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Abstract

We develop a new retrieval scheme for obtaining two-dimensional surface maps of exoplanets from scattered light
curves. In our scheme, the combination of the L1-norm and total squared variation, which is one of the techniques
used in sparse modeling, is adopted to find the optimal map. We apply the new method to simulated scattered light
curves of the Earth, and find that the new method provides a better spatial resolution of the reconstructed map than
those using Tikhonov regularization. We also apply the new method to observed scattered light curves of the Earth
obtained during the two-year Deep Space Climate Observatory/Earth Polychromatic Imaging Camera observations
presented by Fan et al. The method with Tikhonov regularization enables us to resolve North America, Africa,
Eurasia, and Antarctica. In addition to that, the sparse modeling identifies South America and Australia, although it
fails to find Antarctica, maybe due to low observational weights on the poles. Besides, the proposed method is
capable of retrieving maps from noise-injected light curves of a hypothetical Earthlike exoplanet at 5 pc with a
noise level expected from coronagraphic images from a 8 m space telescope. We find that the sparse modeling
resolves Australia, Afro-Eurasia, North America, and South America using 2 yr observation with a time interval of
one month. Our study shows that the combination of sparse modeling and multiepoch observation with 1 day or
5 days per month can be used to identify main features of an Earth analog in future direct-imaging missions such as
the Large UV/Optical/IR Surveyor.

Unified Astronomy Thesaurus concepts: Exoplanet astronomy (486); Astrobiology (74); Direct imaging (387)

1. Introduction

One of the ultimate goals of exoplanetary science is to detect
life and characterize habitable environments beyond the solar
system. Recent discoveries of exoplanets in the habitable zone
(HZ) provide unprecedented opportunities to characterize
planetary environments that could potentially harbor life (e.g.,
Kane et al. 2016). Beyond the detection of planets in the HZ, a
promising biomarker on such planets in the HZ is metabolic
features, such as O2, O3, and H2O, in transmission spectra.
Notably, Benneke et al. (2019) have recently reported the
discovery of water vapor in the atmosphere of an 8 ÅM planet in
the HZ (K2-18b). This discovery triggers significant motivation
for seeking further indirect or direct indications of life.

In direct imaging, an exoplanet is generally accompanied by a
star, whose brightness and proximity make identification of
planetary light challenging. In principle, features in scattered light
can be interpreted as indications of movements of surface
inhomogeneity resulting from orbital and rotational motions (Ford
et al. 2001). Despite the technical challenges of directly imaging
Earthlike exoplanets, such a characterization of photometric
variations is an important probe of exoplanetary surface environ-
ments (which may include oceans, land masses, and regions with
vegetation) and planetary dynamics (Pallé et al. 2008; Cowan et al.
2009, 2011; Oakley & Cash 2009; Fujii et al. 2010, 2011).

One of the characterization methods based on photometric
variations, proposed by Kawahara & Fujii (2010), involves
two-dimensional (2D) global mapping of directly imaged
planetary surfaces, using the scattered light curve in the
presence of both spin and orbital motions. Subsequently,
Kawahara & Fujii (2011) formulated an inversion method
named spin–orbit tomography (SOT) for recovering 2D surface
maps by introducing Tikhonov regularization, which enables

the direct estimation of the surface albedo. The same technique
was applied successfully by Fujii & Kawahara (2012) to
reconstruct 2D maps, even for planets with various obliquities
and orbital inclinations. Within the framework of SOT, planet
obliquity is simultaneously inferred through the minimization
of a loss function. The ability to infer obliquity from a light
curve was extensively investigated by Schwartz et al. (2016) in
terms of amplitude modulation. Also, Kawahara (2016)
revealed the relation between the planet spin axis and the
frequency modulation of light curves. Farr et al. (2018)
constructed the Bayesian framework of 2D mapping and
quantified the uncertainty in the albedo map and the obliquity.
They applied the Gaussian process to regulate the interpixel
variance of the map instead of the the Tikhonov regularization.
On the other hand, Luger et al. (2019a) presented the open code
starry that exploits spherical harmonics for mapping, and
Luger et al. (2019b) applied it to the Transiting Exoplanet
Survey Satellite (TESS) light curves of the Earth. Since TESS
is equipped with single bandpass, the map recovered by Luger
et al. (2019b) is largely affected by the cloud reflection. On the
other hand, Fan et al. (2019) recently recovered a global land
map by exploiting multiwavelength light curves of the Earth
during the two-year Deep Space Climate Observatory/Earth
Polychromatic Imaging Camera (DSCOVR/EPIC) observa-
tions (Jiang et al. 2018). Using the same data, Kawahara (2020)
also reconstructed the geography and spectral components,
which reasonably reproduce actual features of the Earth. These
are clear practical examples of how to mitigate the effects of
clouds from light curves.
The aim of this study is to improve the spatial resolution of

an inferred map using sparse modeling. The global mapping is
generally a ill-posed problem, so it requires regularizations for
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giving unique solutions. One possible technique is least
absolute shrinkage and selection operator, which minimizes the
l1 norm simultaneously to search for the sparse solutions (e.g.,
Tibshirani 1996). Recently, this technique has attracted
increasing attention in the field of astronomy, especially in
reconstructing images from interferometric observations (e.g.,
Honma et al. 2014; Ikeda et al. 2016; Akiyama et al.
2017a, 2017b; Kuramochi et al. 2018; Event Horizon
Telescope Collaboration et al. 2019). For example, Kuramochi
et al. (2018) proposed to use the combination of total squared
variations (TSV) and the l1 norm, and they demonstrated that
the technique enabled the recovery of accurate images of black
hole shadow from interferometric observations compared with
conventional methods.

In this paper, we apply sparse modeling to the problem of
mapping planetary surfaces from reflectional light in direct-
imaging observations. As fiducial data, we adopted the mock
albedo map of the Earth and the real observational data
obtained from the Deep Space Climate Observatory
(DSCOVR) by Fan et al. (2019). For comparison, we solved
the mapping problem using both Tikhonov regularization and
sparse modeling, and discuss the difference in the output maps.

2. Formulation of the Mapping

2.1. Forward Modeling of Reflected Light Curves of a Distant
Planet

For mapping the surface of an exoplanet, we estimate the
planetary surface albedo m, discretized to Npixel pixels
( { ( )}q f= =m m m ,j j j for = ¼j N1, 2, , pixel), where (q f,j j)

is the location of the jth pixel on the sphere’s surface. The scattered
light curve d consists of Ndata points ( { ( )}= =d d d ti i for
= ¼i N1, 2, , data), where ti is the ith time frame. As formulated

previously (e.g Kawahara & Fujii 2010), the light curve and
planetary surface are related via a transfer matrix =G

{ ( )}q f z= F Q QG G i, ; , ; , ,i j j j i i, eq inc for = ¼i N1, 2, , data

and = ¼j N1, 2, , pixel as

( )å= + d G m , 1i

j

N

i j j i,

pixel

where G describes the amount of reflection from the planetary

surface toward the observer with a given influx from the central

star, and  corresponds to the observational uncertainties

associated with d. Here, ( )F = F ti i and ( )Q = Q ti i describe the

phases of the orbital motion and spin rotation, respectively; ζ is

the planetary obliquity, the angle between the planetary orbital

axis and the planetary spin axis; Qeq is the orbital phase at the

equinox; iinc is the planetary orbital inclination, which is

defined as the angle between the orbital axis and the line-of-

sight. In this article, we assume a circular orbit for simplicity.

These geometrical quantities can be inferred from the mapping

itself (e.g., Kawahara & Fujii 2010; Schwartz et al. 2016; Farr

et al. 2018) and also from the frequency modulation

(Kawahara 2016). Hence, we fix ζ and Qeq to their true values

for simplicity throughout this article.
Since we do not have any information in surface types, we

assume isotropic (Lambertian) reflection for simplicity in this
article. We note that one can also attempt to find signatures
of nonisotropic reflection from light curves, which might
indicate the presence of particular surface types, e.g., ocean

(Lustig-Yaeger et al. 2018). Assuming isotropic (Lambertian)
reflection from the surface, G is rewritten as follows:

( · )( · ) · ·⎧
⎨
⎩

w
º

D > >
G

e e e e e e e eif 0, 0

0 otherwise,
i j

s
,

S R O R S R O R

where wD s is the solid angle subtended by the pixel, and e e,S O,

and eR are the unit vectors pointing from the discretized

planetary surface specified by ( )q f,j j toward the central star,

from the surface to the observer, and from the planetary center

to the surface, respectively. Their expressions are given by

( ( ) ( ) ) ( )= Q - Q Q - Qe cos , sin , 0 , 2T
S eq eq

( ) ( )= Q - Qe i i isin cos , sin sin , cos , 3T
O inc eq inc eq inc

( ( ) ( )

( ) )

( )

f q z f q z q
z f q z q

= + F + F +
- + F +

e cos sin , cos sin sin sin cos

sin sin sin cos cos .

4

T

R

The transfer function G has two fundamental timescales,

associated with the spin and orbital periods. Combinations of

these timescales allow the consideration of different positions

on the planetary surface at different epochs. The inversion

method exploiting this property is called SOT (see more

detailed discussions in Kawahara & Fujii 2010, 2011; Fujii &

Kawahara 2012).

2.2. Inverse Modeling of Reflected Light Curves of a Distant
Planet Using Regularization Terms

The mapping problem to infer m from d in Equation (1)
generally becomes ill-posed for two reasons: (a) the possible
existence of invisible faces of planets seen from an observer
depending on geometry; (b) angular resolution for mapping is
basically limited by visible and illuminated areas for each
observational snapshot, so it is not possible to reconstruct the
planetary surface at infinite resolution. The first property can be
mitigated by limiting the solution space not to include invisible
areas, but the second one is still inevitable. There are several
methods to give an unique solution to an ill-posed problem, and
one of these techniques is an introduction of regularization
terms to a standard chi-squared value in minimization.
Previously, Kawahara & Fujii (2011) introduced the Tikhonov
regularization, also known as ridge regression, to determine the
unique solution.
Although it successfully gives the unique solution, the

Tikhonov regularization is not the only choice of regulariza-
tion. By choosing appropriate regularization parameters, one
can exploit unique features of planetary surfaces in direct-
imaging observations: (a) the surface is composed of several
major types, possibly with a few dominant species e.g., ocean
in the case of the Earth; (b) the surface is likely to be
continuous and smooth; (c) coastlines, on the other hand, are
likely to be sharp, and they divide different surface types
clearly. In this article, we attempt to exploit the first two
features by introducing the L1-norm and TSV, and we evaluate
the difference between the map recovered by the Tikhonov
regularization and the new regularization. We also attempt
other types of regularization terms including total variation,
which can exploits property (c), in Appendix A, and we find
that the combination of the L1-norm and TSV is likely to give
the best estimation on the map.

2
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2.2.1. Modeling with Tikhonov Regularization

To solve m, Kawahara & Fujii (2011) introduced the
Tikhonov regularization:

∣ ˆ ∣ ( )c lº + -l m mQ , 52 2 2

( )
( )åc

s
=

- å

=

=d G m
, 6

i

N i j

N
i j j

i

2

1

1 ,

2

2

data
pixel

where si is the ith observational uncertainty and m̂ is the model

prior that is the uniform mean albedo map estimated from the

observation (Kawahara & Fujii 2011). The regularization

parameter λ is arbitrary, and it balances the observational

noise and the spatial resolution; the large value of λ is likely to

return the uniform map similar to the prior map. The above

equation can be analytically solved in the following form:

( ˜ ˜ ˆ ) ˆ ( )= S - +l lm d m mV U G , 7T
est,

( ) ( )
k

k l
dS =

+
l , 8i j

i

i

i j, 2 2
,

where ˜ s=d di i i, and ˜ s=G Gi i i. The matrices V and U are

given by the singular value decomposition of = LG U V T , and

ki is the ith eigenvalue of the diagonal matrix Λ.
The minimization with the Tikhonov regularization is

equivalent to finding the maximum posterior probability in
the Bayesian statistics, where the prior is imposed as the
Gaussian-type function with the mean of m̂ and the covariance
matrix l d- i j

2
, . The detailed discussion is shown in Appendix C

in Fujii & Kawahara (2012).

2.2.2. Sparse Modeling

Alternatively to Tikhonov regularization, we consider sparse
modeling, which involves the combination of the L1-norm and
TSV introduced in Kuramochi et al. (2018) as the regulariza-
tion terms for mapping planets. Then, the loss functionQl1,tsv is
defined as

( )cº + L + LQ Q Q . 9l l l1,tsv
2

tsv tsv

The loss function Ql1,tsv is composed of the chi-squared value,

the L1-norm of the map Ql, and the TSV term Qtsv defined as

follows:

∣ ∣ ( )åºQ m , 10l

i

N

i

pixel

( ) ( )å åº -Q W m m
1

2
, 11

i

N

j

N

i j i jtsv ,
2

pixel pixel

where Wi j, is the neighboring matrix defined as

{=W
i j1 if th and th pixels are adjacent.

0 otherwise.
i j,

In Equation (9), Ll and Ltsv are the regularization parameters of

L1 and TSV, respectively. The second term L Ql l describes the

sparsity of the solution. The larger value of Ll gives more zero-

valued pixels in the solution. The third term L Qtsv tsv in

Equation (9) is defined as the sum of the difference in the

values of adjacent pixels. This term determines the smoothness

of the solution. We solved the minimization of Ql1,tsv with a

monotonic variant of the fast iterative shrinking threshing

algorithm (MFISTA; Beck & Teboulle 2009a, 2009b), follow-

ing Akiyama et al. (2017a) and Kuramochi et al. (2018).
For the fair comparison with the Tikhonov regularization and

its solution in Equation (7), we do not adopt a nonnegative
condition for m, but such a constraint would help to resolve the
surface. One minimization for the data in Section 3 takes a few
minutes to finish, and the computational cost is scaled as
(max(Npixel

2 , )N Npixel data ). The minimization with the L1-norm
and TSV term is also the same as finding the maximum
posterior probability, where the prior is imposed as the
combination of a Laplace distribution for the L1-norm and
the Gaussian-type function for TSV.

2.3. Choices of Regularization Parameters in Inverse Modeling

The optimization of regularization parameters is an impor-
tant issue in statistical methods, but the general discussion for
the selection is difficult. In the global mapping problem with
the Tikhonov regularization, Kawahara & Fujii (2011)
proposed to use the l-curve method, which determines the
optimal solution as the maximum curvature point of the model
norm versus residuals corresponding to c2 (Hansen 2010).
Here, the l-curve method searches for the point with
the maximum curvature between ∣ ˜ ˜ ∣- ld Gmlog est,

2 and
∣ ˆ ∣-lm mlog est, , and the detailed description of the method is

found in Appendix E in Fujii & Kawahara (2012).
In the case of sparse modeling with the combination of the

L1-norm and TSV, however, the l-curve method cannot be
applied straightforwardly because there is one additional
regularization term. One might be able to extend l-curve to
the higher-order method, but this is beyond the current scope of
this work as there is no such previous study to our knowledge.
Another possibility is the cross validation method, where the
data are split into training and validation data, and the trained
model is evaluated against the test data. However, this method
favors the overfitted solution in the global mapping as
discussed in Appendix B.
One possible strategy is to train regularization parameters by

simulating several configurations, and apply the trained optimal
regularization parameter to the real data (e.g., Event Horizon
Telescope Collaboration et al. 2019). In the case of global
mapping, we first prepare different land distributions, simulate
the observational data for the models, recover the maps from
the simulated data, and choose the acceptable regularization
parameters by comparing the recovered maps with the ground
truth images. Finally, one will recover the map from the real
data by adopting the regularization parameters, which are
determined by the injection and recovery tests in the above.
Given this procedure in mind, we focus on studying the

potential of the sparse modeling in this paper; specifically, we
attempt to investigate whether possible combinations of
regularization parameters exist in sparse modeling that recover
a better map than the Tikhonov regularization. For that, we
compute a weighted residual sum of squares (WRSS) between
the recovered maps and the ground map in order to identify the
best map from the observation:

¯ ( ) ( )å= -G m mWRSS , 12
i

N

i i iest, true,
2

pixel

where the Ḡi is the time-averaged weight at the ith pixel, m iest,

is the estimated model for the map, and m itrue, is the true map.

For regions without much visibility, the term W̄i suppresses the

3
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degree of discrepancy between the recovered and true maps in

choosing the optimal map.

3. Mapping the Cloudless Earth

As a test bed, we adopt a static cloud-subtracted Earth
model, as used in Kawahara (2016). Figure 1(a) shows
this injected albedo map of the Earth after removal of the
cloud-cover fraction with ISCCP D1 data (the cloud map of

2008 June 30 21:00). On this map, the ocean has zero albedo and

land has a constant albedo after subtracting the cloud coverage.

The spherical pixelization was realized using Hierarchical Equal

Area isoLatitude Pixelation of a sphere (HEALPix; Górski et al.

2005) with 3072 pixels in total. With regard to the TSV terms,

we calculatedWi j, , referring to the orders of pixels on the sphere.

Concerning the geometry and orbital parameters, we assumed

= i 0inc , z = 90 ,Q = 180eq , =P 23.93447spin hr, and =Porb
365.24219 days. We generated a one-year light curve with

Figure 1. Mock albedo map of the Earth and the recovered surface estimated from the light curves with S/N=2, 5. (a) Injected albedo map of the Earth. (b) Annual
mean of the observational weightsGi j, of the mock data. (c) Recovered map based on Tikhonov regularization (S/N=100). (d) Recovered map with S/N=5 based

on regularization of the L1-term an TSV. (e) Same as (c), but for S/N=5. (f) Same as (d), but for S/N=5. (g) Same as (c), but for S/N=2. (h) Same as (d), but for
S/N=2.

4
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1024 points at an ;8 hr interval, and we added Poisson noise

to the light curves by varying the signal-to-noise ratio (S/N)=
2, 5, and 100. In the analysis, we adopted “Tikhonov” and

“L1-norm+TSV” regularization terms respectively for compar-

ison. Figure 1(b) shows the mean weight of Gi j, over the Earth’s

surface in this mock observation. The Earth’s surface was globally

surveyed except for the regions very close to the North and

South Poles.
Figures 1(c)–(f) shows the recovered maps estimated from

the light curves with S/N=2, 5, and 100 with the “Tikhonov”

and “L1-norm+TSV” regularization terms. The chosen reg-

ularization parameters are l = 100.1 for S/N=2, l = 100.3

for S/N=5, and l = 100.3 for S/N=100, according to the

l-curve criterion (Hansen 2010) for Tikhonov regularization.

For “L1-norm+TSV” regularization, we set ( )L L =,l tsv

( )- -10 , 100.50 0.25 for S/N=2, ( ) ( )L L = - -, 10 , 10l tsv
0.25 0.25

for S/N=5, and ( ) ( )L L =, 10 , 10l tsv
0.75 0.25 for S/N=100

as the optimal solutions by finding the minimum values of

WRSS.
Both methods generally succeed in recovering the major

continents. In case of S/N=100, both methods give well-

resolved maps, there is no large difference between them,

although the sparse modeling still gives the better fitting.

On the other hand, as is evident from the comparison with

the input map, Figures 1(d) and (f) show better resolved and

more consistent maps than Figures 1(c) and (e); the detailed

structures of the continents (e.g., the shapes of South America

and Africa) are well reproduced in Figures 1(d) and (f). This

tendency is more clearly seen in the comparison with S/N=2.
The Tikhonov regularization (Figure 1(e)) fails to discriminate

North and South America or Eurasia and Australia. In contrast,

sparse modeling (Figure 1(f)) successfully distinguishes these

continents with well-characterized coastlines. We note that

the smaller λ value gives a higher resolution with Tikhonov

regularization, albeit with an overfitted inferred map and

induced noise.
In addition to the case of = i 0inc and z = 90 , we also

attempt = i 45inc and z = 23 .4 to estimate the surfaces by

exploiting simulated light curves with S/N=2, 5, and 100. We

find thatl = 100.429 returns the optimal maps determined by the

l-curve method for each case in the Tikhonov regularization.

For sparse modeling, ( ) ( )L L = - -, 10 , 10l tsv
1.25 0.50 in the case

where S/N=2, ( ) ( )L L = - -, 10 , 10l tsv
1.00 0.50 in the case

where S/N=5, and ( ) ( )L L = -, 10 , 10l tsv
0.25 0.25 in the

case where S/N=100. Figure 2 shows the recovered optimal

maps obtained from minimizing WRSS for each case. In this

setup, the Northern Hemisphere of the Earth is preferably

surveyed, and most of the Southern Hemisphere is invisible due

to the geometry. The sparse modeling successfully resolves the

continents, especially in case of S/N=2 and 5. This example

shows that the sparse modeling can work in different geometrical

configurations.
Differences among the reconstructed maps originate from

various aspects. Tikhonov regularization is not physically

motivated by the nature of the planetary surface. This term acts

as a regulator for observational noise and the spatial resolution

of the surface (Kawahara & Fujii 2011). In contrast, the L1-

norm efficiently identifies ocean regions because their albedo is

zero. In addition, the TSV term suppresses the emergence of

the bumpy structures on the maps, and the recovered maps

become smoothed as a result of the minimization.

4. Application to Observed Light Curves

Recently, Fan et al. (2019) reproduced the surface map of the
Earth using real light-curve observations of ∼10,000
DSCOVR/EPIC frames collected over a two-year period.
Since the DSCOVR spacecraft is located at the first Sun–Earth
Lagrange point (L1), the current configuration corresponds to
( ) ( )z =  i , 90 , 23 .4inc with varying Qeq for eO in Equation (3)
to be parallel from the Sun to the Earth. Observations were
taken in 10 optical narrowband channels, and the principal
components (PCs) were calculated among all the light curves to
extract the surface features. By exploiting the gradient boosting
decision tree, Fan et al. (2019) found that the second strongest
principal component (PC2) traces the surface inhomogeneity of
planets. In particular, Fan et al. (2019) demonstrated that the
time series of PC2 are linearly correlated with those of the
overall land fraction, which is the summation of the land
fraction weighted by G viewed from the observatory at each
phase. Here, the land fraction is taken from the Global Self-
consistent, Hierarchical, High-resolution Geography Database
(Wessel & Smith 1996), and it is shown in Figure 3(a). In Fan
et al. (2019), they recovered the land map from PC2 using the
Tikhonov regularization.
We analyze the same data as used in Fan et al. (2019). We

check that our analysis with the singular value decomposition
analysis of multiband observations gives the same PC2 as
presented in Fan et al. (2019). For consistency, we adopt their
normalized weight matrix, where the summation of weight at
one epoch is equal to one, slightly different from the current
definition of G. Figures 3(b) and (c) show the mean weight
matrix of the observation obtained by EPIC on board DSCOVR
and the corresponding recovered map, respectively. This
observation is fairly insensitive to the North and South Poles
because DSCOVR is always located near the first Lagrangian
point between the Earth and the Sun. In their solution, they
adopted l = -10 1.5 as the regularization parameter in
Equation (5). Their estimation (Figure 3(c)) captured the
coarse features of the Earth’s surface, but not all the continents
were successfully recovered (e.g., South America and
Australia).
For comparison, we solved the same problem using the L1-

norm and TSV regularization terms. The light curves have
negative and positive values owing to the nature of the
principal component. In the solution derived by Fan et al.
(2019), the regions with negative PC2 are more likely to be
ocean. To make efficient use of sparsity, i.e., to associate zero
values to ocean regions, we produced the nonnegative light
curves by subtracting the minimum value of the light curves
from the overall light curves, and slightly offsetting the entire
data set by 0.005. This ad hoc operation, or the choice of the
added constant, does not significantly affect the results because
the constant offset in the light curve would only result in a
constant change to the whole recovered map. Figure 3(d)
shows the recovered map, based on the L1-norm and TSV
regularization. For a clear comparison, we convert the PC2 of
the recovered maps into a corresponding land fraction by using
the relation, PC2=0.0753 × land fraction − 0.0214, which is
derived from the linear regression. In the minimization, we
assume the associated noise s = 1i for simplicity. We adopted
( ) ( )L L = - -, 10 , 10l tsv

3 3 in Equation (9) as the optimal
solution chosen by minimizing WRSS between the recovered
map and the land fraction of the Earth in Figure 3(a). Notably,
the mapping by the new regularization term resolves the
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structure of South America and Australia, which are blurred

and connected to Antarctica in Figure 3(c). It also successfully

resolves other continents very consistently with the features of

the Earth surface. However, our newly-proposed map does not

recover Antarctica as implied in Figure 3(c). This may be due

to its low observational weights (Figure 3(b)) and different

spectral features than other continents.
Finally, we show solutions with nine different combinations

of ( )L = - - -10 , 10 , 10l
4 3 2 and ( )L = - - -10 , 10 , 10tsv

4 3 2 in

Figure 4. Toward the larger value of Ll, the reconstructed maps

become more sparse, and inconsistent with the ground truth.

On the other hand, with a smaller value of Ll, the solutions
become more similar to those obtained from the Tikhonov
regularization (Figure 3(c)). The optimal solution with
( ) ( )L L = - -, 10 , 10l tsv

3 3 is exactly in the middle of these
two kinds of solutions, and the three cost functions in Ql1,tsv

balance each other at this point.

5. Demonstration of Global Mapping in Future
Observations

In future space direct-imaging observations (e.g., the
Habitable Exoplanet Observatory (HabEx) and the Large

Figure 2. Same as Figure 1, but for z = 23 .445 and = i 45 .
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UV/Optical/IR Surveyor (LUVOIR)), it would be unrealistic
to have continuous occupancy of an instrument for years. In
addition, the instrumental and astrophysical noise in actual
exoplanet observations would be orders of magnitude larger
than those in Earth’s light curves. It is necessary to take the
consideration of many fewer time frames and a higher noise
level for exoplanet observations. In this section, we test the
feasibility of the method under a more realistic assumption.

As a fiducial system, we consider an Earth-sized planet
around a Sun-like star with T=5780 K ( )T and =R R at a
distance of 5 pc. The semimajor axis of the planetary orbit is
assumed to be 1 au, and the planetary flux in each band is
calculated by convolving the planet’s reflectivity with the
stellar spectrum. For simplicity, we assume the reflection to be
Lambertian, and the phase angle α is assumed to be 90°, where
the planet is at a quadrature. We consider a LUVOIR-like
telescope with a diameter D = 8 m. The coronagraph

design contrast is assumed to be 10−10, and the end-to-end
throughput in the coronagraph is taken to be 0.3.5 The
integration time is 1.8 hr, which corresponds to the average
time interval in the current observation. For simplicity, we
consider the snapshot of each image rather than the smeared
image with 1.8 hr integration. However, if we take into account
the smearing effect, the recovered image would be blurred by
27°, which corresponds to 1.8 hr, around the spin axis.
Although the current cadence is already limited by the

observational strategy of DSCOVR, one will be able to evade
this problem by adopting a shorter cadence.
We calculate the observational noises using coronagraph,

which is an open source Python package for computing the noise
of space direct-imaging missions (Robinson et al. 2016;
Lustig-Yaeger et al. 2019). Adopting the imaging mode in
coronagraph, we compute S/N in each band. As the
DSCOVR observation uses narrowband filters (317, 325, 340,
388, 443, 552, 680, 688, 764, and 779 nm), we reassign the band
centers and FWHM to emulate broadband filters of our mock
observatory. For instance, we take the average of the light curves
in three narrowband filters of DSCOVR (317, 325, and 340 nm)

as the light curve in a single band. In the similar manner, we
combine the light curves in the filters with band centers of 680
and 688 nm, and 764 and 779 nm, by averaging their light
curves. As a result, we have the light curve with six broadband
filters with band centers=325, 388, 443, 552, 684, 770 nm and
FWHM=30, 33, 22, 87, 45, 41 nm.
Figure 5 shows the compositions of the noise sources based

on Robinson et al. (2016). The calculation is basically based on
the sample code “luvoir_demo.py” in coronagraph. The
noise sources are composed of Poisson noise, local zodiacal
light, exozodiacal light, dark current, read noise, and speckle
noise. In the current case, the dominant noise sources are
Poisson noise and speckle noise. In the reconstructed broad-
band filters, we find S/N=10.50, 15.17, 15.13, 26.92, 16.18,
15.40 assuming 1.8 hr integration.
Instead of a continuous 2 yr observation, we assume

multiepoch observations like those presented in Schwartz
et al. (2016) and Farr et al. (2018). We divide 1 yr into

Figure 3. Mapping the surface of the Earth using the 2 yr DSCOVR/EPIC observations. (a) Ground truth pixelated land fraction surface map of the Earth (Fan
et al. 2019). (b) Annual mean of the observational weights Gi j, in the 2 yr DSCOVR/EPIC observations. (c) Recovered map with Tikhonov regularization derived by

Fan et al. (2019). (d) Recovered map with regularization of L1-norm and TSV. The maps recovered from PC2 are converted into the values corresponding to the land
fraction.

5
The expected coronagraph contrast and end-to-end throughput of the

ECLIPS instrument is adopted from the LUVOIR Final Report (http://www.
latex-cmd.com/struct/footnote.html). The average optical throughput in the
visible band is assumed to be 0.277 in the imaging mode.
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12 blocks (;1 month), and use the first =D 1obs month or

5 days in each block. Adopting S/N as above, we inject Gaussian

noise to the light curves, and decompose them into principal

components using the singular value decomposition (SVD). As

revealed in Fan et al. (2019), the second strongest principal

component (PC2) is linearly correlated with the land fraction; the

coefficient of determination r2 is 0.91 in their paper. Figure 5

shows the scatter plot of PC2 and the land fraction in case of

=D 5obs month days with =r 0.482 , which implies the weak

correlation. Similarly, we find =r 0.482 for =D 1obs month day

and =r 0.502 for the full data set. On the other hand, we find

=r 0.932 without the injection of noise, so the noise would

account for the weak correlation in the current case. We fit a

linear function of the land fraction to the PC2, and we find

PC2= ´0.290 land fraction − 0.083 for =D 1obs month day, and

PC2 = ´0.136 land fraction − 0.039 for =D 5obs month days.

The coefficients roughly differ by a factor of 5 between

=D 1obs month and 5 days, and this is because the normalization

of PC2 is equal to 1 by definition. Finally, we adopt (PC2 +

0.083)/0.290 for =D 1obs month day and (PC2 + 0.039)/0.136
for =D 5obs month days for solving the map in order for =m 0
to correspond to zero land fraction i.e., ocean.
Figure 6 shows the recovered surface maps using Tikhonov

regularization and sparse modeling for =D 1obs month and
5 days, respectively. We express the recovered maps in
representation of land fraction by exploiting the linear relation
for PC2, and the optimal solutions are obtained by minimizing
WRSS between the recovered maps and the land map of the
Earth in Figure 3(a) for both Tikhonov regularization and
sparse modeling. Notably, even in the case of =Dobs month

1 day, the planetary surface is roughly resolved in the Tikhonov
regularization. Moreover, the sparse modeling (Figure 6(b))
successfully resolves Australia, Afro-Eurasia, North America,
and South America although it is still blurred. On the other
hand, observations with Dobs month of 5 days in Figure 6
enable us to recover the maps with very similar accuracy to
those produced from continuous observations. These results

Figure 4. Recovered surface maps with different combinations of ( )L = - - -10 , 10 , 10l
4 3 2 and ( )L = - - -10 , 10 , 10tsv

4 3 2 . The optimal solution is shown in the center
of the panel being surrounded by red dotted lines.

Figure 5. (a) Statistical noises in the unit of photon counts derived by coronagraph (Robinson et al. 2016; Lustig-Yaeger et al. 2019). (b) Scatter plot of land
fraction and PC2 extracted from light curves with =D 5obs month days. The red line shows a linear fitting to the data, and the coefficient of determination r

2=0.48.
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encourage the mapping of “Second Earth” using future direct-
imaging missions such as HabEx and LUVOIR.

6. Summary

The use of reflected light curves for mapping surfaces is an
important probe of exoplanet surface inhomogeneity. Previous
studies of recovering surface maps from observed light curves
basically regularized observational noise with Tikhonov
regularization without the consideration of physical properties
of planetary surfaces (e.g Kawahara & Fujii 2011; Fujii &
Kawahara 2012; Farr et al. 2018; Farr et al. 2018;
Kawahara 2020). In addition to those studies with pixel
discretization on the sphere, Luger et al. (2019b) exploited the
spherical harmonics functions for solving the mapping problem
using the TESS light curve of the Earth, and they adopted
priors, which suppress high order features of the surface. In this
paper, we introduced sparse modeling (L1+TSV regulariza-
tion) to estimate a planetary surface efficiently by exploiting
the following surface properties: (a) distinct spectral difference
between land and ocean and (b) continuity of planetary
surfaces. As a test calculation, we injected and recovered the
mock albedo map of the Earth using both regularization terms,
and found that sparse modeling reproduces more consistent
continental surface distributions than the Tikhonov regulariza-
tion. We also applied our method to observations of the Earth
obtained by DSCOVR to investigate the advantage of sparse

modeling in real data analysis. We found that sparse modeling

successfully recovers the continents (Australia and South

America) that are not clearly estimated by Tikhonov regular-

ization. We also showed that 1 or 5 days per month in a 2 yr

observation would enable us to retrieve the surface map of an

Earth analog at a distance of 5 pc.
In this paper, we demonstrate that the choice of regulariza-

tion terms in exoplanet mapping can significantly affect the

resulting recovered maps. The regularization terms can be seen

as the priors from a Bayesian viewpoint, and our study shows

the importance of selecting regularizations or priors for finding

the correct map from the observation. In this viewpoint, the

discretization on the planetary surface rather than the spherical

harmonics would be intuitive to put reasonable priors that

exploit characteristics of planetary surfaces. We also attempt

other types of regularization terms, and the combination of

L1+TSV regularization is likely to be the best choice among

possible regularizations in case of the Earth. In the current

sparse modeling, we make use of the sparsity coming from the

very low albedo of the ocean, but even for a planet without

seas, we can apply the method by offsetting the data to force an

albedo of a particular surface type to be zero. In this paper, we

consider only the case of the Earth, and other continental

configurations, geometries, regularization terms, and the

optimal choice of the regularization parameter for unknown

surfaces are subject to future investigations.

Figure 6. Global mapping of the DSCOVR data assuming observations from a distance of 5 pc using Tikhonov regularization (a), (c) and sparse modeling (b), (d).
The observational duration is one day in one month ((a) and (b); =D 1obs month day), and five days ((c) and (d); =D 5obs month days). The recovered maps are chosen
by minimizing WRSS between the recovered maps and the land map of the Earth.
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Appendix A
Comparison of Different Regularizations

In this section, we compare six different regularizations in a
mapping problem. For that purpose, we assume the same
condition as done in Section 3: S/N=5, = i 0inc , and
z = 90 . By comparing the recovered maps from simulated
light curves, we demonstrate that the L1+TSV is likely to be
the best regularization for the mapping problem.

For comparison, we introduce additional regularization, total
variation (TV), defined as

∣ ∣ ( )å åº -Q W m m
1

2
, A1

i

N

j

N

i j i jtv ,

pixel pixel

where we exploit the same neighboring matrix Wi j, as used for

the TSV term. We define the regularization parameter for TV as

LTV. The above expression cannot be differentiable when

=m mi j, so we use replace ∣ ∣-m mi j by ( )- + m mi j
2 2 ,

where = - 10 8 in this study, when we compute the derivative.

With the TV term, we can search for solutions with sparsity in

derivatives of the surface albedo in the current problem. Since

the planetary surface is roughly divided into several types with

boundaries, the TV term possibly helps to identify the clear

edges.
Using this new term, we exploit six different regularizations

in total for estimating the planetary surface: L1+TSV, TV,
L1 + TV, TSV, Tikhonov regularization, and L1-norm. To find
the optimal solutions, we implement a grid search, where the
ranges of the regularization parameters are from 10−3 to 101.
The optimal regularization parameters are ( )L L =,l tsv

( )- -10 , 100.25 0.25 for L1+TSV, L = -10tv
0.5 for TV,

( ) ( )L L = -, 10 , 10l tv
0.56 0.33 for L1+TV, L = 10tsv

0.25 for

TSV, l = 100.30 for Tikhonov regularization, and L =l
-10 0.5 for L1-norm. Figure A1 shows the comparison of

recovered maps with six different regularizations, where L1
+TSV and Tikhonov regularization are already studied in
Section 3. The maps are determined by minimizing WRSS in
Equation (12) from comparison with the input model of the
Earth. Consistent with the expectation, the TV term separates
the different regions well by making clear boundaries between
them, but it also tries to connect the continents by introducing
new layers, which should be oceans in reality, at the same time.
This is also the case for the combination of L1+TV. On the
other hand, in case of the L1-norm alone, the anomalously high
albedo values are associated with small pieces on the surface,
unlike the real distribution of the Earth’s surface. In the future
observation of exoplanets with direct imaging, a planetary
radius and albedo can be degenerate, and the L1-norm would
misunderstand the exo-Earth as a very large planet, whose
reflectivity mostly comes from small regions. In summary, we
find WRSS = 0.0249, 0.0271, 0.0282, 0.0286, 0.0292, and
0.626 for L1+TSV, TV, L1+TV, TSV, Tikhonov regulariza-
tion, and L1-norm, respectively. Therefore, L1+TSV is the
best choice among the current possibilities.
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Appendix B
Cross Validation, l-curve Method, and Comparison with

Ground Truth

In this section, we compare the cross validation and l-curve
method for recovering the maps in the Tikhonov regularization.
Here, the cross validation is a statistical method, in which we
split the data into subsets, perform training using the data
except for one test subset, and assess the goodness of the
trained model by comparing its prediction with the remaining
test data. In this article, we adopt tenfold cross validation to
obtain the root mean squared error (RMSE). Specifically, we

divide the original light curve into 10 random subsets, select

one subset as the test data, the other nine as the training data,

and compute the mean squared error between the prediction

and the test data. We iterate this procedure 10 times, using each

subset as the test data, and compute the mean of RMSE. In the

analysis, we adopt the same light-curve and geometrical

configuration as used in the case of S/N=5. Figure B1(a)

shows the deviations of recovered maps from the ground truth

map, depending on the regularization parameter λ. The blue

point corresponds to the map closest to the ground truth map,

the black point is obtained from the cross validation in (c), and

Figure A1. Comparison of recovered maps in different methods (S/N=5) (a) Injected albedo map of the Earth. (b) Annual mean of the observational weightsGi j, of

the mock data. (c) Recovered map based on L1 regularization. (d) Recovered map based on TV regularization. (e) Recovered map based on Tikhonov regularization.
(f) Recovered map based on L1+TSV regularization. (g) Recovered map based on L1+TV regularization.
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the red point is determined by the l-curve method in (e). Panels
(b), (d), and (f) correspond to the recovered maps obtained
from the comparison with the ground truth map, the cross
validation, and the l-curve method, respectively.

The comparison demonstrates that the cross validation gives
the overfitted map, and it deviates from the ground truth map.
In addition, rms errors in the cross validation are significantly
insensitive to λ, implying that the method can return the very
overfitted solution with reasonable rms errors. On the other
hand, the l-curve method returns the map close to the best
possible map by comparison with the ground truth map.
Therefore, the l-curve method works at the same level of the
comparison with the ground truth, although the cross validation
does not.
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