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Abstract

Urbanization, one of the most important anthropogenic impacts on Earth, is rapidly expanding worldwide. This

expansion of urban land-covered areas is known to significantly reduce different components of biodiversity. How-

ever, the global evidence for this effect is mainly focused on a single diversity measure (species richness) with a few

local or regional studies also supporting reductions in functional diversity. We have used birds, an important ecologi-

cal group that has been used as surrogate for other animals, to investigate the hypothesis that urbanization reduces

the global taxonomical and/or evolutionary diversity. We have also explored whether there is evidence supporting

that urban bird communities are evolutionarily homogenized worldwide in comparison with nonurban ones by

means of using evolutionary distinctiveness (how unique are the species) of bird communities. To our knowledge,

this is the first attempt to quantify the effect of urbanization in more than one single diversity measure as well as the

first time to look for associations between urbanization and phylogenetic diversity at a large spatial scale. Our find-

ings show a strong and globally consistent reduction in taxonomic diversity in urban areas, which is also synchro-

nized with the evolutionary homogenization of urban bird communities. Despite our general patterns, we found

some regional differences in the intensity of the effect of cities on bird species richness or evolutionary distinctive-

ness, suggesting that conservation efforts should be adapted locally. Our findings might be useful for conservationists

and policymakers to minimize the impact of urban development on Earth’s biodiversity and help design more realis-

tic conservation strategies.
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Introduction

The expansion of urban areas is considered one of the

most important anthropogenic impacts on the Earth’s

ecosystem (Foley et al., 2005; Groom et al., 2006), dra-

matically changing natural habitat structure, ecosystem

functioning, and life’s biodiversity (Grimm et al., 2008a;

Gaston, 2010; Forman, 2014; Gil & Brumm, 2014). Urban

areas are growing proportionally faster than any other

form of land cover (United Nations, 2012) as urban-

dwelling human population is increasing by 1 million

per week (Seress & Liker, 2015). By 2030, there is an

expected 200% increase in global urban land cover in

comparison with the year 2000 (Fragkias et al., 2013). It

is not surprising therefore that the process of urbaniza-

tion and its environmental impact is now recognized as

a major global challenge (United Nations, 2016) and

has attracted increased attention in the past decades

(McDonnell et al., 2016).

Organisms can exhibit different responses to urban-

ization (McDonnell & Hahs, 2008), and while a few spe-

cies are beneficiated by cities (i.e., urban exploiters),

many more are negatively affected by this landscape

change (i.e., urban avoiders; Blair, 1996; Sol et al., 2014).

In fact, one of the most important ecological effect of

urbanization is the overall decrease in taxonomic diver-

sity (Marzluff, 2001; Chace & Walsh, 2006; McKinney,

2008; Newbold et al., 2015). This loss of biodiversity is

caused by both changes in the abiotic (i.e., habitat loss

Clergeau et al., 1998; K€uhn & Klotz, 2006) and biotic

component of the environment (i.e., invasive species

Grimm et al., 2008b; Luck & Smallbone, 2010; Garcill�an

et al., 2014) which lead to the extirpation of native

organisms and can drive the homogenization of biotas

in cities (McKinney, 2006; Devictor et al., 2007; Morelli
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et al., 2016). This issue is even more relevant consider-

ing that this negative impact of urban land-cover

expansion on biodiversity is expected to increase glob-

ally in the future due to the selective expansion of

towns and cities in key biodiversity hot spots (Seto

et al., 2012). This scenario has led to consider urbaniza-

tion as a major topic in conservation biology (Miller &

Hobbs, 2002; McKinney, 2006) and has also attracted

the attention of politics and policymakers (Secretariat

of the Convention on Biological Diversity, 2012; Elands

et al., 2015). The recently published World Cities Report

(United Nations, 2016) states that one of the main chal-

lenges regarding urbanization is related to ‘minimizing

the negative impacts of land transformations in the use

of resources, biodiversity, and ecosystems’.

However, previous knowledge on the effect of the

urban land-cover expansion on biodiversity is

mainly based on a single measure of biodiversity,

species richness (Marzluff, 2001; Chace & Walsh,

2006; McKinney, 2008), while very little attention

has been paid to other diversity measures (Devictor

et al., 2008; Knapp et al., 2008; Morelli et al., 2016).

Biodiversity refers to variation at all levels of biolog-

ical organization and includes three main elements

(genetic, ecological, and organismal diversity), and

although species richness is the most commonly

used measure of biodiversity, it has important

restrictions to capture certain components of biodi-

versity (Gaston & Spicer, 2004). Another important

issue directly related to the biodiversity loss driven

by urbanization is the process of biotic homogeniza-

tion (Clergeau et al., 2006; McKinney, 2006). Irrespec-

tive of the biome, urbanization creates habitats with

particular physical characteristics across locations

(Groffman et al., 2014) that favor some synurbic spe-

cies (those particularly associated to urban areas)

while reducing local species (Francis & Chadwick,

2012). And, at the same time, it favors transporta-

tion of non-native species around the world (McKin-

ney, 2008). This process tends to create similar

genetic, taxonomic, and/or functional biotas all over

the world (Olden et al., 2004; Devictor et al., 2008;

Knop, 2016) and acts mainly through the extinction

of native species and introduction of alien organisms

(Olden & Poff, 2003; Klotz & K€uhn, 2010; Shochat

et al., 2010; �Ceplov�a et al., 2015).

The evolutionary distinctiveness or uniqueness is a

measure of evolutionary history, more related to the

genetic element of biodiversity. Basically, it measures

how isolated a species is in a phylogenetic tree and

represents uniquely divergent organisms (Isaac et al.,

2007; Jetz et al., 2014). Consequently, this measure of

phylogenetic diversity can play an important role to

establish conservation priorities (Isaac et al., 2007;

EDGE of Existence, 2015). For instance, recent recom-

mendations in nature conservation optimization

encourage the use of measures of phylogenetic diver-

sity alongside species richness (Winter et al., 2012;

Monnet et al., 2014). In relation to urbanization, two

recent regional-scale studies have found that urban

areas hold communities with low levels of phyloge-

netic diversity. �Ceplov�a et al. (2015) showed that the

phylogenetic diversity of plant communities in Central

Europe was lower than random. Similarly, Morelli

et al. (2016) has found a significant reduction in evolu-

tionary distinctiveness of urban bird assemblages in

comparison with rural ones (Morelli et al., 2016). This

study did not detect significant differences in bird spe-

cies richness between the two habitats, which strongly

supports the need for exploring other measures of bio-

diversity, to gain a more complete picture of the eco-

logical effects of urbanization. However, even if these

two studies suggest the phylogenetic homogenization

of European bird and plant assemblages due to urban-

ization (�Ceplov�a et al., 2015; Morelli et al., 2016), there

has not been a general attempt to explore these pat-

terns at a larger-scale yet. The global-scale perspective

is particularly relevant because even though urbaniza-

tion is a worldwide process (Grimm et al., 2008a), the

majority of papers that explore how urbanization

affects biodiversity are geographically restricted pre-

venting generalization of many observed patterns

(Pautasso et al., 2011; M€uller et al., 2013; Seress &

Liker, 2015). Moreover, urban land-cover change can

also have different impacts depending on the particu-

lar characteristics of the region (McKinney, 2002;

Grimm et al., 2008b). In fact, some particular areas are

expected to be affected more deeply than others by

urbanization (Seto et al., 2012) and, therefore, the com-

parison among regions will help us to establish conser-

vation priorities more accurately.

Here, using birds and a large spatial scale approach,

we (i) investigate whether urban areas from different

continents are associated with lower biodiversity mea-

sures (species richness and evolutionary distinctive-

ness) than nonurban areas and (ii) look for evidence

supporting that urban landscapes are associated with

phylogenetically homogenized communities world-

wide. We have used birds as our model group because

they are key components of ecosystems (S�ekercio�glu,
2006), good bioindicator for other taxa (Rodrigues et al.,

2007), with a widely validated phylogeny (Jetz et al.,

2012; Prum et al., 2015) and well studied within the

urban ecology context (Marzluff et al., 2001; Lepczyk &

Warren, 2012; Gil & Brumm, 2014), thus offering the

opportunity to compile a geographically wide database

while testing our hypotheses in relation to an ecological

relevant group.
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Materials and methods

Bibliographic research and selection of studies

We did an exhaustive literature search in Web of Science, Goo-

gle Scholar, and SmartCat (www.rug.nl/bibliotheek/smartca

t/) using different combinations of the following terms:

‘bird*’, ‘assemblages’ and ‘urban*’. We look for studies pre-

senting information on the avian community of both urban

and nonurban habitats from the same area. If possible, we col-

lected data from the wildland habitat sensu Marzluff et al.

(2001) as the nonurban habitat, although it was not always

available and in some cases it represented an agricultural (ru-

ral) land cover, according to definitions provided by Marzluff

et al. (2001). Given that agricultural habitats usually present

lower avian biodiversity values than native ones (e.g., Sinclair

et al., 2002; Billeter et al., 2008), we consider our procedure to

be conservative. We discarded studies not showing the com-

plete bird community (i.e., only most common species) or

those presenting information from only one of the two habi-

tats (i.e., only urban species). This study selection criterion

allowed us to collect data on urban and nonurban bird com-

munities that were obtained following the same field method,

during the same time period and by the same field observer,

thus standardizing for many potential confounding factors in

this kind of comparative study. Some papers presented infor-

mation from several locations within an urban gradient. In

such cases, we extracted the data of those two locations that

better represented the urban and wildland/rural habitats

sensu Marzluff et al. (2001).

From each study, we extracted the following information:

(i) urban bird assemblage, (ii) nonurban bird assemblage, (iii)

continent, (iv) country, (v) site, (vi) latitude, (vii) longitude,

and (viii) whether the data correspond to the breeding, non-

breeding season, or both. Coordinates were obtained directly

from the paper or from Google Maps if not available in the

study.

Biodiversity and evolutionary distinctiveness

From each study, we calculated two diversity values (species

richness and evolutionary distinctiveness) for each habitat.

The bird species richness was calculated as the highest num-

ber of species observed in each location as it is a basic surro-

gate for taxonomic diversity (Magurran, 2004). The

evolutionary distinctiveness (ED) score is a measure of rich-

ness in phylogenetic diversity (Tucker et al., 2016) based on

the uniqueness of a species (Redding et al., 2010; Jetz et al.,

2014). The ED score is calculated considering the sum of all

phylogenetic branch lengths connecting species (Cadotte et al.,

2008, 2012) and by applying a value to each branch equal to its

length divided by the number of species subtending the

branch (Isaac et al., 2007). Using the ED score for each bird

species present in a community, we estimated the community

evolutionary distinctiveness (CED) as the average ED consid-

ering all species belonging to the community. The CED is a

measure of divergence, related to the phylogenetic isolation

(Tucker et al., 2016). This procedure has also the advantage to

make this variable independent from the number of species

present in each community, optimizing the comparison

among many studies. Furthermore, the highest ED score of a

bird species present in the assemblage was labeled as the max-

imum ED for this bird community (max ED).

Statistical analyses

We used generalized linear mixed models (GLMMs) to study

the patterns of bird richness, CED and max ED in relation to

urban and nonurban habitats, latitude and longitude modeled

as fixed effects. We decided to include these geographical pre-

dictors as they can be related to large-scale changes in biodi-

versity (Mannion et al., 2014; Morelli et al., 2016). Country

(groups = 17) and season (group = 3) were included as ran-

dom effects to account for possible consistent differences

among countries or in relation to breeding or nonbreeding

period. The use of random effects permits statistical tests

when some observations can be correlated. In the particular

study case, it is useful in order to remove any potential differ-

ences related to methods or sampling effort among studies in

each country.

Models using CED and max ED as response variable were

fitted by maximum likelihood, using the package ‘lme4’ in R

(Bates et al., 2014), while models using bird species richness as

response variable were fitted assuming a Poisson distribution

after having explored the variable distribution as suggested in

Box & Cox (1964) using the package ‘MASS’ (Venables & Rip-

ley, 2002) and ‘glmmADMB’ in R (Fournier et al., 2012; Skaug

et al., 2013). In this study, the Akaike information criterion

(AIC) was calculated to determine the models that ‘best’

explained variation in the data (Burnham & Anderson, 2002).

The model selection and multimodel inference were per-

formed using the package ‘AICcmodavg’ in R (Mazerolle,

2016). The best model was selected considering both lowest

AIC and large Akaike weights, because this model had the

strongest support for data (Mazerolle, 2016). The confidence

intervals for the significant variables selected in the best model

were calculated by the Wald method from the package

‘MASS’ (Venables & Ripley, 2002). All statistical tests were

performed with R software (R Core Team, 2016).

Results

Our literature search provided us with 26 studies that

matched our strict search criteria. We identified a total

of 665 bird species from 28 paired urban vs. nonurban

locations from 17 countries and four continents (Fig. 1,

Table S1). The list of all bird species used in this study

in both urban and nonurban sites, with their ED score,

is provided in the Table S2.

All three diversity measures (bird richness, CED, and

max ED) showed significantly lower values in urban

than in nonurban habitats for the global analyses

(Table 1; Fig. 2). The confidence intervals for the pre-

dictor ‘habitat’ always ranged across negative values

for all three response variables (Table 1). Based on our
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statistical procedures, these differences were indepen-

dent of the country or season as we included them as

random factors. This general pattern is also maintained

after grouping the results of all studies by continent for

both bird species richness (Fig. 3) and CED (Fig. 4).

Then, the urban biodiversity was lower than the nonur-

ban biodiversity in all continents. However, we found

some interesting results with South American bird

communities showing the largest difference in species

richness but the smallest difference for CED (Figs 3 and

4). Oceania also presented remarkable results with a

similar difference for bird species richness between

habitats as that observed in other continents, but the

largest difference in CED (Figs 3 and 4).

Longitude and latitude did not significantly improve

the proportion of species richness, CED, or max ED

variance explained by the model including only habitat

as a predictive variable (Table S3) suggesting that those

geographical predictors are of little importance regard-

ing our data. This result supports the generality of our

findings and highlights that the main factor explaining

variation in avian CED is the urban vs. nonurban com-

parison. The list of evaluated models, with the number

of predictors considered, delta AIC values, and AIC

weights for each one is provided in Table S3.

Discussion

Our findings highlighted the fact that urbanization sig-

nificantly reduced both species richness and evolution-

ary distinctiveness worldwide (Fig. 2), supporting the

assumption that the expansion of urban areas reduces

biodiversity. Considering that urbanization is a similar

process acting worldwide (McKinney, 2006; Grimm

et al., 2008a), the large-scale geographical distribution

of our database (including cities in four continents) and

the nonsignificant effect of geographical variables (lati-

tude and longitude) in any of our biodiversity

Fig. 1 Location of the 28 cities (and their corresponding nonurban areas) used in our study (green dots) distributed in 17 countries

(blue) from four different continents. For coordinates and city names involved in each study, see Table S1. [Colour figure can be viewed

at wileyonlinelibrary.com]

Table 1 Results of fixed-effect parameters in the generalized

linear mixed models (GLMMs), accounting for variation in

bird richness, community evolutionary distinctiveness (CED),

and max ED in relation to urban or nonurban habitat

Source of

variation Estimate CI SE t/z P

Bird richness

Habitat:

urban

�0.55 �0.65, �0.45 0.05 �10.6 2E-16

CED

Habitat:

urban

�0.56 �1.05, �0.08 0.23 �2.3 0.002

max ED

Habitat:

urban

�4.75 �9.29, �0.26 2.3 �2.1 0.038

CI, confidence interval (lower/higher); SE, standard error.

Only significant variables are shown in the table.
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measures, we believe that our results could be reason-

ably considered representative of a global pattern. The

result on species richness matches with previous find-

ings on birds (Marzluff, 2001; Chace & Walsh, 2006; Sol

et al., 2014) and other organisms (McKinney, 2008; Luck

& Smallbone, 2010; Knop, 2016). However, it contrasts

with another previous global-scale study on avian

assemblages which did not find support for this effect

(Pautasso et al., 2011). The reason for this difference

might be our selection of papers presenting simultane-

ously urban and nonurban assemblages, while

Pautasso et al. (2011) compared independent studies for

each habitat. In general, our study presents another

piece of evidence indicating that the number of bird

species is reduced in urban habitats in comparison with

nonurban habitats.

Our results on global evolutionary distinctiveness

support those obtained by Morelli et al. (2016) for Euro-

pean bird communities, clearly showing that urbaniza-

tion also affects other components of avian biodiversity

(phylogenetic diversity) other than species richness.

The reduced avian phylogenetic diversity associated

Fig. 2 Comparison of bird species richness, community evolutionary distinctiveness (CED), and maximum evolutionary distinctive-

ness (max ED) between urban and nonurban habitats. The y-axis represents the estimated variable. The box plots show the median (bar

in the middle of rectangles), mean (rhombus), upper and lower quartiles, maximum and minimum values (vertical dashed lines), and

outliers. [Colour figure can be viewed at wileyonlinelibrary.com]

Fig. 3 Comparison of bird species richness between habitats in each continent. The y-axis represents the estimated variable. The box-

plots show the median (bar in the middle of rectangles), upper and lower quartiles, maximum and minimum values (vertical lines),

and outliers. [Colour figure can be viewed at wileyonlinelibrary.com]
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with urban landscapes could have important conserva-

tion implications, such as reorienting our conservation

efforts to prevent the loss in evolutionary information

(Mace et al., 2003; Winter et al., 2012). Phylogenetic

diversity is a good surrogate for species rarity and can

be used as complementary information for conserva-

tion plans by identifying and prioritizing those species

in need of protection (Winter et al., 2012) or the best tar-

gets to retain a major proportion of evolutionary history

in urban bird communities. It will also be very interest-

ing to test whether other organisms are impacted in a

similar way. Birds are good predictors of abundance of

other vertebrates (Rodrigues et al., 2007), and even if

invertebrates follow a similar pattern of reduction in

species richness due to urbanization (McKinney, 2008;

Knop, 2016), they might differ regarding other compo-

nents of biodiversity. Plants are particularly interesting

organisms in this respect because of the structural role

that they play in cities (Groffman et al., 2014) and the

different patterns (in comparison with animals) that

manifest due to urbanization (increase in overall

species richness, but reduction in native vegetation),

particularly because of the introduction and growth of

non-native species in urban areas (Palomino &

Carrascal, 2006; McKinney, 2008; Luck & Smallbone,

2010; �Ceplov�a et al., 2015). Furthermore, it has been

shown that the high species richness of urban flora in

Germany was not reflected in high phylogenetic dis-

tinctness suggesting that these two measures of biodi-

versity are not directly related (Knapp et al., 2008).

Interestingly, a recent study has shown that urbaniza-

tion seems to reduce phylogenetic diversity of urban

plant communities in Central Europe, suggesting that

the pattern observed in our study might apply to plants

too (�Ceplov�a et al., 2015). Worth to mention is that habi-

tat type (urban vs. nonurban) and not geographical pre-

dictors (latitude or longitude) explained our CED

results which suggests that this effect is global and

independent of the location. This is also supported by

the shared pattern found for this biodiversity proxy in

all continents (Fig. 4). However, these results contrast

with those found by Morelli et al. (2016) showing a neg-

ative significant correlation between CED and latitude

for European birds. It is possible that this pattern is

restricted to Europe or that it only arises when cities

from very high latitudes are included in the analyses.

Only 4% of our cities were located higher than 55°N,

compared with 50% of the locations from Morelli’s

European study. In addition to this lack of high altitude

studies on urbanization, we found other geographical

areas in which we should investigate this issue further

(Fig. 1). Probably the clearest example is Africa, which

in addition is going to be a great center of urban devel-

opment in the forthcoming years (Seto et al., 2012;

McPhearson et al., 2016).

Despite the general effect found for biodiversity, the

expansion of urban landscapes is not completely homo-

geneous in all continents (Figs 3 and 4). Bird communi-

ties in South America seem to be the most affected in

terms of taxonomic diversity, probably because the

Fig. 4 Comparison of community evolutionary distinctiveness between habitats in each continent. The y-axis represents the estimated

variable. The boxplots show the median (bar in the middle of rectangles), upper and lower quartiles, maximum and minimum values

(vertical lines), and outliers. [Colour figure can be viewed at wileyonlinelibrary.com]
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native habitats in this continent hold the largest avian

species richness in the world (Newton, 2003). Neverthe-

less, South American CED is not reduced so strongly,

which suggests that some species with high evolution-

ary uniqueness are being retained in urban areas in this

continent. Oceania shows just the opposite pattern

being highly affected in terms of CED, much more than

any other region (Fig. 4). This might be due to the small

sample size of urban studies for this particular region

included in our database, but could also indicate that

cities in Australia and New Zealand are selectively

removing evolutionary unique species. The latter alter-

native is of special concern considering that Australia

and New Zealand are among the most important hot

spots in evolutionary diversity of birds (Jetz et al.,

2014). These differences between regions provide valu-

able information in order to design more efficient con-

servation plans and point out that conservation

strategies should be adapted to the region to minimize

the impact of urban land-cover expansion.

Another clear conclusion that could be extracted

from our results is about biotic homogenization. We

found strong evidence supporting the global taxonomi-

cal and evolutionary homogenization of avian commu-

nities (Fig. 2). This is in line with previous findings

showing that urban birds are taxonomical, functional,

and phylogenetically homogenized (e.g., Devictor et al.,

2008; Reif et al., 2013; Godet et al., 2015; Morelli et al.,

2016). This evolutionary homogenization of bird assem-

blages could happen because of exclusion of unique

species, which will not be suitable to inhabit in urban

areas, or due to many recent speciation events in cities

(Morelli et al., 2016). Nevertheless, the latter option

seems unlikely given that urbanization is a relative

recent process in Earth’s history (5000–6000 years, Gas-

ton, 2010) and the majority of birds have evolved before

humans gathered in settlements (>2.5 MYr, Jetz et al.,

2012). Our results could suggest an association between

recently diversified lineages and some traits that favor

urban life (i.e., generalism, M€uller et al., 2013), although

the link between phylogenetic and functional diversity

is not completely clear yet (Winter et al., 2012). For

instance, Sol et al. (2014) showed that sensitivity to

urbanization is not randomly distributed across the

avian phylogeny, suggesting that there are some lin-

eages of birds more prone to survive in urban areas

than others. Furthermore, not only cities contain species

with lower average evolutionary distinctiveness, but

they also seem to impose an upper limit on evolution-

ary diversity of urban bird assemblages similarly to

what happen with the number of bird species. The max

ED is significantly lower in urbanized landscapes than

in close nonurbanized areas (Table 1, Fig. 2) which

support the biotic homogenization hypothesis.

However, this result is difficult to explain in ecological

terms and will need further research. One potential

explanation could be the extirpation of lineages with

extremely high ED values, which would be associated

at the same time to those species with very particular

requirements/adaptations (i.e., particular food or

inability to fly). Alternatively, these high ED birds

could be representative of locally restricted species

(Webb & Gaston, 2000) which are most likely to not

become urbanized (Bonier et al., 2007; Møller, 2014).

However, correlations between breeding range size and

avian ED are not straightforward and seem to be com-

plex and multifactorial (Jetz et al., 2014). Our study

investigated patterns at the community level; however,

these patterns should have arisen as a consequence of

differences among individuals (i.e., those less afraid to

humans (Møller, 2008; D�ıaz et al., 2013)) and subse-

quently among species (i.e., those presenting certain

traits that facilitate living in urban areas (Luck & Small-

bone, 2010; Møller, 2014; Sol et al., 2014). Future work

should aim to integrate these three levels (individuals,

species, and communities) in order to completely

understand the effect of urbanization on biodiversity.

Recent studies have highlighted that cities can host

an important level of biodiversity (M€uller et al., 2013;

Aronson et al., 2014) and can also act as key reservoirs

for threatened species (Ives et al., 2016). However, our

results raise important conservation concerns given the

significant and worldwide reduction in avian biodiver-

sity associated with urbanization. Furthermore, our

findings suggest that urbanization, like agriculture, is

another human landscape change responsible for the

global loss of evolutionary information (Frishkoff et al.,

2014) and a key player in the homogenization of biotas.

Our conservation efforts should aim at retaining a

major proportion of biodiversity in cities (McPhearson

et al., 2016; United Nations, 2016), in the case of birds,

for example by increasing the native vegetation in

urban areas (Aronson et al., 2014; Threlfall et al., 2016)

or with particular conservation plans to retain species

with high ED values (Winter et al., 2012). The different

trends found for some regions between species richness

and ED also suggest that more studies using different

and complementary biodiversity measures are needed

to fully understand how urbanization impacts biodiver-

sity. We hope that our findings can be valuable for con-

servationists and policymakers when establishing

conservation priorities and regulating urban expansion.
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