
Global Management of Cache Hierarchies

Mohamed Zahran
City University of New York

New York, NY
USA

mzahran@acm.org

Sally A. McKee
Chalmers University of Technology

Gothenburg
Sweden

mckee@chalmers.se

ABSTRACT

Cache memories currently treat all blocks as if they were
equally important, but this assumption of equally importance
is not always valid. For instance, not all blocks deserve to
be in L1 cache. We therefore propose globalized block place-
ment, and we present a global placement algorithm for man-
aging blocks in a cache hierarchy by deciding where in the
hierarchy an incoming block should be placed. Our technique
makes decisions by adapting to the access patterns of differ-
ent blocks.

The contributions of this paper are fourfold. First, we
motivate our solution by demonstrating the importance of a
globalized placement scheme. Second, we present a method
to categorize cache block behavior into one of four categories.
Third, we present one potential design exploiting this cate-
gorization. Finally, we demonstrate the performance of the
proposed design. For the SPEC CPU benchmark suite, the
scheme enhances overall system performance (IPC) by an
average of 12% over a traditional LRU scheme, reducing
traffic between the L1 and L2 caches by an average of 20%
while using a table as small as 3KB.

Categories and Subject Descriptors

C.1.0 [Computer Systems Organization]: Processor Ar-
chitectures — General

General Terms

Design, Performance

Keywords

cache memory, memory hierarchy

1. INTRODUCTION
As the gap between processor and memory speeds in-

creases, effective and efficient cache hierarchies become more
and more crucial. The currently common method for ad-
dressing this memory wall problem exploits several levels

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’10, May 17–19, 2010, Bertinoro, Italy.
Copyright 2010 ACM 978-1-4503-0044-5/10/05 ...$10.00.

of cache (and usually some form of hardware prefetching).
Unfortunately, designing an efficient cache hierarchy is any-
thing but trivial, and requires choosing among myriad pa-
rameters at each level. One pivotal design decision controls
block placement — where to put an incoming block. Place-
ment policies affect overall cache performance, not only in
terms of hits and misses, but also in terms of bandwidth uti-
lization and response times. A poor policy can increase the
number of misses, trigger higher traffic lower levels of the hi-
erarchy, and increase miss penalties. Given these problems,
much research and development effort has been devoted to
finding effective cache placement and replacement policies.
Almost all designs resulting from these studies deal with the
policies within a single cache. Although such local policies
can be efficient within a cache, they cannot take into account
interactions among several caches in the (ever deeper) hier-
archy. Given this, we advocate a holistic view of the cache
hierarchy.

Cache policies usually assume that all blocks are of the
same importance, deserving a place in all caches, since in-
clusive policies are usually enforced. In our observation, this
is not true. A block that is referenced only once does not
need to be in cache, and the same holds for a block refer-
enced very few times over a long period (especially for L1
cache). Overall performance depends not only on how much
data the hierarchy holds, but also on which data it retains.
The working sets of modern applications are much larger
than all caches in most hierarchies (exceptions being very
large, off-chip L3 caches, for instance), which makes decid-
ing which blocks to keep where in the hierarchy of crucial
importance. We address precisely this problem.

In this paper we segregate block behaviors into four cate-
gories. We show how each category must be treated in terms
of cache hierarchy placement. Finally, we propose an archi-
tecture implementation that dynamically categorizes blocks
and inserts them in the hierarchy based on their categories.

2. BACKGROUND AND RELATED WORK
Inclusion in the cache hierarchy has attracted attention

from researchers since caches were introduced. Cache hier-
archies have largely been inclusive for almost two decades;
that is, L1 is a subset of L2, which is subset of L3, and so on.
This organization worked well before the sub-micron era,
especially when single-core chips were the primary design
choice. Uniprocessor cycle times were often large enough to
hide cache access latencies.

With the advent of multiple cores on a chip [1, 2, 3], on-
chip caches are increasing in number, size, and design so-

phistication, and private caches are decreasing in size. For
instance, the IBM POWER4 architecture [4] has a 1.5MB
L2 cache organized as three slices shared among its two pro-
cessor cores; the IBM POWER5 has a 1.875MB L2 cache
with a 36MB off-chip L3 [5]; the Intel Itanium [6] has a
three-level, on-chip cache with combined capacity of 3MB;
and the Intel Core i7 (Nehalem) has a shared L3 inclusive
cache of 8MB [7]. As the complexity of on-chip caches in-
creases, the need to reduce miss rates grows in importance,
as does access time (even for L1 caches, single-cycle access
times are no longer possible).

Designers have traditionally maintained inclusion in the
memory hierarchy for several reasons: for instance, in mul-
tiprocessor systems, inclusion simplifies memory controller
and processor design by limiting effects of cache coherence
messages to higher levels in the memory hierarchy. Unfor-
tunately, cache designs that enforce inclusion are inherently
wasteful with respect to both space and bandwidth: every
line in a lower level is duplicated in higher levels, and up-
dates in lower levels trigger many more updates in other
levels, wasting bandwidth. As the relative bandwidth onto
a multiple-core chip decreases with the number of on-chip
CPUs and relatively smaller cache real estate per CPU, this
problem has sparked a wave of proposals for non-inclusive
cache hierarchies.

We can violate inclusion two ways. The first is to have
a non-inclusive cache, and the second is to have a mutually
exclusive cache. For the former, we simply do not enforce
inclusion. Most of the proposals in this category apply a re-
placement algorithm that is local to individual caches. For
instance, when a block is evicted from L2, its correspond-
ing block is not evicted from L1. However, the motivation
for such schemes is to develop innovative local replacement
policies. Qureshi et al. [8] propose a replacement algorithm
in which an incoming block is inserted in the LRU instead
of MRU position without enforcing inclusion, since blocks
brought into cache have been observed to move from MRU
to LRU without being referenced again. The authors de-
couple block placement in the LRU stack and victim selec-
tion. Xie and Loh propose to also decouple block promotion
on a reference [9]. All these techniques improve efficiency,
but only at the levels of individual caches: each cache acts
individually, with no global view of the hierarchy. We in-
stead propose schemes that are complementary to and can
be combined with such local schemes, but our approach has
a globalized view of the whole hierarchy.

The second method for violating inclusion exploits mutu-
ally exclusive caches [10]. In a two-level hierarchy, the caches
can hold the number of unique blocks that fit into both L1
and L2. This approach obviously makes the best use of on-
chip cache real estate. In an exclusive hierarchy, the L2 acts
as a victim cache [11] for the L1. When both miss, the new
block comes into L1, and when evicted, it moves to L2. A
block is promoted to L1 when an access hits in L2.

Our proposed scheme works as a “middle way” between
inclusive cache hierarchies and mutually exclusive hierar-
chies. It can be viewed as non-inclusive, but the scheme
enforces a global placement policy. It manages the entire
cache hierarchy, instead of individually managing each sep-
arate cache. Most related work concentrates on managing
individual caches.

Some proposed policies adapt to application behavior, but
usually within a single cache. For instance, Qureshi et al. [8]

propose retaining some fraction of the working set in cache
so that fraction can contribute to cache hits. Subramanian
et al [12] present another adaptive replacement policy: the
cache switches between different replacement policies based
on access behavior. Wong and Baer [13] propose techniques
to close the gap between LRU and OPT replacement.

All cache misses are not of equal importance (e.g., some
data are required more quickly by the instructions that con-
sume them, whereas others are required by instructions that
are more latency tolerant). The amount of exploitable mem-
ory level parallelism (MLP) [14, 15, 16] also affects applica-
tion performance, and thus Qureshi et al. [17] propose an
MLP-aware cache replacement policy. In this paper we pro-
pose a scheme that is globalized, adaptive, and complemen-
tary to most of the aforementioned techniques.

3. BLOCK BEHAVIOR: A CASE STUDY
The performance of a cache hierarchy and its effects on

overall system performance inherently depend on cache block
behavior. For example, a block rarely accessed may evict a
block very heavily accessed, causing in higher miss rates.
Sometimes, if the evicted block is dirty, higher bandwidth
requirements result.

The behavior of a cache block can be summarized by two
main characteristics: the number of times it is accessed,
and the number of times it has been evicted and re-fetched.
The first is an indication of the importance of the block,
and the second shows how block accesses are distributed in
time. As an example, Figure 1 shows two benchmarks from
SPEC2000: twolf from SPECINT and art from SPECFP [18].
These two benchmarks are known to be memory bound [19].
The figure shows four histograms. Those on the left show
the distribution of total numbers of accesses to different
blocks. For twolf the majority of blocks are accessed be-
tween 1,000 and 10,000 times, but for art the majority are
accessed between 100 and 1,000 times. Some blocks are ac-
cessed very few times: more than 8,000 blocks are accessed
fewer than 100 times. The histograms on the right show
numbers of block reuses, or the number of times a block is
evicted and reloaded. Over 15,000 unique blocks in twolf

and over 25,000 in art are loaded more than 1000 times.
Based on these observations, a block may be loaded very

few times, and may be accessed very lightly in each epoch
(time between evictions). Other blocks can be loaded many
times and accessed very heavily in epoch. Many fall between
these extremes. Success of any cache placement policy de-
pends on its ability to categorize block access behavior to
determine correct block placement based on this behavior.
This placement policy must be global: it must be able to
place a block at any hierarchy level based on the block’s be-
havior. In this paper we assume a two-level cache hierarchy
for demonstration purposes.

4. ADAPTIVE BLOCK PLACEMENT (ABP)
The success of Adaptive Block Placement (ABP) depends

on the ability to capture the behavior of cache blocks. With
current state-of-the-art processors [4, 5, 20, 21, 22], block
size is fixed across the cache hierarchy. Unfortunately, this
often means that misses in a higher level will also miss in
a lower level cache. Observing block requests from the pro-
cessor to the cache hierarchy, as in Section 3, allows us to
classify each block into one of four categories:

��������	

�� ���

����

�����

���	 �� �

�

	���

�����

�	���

�����

��

�
�
�
�
�

������������

�

	���

�����

�	���

�����

�� ��� ���� ����� ������

��

�
�
�
�
�

������������

�	��

��	�������

�	���

�����

��

�
�
�
�
�

�	���

�����

�������

���

�		

��	��

��� �
 �

�

	���

�����

�	���

�����

�	���

��

�
�
�
�
�

������������

�

	���

�����

�	���

�����

�	���

�� ��� ���� �����

��

�
�
�
�
�

������������

Figure 1: twolf and art Block Behavior at the L1 Data Cache

• blocks that are accessed frequently, and for which time
between consecutive accesses is small (high temporal
locality);

• blocks that are accessed frequently for a short period,
are not accessed again soon, but then are accessed
again frequently within short periods (repetitive, bursty
behavior);

• blocks that are accessed in a consistent manner, but for
which the time between consecutive accesses is larger
than for the first category; and

• blocks that are rarely accessed.

Figure 2 shows the four access types. The best hierarchy
should behave differently for each category. Blocks from the
first category should be placed in both L1 and L2, since these
are accessed frequently. Placing them in L1 allows them to
be delivered to the processor as fast as possible. Evicting
such blocks from L1 due to interference should allow them
to reside in L2, since they are still needed. Blocks from the
second category do not benefit from the L2. These blocks
will be heavily referenced for a while, so they should be kept
in L1, but they will not be needed again soon once evicted.
Blocks in the third category should be placed in L2 but not
in L1. L1 can thus be reserved for blocks that are heavily
referenced, and for blocks not heavily referenced but that
do not severely affect performance. Finally, blocks from the
last category will bypass the cache hierarchy [23], and will
be stored in no cache. Note that if consecutive accesses to
blocks in the third category are very far apart, these blocks
can be downgraded to the fourth category.

The advantages of adaptive block placement schemes can
be illustrated by the following example. Assume the mem-
ory is accessed as shown in Figure 3(a). These instructions
access four different cache blocks, X, Y, Z, and W. For the
sake of the example, assume L1 is direct-mapped and L2 is
two-way set associative, and that the four blocks map to the
same set in both caches. Figure 3(b) shows the timeline for

accesses to each block. Every tick represents an access. If
we map our four categories to these blocks, then block X is
placed in L1, because it has bursty access patterns, then pe-
riods of no accesses before it is touched again. Blocks Y and
Z are placed in L2, because they are accessed consistently,
but time between successive accesses is long. Finally, block
W is not cached, because it is rarely accessed. Figure 3(c)
shows hits and misses for both L1 and L2 for a traditional
LRU scheme. We do not enforce inclusion: that is, a block
victimized at L2 does not victimize any corresponding block
at L1. A quick look at hits and misses from a traditional
LRU policy reveals two things. First, the hit rate at L1 is
1/11 and at L2 is 2/10 (since a hit at L1 needs no L2 ac-
cess). Second, L2 has been accessed ten times out of eleven
references. Figure 3(d) illustrates ABP, which yields better
performance. Both caches start empty. When block X is
loaded after a compulsory miss, it is put into L1 but not L2.
Blocks Y and Z are loaded into L2 but not L1. Block W is not
loaded into any cache. The hit rate at L1 becomes 4/11, and
at L2, 3/7, both of which are higher than for the traditional
LRU hierarchy. Moreover, L2 is accessed only seven times,
which reduces energy consumption.

Our goal is to design a system that captures the behav-
ior of each cache block and categorizes it into one of the
four behaviors we identify. The ultimate goal, of course, is
to satisfy most of the references from L1. Keeping the L1
size fixed and assuming it is not fully associative (although
there exist some examples of fully associative L1s in real ma-
chines [24]), we try to decrease conflict misses by reducing
contention among L1 sets. We do so by keeping some blocks
out of the L1.

Figure 4 shows one possible ABP implementation. The
main component is the Behavior Catcher (BC). The BC
keeps track of all address requests the processor generates.
Thus, the BC snoops the address bus from the processor to
the cache hierarchy. After an L1 miss, the BC is triggered
to make a decision about the incoming block’s placement.
While L2 is accessed, the BC chooses the category of the in-
coming block, if possible. If the access misses in the L2 and

Time

Time

Time

Time
Neither L1 nor L2

L2 Only

L1 Only

L1 and L2

Figure 2: Access Patterns for Different Categories (vertical lines represent block accesses)

I0: Read X

I1: Read X

I2: Read Y

I3: Read X

I4: Read Z

I5: Read Y

I6: Read X

I7: Read Z

I8: Read X

I9: Read Y

I10:Read W

(a) Memory Access

I0

I1

I2

I3

I4

I6

I5

I7

I8

I9

I10

L2 (H/M)L1 (H/M)

M

M

M

M

M

M

M

M

M

H

M

M

M

H

M

M

M

M

H

M

M

(c) LRU

I0

I1

I2

I3

I4

I6

I5

I7

I8

I9

I10

L2 (H/M)L1 (H/M)

M

M

H

M

H

M

M

H

M

H

M

M

H

H

H

M

M

M

(d) Adaptive Scheme

W

Z

Y

X

(b) Time Line

None

L2 Only

L2 Only

L1 Only

Figure 3: Example of LRU vs an Adaptive Scheme

memory is accessed, the incoming block is placed according
to the BC’s decision. That is, it will go to L1, L2, both,
or neither, depending on categorization. If no decision can
be made, the hierarchy follows the behavior of a traditional
hierarchy by bringing the block into both L1 and L2. If the
access hits in L2 and the BC’s decision is “L2 only” or “nei-
ther L1 nor L2”, then the block does not go to L1, and the
required word goes directly to the processor. On the other
hand, if, after an L2 miss, the BC’s decision is “L1 only”,
or “L2 and L1”, the block goes to L1. The BC is updated
each time the processor generates a memory request. This
operation is not on the critical path, and does not affect ac-
cess latency. ABP hierarchies do not differentiate between
loads and stores: all are treated simply as memory accesses.
Because the BC is triggered only after L1 misses, a block
that was previously designated as “L2 only” now becomes
“L1 and L2” if the BC decision changed based on the access
pattern.

4.1 ABP Design
Figure 4 shows one potential BC design, a small direct-

mapped cache, the address decoder for which consists only

of tag and set: no offset is required. Each data array entry
consists of a pattern, or string of bits representing the his-
tory of the corresponding cache block. A 1 indicates that the
block is accessed, and a 0 means the block is not accessed.
When an address goes to the BC as part of an update oper-
ation, if the block resides in the table, a 1 is entered to the
right of the pattern entry, and the pattern is shifted left one
bit. To approximate temporal reference activity, we insert
a 0 to the right of each pattern at specific events, and the
entry is shifted one bit left, as per usual updates. Each ad-
dress thus has a pattern representing its access history. This
history is an approximation of the patterns from Figure 2,
where each vertical line is represented with a 1. A major
design parameter here is when to insert the 0s. We can in-
sert them every X cycles. However, this does not capture
the behavior of the program at hand. For instance, if a pro-
gram is processor-bound and the memory system is rarely
accessed, many 0s will be inserted, resulting in most blocks
being kept out the cache system, which can negatively af-
fect performance. Inserting 0s at events such as L1 misses or
L2 misses is another option. Preliminary experiment results
were not very good for these policies, since a long sequence

of misses due to working set change, for example, can dis-
turb the prediction scheme. We need a scheme that can
represent a block’s behavior as faithfully as possible. For a
program that accesses the memory M times, spans B dis-
tinct cache blocks, and takes a total of C cycles, M is not
equally distributed among B and C. In order to capture a
block’s behavior, we need somehow to re-map the time as
if there were a memory access at every cycle. So after the
table is updated with U 1s, where U in the number of en-
tries in the table, we insert 0s. The main idea is that we are
giving each entry of the table a chance to be updated. Some
entries will be updated more than others, though.

Behavior
Catcher

L1

L2

Address

Address

0 1

Decision Maker

TAG Pattern

Pattern

Decision

Address

Decoder

Decision

Decision

To Memory

From the Processor

V

Figure 4: One Possible Implementation of ABP

When the BC is given an address about which to make a
decision, the address decoder splits that address into TAG
and SET values. If the stored tag of the entry specified
by the SET value matches the TAG value, the BC copies
the corresponding pattern to the decision maker. Figure 5
presents a pictorial view of the decision-making process. The
pattern is split into left and right halves. The right part
indicates the most recent access pattern, due to the shift
operation, and the left represents older behavior. Each half
is checked to see whether it has a majority of 1s or 0s, or
an equal number of each. A majority of 1s in a half means
that the block is heavily accessed. A majority of 0s means
it is rarely accessed. A tie means the block is frequently
accessed, but not as heavily as if it had a majority of 1s.
Figure 5 indicates the decision based on the majority rule of
each half.

4.2 Hardware Complexity
The proposed design requires very little hardware. We use

CACTI 4.2 [25] to calculate the cost of our ABP hardware.
We find that for a table of 1024 entries with 8-bit patterns
per entry and 8-bit tags, implementing ABP takes around
1% of a unified L2’s area and consumes less than 4% of the
power per access. Our experiments show that ABP greatly
reduces the number of writebacks to multiple levels of the
hierarchy. It also reduces the number of blocks residing in
cache for a long time without being accessed (which reduces
leakage). ABP can thus save power, and these savings more
than offset the power consumed by the ABP hardware. Fi-

Number 0s

 vs

Number 1s

Number 0s

 vs

Number 1s

Majority

 1s

Majority

 0s

Pattern

Majority 1s

Majority 0s

Tie

Tie

Older Recent

Neither

L1
And L2

L2

L1

L2

L2

L2

L1
And L2

L2

Figure 5: The Decision Process for ABP

nally, each cache slot must be augmented by two bits to
indicate the state its last BC decision. A no-decision state
is considered “L1 and L2”. Like the BC, the ABP is not on
the critical path, and does not affect the access times of the
cache hierarchy.

The design we present is but one way of implementing
ABP. More efficient designs are certainly possible, but here
we focus on demonstrating the potential effectiveness of adap-
tive global placement policies. Refining our design is part of
ongoing work.

5. EXPERIMENTAL SETUP
For our experiments, we use a heavily modified version of

simplescalar [26] with the Alpha instruction set, modifying it
further to generate the statistics we need and to implement
our proposed cache management modifications. We choose a
fixed block size for all caches in the hierarchy, similar to IBM
POWER series [5] and many other state-of-the-art proces-
sors. Table 1 shows fixed simulator parameters. Parameters
not in the table use default simulator values that are typical
of current high-performance cores.

Our table for the ABP has 1024 entries, keeps a pattern of
16 bits per entry, and uses 1.5 bytes of the block address as
the tag (from the least significant bits). This ABP requires
only 3KB of storage. We choose these parameters empir-
ically from running many design-space exploration experi-
ments to find the best price/performance. As always, the
best parameter values are application dependent. We are
enhancing the system to make it more application-aware in
its adjustments for the application at hand. We tried several
schemes with respect to when entries are shifted (at L1 miss,
at L2 miss, after X cycles). The best strategy is also appli-
cation specific. We choose shifting entries after 10000 cycles,
which has adequate performance for most applications. We
compare ABP with a conventional inclusive hierarchy with
LRU replacement, an exclusive hierarchy[10], and a hierar-
chy with cache bypassing[23]. Cache sizes capacity is the
same for all schemes. Cache bypassing uses two tables, one
for L1 data cache and the other for the shared L2. Each
table consists of 128 entries, with five-bit saturating coun-
ters per entry, and macroblocks of 1KB. We choose these
sizes to be as close as possible to our ABP scheme, although

bypassing uses a larger table due to the need for saturating
counters and the fact that two tables require at least two
ports.

Parameter Setting

Instruction Fetch Queue 32
Decode Width 8

Issue width 8
Instruction Window 128
Load/Store Queue 64
Branch Predictor combination of bimodal,

2048 table size
and 2-level predictor

L1 Icache/Dcache 32KB, 4-way associative, LRU
64B line size, 2-cycle latency

L2 Unified 1MB, 8-way associative, LRU
64B line size,

10-cycle latency
Memory Latency 300 cycles for the first chunk
Execution Units 2 int and 1 fp ALUs

2 int mult/div and 1 fp mult/div

Table 1: Simulator Parameters

For the benchmarks, we use 23 of the SPEC2000 CPU
suite, both integer and floating point. We use SimPoint [27]
to skip the startup portion of each application, and we simu-
late a representative 250M instructions on reference inputs.
Table 2 shows total numbers of committed references (loads
and stores).

6. RESULTS AND DISCUSSION
These results present a proof-of-concept for global block

placement based on the four categories discussed in Section
4, but they are heavily implementation-dependent. Obvi-
ously, different implementations are likely to deliver different
results.

6.1 ABP Behavior
The best way to assess the performance of ABP is to

first observe the decisions it makes, and then see how these
decisions affect performance. Figure 6 shows the decisions
made by ABP for each application in our benchmark suite.
For several benchmarks, ABP decides to bypass both caches
about 50% of the time. This happens for one of two reasons,
depending on the benchmark. The first is that the blocks
are accessed very few times and not referenced again. The
second is that the blocks are accessed frequently, but the
time between successive accesses is large enough not to be
captured by the behavior patterns in ABP (as with art, dis-
cussed in Section 3). Note that, on average, ABP provides
a prediction 98% of the time.

Total Total
Benchmark References Benchmark References

applu 94621773 lucas 54192511
apsi 93965724 mcf 83005160
art 87593640 mesa 94429723
bzip2 92398416 mgrid 91704475
crafty 94450697 parser 94957683
eon 117813076 perlbmk 100245381

equake 112536995 sixtrack 61725677
facerec 82164501 swim 82790690
fma3d 2951034 twolf 83256750
gcc 121146712 vortex 110628341
gcc 121146712 vpr 110195396
gzip 79803491 wupwise 79449025

Table 2: Simulated Applications

For blocks accessed frequently across a large time-frame,
overall performance is practically unaffected. The cache real
estate is reserved for more urgently needed blocks. More-
over, memory level parallelism (MLP) [17] in current state-
of-the-art memories helps mask the penalty of bypassing the
cache for these blocks, although we do not explore ways to
better exploit this MLP here. Furthermore, from a power-
consumption point of view, blocks that are accessed across a
long time frame will stay in cache once loaded, especially for
caches with high associativity. This is true even if they are
not accessed for an extended period. Unused cache lines not
only may degrade performance, but they also cause leakage
power dissipation, which has become a major factor in the
current sub-micron era [28]. The replacement policy may
be another factor that supports making such blocks bypass
the cache hierarchy. If a cache set is full, a replacement pol-
icy must choose a block to evict when another is fetched.
This increases power consumption as well as hit latency. If
the set has one or more empty slots, no replacement is re-
quired, or at least the LRU stack (when a Least Recently
Used policy is employed) will not be full. By decreasing
the number of blocks coming into the cache, fewer sets will
be full, and hence more new blocks can be fetched into a
set without replacement (and possible write-backs of dirty
blocks to memory, which consume power and bandwidth).

In order to show the effects of ABP on performance, Fig-
ure 7 shows the instructions per cycle for the different tech-
niques. ABP shows higher performance than the other tech-
niques for most benchmarks. ABP is better than the tradi-
tional inclusive hierarchy for most benchmarks by an aver-
age of about 12%. This performance is due to several factors
that differ in importance based on the application. The first
is the decrease in cache pollution. The second is the de-
crease in the amount of bandwidth required, especially the
between L1 and L2 caches, as will be shown in the next sec-
tion. The third is the saving of replacement overhead. With
fewer blocks coming into the cache, fewer sets will be full,
and hence fewer replacements will be needed. Advantages
should be even larger if MLP techniques are used, or in SMT
scenarios, since the effective cache size increases.

Another factor that affects performance is the off-chip
bandwidth requirement, which is mainly due to the L2 miss
rate. Figure 8 shows the miss rates for the different schemes.
ABP has lower miss rates than the other schemes. This
means less off-chip bandwidth is required, and hence less
pressure is placed on the socket pins (which are not very scal-
able), memory bus, memory channels, and off-chip memory
ports.

6.2 Traffic Reduction
Another important factor in the efficiency of a cache hi-

erarchy is the on-chip and off-chip traffic. In the previous
section we showed that ABP has lower L2 miss rates, and
this translates to lower off-chip bandwidth requirements. In
this section we look at the traffic between L1 and L2 caches,
which is expected to skyrocket with the increase in the num-
ber of on-chip cores. This traffic has a pivotal effect on the
scalability of the system. The traditional multicore design
consists of several cores with private L1 caches and a shared
L2 cache. If the traffic between each core and the shared
L2 is high, this puts pressure on the on-chip interconnec-
tion network and on the number of ports required for the
L2 cache to deliver adequate response times. Reducing the

ap
pl

u

ap
si ar
t

bz
ip

2

cr
af

ty

eo
n

eq
ua

ke

fa
ce

re
c

fm
a3

d

gc
c

gz
ip

lu
ca

s

m
cf

m
es

a

m
gr

id

pa
rs

er pe
rl

six
tra

ck

sw
im

tw
ol

f

vo
rte

x

vp
r

wu
pw

ise

0

0.2

0.4

0.6

0.8

1

D
ec

isi
on

s

L1L2
NEITHER
L1
L2

Figure 6: Decision Statistics of ABP

ap
pl

u

ap
si ar
t

bz
ip

2

cr
af

ty

eo
n

eq
ua

ke

fa
ce

re
c

fm
a3

d

gc
c

gz
ip

lu
ca

s

m
cf

m
es

a

m
gr

id

pa
rs

er

pe
rl

si
xt

ra
ck

sw
im

tw
ol

f

vo
rte

x

vp
r

w
up

w
is

e0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

IP
C

LRU
Exclusive
Bypassing

ABP

Figure 7: Instructions per Cycle

L1-L2 bandwidth requirement is thus of crucial importance
for future systems.

Figure 9 shows the total traffic between the L1 and L2
caches. We omit the exclusive hierarchy because L2 acts
as a large victim cache, and hence traffic is expected to be
an order of magnitude higher than in traditional schemes.
ABP has much lower traffic than bypassing and lower traffic
than LRU. This is due to two main factors. The first is
the reduction in L1 pollution and hence lower miss rates, so
Figure 9 by itself is an indication of lower L1 miss rates.
The second is the decrease in the number of full sets in L1,
which reduces traffic due to writebacks.

These data show that some blocks cannot be easily cat-
egorized. They exhibit seemingly random behaviors. For
these blocks, ABP responds in one of two ways, depending
on the program. Either ABP makes no predictions, and the
system behaves as a traditional inclusive hierarchy (with no
affect on performance), or ABP makes predictions that may
be wrong, usually due to aliasing. Fortunately, incorrect
predictions minimally degrade performance.

7. ABP IN DIFFERENT ENVIRONMENTS
We have shown how ABP works in a two-level cache hi-

erarchy. In this section we will give a quick glimpse on the
usage of ABP in different organizations.

ABP in multi-level caches:.
Changing the decision matrix (Figure 5) allows ABP to

scale to any number of cache levels. The more important a
block (according to its access pattern), the better that it be
placed in more cache levels.

ABP in multicore processors:.
Using ABP is like using a non-inclusive hierarchy when it

comes to coherence. L1 tags must be duplicated in the L2,
assuming that the shared cache is L3. One ABP table keeps
track of all block accesses.

ABP with an inclusive L2:.
To impose inclusiveness on some blocks (i.e., some blocks

MUST be both in L1 and L2), these blocks can just be
marked as inclusive (like blocks marked as cachable or non-
cachable), and then ABP will not predict placement for
them.

8. CONCLUSIONS AND FUTURE WORK
In this paper we present a method for placing the access

pattern of each block into one of four categories, and we
present a possible design for doing so. We find that with a
table as small as 3 KB, we enhance the overall performance
of 23 SPEC2000 applications by an average of 12% while
reducing traffic from the L1 cache to the L2 cache. This

ap
pl

u

ap
si ar
t

bz
ip

2

cr
af

ty

eo
n

eq
ua

ke

fa
ce

re
c

fm
a3

d

gc
c

gz
ip

lu
ca

s

m
cf

m
es

a

m
gr

id

pa
rs

er

pe
rl

si
xt

ra
ck

sw
im

tw
ol

f

vo
rte

x

vp
r

w
up

w
is

e0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

L2
 C

ac
he

 M
is

s
R

at
e

LRU
Exclusive
Bypassing

ABP

Figure 8: L2 Cache Miss Rates

ap
pl

u

ap
si ar
t

bz
ip

2

cr
af

ty

eo
n

eq
ua

ke

fa
ce

re
c

fm
a3

d

gc
c

gz
ip

lu
ca

s

m
cf

m
es

a

m
gr

id

pa
rs

er

pe
rl

si
xt

ra
ck

sw
im

tw
ol

f

vo
rte

x

vp
r

w
up

w
is

e0

500

1000

1500

2000

2500

3000

To
ta

l T
ra

ffi
c

B
et

w
ee

n
L1

 a
nd

 L
2

(in
 M

B
)

LRU
Bypassing

ABP

Figure 9: Total Traffic between L1 and L2 Caches (MB)

approach should become increasingly useful as the number
of cores per chip scales. ABP makes its decisions based on
address streams, and thus it is independent of the number
of cores. We are currently enhancing our scheme via several
paths, including conducting sensitivity studies to fine-tune
ABP, making ABP self-tuned by adding another level of
learning, and extending our concepts to both SMT proces-
sors and to CMP designs.

9. REFERENCES

[1] Y. Li, B. Lee, D. Brooks, Z. Hu, and K. Skadron,
“CMP design space exploration subject to physical
constraints,” in Proc. 12th IEEE Symposium on High
Performance Computer Architecture, pp. 15–26, Feb.
2006.

[2] J. Davis, J. Laudon, and K. Olukotun, “Maximizing
CMP throughput with mediocre cores,” in
Proc.IEEE/ACM International Conference on Parallel
Architectures and Compilation Techniques, pp. 51–62,
Oct. 2005.

[3] L. Hammond, B. A. Nayfeh, and K. Olukotun, “A
Single-Chip Multiprocessor,” IEEE Computer, vol. 30,
no. 9, pp. 79–85, 1997.

[4] I. Corporation, “POWER4 system microarchitecture,”
, vol. 46, no. 1, 2002.

[5] B. Sinharoy, R. N. Kalla, J. M. T. andR.
J. Eickemeyer, and J. B. Joyner, “Power5 system

microarchitecture,” IBM Journal or Research and
Development, vol. 49, no. 4/5, 2005.

[6] D. Weiss, J. Wuu, and V. Chin, “The On-Chip 3-MB
Subarray-Based Third-Level Cache on an Itanium
Microprocessor,” IEEE Journal of Solid-State Circuits,
vol. 37, no. 11, 2002.

[7] http://www.intel.com/technology/architecture-
silicon/next-gen/.

[8] M. Qureshi, A. Jaleel, Y. Patt, S. S. Jr., and J. Emer,
“Adaptive insertion policies for high performance
caching,” in Proc. 34th International Symposium on
Computer Architecture (ISCA), pp. 381–391, Jun.
2007.

[9] Y. Xie and G. H. Loh, “Pipp: Promotion/insertion
pseudo-partitioning of multi-core shared caches,” in
Proc. 36th International Symposium on Computer
Architecture (ISCA), Jun. 2009.

[10] Y. Zheng, B. T. Davis, and M. Jordan, “Performance
evaluation of exclusive cache hierarchies,” in ISPASS
’04: Proceedings of the 2004 IEEE International
Symposium on Performance Analysis of Systems and
Software, pp. 89–96, Mar. 2004.

[11] N. P. Jouppi, “Improving direct-mapped cache
performance by the addition of a small
fully-associative cache and prefetch buffer,” in Proc.
17th International Symposium on Computer
Architecture, pp. 364–373, May 1990.

[12] R. Subramanian, Y. Smaragdakis, and G. Loh,

“Adaptive caches: Effective shaping of cache behavior
to workloads,” in Proceedings of the 39th Annual
IEEE/ACM International Symposium on
Microarchitecture (MICRO 39), pp. 385–396, Dec.
2006.

[13] W. Wong and J.-L. Baer, “Modified lru policies for
improving second level cache behavior,” in Sixth
International Symposium on High-Performance
Computer Architecture (HPCA-6), pp. 49–60, Jan.
2000.

[14] T. Puzak, A. Hartstein, P. Emma, and V. Srinivasan,
“Measuring the cost of a cache miss,” in Workshop on
Modeling, Benchmarking and Simulation (MoBS),
Jun. 2006.

[15] S. McKee, W. Wulf, J. Aylor, R. Klenke, M. Salinas,
S. Hong, and D. Weikle, “Dynamic access ordering for
streamed computations,” IEEE Transactions on
Computers, vol. 49, pp. 1255–1271, Nov. 2000.

[16] A. Glew, “MLP yes! ILP no!.” , Oct. 1998. ASPLOS
VIII Wild and Crazy Ideas Session.

[17] M. Qureshi, D. Lynch, O. Mutlu, and Y. Patt, “A case
for mlp-aware cache replacement,” in Proc. 33rd
International Symposium on Computer Architecture
(ISCA), Jun. 2006.

[18] Standard Performance Evaluation Corporation,
“SPEC CPU benchmark suite.”
http://www.specbench.org/osg/cpu2000/, 2000.

[19] F. J. Cazorla, E. Fernandez, A. Ramirez, and
M. Valero, “Dynamically controlled resource allocation
in smt processors,” in 37th annual IEEE/ACM
international symposium on Microarchitecture,
December 2004.

[20] Broadcom Corporation, “BCM1455: Quad-core 64-bit
MIPS processor.”
http://www.broadcom.com/collateral/pb/1455-PB04-

R.pdf,
2006.

[21] Y. Choi, A. Knies, G. Vedaraman, and J. Wiliamson,
“Design and experience: Using the Intel Itanium 2
processor performance monitoring unit to implement
feedback optimizations,” tech. rep., Itanium
Architecture and Performance Team, Intel
Corporation, 2004.

[22] PowerPC Microprocessor Family: AltiVec Technology
Programming Environments Manual, 2.0 ed., July
2003.

[23] T. L. Johnson, D. A. Connors, M. C. Merten, and
W.-M. Hwu, “Run-time cache bypassing,” IEEE
Trans. Comput., vol. 48, no. 12, pp. 1338–1354, 1999.

[24] M. Ohmacht, R. A. Bergamaschi, S. Bhattacharya,
A. Gara, M. E. Giampapa, B. Gopalsamy, R. A.
Haring, D. Hoenicke, D. J. Krolak, J. A. Marcella,
B. J. Nathanson, V. Salapura, and M. E. Wazlowski,
“Blue Gene/L compute chip: Memory and ethernet
subsystem,” IBM Journal of Research and
Development, vol. 49, no. 2-3, pp. 255–264, 2005.

[25] D. Tarjan, S.Thoziyoor, and N. Jouppi, “CACTI 4.0,”
Tech. Rep. HPL-2006-86, HP Western Research
Laboratory, 2006.

[26] D. Burger and T. Austin, “The simplescalar toolset,
version 2.0,” Tech. Rep. 1342, University of Wisconsin,
June 1997.

[27] G. Hamerly, E. Perelman, J. Lau, and B. Calder,
“Simpoint 3.0: Faster and more flexible program
analysis,” in Workshop on Modeling, Benchmarking
and Simulation, June 2005.

[28] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N.
Vijaykumar, “Gated-vdd: A circuit technique to
reduce leakage in deep-submicron cache memories,” in
Proc. International Symp. on Low Power Electronics
and Design, pp. 90–95, Jul. 2000.

