row shows an example of a discrepancy between the 

observed reality and the map, since a temporary building site 

fence has been set up at a distance from the corresponding 

structure in the map. Nevertheless, candidate poses are also 

generated in the vicinity of the correct localization result.

The pipeline of operations is run on a largely non-opti-

mized python implementation wrapping a modified version 

of the FDMC implementation of Liu et al. (2010) for match-

ing and cost computations. A cursory analysis of the com-

putational properties of the processing was carried out in 

single-threaded computation on a Intel Quadcore i5 CPU at 

3.3GHz with 16GB RAM. In this analysis, it can be expected 

that each operation can be sped up considerably with careful 

optimization. With the current implementation, the compu-

tation of the histogram of oriented occupied cells and the 

line extraction take on average 54 and 220ms, respectively. 

Building the distance transform tensor for the first FDCM 

step, which needs to be done once per dataset, takes 35 and 

Fig. 6  Numbers of accurately 

localized scenes using the hash-

ing method (dashed lines) and 

the reverse DCM cost function 

(solid lines) for both datasets. 

The plot indicates the number of 

scans N
accurate

 where one among 

the k best-rated candidates 

within a radius of a given size w 

around the ground truth position 

is accurate

(a) Localization results using the hashing method for the Bremen Dataset

(b) Localization results using the hashing method for the Munich Dataset
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155 s for the maps covering the Munich and Bremen data-

sets, respectively. This computation time depends largely on 

the size of the map and the number of elements it contains, 

as well as the grid size chosen for the candidate extraction. 

Matching the observed lines to the full building outline map 

takes 60 s on average. For the candidate selection process, 

filtering all candidates takes 34 ms per scan. Further compu-

tation times are given per candidate that is evaluated; hence, 

computation times for the candidate selection process can be 

adapted by limiting the number of candidates that are being 

evaluated with further cost computation. Computation times 

for retrieving the visible lines for a candidate pose is 210 ms 

on average, and computing the reverse costs takes 620 ms 

per scan to compute the distance transform tensor, and less 

than 1 ms to compute the cost per candidate. Computing the 

forward cost takes on average 460 ms per candidate. The 

reason for this is that the distance transform tensor needs to 

be computed for each evaluation since the template for the 

matching changes with each candidate. In addition to the 

room for computational optimization, it can also be noted 

that the candidate evaluation can very easily be computed 

in parallel.

4.4  Discussion of results

As it can be seen by inspecting the results, the proposed 

method generates an accurate highest-ranking pose candi-

date even for large search areas in a majority of cases. Tak-

ing into account a larger number of high-ranked candidates 

improves upon this result, which can be useful in applica-

tions such as generating an initial distribution of pose esti-

mates for the use in a Monte Carlo localization system. The 

cost functions taking into account the expected observations 

of the robot consistently improve the result with respect to 

Fig. 7  Example results of the 

line extraction and localization. 

Images from left to right: Color/

intensity image; projection of 

building points to the ground 

plane; extracted building seg-

ments and OpenStreetMap 

building map at ground truth 

pose (indicated by the red 

dot); section of the localiza-

tion result: area covered by 

the observations of the ground 

truth pose framed in dark blue, 

candidates for alternate poses 

in light blue. The top four rows 

of images show scans from the 

Munich dataset; the lower four 

from the Bremen dataset. For 

a detailed description of the 

example cases, please refer to 

the explanation in Sect.  4.3

20m

20m

20m

20m

20m

20m

20m

20m
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the DCM template matching method, although at the cost 

of increased computational cost. In particular, as it can be 

seen in Fig. 5, the reverse cost function produces more sta-

ble localization results as the search area increases in com-

parison to the standard DCM cost function. As displayed in 

Fig.  6, the proposed method also outperforms the simpler 

approach based on geometric hashing, which is neverthe-

less able to localize laser scans accurately within smaller 

areas. This is useful if a position estimate for example from 

GPS is available, but does not provide satisfactory results 

for larger areas.

As illustrated in Fig. 7, two causes for failure of the 

method are the lack of reliable features in areas that con-

tain few buildings, and mismatches between the map and 

the environment caused by errors in the map or temporary 

changes in the environment. Results also show that the pro-

posed method works successfully even in instances where no 

building corners are visible, for example in cases where only 

sides of a large buildings, the corners of which are outside 

the sensor range, are visible, or in situations where build-

ing corners are occluded. This is not possible with methods 

relying on geometric hashing or similar techniques, which 

rely on accurate building corner locations.

5  Conclusion

In this article, we have shown an approach to estimate the 

pose of a robot in a global coordinate frame based on only a 

laser scan and a map containing building outlines and street 

network data. The evaluation has shown that this approach 

performs well on a large part of the data used for experi-

mentation, which includes urban scenes with varying char-

acteristics. It has been demonstrated that explicitly compar-

ing the expected observation with the actual sensor data by 

including visibility analysis in the cost function benefits the 

localization accuracy.

The presented approach could be improved in a number of 

ways. Freely accessible databases offer much more semanti-

cally annotated data than what is used in this approach. For 

example, detecting the area covered by roads and paths could 

be used as an additional feature. Building heights, which are 

annotated in some maps, could be used to make the candi-

date selection process more concise and to generate a more 

accurate representation of the expected observation.

The presented system can also serve as the basis for 

other robotic applications, and be used in connection 

with other sensors. For example, the generated pose can-

didates with their associated costs can be used to provide 

the initial pose distribution for a SLAM pipeline. While the 

matching method has been described and tested on scale-

invariant laser data, it can also be applied to building out-

lines extracted from camera images using computer vision 

methods, when scale is added as an additional degree of 

freedom to the first DCM search step.
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