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Abstract. The active contour model [8,9,2] is one of the most well-known varia-

tional methods in image segmentation. In a recent paper by Bresson et al. [1],

a link between the active contour model and the variational denoising model

of Rudin-Osher-Fatemi (ROF) [10] was demonstrated. This relation provides a

method to determine the global minimizer of the active contour model. In this

paper, we propose a variation of this method to determine the global minimizer

of the active contour model in the case when there are missing regions in the ob-

served image. The idea is to turn off the L
1-fidelity term in some subdomains,

in particular the regions for image inpainting. Minimizing this energy provides a

unified way to perform image denoising, segmentation and inpainting.

1 Introduction

Image segmentation, image restoration and image inpainting are a few basic yet impor-

tant areas in image processing and computer vision. Traditionally, these closely related

fields were developed independently. However, the use of the level set method and vari-

ational methods in recent years started to bring all these fields together. One example

is the TV-inpainting model [7]. We can perform inpainting in a desired domain while

applying the ROF model [10] to remove noise from the rest of the domain using only

one energy functional.

There are two interesting recent developments about the connection between differ-

ent fields in image processing. We will discuss later in this paper how they link different

fields in an interesting way. The first development concerns the impulse-noise removal

method and the variational method for image regularization. In two recent papers by

Chan, Nikolova et al. [3,4], a two-phase method was proposed to remove impulse-type

noise. For a true image u∗(x) and an observed image f(x) defined in a domain Ω,

impulse-type noise is defined by

f(x) =

{

r(x) with probability r0

u∗(x) with probability (1 − r0).
(1)

As an example, for the so-called salt-and-pepper noise, r(x) is simply the maximum or

the minimum of the image intensity. The main idea in those papers is to separate the de-

noising process into a noise detection phase and a noise removal phase. In the first stage,
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a median-type filter is applied to the observed image to detect the possible locations of

the impulse noise. Then in the second phase, instead of replacing the intensity at all

locations by the median intensity around a certain neighborhood, an L1-regularization

method is applied only to those locations reported in the first phase while keeping the

other pixels unchanged. The resulting method was shown to be able to remove salt-and-

pepper noise efficiently even at a very high noise level (for example r0 = 0.75). The

main reason for its success is that this method both retains those pixels that are unlikely

to be polluted and maintains sharp edges in the whole image.

Another interesting development is a new model that uses a variational method for

image segmentation [5,1]. The idea of the model is to minimize an energy functional

consisting of a weighted TV-norm with an L1-fidelity term. For segmentation of a bi-

nary image, the papers showed an equivalence between the new energy functional and

that of the active contour model. This relation can be used to overcome the problem

of the active contour model in which the energy function is not convex. Very often the

snake will be trapped into a local minimum thus giving unsatisfactory segmentation

results. The link between these two energies, as demonstrated in the above papers, pro-

vides a convenient way to determine the global minimizer of the active contour energy.

In this paper, we will combine these two recent advances in image processing.

This provides an efficient way to bring image denoising (for both impulse-type and

Gaussian-type noise), image segmentation, and image inpainting together. For low di-

mensional images, one could of course solve each of these tasks individually. It is com-

putationally inexpensive to do so. As a result, it might not be obvious to see any advan-

tage of having such a combined strategy for one or two dimensional images. However,

for higher dimensional images, dealing with these problems separately might not be

practical. The main difficulty concerns the computational time. With over 106 voxels, it

could take days to analysis only one 3D scan. Therefore, by solving only one variational

problem which performs all these tasks simultaneously, we could significantly speed up

the computational time.

The rest of the paper is organized as follows. In Section 2, we will briefly review

the denoising model by Chan, Nikolova et al. [3,4] and also restate the link between

the active contour model and the ROF model as in [1]. A new model will be given in

Section 3. Section 4 contains some details about the numerical implementation. Some

numerical results are given in Section 5.

2 Two Recent Developments

2.1 A Two-Phase Method to Remove Impulse-Type Noise

Unlike the usual way to denoise impulse noise by applying the median-type filter to

the image and replacing the image intensity everywhere, the idea in [3,4] is to sepa-

rate the denoising processing into a noise-detection phase and a noise-removal phase.

Mathematically, the first phase can be formulated as determining a noise candidate set

N = {x ∈ Ω : f(x) �= fMF(x)} in which Ω is the image domain, f(x) is the observed

image intensity at the pixel x, and fMF(x) is the intensity at x after applying a median-

type filter, such as the classical median filter or the adaptive median filter. In the second

phase, the following functional is minimized
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F |N (u) =

∫

N

{

|u(x) − f(x)| +
β

2
[S1(u) + S2(u)]

}

(2)

where

S1 =

∫

V(x)∩(Ω\N )

2 φ[u(x) − f(y)]dy and S2 =

∫

V(x)∩N

φ[u(x) − u(y)]dy , (3)

V(x) is the neighborhood centered at x and φ is an edge-preserving potential function.

As seen in [3,4], one possible choice for φ is φ(t) =
√

t2 + ǫ2 with a small constant

ǫ. The first term in the curve-bracket is an L1-fidelity term. The terms in the square-

bracket can be interpreted as an approximation of the total variation of u.

In the simple case when the noise can be separated accurately in the first step, the

fidelity term is not important. This whole algorithm can then be simplified and the

resulting variational method is the same as an image inpainting algorithm. For example,

if ROF [10] or L2 squared fidelity is used instead, we arrive at the TV-inpainting of [7].

That is, given an observed image f , one minimizes the following energy

E1(u) =

∫

Ω

|∇u| +
1

2

∫

Ω

λ(x)|u − f |2 (4)

where λ(x) = 0 if f(x) = fMF(x) and λ(x) = λ∞ ≃ ∞ otherwise.

The idea of using a piecewise constant λ(x) in TV-inpainting is not new [7]. How-

ever, it is interesting to see here the relationship between impulse-type noise removal

and image inpainting by using a λ(x) determined by a median-type filter.

2.2 Global Minimizer of the Active Contour Model

In the classical active contour model, the initial guess of the segmented image plays a

very important role. We show in Figure 1 some minimizers of the active contour model.

As we can see, different initial conditions in the evolution will give different segmented

region. More importantly, none of these results corresponds to the true segmented re-

sults, i.e. curves which separate all regions with different intensities in the whole image.

One reason for these unsatisfactory results is that the minimization problem of the ac-

tive contour is not convex, and therefore it is very likely that the energy minimization

could be trapped into a local minimium.

Recently, a few algorithms were proposed [5,1] to determine the global minimizers

of some image segmentation models. In particular, an algorithm to determine the global

minimizer of the active contour model based on the ROF model was given in [1]. The

idea is to modify the ROF energy

EROF(u, λ) =

∫

Ω

|∇u| + λ

2

∫

Ω

|u − f |2 (5)

by first replacing the TV-norm by a weighted TV-norm and then, more importantly,

changing the measure in the fidelity term from the square of the L2-norm to the L1-

norm. This gives

E2(u, λ) =

∫

Ω

g̃(f)|∇u| + λ

∫

Ω

|u − f | (6)

in which g̃(f) = 1/(1 + β|∇f |2).
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Fig. 1. Segmentation results using the active contour model. We show different initial config-

urations of the snake on the first row. The corresponding segmented results using these initial

conditions are shown on the second row.

As pointed out in [1], if u is the characteristic function of a set ΩC with boundary

given by the curve C (i.e. u = 1ΩC
), the minimizer of the above energy E2 is the same

as the minimizer of the active contour energy

EAC(C) =

∫

C

g̃(f)ds (7)

with f approximated (in the sense of L1) by a binary function of a region ΩC .

Numerically, the minimization problem (6) is convex. This means that the method

of gradient descent will converge to a unique minimizer, i.e. the global minimum of the

energy function, independent of the initial condition. This equivalence is significant be-

cause by minimizing (6), one can determine the global minimium of the active contour

model (7) avoiding both the danger of being trapped into any local minimum and the

uncertainty in picking an initial configuration of the snake.

3 The New Energy

3.1 The Energy

Here, we propose a new model to combine those developments mentioned above. Given

an observed image f , we minimize the energy

E(u) =

∫

Ω

g(f)|∇u| +
∫

Ω

λ(x)|u − f | . (8)

This energy is similar to (6), except that λ(x) is now changed into a function of the

space variable and the weight in the weighted TV-norm is also modified. The function

λ(x) has the following properties.

λ(x) =

⎧

⎨

⎩

0 TV-inpainting

λ0 Denoising

λ∞ ≃ ∞ u remains unchanged.

(9)
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Fig. 2. Problem setting. Definition of the set Ω
′ (domain for inpainting), Ω̃

′ (compliment of Ω
′)

and ΩC (domain bounded by the curve C).

In the subdomain for image inpainting, f(x) (and also g̃(f)) might not be known. We

therefore simply set g(f) = 1, or β = 0. For the rest of the domain, we keep g(f) =
g̃(f).

Here we give some suggestions in picking such a function λ(x) and also provide

a variation in using the above minimization algorithm. For salt-and-pepper noise, the

following λ(x) works efficiently. We define d(x) to be the difference in the intensities

between the original image f(x) and the modified image after applying the median-type

filter fMF(x), i.e. d(x) = |f(x) − fMF(x)| . Then one can set

λ1(x) =

{

λ∞ if d(x) = 0 and x �∈ Ω′

0 otherwise
(10)

where Ω′ ⊂ Ω is a given subdomain for doing image inpainting and this subdomain

can also be characterized by an user predefined mask function. This means that if x is in

the inpainting domain Ω′ or if the noise-detector detects that the image at x is polluted

(therefore f(x) will be different from the intensity after applying the median-type filter

fMF(x)), then the intensity at x will be modified by a TV-type regularization. Otherwise,

the intensity at that location will remain unchanged.

If the impulse noise is random-valued instead, one can use a similar λ(x)

λ2(x) =

{

λ0 if d(x) = 0 and x �∈ Ω′

0 otherwise
(11)

with λ0 << λ∞.

For Gaussian-type noise, one can simply use

λ3(x) =

{

λ0 if x �∈ Ω′

0 otherwise.
(12)

In the case when the type of noise is not known a priori, one can try to minimize (8)

iteratively. More specifically, given the observed image u0 = f , for m = 1, · · · , mmax,

one iteratively minimizes
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E(um) =

∫

Ω

g(um−1)|∇um| +
∫

Ω

λ4(x)|um − um−1| (13)

with

λ4(x) =

{

λ0 if d(x) ≤ d∗ and x �∈ Ω′

0 otherwise
(14)

where d∗ is a threshold in the intensity difference function d(x) ≡ |um−1 − (um−1)MF|.

3.2 The Link Between Active Contour for Segmentation, Denoising and

TV-Inpainting

We explain here the relations between the minimization of the energy functional (8), the

active contour model and the TV-inpainting model. Assuming Ω′ = {x ∈ Ω : λ(x) =
0} is the subdomain for inpainting (note that N ⊂ Ω′) and Ω̃′ = Ω \ Ω′, we have

E(u) =

∫

Ω̃′

g(f)|∇u| +
∫

Ω̃′

λ0|u − f | +
∫

Ω′

|∇u| = E1(u) + E2(u) (15)

where

E1(v) =

∫

Ω̃′

g(f)|∇v| +

∫

Ω̃′

λ0|v − f | and E2(w) =

∫

Ω′

|∇w| (16)

with v : Ω̃′ → [umin, umax] and w : Ω′ → [umin, umax]. So minimizing E(u) is

the same as minv E1(v) + minw E2(w) , and the minimizer of E(u) is given by u =
1

Ω̃′(x) · v + 1Ω′(x) · w in which 1
Ω̃′ is the characteristic function of the set Ω̃′.

First we consider the energy E1(v). If ΩC is a set in Ω̃′ whose boundary is denoted

by C and if the minimizer of E1(v) is given by v = 1ΩC
, then we have

E1(v) =

∫

Ω̃′

g(f)|∇1ΩC
|+

∫

Ω̃′

λ0|1ΩC
−f | =

∫

C

g(f)ds+

∫

Ω̃′

λ0|1ΩC
−f | . (17)

Therefore, minimizing E1(v) in the subdomain Ω̃′ in the case of a binary observed

image is equivalent to minimizing the active contour energy in Ω̃′ while approximating

f (in the L1 sense) in Ω̃′ by a binary function of ΩC .

For the energy E2(w) defined in the complement, Ω′, we have E2(w) =
∫

Ω′
|∇w|

and the boundary condition w|∂Ω′ = v|∂Ω′ where v is the minimizer of E1(v). In the

case when v is binary on ∂Ω′, we have w = 1ΩC′
again. This gives

E2(w) =

∫

Ω′

|∇1Ω
C′

| =

∫

C′

ds . (18)

This implies that when the value of v on the boundary ∂Ω′ is binary, minimizing E2(w)
in Ω′ is equivalent to minC′

∫

C′
ds while the end points of C′ are fixed on ∂Ω′. Further

analysis on the behavior of TV-inpainting can be found in [6].
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Fig. 3. (Example 1) (First row) The original true image and the corresponding image with an user

defined mask (in black). (Second row) The original image with 75% salt-and-pepper noise, 50%

random-valued impulse noise and additive Gaussian noise (σ = 20) respectively.

Fig. 4. (Example 1) The minimizer for the energy (8) without (first row) and with (second row) an

extra mask. The left, middle and right columns show the denoising results with salt-and-pepper,

random-valued impulse and addition Gaussian noise.
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Fig. 5. (Example 2) The true image and the corresponding image with an user defined mask (in

black)

Fig. 6. (Example 2) The true image with 75% salt-and-pepper noise, 50% random-valued impulse

noise and additive Gaussian noise (σ = 20) respectively

4 Numerical Method

To minimize the above energy, we use the method of gradient descent. The Euler-

Lagrange equation of the energy functional (8) is given by

∂u

∂t
= ∇ ·

(

g(x)

|∇u|∇u

)

− λ(x)
u − f

|u − f | . (19)

This equation can be solved numerically using the standard fully explicit scheme. In the

current paper, however, we solve (19) using the Alternative Direction Explicit (ADE)

technique.

5 Examples

In the following examples, we use u0(x, y) = 0 as the initial condition for the Euler-

Lagrange equation. Unlike the classical active contour/snake model, different initial
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guesses used will give the same global minimizer of the segmentation model in the

case of binary images.

5.1 Example 1

The true image used in this example has 256 × 256 pixels and is shown on the top left

in Figure 3. The corresponding image with an user predefined mask is shown on the

right on the same row. The black region is the domain Ω′ where we want to perform

TV-inpainting. The second row of Figure 3 shows the noisy versions of the true image.

The first row of Figure 4 shows the denoised image together with its segmentation

with 75% salt-and-pepper noise, random-valued impulse noise and additive Gaussian

noise. As we see from the figures, all noise is completely removed from the image.

The red curves on the graphs are the boundaries of the segmented regions. Unlike the

minimization of the active contour model, we can now easily reach the global mini-

mum of the energy for these binary images regardless of the initial condition of the

Euler-Lagrange equation. In the case of denoising together with image inpainting, the

segmented results are shown on the second row of Figure 4. Again, all noise is com-

pletely removed from the image and we are able to fill in the missing part of the image

using only one energy function.

5.2 Example 2

The true image of Elaine used in this example has 512×512 pixels and is shown on the

left of Figure 5. On the right, we give the corresponding image with a predefined mask.

75% salt-and-pepper noise, 50% random-valued impulse noise and additive Gaussian

noise with standard deviation σ = 20 are added to the original image and these observed

images are shown in Figure 6. The minimizers of the energy functional (8) for these

noisy images are shown in Figure 7. Since the original image is not binary, different

level contours of the final figure will give different minimizers [1]. Using the case where

salt-and-pepper noise and an external mask are added, we plot in Figure 8 the segmented

results using the levels u = 128 and u = 170.

5.3 Example 3

Figures 9 shows the denoising results of a 3D brain MRI image. The number of voxels

is 128 × 256 × 256. The computational time is approximately 354 mins.

6 Conclusion

In this paper, we proposed combining the three most fundamental tasks in image

processing - denoising, inpainting and segmentation. The idea is based on [5,1] but with

the Lagrange multiplier, λ(x), carefully chosen. At those locations where inpainting is

required, we can set λ(x) to be zero, which gives TV-inpainting. Indeed, TV-inpainting

may not be the perfect model. For example, as mentioned in [7], TV-inpainting may

not satisfy the so-called Connectivity Principle and may give unpleasant results to hu-

man vision. To improve this, one could modify the TV-regularization in the current
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Fig. 7. (Example 2) The minimizer for the energy (8) without (first column) and with (second

column) an extra mask. The top, middle and bottom rows show the denoising results with salt-

and-pepper, random-valued impulse and addition Gaussian noise.
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Fig. 8. (Example 2) Different segmented results with level (left) u = 128 and (right) u = 170 for

the case with salt-and-pepper noise and an extra mask, i.e. from the top right picture in Figure 7

Fig. 9. (Example 3) (Left) A few slices of a noisy brain MRI image and (right) their corresponding

denoised version

framework by a higher order interpolation model, for example, based on the Euler’s

Elastica [7]. As another drawback of the model, we indeed obtain multiple minimizers

of the active contour model for non-binary images, as seen in Figure 8. This limitation

is inherited from the original theory as described in [1].
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