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Global mapping of pharmacological space
Gaia V Paolini1,3,7, Richard H B Shapland1,4,5, Willem P van Hoorn2,3, Jonathan S Mason3,6 &

Andrew L Hopkins1,3,7

We present the global mapping of pharmacological space by 

the integration of several vast sources of medicinal chemistry 

structure-activity relationships (SAR) data. Our comprehensive 

mapping of pharmacological space enables us to identify 

confidently the human targets for which chemical tools and 

drugs have been discovered to date. The integration of SAR 

data from diverse sources by unique canonical chemical 

structure, protein sequence and disease indication enables 

the construction of a ligand-target matrix to explore the global 

relationships between chemical structure and biological 

targets. Using the data matrix, we are able to catalog the links 

between proteins in chemical space as a polypharmacology 

interaction network. We demonstrate that probabilistic models 

can be used to predict pharmacology from a large knowledge 

base. The relationships between proteins, chemical structures 

and drug-like properties provide a framework for developing a 

probabilistic approach to drug discovery that can be exploited 

to increase research productivity.

The foundation for developing drug discovery into a knowledge-based 

predictive science lies, in part, in the assembly and integration of all 

medicinal chemistry structure-activity information1. Although access 

to protein sequence data is widely available through global genome 

repositories, no such integrated databanks exist for medicinal chemistry 

structure-activity data. Public initiatives, such as the Harvard University 

(Cambridge, MA, USA) ChemBank Initiative2, the US National Cancer 

Institute (Bethesda, MD, USA) Screening Database3 and the US National 

Institute of Mental Health’s (Bethesda, MD, USA) Psychoactive Drug 

Screening Program Ki Database4, are important developments toward 

disseminating SAR data. However, most pharmacological data exists in 

proprietary screening databases, published documents, such as journal 

articles and patents, and a growing variety of commercial databases. 

The lack of accepted data standards and data integration thus prevents 

knowledge discovery and data-mining efforts from learning from the 

output of the significant annual private and public investment in phar-

maceutical research.

To navigate chemogenomic knowledge space, we have created a 

comprehensive assembly of annotated pharmacological data3–8. We 

have also designed a unified data model to enable the global map-

ping and measurement of pharmacological space (that is, biologically 

active chemical space) by the integration of diverse data sources into 

a single data warehouse. Although a possible alternative to this would 

be a federated approach, we found that a single database model bet-

ter fitted with our data-integration vision as well as with our practi-

cal, architectural and technical constraints. We applied the principle 

of knowledge discovery in databases to the design9,10, including data 

conversion, cleaning and transformation. We found that having all the 

data in one place offers greater control for entity indexing and data 

retrieval and management, enabling us to perform global mapping. 

Ultimately, we believe that the implementation, although important, 

is a separate issue and it is the integration concept and the data model, 

however physically realized, that matter. The data are integrated by 

chemical structure, using unique canonical representations, including 

the often-neglected issue of tautomers. Assay data are assigned to targets 

by protein sequence, and indications indexed by a disease code. Thus, 

both chemoinformatics and bioinformatics techniques can be applied 

directly to the data-mining of the integrated data set.

At present, the data warehouse contains 4.8-million nonredundant 

chemical structures, over 275,000 of which are classified as biologically 

active. Over 600,000 SARs of molecular binding (e.g., IC50; inhibitor 

concentration required for 50% inhibition of the normal reaction) data 

from Pfizer’s internal screening files are integrated with commercial 

screening data, competitive intelligence on approved and investiga-

tional drugs and key components of the past 25 years of published 

medicinal chemistry data.

Pharmacological target space

Large-scale data integration of proprietary and published screening 

data enables the identification of the number of unique molecular tar-

gets, as represented by protein sequences, for which chemical tools, 

leads or drugs have been discovered. Because of the lack of integrated 

knowledge bases in pharmaceutical research, the list of molecular tar-

gets for which small-molecule chemical matter has been discovered 

has been difficult to ascertain11–14. We have assigned 2,876 targets to 

protein sequences from 55 organisms, with biologically active chemical 

tools for 1,306 proteins. However, because of orthologs among species, 

many of the mammalian genes are redundant.

In total, we can unambiguously identify 836 genes in the human 

genome for which small-molecule chemical tools have been discovered 

(the threshold of biological activity is defined throughout as a bind-

ing affinity <10 µM). When Lipinski’s rule-of-five criteria for oral drug 
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absorption15 are applied, 727 human targets have at least 

one compound with a binding affinity <10 µM and 529 

human targets have at least one compound with a binding 

affinity <100 nM that satisfy the rule-of-five (Table 1). Of 

the pharmacological targets selected, 158 human proteins 

have been identified as the primary modes-of-action for 

approved small-molecule drug targets with oral small-mol-

ecule drugs primarily targeting only 141 human proteins.

Polypharmacology

A key question in global pharmacological space is how 

extensive is promiscuity, which is defined as the specific 

binding of a chemical to more than one target. Considering 

each pair of targets in turn, if two proteins both bind to the same ligand, 

they can be considered as interacting in chemical space, even if they 

have no other interaction in physical space or similarity in sequence 

space. The concept of ‘target-hopping,’ where chemical matter for one 

target can be considered as the basis for leads or tools for another tar-

get has historically been an extremely fruitful method of drug discov-

ery16–18. The entire database was analyzed to ensure that nonspecific 

aggregation inhibitors19 did not bias the results. Of all the 276,122 active 
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Figure 1  Human polypharmacology interaction network 

representing relationships between proteins in chemical 

space. Two proteins are deemed interacting in chemical 

space (joined by an edge) if both bind one or more compound 

within a defined difference in binding energy threshold (n = 

3 in this plot, see Methods section). The number of proteins 

in this network is 486 (nodes), with 3,636 polypharmacology 

relationships (edges), where the Pij > 0.1 (Pij is defined in the 

Methods section), the number of shared compounds between 

two proteins is >1 and the number of cotested compounds for 

two targets is Nij
tested > 10. Nodes are colored by gene family.

Table 1  Pharmacological target spacea

Gene taxonomy

All targets with 

<10 µMa 

binding affinity

Human targets 

with <10 µM 

binding affinity

Human targets with 

<1 µM binding 

affinity

Human targets with 

<10 µM binding affinity 

and rule-of-fiveb N > 1

Human targets with 

<100 nM binding 

affinity

Human targets with 

<100 nM binding affinity 

and rule-of-fiveb n > 1

Protein kinases       131      105   99   98   89    83

Peptide GPCRs     110   63   59   59   55    42

Transferases       75   49   42   36   33   24

Aminergic GPCRs       72   35   35   35   35   35

GPCRs (class A and others)       68   44   44   40   38    32

Oxidoreductases       68   40   36   38   29   25

Metalloproteases       63   44   41   41   36   35

Hydrolases       56   36   29   30   25   21

Ion channels (ligand-gated)       55   29   28    24   25   22

Nuclear hormone receptors       47   24   24   22   23   19

Serine proteases       37   30   30   28   29   21

Ion channels (others)        24   18   16   16   13   11

Phosphodiesterases       23   19   19   19   18   18

Cysteine proteases       20   16   16   14   14   13

GPCRs class C       20   10   10   10      6     6

Kinases (others)      16   12     9   11      6     5

GPCRs (class B)       14     7     7     4      7      3

Aspartyl proteases       10      7     7     4     6     4

Miscellaneous     241 139 119 108    83   63

Enzymes (others)    156 109   97   90    69   47

Total 1,306 836 767 727 639 529

aOf the 1,306 targets with biological-active chemical tools or drugs in the database, only 131 targets have more than 1,000 active compounds, 299 targets have between 100 and 1,000 

bio-active molecules and 761 targets have between 1 and 100 reported active compounds. In the analysis 115 targets were found with only one reported chemical tool, to date. bCompounds 

passing Lipinski’s ‘rule-of-five’ criteria15 of fewer than 5 H-bond donors, fewer than 10 H-bond acceptors, MW below 0.5 kDa and clog P below 5. Compounds that fail Lipinski’s criteria are 

more likely to show poor absorption or permeation because such compounds are unlikely to show good oral bioavailability.
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compounds found in our database, 65% have 

recorded activity for one target, whereas 35% 

are observed to hit more than one target.

We have mapped the observed polypharma-

cology interaction network for human proteins 

(Fig. 1) to navigate polypharmacology relation-

ships between targets. Each node of the network 

is a human target for which we found active 

lead matter. Two nodes are connected if they 

share active matter. The strength of this con-

nection (Pij) is defined in the Methods section. 

Calculation of the polypharmacology network 

enables the visualization of the interactions 

between proteins in chemical space. The entire 

protein interaction network for human pro-

teins, calculated from our database, consists 

of 700 proteins (nodes) connected by 12,119 

interactions (edges) for all compounds below 

the affinity threshold of 10 µM and with a dif-

ference in affinity of up to three orders of mag-

nitude between two targets. Interestingly, the 

structure of the network is robust to changes 

in the window of fold-differences in affinity; 

696 proteins (nodes) are connected by 11,591 

interactions (edges) for all compounds with an 

affinity threshold <10 µM that have a difference 

in affinity of up to two orders of magnitude 

between two targets, and 675 proteins (nodes) 

are connected by 10,016 interactions (edges) 

for all compounds with an affinity threshold

<10 µM that have a difference in affinity of up 

to one order of magnitude between two targets. 

We should stress, however, that the SAR matrix 

is far from complete, and new data becoming 

available could alter the appearance of the net-

work, as noted by Vieth et al.20.

Promiscuity can be considered from the 

perspective of both the compound and the 

pharmacological target, to measure com-

pound selectivity and target overlap20–22. We 

evaluated the degree of promiscuity of each 

target in three different ways (see Methods 

section for definitions). Table 2 shows the top 

ten promiscuous targets obtained using the different methods. Method 

one (P1) consists of calculating a target’s promiscuity as the proportion 

of ligands shared with other targets, multiplied by the average number 

of targets that each of the target’s ligands is active against. This defini-

tion promotes targets whose ligands are predominantly promiscuous, 

with a high number of other targets. The second method (P2) uses the 

polypharmacology network. This promiscuity index is calculated by 

counting the number of connections of each target (edges connected 

to each node in the network). This definition promotes targets that are 

connected to a large number of other targets, regardless of the strength 

of the interaction. The third definition (P3) again uses the polyphar-

macology network, but this time the strength of the connections (Pij) 

is used in the summation. It is apparent that the different definitions 

of promiscuity highlight different effects, although the same target 

classes (aminergic G protein–coupled receptors (GPCRs), cytochrome 

P450s and protein kinases) appear at the top positions (Table 2). By 

comparing the rankings of targets resulting from using P1, P2 and P3, 

we find that P1 is correlated with neither P2 nor P3 (R < 0.5) whereas 

P2 and P3 are strongly correlated (R = 0.9). This is consistent with the 

fact that P2 and P3 are calculated using the same network, but also 

supports the view that connectivity, regardless of the relative strengths 

of the connections, is the important ingredient in the structure of the 

polypharmacology interaction network.

The majority of compounds are active against targets within the 

same gene family. However, as we observed from the structure of the 

polypharmacology interaction network, there is significant interaction 

between gene families. A quarter of all the promiscuous compounds 

have been observed to be active across different gene families. To visu-

alize the polypharmacology interactions at gene-family level, we have 

summarized the target-target interaction network by summing all the Pij 

values by gene family (Gkl, see Methods sections). The resulting matrix is 

shown in Figure 2 (see data supplied in Supplementary Table 1 online). 

Using this matrix, we can illustrate the cumulative strength of intra- 

as well as inter-gene family connections, the latter represented by the 

off-diagonal cells. Aminergic GPCRs and protein kinases exhibit the 

greatest intra- as well as inter-gene family promiscuity.

Table 2  Most promiscuous human proteins calculated using P1, P2 and P3 promiscuity indexesa

Order Target Gene family P1 value

N active 

compounds

P1 promiscuity index

1 Histamine H2 receptor Aminergic GPCRs 10.6 372

2 Cytochrome P450 3A5 (niphedipine oxidase) Enzymes (others)   8.6 148

3 Cytochrome P450 2D6 (debrisoquine 4-hydroxylase) Enzymes (others)   8.4 416

4 Cytochrome P450 2C19 (S-mephenytoin 4-hydroxylase) Enzymes (others)   6.5 194

5 Imidazoline (I-1) receptor candidate Miscellaneous   5.0 140

6 Muscarinic acetylcholine receptor M5 Aminergic GPCRs   4.9 152

7 Alpha-2B adrenergic receptor Aminergic GPCRs   4.8 685

8 Muscarinic acetylcholine receptor M4 Aminergic GPCRs   4.8 420

9 Cytochrome P450 2C9 (CYP2C9) Enzymes (others)   4.7 200

10 Protein kinase C delta type (NPKC-delta) Protein kinases   4.4 188

P2 promiscuity index P2 value

1 D(2) dopamine receptor Aminergic GPCRs 112   8,840

2 5-hydroxytryptamine 1A receptor (5HT1A) Aminergic GPCRs 107   8,763

3 5-hydroxytryptamine 2C receptor (5HT2C) Aminergic GPCRs 105   8,051

4 Cytochrome P450 3A4 Enzymes (others) 104   3,549

5 Histamine H1 receptor Aminergic GPCRs   93   2,896

6 5-hydroxytryptamine 2A receptor (5HT2A) Aminergic GPCRs   92   7,849

7 Alpha-1A adrenergic receptor Aminergic GPCRs   89   4,024

8 5-hydroxytryptamine 7 receptor (5HT7) Aminergic GPCRs   87   2,774

9 Cytochrome P450 1A2 (P-3-450) Enzymes (others)   87 10,719

10 Muscarinic acetylcholine receptor M1 Aminergic GPCRs   84   1,567

P3 promiscuity index P3 value

1 Cytochrome P450 1A2 (P-3-450) Enzymes (others) 27.3 10,719

2 5-hydroxytryptamine 2C receptor (5HT2C) Aminergic GPCRs 19.3   8,051

3 Cytochrome P450 3A4 Enzymes (others) 19.2   3,549

4 D(2) dopamine receptor Aminergic GPCRs 18.5   8,840

5 SRC kinase Protein kinases 17.7   1,749

6 5-hydroxytryptamine 1A receptor (5HT1A) Aminergic GPCRs 17.1   8,763

7 5-hydroxytryptamine 2A receptor (5HT2A) Aminergic GPCRs 16.1   7,849

8 D(4) dopamine receptor Aminergic GPCRs 15.8   2,709

9 Alpha-1A adrenergic receptor Aminergic GPCRs 14.5   4,024

10 5-hydroxytryptamine 7 receptor (5HT7) Aminergic GPCRs 14.3   2,774

aIn evaluating P1, only proteins with over 100 biologically active compounds were included. In evaluating P2 and P3, only 

network connections with a number of commonly tested compounds greater than 10 were included . Promiscuity indices P1, 

P2 and P3 are defined in the Methods section.

ANALYS IS
©

2
0
0
6
 N

a
tu

re
 P

u
b

li
s
h

in
g

 G
ro

u
p

  
h

tt
p

:/
/w

w
w

.n
a
tu

re
.c

o
m

/n
a
tu

re
b

io
te

c
h

n
o

lo
g

y



808 VOLUME 24   NUMBER 7   JULY 2006   NATURE BIOTECHNOLOGY

Bayesian predictions of pharmacology

We decided to investigate the construction of a virtual array of predic-

tive pharmacology models derived from the analysis of the large-scale 

integrated SAR data. Using a Laplacian-modified Bayesian classi-

fier approach23,24, 698 target-specific predictive models were built. 

All the compounds classified as biologically active in the database 

were filtered by chemical quality criteria. Of the remaining com-

pounds, 10% were removed for the test set (23,792 compounds with 

55,781 measurements) and 90% of the data (214,128 compounds 

with 561,913 measurements) were used to build the predictive mod-

els. The Bayesian model for each target was built using the training 

set where all compounds are classified as either active (endpoint 

< 10 µM for that target) or inactive (the rest). A Bayesian model 

prediction is a number describing confidence of activity: the larger 

the score, the more confidence the compound is active, but no quan-

titative prediction of affinity is made. Similarly, a large negative score 

indicates high confidence of inactivity, and finally, a score close to 

zero is a neutral prediction. Bayesian prediction scores for all test set 

compounds were calculated across the bank of 698 models.

The success rates of the combined predictive models above 

the random baseline prediction are shown in Figure 3 (see data in 

Supplementary Table 2 online). All Bayesian scores greater than or 

equal to the cutoff are interpreted as predictions of activity. For exam-

ple, at the confidence score cutoff of 50, 72% of compounds in the test 

set have at least one prediction, and 64% have at least one correctly 

predicted target in common with an experimental target, whereas only 

4% were incorrectly predicted. At the Bayesian score of 50, a total of 

58,428 biological activities are predicted, 56.7% of which are correct, 

representing a 153-fold enrichment over random. The predicted false-

negative rate is 13%, whereas 26,828 false positives are apparently pre-

dicted. As the measured ligand-target matrix is only 0.4% full, many of 

the false-positive predictions may indeed still be true.

In addition to predicting primary pharmacology, we wanted to 

ascertain whether the models could be used to predict polypharma-

cology. To explore this problem, we have done a preliminary inves-

tigation with Cerep’s (Paris) ‘BioPrint’ data set, which is a nearly 

complete matrix of measured activities of 997 compounds against 316 

targets. Results of these studies can be found in the Supplementary 

Figures 1 and 2 online and Supplementary Tables 3 and 4 online. 

These initial studies indicate that probabilistic models built from 

integrated medicinal chemistry SAR data are a promising approach 

for predicting primary pharmacology across a large number of pro-

tein targets. In terms of polypharmacology, intra-gene family pro-

miscuity is predicted with the highest confidence. Inter-gene family 

interactions are a much harder problem because of the sparse nature 

of the ligand-target matrix.

Relationship between molecular properties and target class

We calculated a set of physicochemical descriptors for all compounds in 

the database to investigate the relationship between target class and the 

physicochemical properties of ligands13,25. The protein sequences assigned 

to each of the pharmacological targets were classified into gene families. 

Distinct differences in the distribution of molecular properties between 

sets of compounds active against different gene families are observed 

(Table 3, Fig. 4 and Supplementary Fig. 3 online). For example, the mean 

molecular weight (MW) of ligands binding to aminergic GPCRs is 378 Da 

(s.d. = 93 Da), whereas the mean MW of peptide GPCR ligands is greater 

at 514 Da, but with a wider spread (s.d. = 202 Da). Ligands for the nuclear 

hormone receptors are the most lipophilic, as measured by calculated 

octanol/water partition coefficient (clogP), mirroring the properties of 

steroids. Overall, the properties of the synthetic ligands reflect the differ-

ences in the properties of the endo-genous ligands for each target class.

The distribution patterns illustrate that, although there are distinc-

tions in the physical properties of the ligands, using a single property 

to discern separate gene families is too crude. 

We wanted to investigate whether ligands 

for specific gene families may be selected 

within a range of property parameters. Using 

a 184,687-compound subset of the data as 

a training set, linear discriminant analysis 

was used to classify 41,823 compounds by 

target class using only the calculated physi-

cochemical molecular properties. The data 

set used for the linear discriminant analysis 

consisted of the subset of compounds that 

bind to members of exactly one target class. 

Overall, this simplistic method successfully 

classified 34% of ligands to their respective 

target classes, with an overall enrichment 

ratio over random of 6.9 (Supplementary 

Table 5 online). The results are interesting as 

they suggest that simple calculated molecular 

properties can be used as a crude classifier 

of a compound’s biological activity, by gene 

family.

Industrial trends of compounds, targets 

and attrition

We have witnessed a remarkable growth in the 

number of reported targets and compounds dis-

closed in the medicinal chemistry literature, mir-

roring the rise in investment in pharmaceutical 

research. In recent years, the number of targets 
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Figure 2  Degree of intra- and inter-gene family promiscuity illustrated as a polypharmacology 

interaction matrix. The degree of promiscuity, as measured by Gkl is color-coded. White cells represent 

lack of information. The number of target pairs used in the summation and the level of compound 

statistics are shown in Supplementary Table 1 online.
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screened, including selectivity counter-screens, 

published in the medicinal chemistry literature, 

has been growing drastically. Screening data on 

nearly 900 proteins are currently published 

each year, of which >500 molecular targets are 

reported with potent chemical matter (that is, 

IC50 < 100 nM). Currently, potent novel chemi-

cal tools and leads are first disclosed for ~80–100 

new molecular targets each year (Fig. 5a). No 

doubt, this is a conservative estimate as many 

new compounds and targets are only disclosed 

in patents, which are not included in this ini-

tial literature analysis. The increase in the rate 

of discovery of chemical tools for new targets 

doubled from an average of 30 new targets with 

leads being disclosed in the 1980s to an aver-

age of 60 new targets per year in the 1990s. In 

comparison, an average of four new targets, for 

first-in-class drugs, have reached the market 

each year during the 1990s13.

That said, we have yet to see the increase in 

new targets with leads translating into a pro-

portionate increase in the number of approved 

first-in-class drugs. An analysis of the targets 

of published compounds reveals some signifi-

cant trends in the changing character of the 

industry’s portfolio of targets and target classes 

(Fig. 5b), such as a relative decline in propor-

tion of aminergic GPCRs in the industry’s target 

portfolio and an increase in protein kinases.

Over the past 25 years, there has been a steady, inexorable rise in the 

median MW of reported medicinal chemistry compounds (Fig. 5c). 

Comparing 5-year averages from 1986–1990 to those of 1999–2003, the 

median MW of all reported medicinal chemistry compounds in the lit-

erature rose 68 Da (∼20%) from 354 Da to 422 

Da, respectively. Interestingly, this growth is also 

reflected in the increase of the median MW of 

disclosed ligands for several gene families. For 

example, compounds binding to aminergic 

GPCRs have increased in MW by around 56 

Da, from 337 Da to 393 Da between the two 

5-year periods. No significant increase in mean 

or median potency is observed in the data to 

explain the increase in MW. Even so, this rise 

in MW contrasts with the steady state of the 

mean MW of approved drugs26 and the steady 

decline in MW through each subsequent stage 

of clinical development and increase in the 

proportion of compounds that are rule-of-five 

compliant27,28 (Fig. 5d).

Of course, these calculations combine all tar-

get classes together; in contrast, the industry’s 

target portfolio is unlikely to be in a steady 

state, with some target classes emerging and 

others declining in popularity. The relative 

difference in molecular properties among the 

gene families is also reflected in compounds in 

clinical development; however, again we notice 

that, even within a gene family, the median MW 

of compounds surviving subsequent clinical 

phases is declining slightly (Fig. 5d).

Degrees of druggability

A key objective of our global analysis of pharmacological space is to build 

the foundation of probabilistic approaches to drug discovery. Trends 

from marketed and investigational drugs indicate that oral drug space 

Figure 3  Bayesian predictions of pharmacology. Relationship between Bayesian confidence levels and 

number of predictions from 23,792 compounds with 55,781 measured biological activities across 698 

activity models.
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is limited by the biophysical barriers to absorption and permeability in 

the human body15,26,29–40. Because we have observed that the molecu-

lar properties of ligands are correlated with their target class, it follows 

that we should be able to identify those targets with a higher probability 

to produce drug-like chemical matter. Rather than considering target 

druggability as a binary state, it can be thought of as a probabilistic con-

tinuum, where two targets may both be classified as druggable13 but may 

exhibit considerable differences in their probabilities of success.

Lipinski introduced the concept of upper physicochemical property 

limits, above which drug permeability and absorption are less likely15. 

Like Lipinski, we use the simple molecular properties of clogP, number 

of hydrogen-bond acceptors (H-acc) and number of hydrogen-bond 

donors (H-don) as the dimensions of a reduced chemical space. Oral 

drugs are still the primary focus of pharmaceutical research; therefore, 

we calculated the properties of 617 approved oral drugs in the reduced 

chemical space (for which we calculated a centroid at MW = 316, clogP 

= 2.3, H-acc = 4 and H-don = 2). Figure 6a illustrates the population 

distribution of oral drugs in two-dimensional molecular property space 

as an interpolated contour map. 

In terms of drug targets Figure 6b shows the distribution of median 

molecular properties for all compounds for each of the human oral-

drug targets. For each target, the molecular properties are averaged 

over all its potent active compounds (<100 nM), including oral drugs 

and leads. Figure 6c shows the same quantities, this time for all human 

targets with potent active compounds. Comparison of these two figures 

shows that a significant number of targets are outside the rule-of-five 

boundaries.

Given the set of active compounds observed for a target, could 

the ligand properties in reduced chemical space provide a guide to 

quantifying the likelihood of the target to produce an oral drug? As 

a first approximation, the degree of druggability of the target can be 

described as the distance DT between the target T and the oral drugs, 

in reduced chemical space. This distance is expressed as a function 

of the deviation of the centroid of each target from the ideal value 

of the oral-drugs distribution (see Methods section). The resulting 

distance ranges from 0 to 1, with ideal value being 0. If we compare the 

results for all human targets (excluding known drug targets) versus 

human oral drug targets, we observe an enrichment in the degree of 

druggability of drug targets versus all the remaining human targets. 

We find that 87% of human oral-drug targets have DT ≤ 0.6, and 65% 

have DT ≤ 0.4. Of the remaining human targets, 68% have DT ≤ 0.6, 

and 39% have DT ≤ 0.4. This means that ~200 of the remaining targets 

have a relatively high degree of druggability (DT ≤ 0.4), but have yet 

to realize this potential.

Table 3  Molecular properties of gene family ligands

Gene taxonomy

MW (Da) 

(mean)

MW (Da) 

(s.d.)

MW (Da) 

(median)

90% limit of 

MW (Da) clogP (mean) clogP (s.d.)

clogP 

(median)

90% limit of 

clogP

Aminergic GPCRs 378   93 376 460 3.8 1.6 3.9 5.6

Ion channels (ligand-gated) 359    91 362 430 3.0 1.8 3.2 4.7

Metalloproteases 428 103 429 530 3.0 1.9 3.1 4.8

Nuclear hormone receptors 398    96 396 495 5.1 1.7 5.0 7.3

Peptide GPCRs 514 202 477 752 4.3 2.3 4.6 6.5

Phosphodiesterases 400    65 397 465 3.7 1.4 3.7 5.2

Protein kinases 407 109 402 505 3.8 1.8 3.9 5.7

Serine proteases 467 145 463 572 2.7 2.1 2.7 4.8

Gene taxonomy

Number of 

hydrogen bond 

acceptors 

(Mean)

Number of 

hydrogen bond 

acceptors (SD)

No. hydrogen 

bond acceptors 

(Median)

90% limit of 

number of 

hydrogen bond 

acceptors

Number of 

hydrogen bond 

donors (Mean)

Number of 

hydrogen bond 

donors (SD)

Number of 

hydrogen bond 

donors 

(Median)

90% limit of 

number of 

hydrogen bond 

donors

Aminergic GPCRs 4 2 4    6 1 1 1 2

Ion channels (ligand-gated) 4 2 4    6 2 1 2 3

Metalloproteases 6 2 6    8 3 1 2 4

Nuclear hormone receptors 4 2 4    6 1 1 1 2

Peptide GPCRs 5 4 4 10 2 3 1 8

Phosphodiesterases 6 2 6    8 1 1 1 2

Protein kinases 5 2 5    7 2 1 2 4

Serine proteases 5 3 5    8 3 2 2 4

Gene Taxonomy

Number of 

rotatable bonds 

(mean)

Number of 

rotatable bonds 

(s.d.)

Number of 

rotatable bonds 

(median)

90% limit of 

number of 

rotatable 

bonds

Ligand efficien-

cya (kcal/mol/

non-H atom) 

(mean)

Ligand efficien-

cya (kcal/mol/

non-H atom) 

(s.d.)

Ligand efficien-

cya (kcal/mol/

non-H atom) 

(median)

Aminergic GPCRs 6 3 6   8 0.4 8.0E-02 0.4

Ion channels (ligand gated) 5 3 4   7 0.4 0.1 0.4

Metalloproteases 8 4 8 13 0.4 0.2 0.3

Nuclear hormone receptors 6 3 6 10 0.3 6.E-02 0.3

Peptide GPCRs 9 7 8 17 0.2 7.E-02 0.2

Phosphodiesterases 6 3 6   9 0.3 3.E-02 0.3

Protein kinases 6 3 5   9 0.3 7.E-02 0.3

Serine proteases 8 5 7 12 0.3 9.E-02 0.3

aLigand efficiency51 of each compound in the gene family. The ligand efficiency is defined as the binding energy per atom52 (∆G/n, where n is the number of nonhydrogen (non-H) atoms).
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DISCUSSION

The large-scale integration of medicinal chemistry and pharmacologi-

cal data enables for the first time the global surveying and navigation 

of the biologically active chemical space (pharmacological space). Our 

initial investigations illustrate how the pharmacological target space 

of potential drug targets is a function of the physicochemical property 

filters applied to the ligands13,25. The number of proteins for which 

chemical tools has been identified is significantly higher than previous 

estimates11–13. The compilation and dissemination of chemical tools 

identified in a global survey, such as this, could be the basis of a rich 

chemical toolbox for chemogenomics7,25,41,42, providing that the proper 

legal safeguards and respect for intellectual property are observed.

The comprehensive cataloging of biologically active chemicals also 

fosters the development of systematic ontologies for pharmacology and 

medicinal chemistry43,44. The concept of relating proteins in chemical 

space by polypharmacology interactions provides the foundation for 

a ligand-based protein classification and valuable resource for under-

standing the molecular basis for compound promiscuity5,45,46. Our 

initial focus has been on in vitro binding and selectivity data. Although 

molecular data provide us with invaluable insights into molecular rec-

ognition, ultimately they need to be integrated with gene expression 

and phenotypic end-points from in vivo and clinical observations if we 

are to capture the relationships between molecular binding across the 

proteome with efficacy or toxicity.

In our opinion two interesting potential applications of this work 

are polypharmacology and probabilistic modeling. The mapping of 

polypharmacology networks enables us to start considering the rational 

design of selectively promiscuous agents, thereby expanding the oppor-

tunity space for new medicines. Approaching drug discovery as a proba-

bilistic enterprise based on a priori knowledge with an understanding of 
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Figure 5  Trends in medicinal chemistry of compounds in the database. (a) Targets and new targets disclosed in the literature per year. (b) Changes in 

pharmaceutical industry’s target portfolio, over time as derived from the published literature. (c) Increase in molecular weight over time of published 

compounds. (d) Changes in relative median MW among aminergic GPCRs, peptide GPCRs and all compounds through subsequent stages of clinical 

development. The number of launched drugs is the world wide approved count, irrespective of route of administration. The number of compounds in clinical 

stages are as follows. Total number of drugs in Phase I, 930; Phase II, 1,248; Phase III, 389; Approved, 1,631. Number of aminergic GPCR drugs in Phase 

I, 83;  Phase II; 136; Phase III; 41; Approved, 185. Number of peptide GPCR drugs in Phase I, 53; Phase II, 100; Phase III, 17; Approved, 35. t-tests 

between aminergic GPCRs and peptide GPCRs indicate that the inter-gene family differences in MW are statistically significant with probability that the 

difference is due to chance P < 0.0001, as is the overall decline in MW of aminergic GCPRs and all compounds between preclinical and approved phases. 

The decline of peptide GPCRs between these two phases is significant with P ~ 0.009.
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the varying degrees of druggability, promiscuity and attrition risks may 

be a significant advance in attempting to increase research productivity. 

As the vast majority of all drug discovery projects and clinical candi-

dates fail the exacting criteria for safe human medicines, what we are left 

with are the learning and data that can contribute to the refinement of 

predictive models, for the benefit of all. Realization of the importance 

of the integration of our accumulated data can provide the basis for 

a significant improvement in our knowledge of success factors in the 

drug discovery enterprise.

METHODS
Database and data model. Our physical database consists of a single central Oracle 

9.2 data warehouse. We store chemical structures as Simplified Molecular Input 

Line Entry Specification (SMILES) strings (http://www.daylight.com and we use 

the Daylight DayCart Oracle Cartridge (http://www.daylight.com/) for structure 

indexing and manipulation. We chose SMILES as a database-friendly representa-

tion, as it is a compact, simple character syntax, encoding a self-contained language 

with its own controlled vocabulary and enabling unique canonical representations 

of structures, in which stereochemical descriptions can easily be defined or relaxed 

when querying structural data. Our data model is fully normalized to avoid bias 

toward specific data queries. It is chemo-centric, in that we use chemical structures 

as the key to information storage and retrieval. This means that all the different 

entity types are ultimately connected to chemical structures. We are aware that 

methods for chemical representation are not fully mature and sometimes subjec-

tive. Consider for instance the perception of tautomeric equivalence (for example, 

the two unsubstituted nitrogens in an imidazole ring, one of which nominally 

needs to have a hydrogen atom attached) and tautomeric relations (where one 

tautomer may be considered more stable and thus the preferred drawing form 

or indeed where the tautomeric forms are considered to require chemical trans-

formation). As a consequence, related software and rules are likely to change, 

expand and improve with time. For this reason we have designed the data model 

to handle multiple concurrent representations (that is, multiple SMILES strings) 

for any given compound. This way a fully flexible view of chemical structures and 

their connections can be achieved. We produced a single unified data warehouse 

integrating, by chemical structure, protein sequence and indication, the Pfizer’s 

structure-activity data (e.g., IC50, EC50 (concentration of a compound where 50% 

of its effect is observed), Ki, Kd, excluding high-throughput screening percentage 

inhibition data), which contains data from legacy Pfizer (New York), Warner-

Lambert (formerly of Morris Plains, NJ, USA, now part of Pfizer) and Pharmacia 

(formerly of Kalamazoo, MI, USA now part of Pfizer); the Inpharmatica (London) 

StARLITe database, which contains data extracted from Journal of Medicinal 
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Figure 6  Chemical space of drugs and leads. 

(a) Molecular property space of oral drugs 

represented as an interpolated contour matrix 

map of MW and clogP molecular property space 

occupied by 615 oral drugs using a 1,000 Da 

cutoff in MW and (–10,10) cutoff in clogP. The 

map is color-coded by the number of compounds 

occupying each cell (MW = 25 Da × clogP = 0.5). 

The matrix contour interpolation was drawn using 

R49 (Supplementary Data on oral drugs online). 

(b) Scatter plot of the median MW and median 

clogP for all compounds potently active (<100 

nM) against oral human drug targets, for which 

SAR data was identified. (c) Scatter plot of the 

median MW and median clogP for all compounds 

potently active (<100 nM measured activity) 

against human drug targets with chemical tools 

or drugs.

ANALYS IS
©

2
0
0
6
 N

a
tu

re
 P

u
b

li
s
h

in
g

 G
ro

u
p

  
h

tt
p

:/
/w

w
w

.n
a
tu

re
.c

o
m

/n
a
tu

re
b

io
te

c
h

n
o

lo
g

y



NATURE BIOTECHNOLOGY   VOLUME 24   NUMBER 7   JULY 2006 813

Chemistry (issues January 1980–Sept 2004) and Bioorganic Medicinal Chemistry 

Letter (issues January 1991–September 2004); the Cerep BioPrint database5 and 

summary data from the Thomson (New York) Current Drugs Investigational 

Drugs Database (IDDB) (http://scientific.thomson.com/products/iddb/). The 

current database contains 4.8-million unique chemical structures with protein 

identifiers and sequences assigned to 2,876 targets with assay measurements; 

526,548 assay measurements are related to 276,122 active chemical structures.

Extraction, transformation and loading (ETL). Before being fully integrated 

into our database, the original data sources were first loaded into Oracle staging 

tables. This was achieved using a combination of tools (Servefile’s Java-based 

data loader, Oracle, Pipeline Pilot). The staging tables were processed to perform 

data selection, cleaning, mapping and standardization. This ETL procedure is 

the most critical and time-consuming part of knowledge discovery in data-

bases involving a blend of disciplines, namely scientific-domain expertise, logic 

and informatics. Data fields from the different data sources were identified and 

selected. Metadata tables were created to map together different conceptualiza-

tions of the same entities (that is, different ontologies). Data quality issues, 

ranging from spelling mistakes to entity misassignment, were addressed and 

contained or flagged. Chemical structures were standardized at different levels 

depending on the chosen representation. Wherever practical, all entities that 

could be enumerated (e.g., units of measure, country codes) were mapped to 

controlled vocabularies. At the end of this process, data were fully integrated at 

a scientific level for data mining. Diseases were mapped onto a disease taxon-

omy derived from the Medical Dictionary for Regulatory Activities (MedDRA). 

Protein sequences were directly mapped to assays in all cases where the protein 

could be unambiguously identified.

Data access. To be of practical use, a data repository needs to be easily acces-

sible. This requirement is at odds with the principles of data normalization47 

and flexibility of representation. It is therefore customary to separate the data 

warehouse (and data-loading activities) from access layers (data retrieval). The 

latter are usually data marts, sets of database tables where data are regrouped in 

a different way, optimized to answer specific questions. The advantage of having 

data marts is that queries are prepackaged and therefore faster. The drawback 

is that data must be copied from the data store to the data marts. This causes 

additional issues such as disk space shortage and scheduling of data updates and 

downtime. We believe that data marts are the right solution where the most com-

mon queries are already known and routinely performed. Because our database 

system was still highly experimental, and the number of questions we wanted to 

ask very high, we designed an alternative approach. We built a set of components 

(using Scitegic’s (San Diego, CA, USA) Pipeline Pilot 4.5; http://www.scitegic.

com/) to query, manipulate and filter the data. The lower-level components 

could be combined, and results from a query could be refined and/or fed into 

subsequent queries, generating sets of hit lists. This approach offered two advan-

tages. The first was to perform an experimental benchmarking of the database, 

to find where data marts would be mostly needed to improve performance, and 

how the most commonly asked questions could be identified, grouped together 

and packaged. The second was to offer a great flexibility in interrogating the 

database, allowing us to cross-link the different entities in every possible way. 

We found that the performance drawback was acceptable for a system at this 

stage of maturity, mostly used for statistical analysis and post-processing, rather 

than for fast online data retrieval.

Preparation and analysis of chemical structures. In the study described here, all 

chemical structures were standardized using DayCart 4.82. A further processing 

step, to remove inconsistencies and identify salts and mixtures, was performed 

using a Pipeline Pilot protocol written in house. For the purpose of this study, all 

salts were stripped off the structures and the canonical tautomer of each result-

ing structure was identified using a standard Pipeline Pilot component. The 

resulting desalted canonical tautomers were loaded onto the database and used 

for structure matching. Molecular properties were either stored or calculated 

on the fly using standard Pipeline Pilot components.

Analysis of biological activity results. N-point results (e.g., IC50, EC50, Ki 

and Kd) were collected for all the molecular targets that we mapped to gene 

sequences. Biological assays related to more than one gene (where the particular 

target could not be identified or where more than one target was involved) were 

kept separate. The analysis here refers to the cases where a given assay was related 

to a single gene. The active compounds were selected among the compounds 

where the best resulting activity (combining all the N-point measurement types) 

was found to be <10 µM. This is our definition of active compounds throughout 

the paper. Outliers in the biological activity results were identified with a simple 

automated protocol based on calculating the average distance:

D
i
 = √(ΣD

ij
2)

j
(1)

(2)D
ij
 = (log

10
(value(i)) – log

10
(value(j)))

of each result in a set from all other results and flagging the ones where

Di–Dmin > 1. Here the symbols i and j refer to results from different assay experi-

ments for the same compound and target. Dmin is the minimum distance among 

all pairs of these results. The flagged sets were then manually checked and the 

outliers removed from the analysis.

Polypharmacology interaction network. The strength of polypharmacology 

interactions (Pij) between two targets i and j was calculated, for all active com-

pounds in the database, as follows:

(3)P
ij
 = N

ij 
/N

ij
tested

where Nij
tested is the number of compounds commonly tested against target i 

and j. Nij is the number of compounds observed to bind to both targets i and j 

below the compound promiscuity threshold; a compound is considered shared 

between targets i and j if there is less than an n log difference in potency (where 

n = 1 is a tenfold difference in potency, n = 2 is a 100-fold difference in potency, 

n = 3 is a 1,000-fold difference in potency).

(4)log
10

(activity
(i)

) – log
10

(activity
(j)

) ≤ n

Each log order difference in potency represents a binding energy difference 

of ∆∆G = –1.4 kcal/mol. We used Cytoscape48 (http://www.cytoscape.org/) to 

display the interaction network in Figure 1 for n = 3. The cumulative effect of 

polypharmacology interactions between different targets of the same or differ-

ent gene families is represented by the elements of the summarized matrix in 

Figure 2, calculated as

G
kl
 = Σ P

ij
i∈k, j∈l

(5)

Only the cells for which enough statistics were available (Nij
tested > 10) were 

included in the summation. A potency-difference window of n = 1 was used.

Figure 2 was produced using Spotfire (Somerville, MA, USA) Decision Site 

7.2 (http://www.spotfire.com/).

Calculation of promiscuity indices. We evaluated the promiscuity of a target 

T in three different ways (P1, P2 and P3).

The first index was defined as follows:

(6)

with 

where Nactives(T) is the number of active compounds of target T and 

Ntotalshared(T) is the number of active compounds of target T for which the 

compound promiscuity index (PC) > 1. (PC of a compound (C) is defined as the 

total number of targets that the compound is active against.)

P
1
(T) = P

T
<P

C
>

c∈{Nactives(T)}

P
T
 = 

N
actives(T)

N
totalshared(T)

(7)
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The second index is

P
2
(T) = ΣI

Tjj
(8)

where ITj is a matrix identical to the polypharmacology matrix, with all the 

values where Pij is nonzero substituted by ones.

The third index was calculated by summing along rows of the matrix itself as

P
3
(T) = ΣP

Tjj
(9)

Bayesian model building. Compounds were filtered to remove structures 

with MW >1,000 Da and those that failed structural quality filters (e.g., toxi-

cophores, aggregation inhibitors, reactive groups). After the filtering, there 

were 617,694 experimental activities from 238,655 compounds covering 698 

targets. Protein targets with fewer than ten biologically active compounds 

after filtering were also removed from the data set. Compound structures 

were transformed into FCFP_6 functional-class fingerprints. Data prepa-

ration, Bayesian analysis and model building were implemented using the 

Scitegic Pipeline Pilot Laplacian-corrected Bayesian classifier23,24 algorithm. 

This implementation of Bayesian statistics uses information from both the 

active and inactive compounds from the training set and removes features 

from the model, which are deemed not to be important.

Linear discriminant analysis. The biologically active compounds were filtered 

by chemical quality criteria to remove aggregation inhibitors and compounds 

with potentially reactive groups. Compounds active against more than one 

gene family were also removed. Of the remaining compounds, 184,687 were 

selected as a training set for the linear discriminant analysis (as implemented 

in R49) to classify the gene family activity on a test set of 41,823 compounds. 

The classification was based on the following calculated molecular proper-

ties: MW, number of hydrogen-bond acceptors, number of hydrogen-bond 

donors, number of rotatable bonds, molecular surface area, molecular polar 

surface area, number of ionizable centers, clogP, Andrews’ binding energy50 

and predicted molecular solubility.

Distances in reduced chemical space. We have prepared a set of 617 US 

Food and Drug Administration–approved oral drugs and calculated their 

MW, clogP, number of hydrogen-bond acceptors (H-acc), number of hydro-

gen-bond donors (H-don), using standard and in-house Pipeline Pilot com-

ponents. In these components the H-acc atoms are defined as heteroatoms 

(oxygen, nitrogen, sulfur or phosphorus) with one or more lone pairs, exclud-

ing atoms with positive formal charges, amide and pyrrole-type nitrogens 

and aromatic oxygen and sulfur atoms in heterocyclic rings. H-don atoms are 

defined as heteroatoms (oxygen, nitrogen, sulfur or phosphorus) with one or 

more attached hydrogen atoms. These four properties are used to character-

ize the set in reduced chemical space. We have collected all the targets which 

either have potent active compounds (below 100nM) or are drug targets, and 

calculated the centroid {MWT, clogPT, H-accT, H-donT} for each of these tar-

gets. The distance in reduced chemical space is defined for each target T as

D2
T
 =¼ [(1–ƒ

MW
(MW

T
))2

(1–ƒ
H-Acc

(H–Acc
T
))2

(1–ƒ
clogP

(clogP
T
))2

(1–ƒ
H–don

(H–don
T
))2]

+

+

+
(10)

where the function fk, k={MW, clogP, H-don, H-acc} represents the distribu-

tion of values of the molecular properties of oral drugs, normalized so that

fk ∈ [0,1].

Note: Supplementary information is available on the Nature Biotechnology website.
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