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Abstract

Transcriptomics meta-analysis aims at re-using existing data to derive novel biological hypotheses, and is motivated by the
public availability of a large number of independent studies. Current methods are based on breaking down studies into
multiple comparisons between phenotypes (e.g. disease vs. healthy), based on the studies’ experimental designs, followed
by computing the overlap between the resulting differential expression signatures. While useful, in this methodology each
study yields multiple independent phenotype comparisons, and connections are established not between studies, but
rather between subsets of the studies corresponding to phenotype comparisons. We propose a rank-based statistical meta-
analysis framework that establishes global connections between transcriptomics studies without breaking down studies
into sets of phenotype comparisons. By using a rank product method, our framework extracts global features from each
study, corresponding to genes that are consistently among the most expressed or differentially expressed genes in that
study. Those features are then statistically modelled via a term-frequency inverse-document frequency (TF-IDF) model,
which is then used for connecting studies. Our framework is fast and parameter-free; when applied to large collections of
Homo sapiens and Streptococcus pneumoniae transcriptomics studies, it performs better than similarity-based approaches in
retrieving related studies, using a Medical Subject Headings gold standard. Finally, we highlight via case studies how the
framework can be used to derive novel biological hypotheses regarding related studies and the genes that drive those
connections. Our proposed statistical framework shows that it is possible to perform a meta-analysis of transcriptomics
studies with arbitrary experimental designs by deriving global expression features rather than decomposing studies into
multiple phenotype comparisons.
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Introduction

Meta-analysis consists of aggregating the outcome of multiple

studies in order to derive robust and reproducible results [1]. In

DNA microarray transcriptomics, the availability of large-scale

public databases such as ArrayExpress has encouraged the

development of meta-analysis methods [2]. The meta-analysis

paradigm has been successfully used in a variety of applications,

including oncogenomics [3], drug repurposing [4], disease

diagnosis [5], and mapping of tissue and condition-specific

expression signatures [6]. Additionally, web-based tools have been

developed for facilitating the exploration of large collections of

transcriptomics studies [7–9]. For recent reviews of the field, see

e.g. [10] or [11].

The challenges involved in performing meta-analysis stem from

the intrinsic complexity of biological phenotypes, as well as from

the observed heterogeneity between independent studies, namely

the use of multiple microarray platforms, biological samples, and

experimental procedures. In order to minimize the impact of those

factors, meta-analysis methods typically focus on examining

differential expression signatures across studies. Figure 1a

illustrates this approach. This consists of first breaking down each

study into a set of comparisons between phenotypes and then

deriving a differential expression signature from each phenotype

comparison. Connections between phenotype comparisons are

then established based on the similarity between the corresponding

differential expression signatures. Potential similarity measures

include for instance correlation-based methods or probabilistic

relevance measures [8,9].

Meta-analysis approaches based on decomposing studies into

comparisons between phenotypes, while successful, are critically

hampered by the lack of extensive experimental and clinical

annotations about the samples in each study. They also do not

infer global connections between studies, rather detecting similar-

ities between subsets of the studies corresponding to specific

phenotype comparisons (cf. Fig.1a). While this latter aspect is not

necessarily a disadvantage, an important methodological open

question in transcriptomics meta-analysis is whether it is possible

to aggregate and summarize all of the expression data within each

study, regardless of the study’s specific experimental design, with

the aim of directly establishing global connections between

independent studies. To the best of our knowledge, no general

methods have been proposed with this purpose in mind.

While gene or pathway-oriented statistical tests [12] have been

frequently used in the context of differential expression-based

meta-analysis frameworks, they rely on decomposing each study
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into a set of comparisons between phenotypes. On the other hand,

standard similarity measures such as Spearman correlation may be

combined with linkage criteria to establish an overall similarity

measure between studies. For instance, the global similarity

between two studies may be computed as the mean Spearman

correlation between microarrays from the two studies. However,

this approach merely aggregates similarity measures between study

subsets; our aim is rather to devise a method for globally encoding

each study with features that represent the study’s relevant

expression signatures, allowing studies to be globally connected on

the basis of those features. Additionally, the global features can be

used to guide the interpretation of the inferred connections, which

helps to formulate posterior biological hypotheses.

We propose a statistical meta-analysis framework for establish-

ing global connections between transcriptomics studies, which

does not require breaking down the studies into sets of phenotype

comparisons. Intuitively, our approach detects the genes within

each study that consistently possess high absolute or differential

expression (for one-channel arrays) or expression ratio (for two-

channel arrays) values across the arrays in that study. If the aim is

to analyze absolute expression values in one-channel arrays, our

approach does not make use of each study’s experimental

annotation. On the other hand, if the aim is to analyze differential

expression values in one-channel arrays, our approach simply

requires an indication of which samples in the study are used as a

control. Connections between studies are then inferred and

interpreted on the basis of shared relevant genes, via a vector

space model. Figure 1b summarizes the flowchart of the proposed

framework.

Our framework partly relies on using the non-parametric Rank

Product method [13] to aggregate gene expression data from all

samples in any given study. The rank product method has been

previously shown to be a useful statistic for aggregating differential

expression fold-change measures across independent control-vs-

treatment studies [14]. In the present paper, we apply the rank

product method in a vastly different manner. Instead of restricting

ourselves to simple control-vs-treatment studies, we consider

studies with arbitrary experimental designs. Also, we do not use

the rank product method to directly aggregate data from

independent studies; rather, we use the rank product method to

obtain a measure of consistent expression for every gene within

each study, thus deriving an encoding for every study which is then

used as a basis for matching independent studies according to their

similarity. In effect, in our setting it is not possible or meaningful to

apply the rank product method as described by Hong and

Breitling [14], because we do not have an a priori list of related

studies with equivalent experimental designs; we instead have a

large, heterogeneous collection of studies with varying experimen-

tal designs that we want to mine for interesting connections.

We apply our framework to large, heterogeneous collections of

transcriptomics studies from human and Streptococcus pneumoniae.

We perform an analysis both on absolute and differential

expression data, and also provide a strategy for harmonizing data

from multiple platforms and S. pneumoniae strains. We propose a

quantitative validation strategy that assesses the quality of the

inferred connections by verifying if the connected studies share

Medical Subject Headings (MeSH) terms [15]. Using this strategy,

we show that our method outperforms standard correlation-based

measures in terms of connecting studies that are effectively related.

Finally, we provide illustrative case studies of applying our method

to both study collections.

Figure 1. Summary of the steps performed (A) in the differential expression meta-analysis paradigm and (B) in our proposed
framework. Two studies from a collection of N independent studies are shown. One of the studies includes experimental annotations about gender
(Male or Female) and disease status (Healthy or Disease), while the other study includes experimental annotations indicating whether each sample
comes from a Control or a Treatment. In the differential expression approach each study is broken down into a set of comparisons between
phenotypes, with the first study yielding two comparisons and the second study yielding a single comparison; genes are ordered according to a
differential expression measure, e.g., log-ratios, which are used as a basis for computing the similarities between phenotype comparisons. In the
proposed approach, one first decides if the analysis is based on absolute expression or differential expression. Then, in the case that one is interested
in a differential expression analysis, the expression in every non-control sample (e.g. Treatment or Disease) is computed relative to the corresponding
control sample. Afterwards, the rank product method is used to compute global, study-wide features corresponding to genes that possess a
consistently high expression or differential expression in a given study. These global features are statistically modelled and used as a basis for deriving
similarities between studies. The connections are therefore established not between subsets of studies, but rather directly between studies.
doi:10.1371/journal.pone.0089318.g001
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Results and Discussion

In this section we provide an analysis of our proposed

framework. Figure 2 displays a detailed methodology flowchart.

We assess our framework in two ways: First, we measure the ability

of the framework to detect connections between studies that are

effectively related, using MeSH terms assigned to each study as a

gold standard; second, we provide multiple case studies that show

how the framework can be used as an exploratory tool to detect

interesting connections between transcriptomics studies and

generate novel biological hypotheses.

The results and accompanying R software are available from

http://kdbio.inesc-id.pt/,svinga/meta/.

Method Comparison
We applied the MeSH test setting outlined in the Methods

section to compare our framework to alternative approaches in

three contexts: one-channel human microarrays with absolute

expression values, one-channel human microarrays with differen-

tial expression values, and Streptococcus pneumoniae two-channel

arrays with differential expression values.

Figure 2. Detailed flowchart for the proposed framework. For succinctness, we illustrate the steps as applied to the Streptococcus pneumoniae
two-channel array data collection. In stage (A), we download data from three souces: RefSeq, for bacterial genomes from multiple S. pneumoniae
strains; ArrayExpress, for two-channel microarray transcriptomics studies along with the corresponding experimental annotations; PubMed, for the
MeSH annotations associated with each study’s corresponding publication. Stage (B) consists of multiple preprocessing and modeling steps. We start
by mapping orthologous genes from different strains to the same so-called metagene. For each transcriptomics study, we rank metagenes in each
sample according to their absolute log-ratio. Then, for each study and metagene we take the product of its ranks across the study’s samples, derive a
corresponding p-value, and binarize p-values accounting for multiple hypothesis testing. This yields a metagenes | studies binary matrix that
indicates for every metagene-study pair if the metagene is significant in the corresponding study. The last step in stage (B) is to convert the binary
matrix into a weighted matrix via TF-IDF modeling. This consists simply of replacing ones in the binary matrix by a weight that is indicative of the
corresponding metagene’s information content. In stage (C), we apply the cosine similarity measure to connect studies on the basis of their TF-IDF
vector-space encoding. We then assess the performance of the framework by quantifying the extent to which related studies are found to be similar,
using MeSH terms as a gold standard. We also inspect the similarity matrix to detect interesting case studies that provide novel biological
hypotheses.
doi:10.1371/journal.pone.0089318.g002
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We tested four alternative versions of our framework. In each

version, either the binary or discrete rank product significance

matrix is used; also, we either apply the TF-IDF model before

computing cosine similarities between studies, or skip the TF-IDF

step and directly compute cosine similarities on the rank product

matrix M . As additional competing methods, we considered

correlation-based approaches that, unlike our framework, do not

extract any global features from the studies. Instead, these

approaches simply estimate the similarity between studies as a

combination of the similarity values between microarrays of the

compared studies. We chose the Spearman rank correlation

coefficient as the similarity measure between microarrays from

different studies. We then estimated the similarity between two

studies as the maximum, mean, or median of the Spearman

correlation between microarrays from the two studies. Our choice

of similarity measure is based on the fact that the Spearman

correlation coefficient is a well-performing robust nonparametric

estimator of statistical dependence [16]. Additionally, it has been

previously shown to perform well in the transcriptomics meta-

analysis setting [9,17].

Regarding the actual testing procedure, in essence we measured

each method’s ability to connect studies that are effectively related,

using PubMed MeSH annotations as a gold standard. Given a

study designated as the query, we sort the remaining studies

according to their relevance to the query study. Then, for each of

the query study’s MeSH terms, we quantify how top retrieved

studies tend to include that same MeSH term, using a standard

information retrieval performance measure known as Average

Precision (AP). Applying the aforementioned test setting yields a

set of AP performance scores for every competing method, with

every study yielding an AP score for each of its assigned MeSH

terms. Throughout this section, we apply a one-sided paired

Wilcoxon signed-rank test [16] to evaluate if the AP scores in a

given method are significantly higher than the corresponding AP

scores in another method. In our context, the one-sided Wilcoxon

signed-rank test specifies the null hypothesis that the median

difference between paired AP scores from the two methods is zero,

while the alternative hypothesis specifies that the median

difference is greater than zero.

The first question we addressed was whether the q-value

threshold used in computing the binary significance matrix M had

an impact on the framework’s performance. Figure 3 displays the

mean and standard error of AP scores when varying the q-value

threshold. It can be seen that the performance peaks at q~0:01

for the human data sets and at q~0:05 for the S. pneumoniae data

set, which indicates that standard q-value thresholds may be safely

chosen. Additionally, it can be seen that the framework’s

performance when the TF-IDF step is not performed typically

lags behind. The exception is for the S. pneumoniae data set, where

the ‘‘no TF-IDF’’ framework appears to perform slightly better

than the ‘‘TF-IDF’’ framework, particularly at the peak perfor-

mance point q~0:05. However, the one-sided paired Wilcoxon

signed-rank test indicates that this difference is not significant

(pv0:05). On the contrary, the signed-rank test on the human

data set (absolute or differential expression), applied to the data at

the peak performance point q~0:01, indicates that the ‘‘TF-IDF’’

framework is significantly better than the ‘‘no TF-IDF’’ framework

(pv0:05). In the following method comparisons, when considering

the binary version of our framework, we take q~0:01 for the

human data and q~0:05 for the S. pneumoniae data, in order to

avoid displaying an excessive number of performance values for

multiple methods.

Then we proceeded to assess the performance differences

between our framework variants and the Spearman competing

methods. Figure 4 displays the mean and standard error of the AP

scores for both our framework and the Spearman correlation-

based methods. It can be seen that our framework attains higher

scores in all data sets. Finally, is can be seen that on the human

data sets, the discrete variants attain a better performance, while in

the S. pneumoniae data set the binary variant performs the best.

Taken together, these results indicate that our method’s feature-

based, global encoding is an adequate basis for connecting studies,

improving on correlation-based approaches that are known to

perform well in the meta-analysis setting [9,17]. Additionally,

usage of the TF-IDF weighting scheme improves upon the

connectivity performance of our proposed framework, for both the

binary and discrete rank product estimation approaches.

Biological Interpretation
In this section, we describe case studies using our proposed

method with a q-value threshold of qv0:05.

Homo sapiens study collection. Table 1 displays query

examples, the first two considering absolute expression and the

second two considering differential expression. The table also

include the corresponding top-three most similar studies and the

three protein-coding genes with the highest IDF score that are

significant in both the query and the top-three most similar studies.

The justification for this heuristic is to focus on genes that are

significant in a low number of studies in the collection (i.e. that

possess a high IDF score); the event of these genes being significant

in both the query and the top-three most similar studies is

statistically more significant than the same event for genes with a

low IDF score. For succinctness of analysis only the three top

studies are shown. Note that in order to maximize the

interpretability of the results, we display the three protein-coding

shared genes with the highest IDF scores. In some case studies, the

shared probesets with the highest IDF scores do not match to

known protein-coding genes. In such cases, we do not present

those probesets in the corresponding results table, as interpreting

why such probesets are shared by independent studies requires

further probeset-mapping work that falls outside the scope of this

paper. However, our web-based tool shows the full extent of the

results, including probesets that do not match to known protein-

coding genes.

In the first case study, the query study analyses the expression of

pancreatic cell clusters derived from the embryonic stem cell T3

cell line. All of the top three studies are mapped to the MeSH term

‘‘Embryonic Stem Cells’’. The first shared significant gene is

CTSL2, a cathepsin family member; it has recently been proposed

that Cathepsin L family members play a role in differentiation via

histone proteolysis [18]. The second shared gene VWDE codes for

the von Willebrand factor (VWF) D and EGF domain-containing

protein; while no direct role in stem cell differentiation has been

proposed for VWDE, EGF has been shown to promote prolifer-

ation of mouse embryonic stem cells in mouse [19], while VWF has

been shown to regulate adhesion of mesenchymal stem cells to

endothelial cells [20]. Finally, ZFP42 is a known marker for

pluripotency in embryonic stem cells [21].

In the second case study, both the query study and the top-three

most relevant studies involve expression profiling of muscle tissue.

Concerning the three protein-coding genes with the highest IDF

score, BEST3 is expressed in renal and muscle tissues [22]. On the

other hand, MYLK4 is a partly characterized member of the

Myosin Light Chain Kinases (MLCKs) protein family, known to

have muscle-specific expression [23]. Finally, we did not find

evidence for constitutive expression of MIB1 in muscle tissue,

which leaves open the question as to why it is relevant to the

association between the three muscle tissue studies. This case study

Global Meta-Analysis of Transcriptomics Studies
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again highlights the ability of the proposed framework to connect

independent studies based on tissue-specific expression.

In the third case study, both the query and the retrieved studies

concern transcription profiling in hepatocytes. While NR1I3 is a

regulator of multiple hepatic genes [24], we did not find a

hepatocyte-related role for WDR72 or IDO2, which suggests these

genes may have yet unknown liver-related roles.

In the fourth case study, the framework connects a prostate

cancer study with two other cancer studies and one hepatocyte-

related study. Concerning the top-three shared genes, HINT1 is a

tumor-suppressor gene in gastric cancer, which suggests it may

have a yet-unknown role in prostate cancer [25]. As for DGKH, it

is known to be associated with bipolar disorder [26], leaving open

the question of a potential role in prostate cancer. Finally, we did

not find a relevant role for VPS13B in the query or retrieved

studies. Interestingly, when considering only the query and the top

retrieved study, the shared protein-coding gene with the highest

IDF score is the transmembrane protease, serine 2 (TMPRSS2)

gene, known to be differentially expressed in prostate cancer [27].

Finally, we note that when applying the previously described

median Spearman correlation method to compute the top-three

studies for each query, we were not able to obtain the results here

described. Concretely, for the stem cell case study, the retrieved

studies were about ulcerative colitis, Parkinson’s disease and

double-stranded RNA recognition; for the muscle tissue case

study, while the top retrieved study is E-GEOD-35659 (i.e. the

same study as retrieved by our framework), the other two studies

are about renal transplantation and pulmonary lymphoma; for the

hepatocyte case study, only the study E-GEOD-24187 is retrieved

in the top-three studies, the others being about keratinocytes and

Figure 3. Retrieval performance according to q-value threshold. Mean and standard error of the AP scores when a q-value threshold is used.
For each data set, we display the performance for two alternatives of our framework, namely with or without the TF-IDF step. Notice that, for every q-
value threshold (x-axis), the two framework alternatives are displayed side-by-side.
doi:10.1371/journal.pone.0089318.g003
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pancreatic cancer; finally, for the prostate cancer case study, the

retrieved studies concern stem cells, interstitial lung disease, and B-

cell differentiation, therefore seeming less relevant to the query

study than the retrieval results provided by our framework.

Additionally, in all case studies the average number of MeSH

terms shared between the query and the top-three studies is lower

for the median Spearman correlation method. This implies that

our framework’s improved performance ultimately yields results

that are biologically more meaningful than when applying

correlation-based approaches.

Streptococcus pneumoniae study collection. Here, we

describe two case studies from the S. pneumoniae two-channel

microarray study collection related to the MeSH terms ‘‘Zinc’’ and

‘‘Virulence’’. Table 2 displays each query study, along with the top

three most similar studies. In each of these two case studies, we

found that the third most similar study does not share the same

MeSH term as the query. Therefore, we restricted our analysis to

the top-two most similar studies. In general, since the S. pneumoniae

study collection includes only 21 studies, it is expected that only

the very top most similar studies are effectively related to the

query.

Regarding the zinc case study, both the query and the top-two

studies are annotated with the MeSH term ‘‘Zinc’’. The study

samples correspond either to an adhesin competence repressor

(adcR) knockout strain vs. wildtype or to a zinc pulse. Zinc is

known to influence the expression of multiple S. pneumoniae genes

Figure 4. Retrieval performance for all methods. Mean and standard error of the AP scores for four variants of our framework, as well as for
three Spearman correlation-based methods. Regarding the x-axis labels, ‘‘binary’’ indicates the binary significance matrix variant of our framework
while ‘‘discrete’’ indicates the discrete significance matrix variant; ‘‘bin + IDF’’ and ‘‘disc + IDF’’ indicate those two same variants, but also performing
the TF-IDF modeling step prior to establishing connections between studies; finally, the ‘‘max-SP’’, ‘‘mean-SP’’, and ‘‘median-SP’’ labels refer to the
maximum, mean, and median statistic summarization approaches in the competing Spearman correlation methods.
doi:10.1371/journal.pone.0089318.g004
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[28,29], while adcR is a zinc-sensing transcription factor involved

in multiple processes including virulence and antibiotic stress

response [30]. We computed the genes that are significant in all

three studies, obtaining a group of nine genes: adh, adhP, adcA/

B/C/R, lmb, and phtD/E. Most of these genes have been

reported as direct transcriptional targets of adcR in one of the

analyzed publications [29]. Our framework therefore confirmed

that a group of adcR transcriptional targets is significantly

expressed in multiple zinc-related studies. This shows how our

meta-analysis approach can be used as an in silico computational

validation strategy.

Regarding the virulence case study, both the query and the top

two studies share the same ‘‘Virulence’’ MeSH annotation. The

genes that are significant in all three studies are the transcription

factor mutR and two members of a putative bacteriocin system

(SP_0142/0143). Interestingly, while large differences in the

bacterial virulence phenotype of mouse models were observed in

all three studies, no major virulence role has been assigned to any

of these genes. It is therefore an open question whether these genes

possess a relevant role in the S. pneumoniae virulence phenotype.

Potential follow-up studies may involve performing transcription

and virulence assays of S. pneumoniae response to knockouts of

mutR, SP_0142 and/or SP_0143.

As in the human case studies, the overlap between our results

and the results obtained with the median Spearman correlation

method are low — only one study from the virulence case study is

also retrieved by the correlation-based method. Additionally, the

mean number of MeSH terms shared between the query and the

top studies is lower in both case studies for the median Spearman

correlation method.

Table 1. Case studies from the human study collection.

Type Case study Results Details

Absolute expression Stem cells Query microRNA and mRNA expression profiles of human pancreatic islet-like cell
clusters (E-GEOD-14503)

Result #1 Human embryonic stem cells derived from embryos at different stages of
development share similar transcription profiles (E-GEOD-29625)

Result #2 microRNA and mRNA expression profiles of human embryonic stem cells treated
with activin A (E-GEOD-16910)

Result #3 Transcription profiling by array of human embryonic and induced pluripotent
stem cells (E-GEOD-23402)

Top genes Cathepsin L2 (CTSL2), von Willebrand factor D and EGF domains (VWDE), ZFP42 zinc

finger protein (ZFP42)

Muscle tissue Query Gene expression profiles in muscle tissue from FSHD patients (E-GEOD-15090)

Result #1 A transcriptional map of the impact of endurance exercise training on skeletal
muscle phenotype (resting muscle after endurance training) (E-GEOD-35659)

Result #2 Expression data of normal human extraocular muscle and strabismic human
extraocular muscle (E-GEOD-38780)

Result #3 Gene expression in skeletal muscle of cancer patients before and after potentially
curative surgery (E-GEOD-34111)

Top genes Mindbomb E3 ubiquitin protein ligase 1 (MIB1), bestrophin 3 (BEST3), myosin light

chain kinase family, member 4 (MYLK4)

Differential expression Hepatocytes Query Transcription Profiling of human primary hepatocytes after treatment with
pirinixic acid (E-GEOD-17251)

Result #1 HepaRG cells as a model of the primary human hepatocyte transcriptome (E-
GEOD-18269)

Result #2 Atorvastatin, rosuvastatin and rifampicin effect on human primary hepatocyte
transcriptome (E-GEOD-24187)

Result #3 Transcriptome Analysis Identifies Fn14, a TNF Superfamily Receptor Member, as a
Therapeutic Target in Alcoholic Hepatitis (E-GEOD-28619)

Top genes WD repeat-containing protein 72 (WDR72), indoleamine 2,3-dioxygenase 2 (IDO2),

Nuclear Receptor Subfamily 1, Group I, Member 3 (NR1I3)

Prostate cancer Query Identification of an SRF- and androgen-dependent gene signature in prostate
cancer (E-GEOD-22606)

Result #1 Expression data from androgen treated LNCaP cells (E-GEOD-17044)

Result #2 Atorvastatin, rosuvastatin and rifampicin effect on human primary hepatocyte
transcriptome [Affymetrix platform] (E-GEOD-24187)

Result #3 Expression data from breast cancer cell lines with various colony-forming ability
(E-GEOD-15026)

Top genes Vacuolar protein sorting 13 homolog B (VPS13B), histidine triad nucleotide binding

protein 1 (HINT1), diacylglycerol kinase, eta (DGKH)

ArrayExpress study identifiers are shown next to each study title. The ‘‘Type’’ column indicates if a case study corresponds to absolute or differential expression data.
The ‘‘Results’’ column displays for every case study (1) the query study, (2) the top-three most relevant studies, and (3) the three protein-coding genes with the highest
IDF score that are active in the query and the top-three most relevant studies.
doi:10.1371/journal.pone.0089318.t001
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Conclusions

In the present work we have proposed a framework for

performing meta-analysis of transcriptomics studies. Our main

contribution is in providing a solution to the open methodological

question of whether it is feasible to perform meta-analysis on a

global, study-wide level (establishing direct connections between

studies rather than between study subsets), by learning study-wide

expression signatures that provide a basis for interpreting the

connections and deriving novel biological hypotheses.

Using a MeSH-based test setting, we have shown that our

framework improves upon the performance of correlation-based

measures that estimate the similarity between studies as a

combination of the similarities between the corresponding

microarrays (this latter approach does not learn any global study

features, therefore hindering the subsequent analysis). Finally, via

a series of case studies, we showed that our global meta-analysis

framework yields biologically meaningful results, in particular

suggesting a follow-up study on the potential virulence role of the

Streptococcus pneumoniae genes mutR, SP_0142, and SP_0143.

Our proposed framework has certain desirable properties: It is

fast, since both the rank product and the TF-IDF methods are

easily parallelizable and run in a few minutes on a single CPU; it is

parameter-free, since apart from an optional, standard q-value

significance threshold, the user is not required to specify any

parameter settings. Importantly, the rank product method is

threshold-free, i.e., it does not require the previous specification of

a rank threshold that classifies genes in each study sample as

‘‘high-ranking’’ or ‘‘low-ranking’’. Finally, our log-score interpre-

tation of the rank product method suggests that this method is

particularly suited to the high-throughput setting, as log-ranks

yield a damping effect that effectively makes large ranks

equivalent.

Our proposed test setting was based on the MeSH annotations

of the paper associated with each study. However, other

ontological tools may be used for evaluation purposes. For

instance, the recently developed Experimental Factor Ontology

(EFO) [31] maps experimental design variables to standardized

terms. The EFO may be used for instance to measure the degree

to which similar studies share the same experimental annotations.

One important consideration is how our framework and other

recent proposals for gene expression meta-analysis map to

‘‘classical’’ meta-analysis frameworks. In classical meta-analysis,

one starts with a set of studies that are known to be related, and

methods are proposed for aggregating the results of said studies.

Here, the aim is different: There is instead a large, disorganized

collection of studies and methods are proposed for suggesting

which studies are related. Naturally, the detected connections may

correspond to studies that are known to be related and which

could be obtained using standard text-driven methods (e.g. studies

about the same disease). However, the detected connections may

also correspond to unexpected, novel connections, which are not

supported by the textual annotations assigned to each study, and

which may be used as a basis for establishing and testing novel

biological hypotheses. Once related studies are identified by our

framework, it is straightforward to derive a consensus from the

studies, by simply computing the genes which are the most

significant in the majority of them.

Finally, the integration of additional data types into our

framework is also an open challenge for future work, which is

becoming increasingly relevant due the emergence of large-scale

transcriptomics projects which aggregate data from complemen-

tary technologies [32]. Additionally, statistical meta-analysis

methodologies will have to adapt to emerging next-generation

sequencing technologies [33]. While our framework takes as input

pre-processed gene expression data, therefore not being directly

dependent on the underlying technology used to generate the data,

applying our framework to next-gen data falls outside the scope of

our paper and is presently difficult due to the yet small number of

available studies.

Table 2. Virulence and zinc case studies from the S. pneumoniae collection.

Case study Results Details

Virulence Query Role of PsaR of Streptococcus pneumoniae D39 and TIGR4 in global gene expression and virulence (E-GEOD-
13505)

Result #1 Site-specific contributions of glutamine-dependent regulator GlnR and GlnR-regulated genes to virulence of
Streptococcus pneumoniae (E-GEOD-9850)

Result #2 CodY of Streptococcus pneumoniae: link between nutritional gene regulation and virulence (E-GEOD-7350)

Result #3 Search for genes essential for pneumococcal transformation: the RADA DNA repair protein plays a role in
genomic recombination of donor DNA (E-GEOD-8362)

Shared genes mutR, SP_0142, SP_0143

Zinc Query Transcriptional response of Streptococcus pneumoniae to Zn2+-limitation and the repressor/activator function
of AdcR (E-GEOD-29236)

Result #1 Interplay between manganese and zinc homeostasis in the human pathogen Streptococcus pneumoniae (E-
GEOD-23504)

Result #2 The metalloregulatory site in Streptococcus pneumoniae AdcR, a zinc-activated MarR-family repressor (E-GEOD-
21506)

Result #3 CelR-mediated activation of the cellobiose-utilization gene cluster in Streptococcus pneumoniae (E-GEOD-
30891)

Shared genes adh, adhP, adcA, adcB, adcC, adcR, lmb, phtD, phtE

Studies are in decreasing order of similarity to the query. ArrayExpress study identifiers are shown next to each study title. The ‘‘Results’’ column displays for every case
study (1) the query study, (2) the top-three most relevant studies, and (3) the protein-coding genes that are active in the query and the top-three most relevant studies,
in decreasing order of IDF score.
doi:10.1371/journal.pone.0089318.t002
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Materials and Methods

Microarray Data Source
We accessed the ArrayExpress database [2] to download

transcriptomics studies from the one-channel Affymetrix GeneChip

Human Genome U133 Plus 2.0 and from the species Streptococcus
pneumoniae. We chose this particular Affymetrix platform because it is

the one with the highest number of human studies in ArrayExpress.

We also chose S. pneumoniae for analysis due to our own expertise and

to demonstrate the applicability of our method to two-channel

microarrays. For S. pneumoniae studies, we focussed our analysis on

two-channel microarray studies, which correspond to the vast

majority of available studies. We discarded studies that did not

contain processed data, which were not associated with published

articles indexed in PubMed, or which were a subset of other studies.

For human studies, we restricted our analysis to studies with

processed data files under 16 MB, corresponding to about eighty

percent of the total number of studies. This threshold was

established in order to accelerate the analysis by avoiding the

download and parsing of excessively large files.

Data Processing
We considered microarray studies whose processed expression

files contain the standard column names ID_REF or Reporter_-
Identifier for identifying probesets and the column names VALUE or

AFFYMETRIX_VALUE for identifying processed expression val-

ues. Since S. pneumoniae studies correspond to multiple array

platforms, we considered only studies whose microarray platform

file contains the standard columns Reporter Name (probe identifiers)

and ORF (open reading frame). The column-name requirements

allow for a fully automated processing pipeline.

For human studies, we performed the subsequent analysis directly

on probesets, while for S. pneumoniae studies we first mapped probes to

ORFs using each study’s corresponding array design file, summariz-

ing the expression of probes that map to the same gene by computing

their median expression. We assumed two strategies for missing value

replacement, depending on whether the human study collection

analysis is based on absolute or differential expression. For absolute

expression, we replaced missing values within a given study’s

expression data with the minimum absolute expression value in that

study; for differential expression, we replaced missing values for a

given gene with its mean observed expression. The rationale for these

two strategies is to assign the lowest ranks to genes whose expression is

not observed.

After pre-processing, our approach yields a total of 289 human

studies corresponding to 4368 microarray samples and 21

Streptococcus pneumoniae studies corresponding to 129 microarray

samples.

Homo sapiens Differential Expression
For the human study collection, we performed two independent

analyses, one based on absolute expression, the other based on

differential expression. In the absolute expression analysis, we did not

make use of each study’s experimental annotations. In the differential

expression analysis, we downloaded each study’s experimental design

annotation files from ArrayExpress. In those files, each array in each

study is assigned to a number of so-called experimental factor valueswhich
indicate the experimental annotation for that array, e.g., Disease

State=Cardiomyopathy or Gender=Male. We collected all the experi-

mental factor value annotations for all arrays in all studies and

manually decided which of those annotations correspond to typical

experimental controls (e.g., DiseaseState=Normal, Treatment =Control,
Time=0h). The full list of control annotations is available from Text

S1 in File S1. Then, for each study, we selected a subset of arrays

corresponding to the study’s control. If any arrays in the study are

annotated only with experimental control labels, they are selected as

the control and averaged. If no such arrays exist, then the control is

defined as the average of all arrays in the study. Finally, we compute

the log-ratio for each probeset’s expression in each of the non-control

arrays relative to the corresponding control.

Streptococcus pneumoniae Ortholog Mapping
In order to reconcile S. pneumoniae studies from multiple strains, we

downloaded reference sequences for strains TIGR4 (NC_003028.3),

D39 (NC_008533.1), and R6 (NC_003098.1) from the RefSeq

database [34]. We assessed the homology of coding sequences

between every pair of strains by running the Nucleotide Basic Local

Alignment Tool (BLASTN; [35]). We obtained orthologous gene

groups by identifying groups of three genes, one per strain, which are

all reciprocal BLASTN best-hits to one another. This approach yields

a total of 1621 so-called S. pneumoniae metagenes.

MeSH Terms
We downloaded the entire MeSH tree from the MeSH web site

and kept terms from the top-level categories Anatomy, Diseases,

Chemicals and Drugs, Biological Sciences, and Persons. For every study

corresponding to a PubMed-indexed paper, we downloaded its

associated PubMed MeSH annotations, discarded qualifiers (e.g.,

Breast Neoplasms/genetics and Breast Neoplasms/metabolism are treated

as equivalent annotations), and kept only the terms that belong to

any of the aforementioned MeSH categories. The rationale for

only considering a subset of MeSH categories is to discard

categories that are not directly about biological findings or the

samples and biological/clinical conditions under study (e.g. the
Information Science category, which describes the computational

methodology followed in each paper, is not taken into account).

Rank Product
We obtained study rank data by sorting the genes in each study

sample according to their absolute expression (in the case of one-

channel absolute expression analysis) or absolute log-ratio (in the

case of two-channel arrays or one-channel differential expression

analysis). Then we applied the Rank Product method [13] to

compute the relevance of each gene in each study. Succinctly, the

rank product assigns a score to each gene by computing the

product of the gene’s ranks across samples in a given study, or

equivalently by computing the sum of the log-ranks,

score(i)~ P

n

j~1
rank(i,j) , ð1Þ

logscore(i)~
X

n

j~1

log(rank(i,j)) , ð2Þ

where i indexes genes, j indexes samples in a given study, n is the

total number of samples in a given study, and rank(i,j) is the rank
of the i-th gene in the j-th sample of a given study. The log-

function above dampens the distinction between large ranks. We

provide an additional discussion of this effect in Text S2 in File S1.

We used a Gamma distribution approximation method to

compute p-values, which is based on the null hypothesis that ranks

are uniformly distributed [36]. Text S2 in File S1 provides the

details of the approximate method derivation. More recently, a

method has been proposed for computing exact p-values [37].

Unfortunately, the running time for this method does not scale

well enough for our large-scale purposes (Text S2 in File S1).
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After obtaining p-values, we tested two alternatives. First, we

computed the corresponding false-discovery rate q-values using

the qvalue R package [38], and considered genes to be significant at

a standard cut-off value of qv0:05. As an alternative, instead of

computing a binary significance, we round the value

({ log10 (p{value)) to the nearest integer. This latter alternative

yields sparse discrete rather than sparse binary data. Additionally,

this latter alternative does not require setting a significance

threshold, thus making our framework entirely parameter-free.

The final output of the above approach is either a binary

significance matrix M that indicates for every gene-study pair (i,s)

whether gene i is significant in study s,

Mis~

1, if gene i is significant in study s

0, otherwise

0

B

@
ð3Þ

or a discrete matrix M where for each gene-study pair (i,s), we

have Mis~ { log10 (pi,s)½ �, where pi,s is the p-value of gene i in

study s. In subsequent sections, we consider a gene i to be active in

a study s when Mi,sw0.

Term Frequency–Inverse Document Frequency
In order to detect connections between studies, we model the

rank product matrix M using the Term Frequency-Inverse

Document Frequency (TF-IDF) vector space model [39,40]. The

TF-IDF model is commonly used in the natural language

processing field; here, each study may be conceptually seen as a

‘‘document’’ and each gene as a ‘‘word’’.

In the TF-IDF model, each gene receives an Inverse Document

Frequency (IDF) score

idf(i)~log
#studies

#studies s inwhichMi,sw0

� �

: ð4Þ

The IDF score is higher for genes that are active in a lower

number of studies, and conversely lower for genes that are active

in a greater number of studies. The idea is to model the

information content of the event of a gene being active in a given

study. Each study s is then encoded as an array vs~(vs,1, . . . ,vj,G),

where vs,i~Mi,s|idf (i). As a technical detail, if a gene is inactive

in all studies, then we simply discard it from the data instead of

computing its IDF score. This speeds-up the computations and

avoids the problem of having infinite IDF scores.

Finally, the similarity between two studies r and s is computed

via the standard cosine similarity coefficient which measures the

cosine of the angle between the corresponding pair of vectors in

the TF-IDF vector space,

sim(r,s)~
vr

:vs

DDvrDDDDvsDD
, ð5Þ

where : is the dot product operator. Genes that possess a lower

IDF score contribute less to the dot product between two studies.

Conversely, genes that are seldom active in the rank product

matrix and which therefore possess a higher IDF score make a

larger contribution to the dot product between two studies. In

other words, two studies are similar when they both activate genes

that possess a high information content.

Connectivity Performance Evaluation
To assess if the model connects studies that are effectively

related, we quantified the relation between study similarity in

terms of (5) and study similarity in terms of shared MeSH terms

assigned to the studies’ PubMed-indexed papers.

For each study (hereafter designated as the query study), we

consider each of its assigned MeSH terms in turn. We assume that

studies possessing that same MeSH term are relevant to the query

study, while the remaining studies are irrelevant. First, we sort all

studies according to their similarity to the query study as per (5).

Then, we take the similarity-sorted study list and compute the

precision P(k) at each rank k in the list,

P(k)~

Pk
i~1 relevance(i)

k
, ð6Þ

relevance(i)~
1, study i sharesMeSH termwith the query study

0, otherwise

�

ð7Þ

We then average the precisions at all ranks in the list that

correspond to relevant studies,

AP~

P

k:study at rank k is relevant P(k)

# relevant studies
: ð8Þ

This measure is known as Average Precision (AP) and is a

standard performance measure in Information Retrieval. It can be

Figure 5. Retrieval performance strategy. Illustration of the
proposed validation strategy. Each study in turn is considered as the
query study, with the remaining studies being ordered according to
their similarity with the query study. The query study has three fictitious
MeSH terms: A, B, and C. The brown circles indicate studies that also
possess those terms. The Average Precision (AP) performance measure
is higher when the most similar studies also possess the given MeSH
term, or conversely lower when studies mapped to the MeSH term are
among the least similar to the query study. Notice that the number of
AP performance scores per query study equals the number of its MeSH
terms.
doi:10.1371/journal.pone.0089318.g005
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geometrically interpreted as approximating the area under the

precision-recall curve [40].

The above procedure yields for every study (considered as the

query) and each of its MeSH terms a performance measure

between zero and one, that quantifies how the studies that are

most similar to the query tend to possess that same MeSH term.

Figure 5 illustrates the described performance evaluation strategy.

Supporting Information
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(PDF)
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details.
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