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GLOBAL MINIMIZER OF THE GROUND STATE FOR TWO PHASE
CONDUCTORS IN LOW CONTRAST REGIME ∗, ∗∗
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Abstract. The problem of distributing two conducting materials with a prescribed volume ratio in a
ball so as to minimize the first eigenvalue of an elliptic operator with Dirichlet conditions is considered
in two and three dimensions. The gap ε between the two conductivities is assumed to be small (low
contrast regime). The main result of the paper is to show, using asymptotic expansions with respect
to ε and to small geometric perturbations of the optimal shape, that the global minimum of the first
eigenvalue in low contrast regime is either a centered ball or the union of a centered ball and of a centered
ring touching the boundary, depending on the prescribed volume ratio between the two materials.
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1. Introduction

Shape optimization for eigenvalues of elliptic operators provides interesting and challenging mathematical
problems; see [9] and the references therein for an overview. In this paper we are considering the problem of
minimizing the first eigenvalue of an elliptic operator with respect to the distribution of two conducting materials
in a fixed domain. Let Ω ⊂ R

d be an open bounded set. Let m be a given positive number, 0 < m < |Ω|, where
|Ω| is the Lebesgue measure of Ω. Two materials with conductivities α and β (0 < α < β) are distributed in
arbitrary disjoint measurable subsets A and B, respectively, of Ω so that A ∪ B = Ω and |B| = m. Consider
the two-phases eigenvalue problem:

− div(σ∇u) = λu in Ω, (1.1)
u = 0 on ∂Ω, (1.2)
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with the conductivity σ := αχA + βχB, where χA is the indicator function of A. Let λ be the first eigenvalue
of (1.1)−(1.2) and u the associated eigenvector. The Rayleigh quotient for λ is

λ = min
u∈H1

0 (Ω)

∫
Ω

σ|∇u|2∫
Ω

u2
= min

u∈H1
0 (Ω),‖u‖2=1

∫
Ω

σ|∇u|2, (1.3)

where ‖u‖2 denotes the L2-norm of u. In this paper we consider the case Ω = �(0, 1), the case Ω = �(0, R) being
readily deduced from our results, and we are interested in the dependence of λ on A and B. Since A = Ω \B, λ
may be described as a function of B and we occasionally write λ = λ(B). We consider the problem of minimizing
λ(B) with the constraint that the two phases are to be distributed in fixed proportions:

minimize λ(B) (1.4)
subject to B ∈ B (1.5)

where
B := {B ⊂ Ω, B measurable, |B| = m}. (1.6)

The existence of a solution to the problem (1.4)−(1.6) remains an open question for a general Ω. Minimizing
sequences may develop microstructural patterns and the original problem may have to be relaxed to include
microstructural designs. Existence of a solution and optimality conditions in the class of relaxed designs has
been discussed by Cox and Lipton in [6]. However, the original problem (1.4)−(1.6) may still have a solution
for particular geometries as is the case when Ω is a ball. When Ω = �(0, R) is a ball, the existence of a radially
symmetric optimal set has been proved in [1], using rearrangement techniques and a comparison result for
Hamilton-Jacobi equations and later, only using rearrangement techniques in [4]. Even in this case an explicit
solution to the problem was not known. It was conjectured in [4, 5], in dimension greater than one, that the
solution B∗ to this problem is a ball �(0, r∗) as in the one-dimensional case; see [10]. Recent numerical tests [7]
and theoretical results came up recently to reinforce the conjecture. It was shown in [5], using second order shape
derivative calculus, that such a configuration is a local minimum for the problem when the volume constraint
m is small enough.

However, in [3] it has been proved that the conjecture is not true in general. Indeed, the optimal domain
B∗ cannot be a ball when α and β are close to each other and m is sufficiently large. This negative result is
provided by an asymptotic expansion of the eigenvalue with respect to β − α as β → α, the so-called “low
contrast regime” also assumed in this paper, which allows to approximate (1.4)−(1.6) by a simpler optimization
problem. However the question of minimizers of λ(B) even in the low contrast regime was still left open.

In this paper we prove first, when Ω = �(0, 1), the convergence as β → α in the sense of characteristic
functions of the minimizing sets either to a centered ball B∗ = �(0, r∗) when m is below a certain threshold m
or to B∗ = �(0, ξ0)∪�(0, 1)\�(0, ξ1), i.e. the union of a centered ball and a centered ring touching the boundary
of Ω, when m > m. Then the main result of the paper is to show that B∗ or B∗

ε = �(0, ξ0
ε) ∪�(0, 1) \�(0, ξ1

ε )
are actually global minimizers of λ(B) when β − α is small enough. The main ideas to obtain these results are
first to exploit the additional regularity provided by the radial symmetry, which yields a stronger convergence
of the eigenfunction as β → α, which in turn provides the set convergence. To prove that B∗ or B∗

ε is a global
minimizer, we compare its eigenvalue with the eigenvalue of all possible radially symmetric sets in a small
neighbourhood of B∗ or B∗

ε using an asymptotic expansion with respect to small geometric perturbations of
sets.

In Section 2 the low contrast regime is described and some known results are recalled. In Section 3 the set
convergence of the solutions to (1.4)−(1.5) as ε := β − α → 0 is proved, using the additional regularity thanks
to the radial symmetry. In Section 4 and 5 we prove that there exists ε0 such that the ball B∗ is a solution
of (1.4)−(1.5) when m < m and such that B∗

ε is a solution of (1.4)−(1.5) when m > m.
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2. Low contrast regime

In this section we recall some known results required for our analysis. Throughout the paper we assume the
so-called low contrast regime, i.e. the conductivities of the two materials, α and β, are close to each other:
β = βε := α + ε with ε > 0 small. If the material with conductivity βε occupies the sub-domain B of Ω, the
conductivity coefficient is, in this case,

σ = σε(B) := αχA + βεχB = α + εχB. (2.1)

Let λε(B) be the first eigenvalue in the problem

− div(σε(B)∇uε) = λε(B) uε in Ω, (2.2)

uε = 0 on ∂Ω (2.3)

for the conductivity σε(B). It is well-known, from the Krĕın−Rutman Theorem [11], that the first eigenvalue
of a linear elliptic operator is simple and the corresponding eigenfunction is of constant sign (and is the only
eigenvalue whose eigenfunction does not change sign). Thus one may choose the eigenfunction uε = uε(B)
corresponding to λε(B) to be positive and normalize it using the condition∫

Ω

(uε)2 = 1, (2.4)

In this way, uε is uniquely defined. For fixed B, we claim that both λε(B) and uε(B) analytically depend on the
parameter ε. This result is classical in the perturbation theory of eigenvalues and follows readily, for instance,
from Theorem 3, Chapter 2.5 of Rellich [12]. This justifies the ansätze

λε(B) = λ0(B) + ελ1(B) + . . . (2.5)
uε(B) = u0(B) + εu1(B) + . . . (2.6)

In fact, λ0(B) = λ0 is the first eigenvalue of the problem

−αΔu0 = λu0 in Ω, (2.7)
u0 = 0 on ∂Ω. (2.8)

The function u0 is the positive eigenfunction corresponding to λ0 and satisfies the normalization condition∫
Ω

u2
0 = 1. Therefore λ0(B) = λ0 and u0(B) = u0 are independent of B. For the next term we have ([3],

Prop. 2.2):

Proposition 2.1. In ansatz (2.5), λ1(B) is given explicitly in terms of u0 as follows

λ1(B) =
∫

B

|∇u0|2 dx. (2.9)

The convergence of the series in (2.6) holds in the space H1
0 (Ω). The following result can be found in ([3],

Thm. 2.3):

Theorem 2.2. For ε > 0 sufficiently small, there exists a constant c independent of ε and B such that

‖uε(B) − u0‖H1
0 (Ω) ≤ c ε

1
2 ∀B ∈ B. (2.10)

The results above are valid for any open set Ω. In this paper we are interested in the particular case Ω = �(0, 1)
and we need the following result which can be found in [4]:

Theorem 2.3. Let Ω = �(0, 1). The problem (1.4)−(1.5) admits a radially symmetric solution.

Applying Theorem 2.3, we denote B∗
ε a radially symmetric solution of (1.4)−(1.5) for β = βε.
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Figure 1. Functions ū0(r) (plain), and w1(r) = −ū′
0(r) (dashed) in dimensions d = 2 (left)

and d = 3 (right). The constant r1
d is such that w1 is increasing on [0, r1

d] and decreasing on
[r1

d, 1], and r0
d is such that w1(r0

d) = w1(1).

3. Convergence of minimizing sets

In this section and the rest of the paper we assume Ω = �(0, 1) ⊂ �
d, d = 2, 3 to be the ball of center 0

and radius 1. The results can be straightforwardly extended to the case Ω = �(0, R). In this case, the solution
u0 of (2.7)−(2.8) is radial and smooth. In view of Theorem 2.3 we assume B is radially symmetric. By setting
ū0(r) := u0(x) where r := |x|, equation (2.7)−(2.8) becomes, using the Laplacian in polar (r, θ) or spherical
(r, θ, ϕ) coordinates, for d = 2, 3,

r2ū′′
0(r) + (d − 1)rū′

0(r) + r2 λ0

α
ū0(r) = 0, (3.1)

ū′
0(0) = 0, ū0(1) = 0. (3.2)

where the boundary conditions (3.2) correspond to the continuity of the gradient at the origin and the Dirichlet
condition on the boundary, respectively. The solution of this equation is

ū0(r) = J0(ηdr) if d = 2, (3.3)
ū0(r) = j0(ηdr) if d = 3, (3.4)

where J0 and j0 denote Bessel functions of the first and second kind, respectively and ηd (d = 2, 3) are their
respective zeros; see [13] for details on Bessel functions. The behaviour of ū0 is depicted in Figure 1. Let ωd

denote the volume of the unit ball, i.e. we have ωd = π for d = 2 and ωd = 4π/3 for d = 3. Let r0
d and r1

d be
the constants defined in the caption of Figure 1. Not that these constants can be easily approximated with an
arbitrary precision thanks to the explicit representation of Bessel functions. Introduce the radius r∗d := (m/ωd)1/d

and the threshold md := ωd(r0
d)d.

Proposition 3.1. When Ω = �(0, 1) ⊂ R
d, d = 2, 3, the unique rotationally symmetric optimal domain B∗

which minimizes λ1(B) over B ∈ B is of two possible types:

• Type I: If m ≤ md then B∗ = �(0, r∗d) or,
• Type II: If m > md then there exists ξ0 and ξ1 with

r∗d < ξ0 < ξ1 < 1

and B∗ = �(0, ξ0) ∪
(
�(0, 1) \�(0, ξ1)

)
.
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In this section we show that the global minimizer B∗
ε of λε(B) converges in the sense of characteristic functions

to B∗ given in Proposition 3.1. For simplicity we will write r∗ = r∗d and m = md from now on. We need the
following inequality; see [8], Theorem 330 and [2] for details. In all of our subsequent computations, c denotes
a generic constant independent of ε.

Theorem 3.2 (Generalized Hardy’s inequality). If p > 1, q 
= 1, f(x) ≥ 0, and F (x) is defined as

F (x) =

⎧⎪⎪⎨
⎪⎪⎩

∫ x

0

f(t)dt for q > 1,∫ ∞

x

f(t)dt for q < 1,

then ∫ ∞

0

x−qF (x)pdx <

(
p

|q − 1|
)p ∫ ∞

0

x−q(xf(x))pdx

unless f ≡ 0.

We start by proving some regularity results for the solution uε.

Theorem 3.3. Assume Ω = �(0, 1) and B is radially symmetric. The functions uε and u0 are in W 1,∞(Ω)
and there exists ε0 > 0 such that for all ε < ε0 we have

‖σε∇uε − σ0∇u0‖L∞(Ω) ≤ c
√

ε

and
‖∇uε −∇u0‖L∞(Ω) ≤ c

√
ε.

Proof. The proof is divided into two steps. In the first step we prove that uε ∈ L∞(Ω) and in the second step
we prove the L∞-convergence for the gradients.

Step 1. In view of Theorem 2.2 we have uε → u0 in H1
0 (Ω). The key feature of the proof is to introduce the

function uε(r) := uε(x) where r = |x| in polar or spherical coordinates and to show that u′
ε → u′

0 in L∞([0, 1]).
According to ([3], Thm. 2.3) we have ‖uε‖H1(Ω) ≤ c where c is independent from ε. The system (1.1)−(1.2)
leads to the equations for uε and r ∈ (0, 1):

−r−(d−1) d
dr

[rd−1σε(r)u′
ε(r)] = λεuε(r), (3.5)

uε(1) = 0. (3.6)

Set gε := σεu
′
ε − σ0u

′
0. Taking the difference between (3.5) and (3.5) at ε = 0 and multiplying with −rd−1 we

get
d
dr

[rd−1gε(r)] = −rd−1(λεuε(r) − λ0u0(r)). (3.7)

Integrating (3.7) on (0, r) we get

rd−1gε(r) − lim
t→0

td−1gε(t) = −
∫ r

0

td−1(λεuε(t) − λ0u0(t))dt. (3.8)

Since ‖uε‖H1(Ω) ≤ c we have ‖r(d−1)/2u′
ε‖L2(0,1) ≤ c using polar or spherical coordinates. This implies that

rd−1u′
ε(r) → 0 as r → 0 and in turn

lim
t→0

td−1gε(t) = 0.
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Dividing by rd−1,taking the L2-norm and using the Cauchy–Schwarz inequality we get

‖gε‖2
L2(0,1) =

∥∥∥∥r1−d

∫ r

0

td−1(λεuε(t) − λ0u0(t))dt

∥∥∥∥
2

L2(0,1)

≤
∫ 1

r=0

r−2(d−1)‖td−1(λεuε − λ0u0)‖2
L1(0,r)dr

≤ ‖λεuε − λ0u0‖2
L2(0,1)

∫ 1

0

r−2(d−1)‖td−1‖2
L2(0,r)dr

≤ (2d − 2)−1 ‖λεuε − λ0u0‖2
L2(0,1) . (3.9)

According to Theorem 2.2 we have ‖uε − u0‖H1(Ω) ≤ c
√

ε for ε small enough. Passing to polar or spherical
coordinates this implies

‖r(d−1)/2(uε − u0)‖L2(0,1) ≤ c
√

ε and ‖r(d−1)/2(u′
ε − u′

0)‖L2(0,1) ≤ c
√

ε. (3.10)

Using Lemma 3.2 with q = 0, p = 2 and f = u′
ε − u′

0 we obtain∫ 1

0

(uε − u0)2dr < 4
∫ 1

0

r2(u′
ε − u′

0)
2dr.

Therefore we have
‖uε − u0‖L2(0,1) ≤ c‖r(d−1)/2(u′

ε − u′
0)‖L2(0,1) ≤ c

√
ε,

and in a similar way
‖uε‖L2(0,1) ≤ c.

Since |λε − λ0| ≤ cε as ε → 0 we get
‖gε‖L2(0,1) ≤ c

√
ε as ε → 0.

Performing a similar calculation for σεu
′
ε and using σε ≥ α we get

‖u′
ε‖2

L2(0,1) ≤ α−2‖σεu
′
ε‖2

L2(0,1) ≤ α−2(2d − 2)−1‖λεuε‖2
L2(0,1) ≤ c

where c is a constant independent on ε. Using a Sobolev imbedding we also get

‖uε‖L∞(0,1) ≤ c‖uε‖H1(0,1) ≤ c‖u′
ε‖L2(0,1) ≤ c. (3.11)

Step 2. Integrating and taking the L∞-norm we get

‖gε‖L∞(0,1) =
∥∥∥∥r1−d

∫ r

0

td−1(λεuε(t) − λ0u0(t))dt

∥∥∥∥
L∞(0,1)

≤ ‖λεuε − λ0u0‖L∞(0,1)

∥∥∥∥r1−d

∫ r

0

td−1dt

∥∥∥∥
L∞(0,1)

≤ c|λε − λ0|‖uε‖L∞(0,1) + λ0‖uε − u0‖L∞(0,1). (3.12)

Performing a similar estimate for σεu
′
ε we obtain

‖σεu
′
ε‖L∞(0,1) ≤ |λε|‖uε‖L∞(0,1). (3.13)

Now we show that ‖uε − u0‖L∞(0,1) → 0. Using (3.13) gives

‖u′
ε‖L∞(0,1) ≤ c. (3.14)
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Next, writing

‖u′
ε − u′

0‖L2(0,1) =
1
σ0

‖σ0u
′
ε − σ0u

′
0‖L2(0,1)

≤ 1
σ0

‖gε‖L2(0,1) +
ε

σ0
‖χBu′

ε‖L2(0,1),

and using that ‖u′
ε‖L2(0,1) is uniformly bounded with respect to ε we get

‖u′
ε − u′

0‖L2(0,1) ≤ c
√

ε as ε → 0.

Since uε(1) = u0(1) = 0, we may apply Poincaré’s inequality and we get

‖uε − u0‖H1(0,1) ≤ c
√

ε as ε → 0.

Due to Sobolev imbeddings in one dimension we have

‖uε − u0‖L∞(0,1) ≤ c‖uε − u0‖H1(0,1) ≤ c
√

ε as ε → 0.

Finally, using the estimate for gε and (3.11) we obtain

‖gε‖L∞(0,1) ≤ c
√

ε as ε → 0. (3.15)

Next, writing

‖u′
ε − u′

0‖L∞(0,1) =
1
σ0

‖σ0u
′
ε − σ0u

′
0‖L∞(0,1)

≤ 1
σ0

‖gε‖L∞(0,1) +
ε

σ0
‖χBu′

ε‖L∞(0,1).

Finally using (3.14) and (3.15) we get ‖u′
ε − u′

0‖L∞(0,1) ≤ c
√

ε as ε → 0. Going back to the function uε(x) =
uε(|x|) we have obtained indeed

‖∇uε −∇u0‖L∞(Ω) ≤ c
√

ε.

The fact that uε and u0 are in W 1,∞(Ω) derives directly from (3.11) and (3.14). �

Remark 3.4. Since we have shown that ‖uε‖H1(0,1) is uniformly bounded with respect to ε, using classical
Sobolev imbeddings we also have the Hölder regularity uε ∈ C0,1/2([0, 1]).

Thanks to Theorem 3.3 we can now prove the set convergence of the minimizer B∗
ε of λε(B) to B∗. First of all

we prove that the set B∗
ε is close to B∗ in an appropriate sense. We need some preliminary results. Introduce

the quantity
M(B, c) = |{x : |∇uB(x)| ≤ c}| (3.16)

where uB is the solution of (1.1)−(1.2). The proof of the two following results can be found in ([3], Lem. 3.1)
and ([3], Prop. 2.7):

Lemma 3.5. The function M(B, c) is non-decreasing with respect to c and is such that M(B, c) → 0 as c → 0
and M(B, c) → |Ω| as c → ∞. Furthermore, it is a right-continuous function. It is also left continuous at any
c if and only if the Lebesgue measure of {x : |∇uB(x)| = c} is zero.

Proposition 3.6. For Ω = �(0, 1), the level set {|∇u0| = c} has zero measure for each c ≥ 0.

We start with optimal sets of Type I, i.e. when m < m.
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Theorem 3.7. Let B ⊂ Ω be an arbitrary radially symmetric measurable set and m < m. For all δ > 0, there
exists ε0 = ε0(δ) > 0 and B∗

δ radially symmetric and containing the origin such that |B∗
δ | = m,

�(0, r∗ − δ) ⊂ B∗
δ ⊂ �(0, r∗ + δ) (3.17)

and for all 0 < ε ≤ ε0(δ) we have the inequality

λε(B∗
δ ) ≤ λε(B) (3.18)

Proof. Let η > 0 be chosen, in view of Theorem 3.3, there exists ε0(η) > 0 such that

|∇uε(x) −∇u0(x)| < η for all x ∈ Ω and ε < ε0(η). (3.19)

Denote

Bc
ε := {x ∈ Ω, |∇uε(x)| < c},

Bc
ε := {x ∈ Ω, |∇uε(x)| ≤ c},

Bc
0 := {x ∈ Ω, |∇u0(x)| ≤ c}.

Using (3.19) we have the following inclusions

Bc
0 ⊂ {x ∈ Ω, |∇u0(x)| < c + η − |∇uε(x) −∇u0(x)|}

= {x ∈ Ω, |∇u0(x)| + |∇uε(x) −∇u0(x)| < c + η}
⊂ {x ∈ Ω, |∇uε(x)| < c + η} = Bc+η

ε ⊂ Bc+η
ε .

In a similar way we may write

Bc−η
ε ⊂ Bc−η

ε ⊂ {x ∈ Ω, |∇uε(x)| + |∇u0(x) −∇uε(x)| ≤ c − η + η}
⊂ {x ∈ Ω, |∇u0(x)| ≤ c} = Bc

0.

Thus we have obtained
Bc−η

ε ⊂ Bc−η
ε ⊂ Bc

0 ⊂ Bc+η
ε ⊂ Bc+η

ε (3.20)

Lemma 3.5 and Proposition 3.6 imply that |Bc
0| is continuous, consequently, using the assumption m < m and

Proposition 3.1, there exists a c∗ such that Bc∗
0 = �(0, r∗) and |Bc∗

0 | = m. Taking c = c∗ in (3.20) we get

|Bc∗−η
ε | ≤ |Bc∗−η

ε | ≤ m ≤ |Bc∗+η
ε | ≤ |Bc∗+η

ε |. (3.21)

Since |Bc
ε| and |Bc

ε| are increasing (but not necessarily continuous) functions there exists cε such that

c∗ − η ≤ cε ≤ c∗ + η, (3.22)

and
|Bcε

ε | ≤ m and |Bcε
ε | ≥ m, (3.23)

We apply (3.20) first with c = cε + η and then c = cε − η and we obtain the inclusions

Bcε−η
0 ⊂ Bcε

ε ⊂ Bcε
ε ⊂ Bcε+η

0 .

Finally applying (3.22) we get
Bc∗−2η

0 ⊂ Bcε
ε ⊂ Bcε

ε ⊂ Bc∗+2η
0 . (3.24)
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Now let δ > 0 be given. Assumption m < m and Proposition 3.1 (see Fig. 1) ensure that there exists η = η(δ) > 0
such that

�(0, r∗ − δ) ⊂ Bc∗−2η
0 ,

Bc∗+2η
0 ⊂ �(0, r∗ + δ).

Note that the strict inequality m < m is necessary otherwise the above property may not be true for all δ. In
view of (3.23) and (3.24), there exists a radially symmetric set B∗

δ such that |B∗
δ | = m and

�(0, r∗ − δ) ⊂ Bc∗−2η
0 ⊂ Bcε

ε ⊂ B∗
δ ⊂ Bcε

ε ⊂ Bc∗+2η
0 ⊂ �(0, r∗ + δ).

which yields (3.17).
To prove (3.18), consider the decompositions

B = (B ∩ B∗
δ ) ∪ (B ∩ (B∗

δ )c),
B∗

δ = (B ∩ B∗
δ ) ∪ (Bc ∩ B∗

δ ).

Since |B| = |B∗
δ | = m we have with the above decompositions

|B ∩ (B∗
δ )c| = |Bc ∩ B∗

δ |.

Observing that |∇uε| ≥ cε on (B∗
δ )c and |∇uε| ≤ cε on B∗

δ , we may write

∫
B

|∇uε|2 =
∫

B∩B∗
δ

|∇uε|2 +
∫

B∩(B∗
δ )c

|∇uε|2

≥
∫

B∩B∗
δ

|∇uε|2 + c2
ε|B ∩ (B∗

δ )c| (3.25)

=
∫

B∩B∗
δ

|∇uε|2 + c2
ε|Bc ∩ B∗

δ |

≥
∫

B∩B∗
δ

|∇uε|2 +
∫

Bc∩B∗
δ

|∇uε|2 =
∫

B∗
δ

|∇uε|2. (3.26)

As a consequence

λε(B) = α

∫
Ω

|∇uε|2 + (β − α)
∫

B

|∇uε|2

≥ α

∫
Ω

|∇uε|2 + (β − α)
∫

B∗
δ

|∇uε|2 (3.27)

≥ min
u∈H1

0 (Ω),||u||2=1

(
α

∫
Ω

|∇u|2 + (β − α)
∫

B∗
δ

|∇u|2
)

= λε(B∗
δ ) , (3.28)

and the inequality (3.18) is proved. �

Remark 3.8. Note that B∗
δ may be barely measurable, i.e. may have a fractal structure, even though it is

radially symmetric.
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We also have the following result for optimal sets of Type II:

Theorem 3.9. Let B ⊂ Ω an arbitrary measurable set and m > m. For all δ > 0, there exists ε0 = ε0(δ) and
B∗

δ radially symmetric and containing the origin such that |B∗
δ | = m, B∗

δ = B∗
δ,0 ∪ B∗

δ,1,

�(0, ξ0 − δ) ⊂ B∗
δ,0 ⊂ �(0, ξ0 + δ), (3.29)

�(0, 1) \�(0, ξ1 + δ) ⊂ B∗
δ,1 ⊂ �(0, 1) \�(0, ξ1 − δ), (3.30)

and for all 0 < ε ≤ ε0(δ) we have the inequality

λε(B∗
δ ) ≤ λε(B) (3.31)

where (ξ0, ξ1) are given in Proposition 3.1.

Proof. The proof is left to the reader as it is almost identical to the proof of Theorem 3.9 except that it is based
on the Type II optimizers appearing in Proposition 3.1. �

Corollary 3.10. If m < m and εk → 0 as k → ∞, then there exists a sequence of solutions Bεk
of (1.4)−(1.5)

such that
χBεk

→ χ�(0,r∗) in Lp(Ω), p ∈ [1,∞[,

i.e. Bεk
converges to �(0, r∗) in the sense of characteristic functions.

If m > m and εk → 0 as k → ∞, then there exists a sequence of solutions Bεk
of (1.4)−(1.5) such that

χBεk
→ χB∗ in Lp(Ω), p ∈ [1,∞[

where B∗ = �(0, ξ0) ∪
(
�(0, 1) \�(0, ξ1)

)
as defined in Proposition 3.1.

Proof. In a first step assume m < m. We define the function

ε(δ) := δ min
ν≥δ

ε0(ν),

where ε0(δ) is given by Theorem 3.7. Clearly, minν≥δ ε0(ν) is a nondecreasing function and consequently ε is a
strictly increasing function of δ since minν≥δ ε0(ν) > 0 for δ > 0 and we also have ε(δ) → 0 as δ → 0. Therefore
there exists a strictly increasing inverse function δ̂(ε) such that ε(δ̂(ε)) = ε and δ̂(ε) → 0 as ε → 0.

According to Theorem 3.7, for a given ε there exists B∗
δ̂(ε)

radially symmetric and containing the origin such
that |B∗

δ̂(ε)
| = m,

�(0, r∗ − δ̂(ε)) ⊂ B∗
δ̂(ε)

⊂ �(0, r∗ + δ̂(ε)) (3.32)

and we have the inequality
λε(B∗

δ̂(ε)
) ≤ λε(B). (3.33)

Let Bε be a radially symmetric set solution of (1.4)−(1.5) for a given ε. We know that such a solution exists
according to [4]. Taking B = Bε in (3.33) we get

λε(B∗
δ̂(ε)

) ≤ λε(Bε) (3.34)

therefore B∗
δ̂(ε)

is also a solution of (1.4)−(1.5). In view of (3.32) and δ̂(ε) → 0 as ε → 0 we clearly obtain

χB∗
δ̂(ε)

→ χ�(0,r∗) in Lp(Ω), p ∈ [1,∞[,

and the claim follows.
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In a similar way, if we assume m > m we may apply Theorem 3.9 to obtain

χB∗
δ̂(ε)

→ χB∗ in Lp(Ω), p ∈ [1,∞[,

where B∗ = �(0, ξ0) ∪
(
�(0, 1) \�(0, ξ1)

)
. �

We can actually prove that Bεk
= �(0, r∗) or �(0, ξ0) ∪

(
�(0, 1) \�(0, ξ1)

)
when εk is small enough. This is

the purpose of the next sections.

4. Inequality for Type I optimum

In this section we assume m < m so that we are in the framework provided by Theorem 3.7.

4.1. Description of the method

The main result of this section is to prove the existence of a threshold ε0 > 0 such that

λε(B∗) ≤ λε(B), (4.1)

for all B ∈ B and ε ≤ ε0, where B∗ = �(0, r∗) as given by Proposition 3.1. This implies that B∗ is a solution
of (1.4)−(1.5) in low contrast regime, i.e. for ε ≤ ε0. In view of the proof of Corollary 3.10, for all ε > 0 there
exists a δ(ε) > 0 such that

λε(B∗
δ(ε)) ≤ λε(B) (4.2)

holds with δ(ε) → 0 as ε → 0 and δ(ε) strictly increasing. Therefore to conclude we require the other inequality

λε(B∗) ≤ λε(B∗
δ(ε)). (4.3)

The difficulty in obtaining this last inequality is that we do not have any information on B∗
δ(ε) apart from the

fact that it is “close” to B∗ in the sense of Theorem 3.7. Fortunately it is just enough to perform an asymptotic
expansion of the eigenvalue with respect to δ(ε). In this section we show that there exists ε0 > 0 and δ0 > 0
such that for all 0 < ε ≤ ε0 and 0 < δ ≤ δ0 we have

λε(B∗) ≤ λε(Bδ), (4.4)

where Bδ is any radially symmetric set satisfying

�(0, r∗ − δ) ⊂ Bδ ⊂ �(0, r∗ + δ). (4.5)

In particular one can choose Bδ = B∗
δ(ε) for ε small enough, and combining (4.2)−(4.4) we get

λε(B∗) ≤ λε(Bδ) = λε(B∗
δ(ε)) ≤ λε(B), (4.6)

which gives (4.1). To prove (4.4) we aim at obtaining an asymptotic expansion of λε(Bδ) with respect to (ε, δ)
of the type

λε(Bδ) = λε(B∗) + ρ(δ)λ̄ε + R(ε, δ),

with ρ(δ) > 0, ρ(δ) → 0 and R(ε, δ)/ρ(δ) → 0 uniformly as (δ) → 0. Proving then that λ̄ε ≥ 0 we get (4.4) for
(ε, δ) small enough.

We introduce Aδ := Ω \ Bδ and A∗ := Ω \ B∗. We clearly have

χBδ
− χB∗ = −(χAδ

− χA∗) (4.7)
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and ∫
Ω

χBδ
− χB∗ = m − m = 0. (4.8)

We introduce the sets I±δ such that

I+
δ := {x ∈ Ω | χBδ

(x) − χB∗(x) = 1} (4.9)
I−δ := {x ∈ Ω | χBδ

(x) − χB∗(x) = −1}. (4.10)

It is clear that
χBδ

− χB∗ = χI+
δ
− χI−

δ
, (4.11)

and due to assumption (4.5) we have

I+
δ ⊂ �(0, r∗ + δ) \�(0, r∗), (4.12)

I−δ ⊂ �(0, r∗) \�(0, r∗ − δ). (4.13)

4.2. Asymptotic expansion

Denote (uε,δ, λε,δ) the eigenpair solution of

− div(σε,δ∇uε,δ) = λε,δuε,δ in Ω, (4.14)
uε,δ = 0 on ∂Ω, (4.15)

with σε,δ = αχAδ
+ βεχBδ

. The main difficulty in writing the asymptotic analysis of uε,δ with respect to (ε, δ)
is the lack of regularity of uε,δ, since σε,δ is only piecewise constant and Bδ is possibly barely measurable. To
overcome this difficulty, we advantageously use the fact that σε,δ∇uε,δ has more regularity than ∇uε,δ in view
of (4.14). Therefore an important strategy in the proofs of the asymptotic expansion is to often replace ∇uε,δ

by σ−1
ε,δ (σε,δ∇uε,δ) in the computations in order to write Taylor expansions for σε,δ∇uε,δ or related quantities.

In asymptotic analysis, one typically starts with an ansatz with respect to the asymptotically small parame-
ters. In our case we would like to obtain an expansion with respect to the small parameter δ for fixed ε of the
type:

uε,δ = uε,0 + ρ(δ)uε,1 + o(ρ(δ)), (4.16)
λε,δ = λε,0 + ρ(δ)λε,1 + o(ρ(δ)), (4.17)

In our case it is unclear what should ρ(δ) be even if ρ(δ) will be determined further in (4.36), so it is preferable
in a first step to not separate the δ-dependent and ε-dependent term in ansätze (4.18)−(4.19). Thus we rather
decompose uε,δ and λε,δ in the following way:

uε,δ = uε,0 + wε,δ + Ru(ε, δ), (4.18)
λε,δ = λε,0 + με,δ + Rλ(ε, δ), (4.19)

where uε,0, wε,δ and Ru(ε, δ) satisfy

− div(σε,0∇uε,0) = λε,0uε,0 in Ω, (4.20)
uε,0 = 0 on ∂Ω, (4.21)

− div(σε,0∇wε,δ) − λε,0wε,δ = div
(

(σε,δ − σε,0)σε,0

σε,δ
∇uε,0

)
+ με,δ uε,0 in Ω, (4.22)

wε,δ =0 on ∂Ω. (4.23)
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− div(σε,δ∇Ru) − λε,δRu = div
(

(σε,δ − σε,0)
[
(σε,δ − σε,0)

σε,δ
∇uε,0 + ∇wε,δ

])
+ με,δ wε,δ + Rλuε,δ in Ω, (4.24)

wε,δ =0 on ∂Ω. (4.25)

The decomposition is chosen so that Ru = O(wε,δ) and Rλ = O(με,δ) as (ε, δ) → 0 in a sense that will be
determined in Lemma 4.2 and Theorem 4.5. Note that these problems are well-defined in the weak sense, with
the right-hand side in H−1(Ω) and that the solutions σε,0, wε,δ,Ru are in H1(Ω).

According to the Fredholm alternative, (4.22)−(4.23) has a solution only if the right-hand side of (4.22) is
orthogonal to uε,0 which yields

∫
Ω

div
(

(σε,δ − σε,0)σε,0

σε,δ
∇uε,0

)
uε,0 dx + με,δ

∫
Ω

u2
ε,0 dx = 0.

This gives using the normalization condition and Green’s formula

με,δ =
∫

Ω

(σε,δ − σε,0)σε,0

σε,δ
|∇uε,0|2 dx. (4.26)

In a similar way (4.24)−(4.25) has a solution only if the right-hand side of (4.24) is orthogonal to uε,δ which
yields ∫

Ω

div
(

(σε,δ − σε,0)
[
(σε,δ − σε,0)

σε,δ
∇uε,0 + ∇wε,δ

])
uε,δ + με,δ

∫
Ω

wε,δuε,δ + Rλ

∫
Ω

u2
ε,δ = 0.

Using the normalization condition for uε,δ and an integration by parts we get

Rλ = R1
λ + R2

λ + R3
λ

where

R1
λ := −με,δ

∫
Ω

wε,δuε,δ, R2
λ :=

∫
Ω

(σε,δ − σε,0)2

σε,δ
∇uε,0 · ∇uε,δ,

R3
λ :=

∫
Ω

(σε,δ − σε,0)∇wε,δ · ∇uε,δ.

Using (4.7) we get

σε,δ − σε,0 = α(χAδ
− χA∗) + βε(χBδ

− χB∗)
= (βε − α)(χBδ

− χB∗) = ε(χBδ
− χB∗).

Note that so far the expansion is valid for any Bδ ⊂ Ω (not necessarily symmetric) and any Ω ⊂ R
d. The next

step consists in providing the expansion of με,δ with respect to (ε, δ) and to obtain uniform estimates for the
remainders Ru and Rλ as χBδ

→ χB∗ when Ω is a disk and Bδ is radially symmetric.

4.3. L∞-estimates

From now on we assume Ω = �(0, 1), Bδ is radially symmetric and satisfies assumption (4.5). In this section
we prove L∞-estimates for wε,δ and Ru that will be required later to estimate Rλ. For simplicity, in what
follows c denotes a generic constant independent of (ε, δ).
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Lemma 4.1. The function wε,δ is in C0(Ω) and we have the estimate

‖wε,δ‖L∞(Ω) ≤ c(ε|I+
δ |1/2 + |με,δ|), . (4.27)

where c > 0 is a constant independent of (ε, δ).

Proof. In view of (4.20)−(4.21) we have uε,0 ∈ H1
0 (Ω) and consequently the right-hand side of (4.22)−(4.23)

is in H−1(Ω) since σε,δ is bounded from below. Therefore wε,δ ∈ H1
0 (Ω) and we actually have the standard

estimate for elliptic partial differential equations:

‖wε,δ‖H1(Ω) ≤ c

∥∥∥∥div
(

(σε,δ − σε,0)σε,0

σε,δ
∇uε,0

)∥∥∥∥
H−1(Ω)

+ c|με,δ|‖uε,0‖L2(Ω)

Using ‖uε,0‖H1(Ω) ≤ c and σε,δ − σε,0 = ε(χI+
δ
− χI−

δ
) we obtain

‖wε,δ‖H1(Ω) ≤ c

∥∥∥∥ (σε,δ − σε,0)σε,0

σε,δ
∇uε,0

∥∥∥∥
L2(Ω)

+ c|με,δ|

≤ c(ε|I+
δ |1/2 + |με,δ|). (4.28)

Passing to polar or spherical coordinates and introducing the notation ūε,0(r) := uε,0(x), w̄ε,δ(r) := wε,δ(x) for
the functions depending only on r we obtain

‖r(d−1)/2w̄ε,δ‖L2(0,1) ≤ c(ε|I+
δ |1/2 + |με,δ|)

‖r(d−1)/2w̄′
ε,δ‖L2(0,1) ≤ c(ε|I+

δ |1/2 + |με,δ|)
Using Theorem 3.2 and the above inequalities yields

‖w̄ε,δ‖L2(0,1) ≤ c(ε|I+
δ |1/2 + |με,δ|). (4.29)

In view of (4.52) we have

σε,0w̄
′
ε,δ = − (σε,δ − σε,0)σε,0

σε,δ
ū′

ε,0 + F11(r), (4.30)

where
F11(r) = −r1−d

∫ r

0

td−1 (με,δūε,0(t) + λε,0w̄ε,δ(t))dt.

Therefore, in a similar way as in (3.9) we get

‖σε,0w̄
′
ε,δ‖L2(0,1) ≤

∥∥∥∥ (σε,δ − σε,0)σε,0

σε,δ
ū′

ε,0

∥∥∥∥
L2(0,1)

+ c‖με,δūε,0 + λε,0w̄ε,δ‖L2(0,1)

≤ c(ε|I+
δ |1/2 + |με,δ| + ‖w̄ε,δ‖L2(0,1)).

Using (4.29) yields

α‖w̄′
ε,δ‖L2(0,1) ≤ ‖σε,0w̄

′
ε,δ‖L2(0,1) ≤ c(ε|I+

δ |1/2 + |με,δ|) (4.31)

Combining (4.29) and (4.31) we get

‖w̄ε,δ‖H1(0,1) ≤ c(ε|I+
δ |1/2 + |με,δ|). (4.32)

Using the Sobolev imbedding H1(0, 1) ↪→ L∞(0, 1) we obtain

‖w̄ε,δ‖L∞(0,1) ≤ c(ε|I+
δ |1/2 + |με,δ|) (4.33)

and (4.27) follows. From (4.32) we also deduce using a standard Sobolev imbedding that w̄ε,δ ∈ C0(0, 1) and
consequently wε,δ ∈ C0(Ω). �
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Lemma 4.2. The function Ru is in C0(Ω) and we have the estimate

‖Ru‖L∞(Ω) ≤ c((ε + |με,δ|)(ε|I+
δ |1/2 + |με,δ|) + |Rλ|), (4.34)

where c > 0 is a constant independent of (ε, δ).

Proof. In view of Lemma 4.1 and its proof, the right-hand side of (4.24)−(4.25) is in H−1(Ω) since σε,δ is
bounded from below. Therefore Ru ∈ H1

0 (Ω) and we actually have the standard estimate for elliptic equations:

‖Ru‖H1(Ω) ≤ c

∥∥∥∥div
(

(σε,δ − σε,0)
[
(σε,δ − σε,0)

σε,δ
∇uε,0 + ∇wε,δ

])∥∥∥∥
H−1(Ω)

+ c‖με,δ wε,δ + Rλuε,δ‖L2(Ω)

Using the estimates ‖uε,δ‖L2(Ω) ≤ c, ‖uε,0‖H1(Ω) ≤ c, (4.28) and Lemma 4.1 we get

‖Ru‖H1(Ω) ≤ c

∥∥∥∥(σε,δ − σε,0)
[
(σε,δ − σε,0)

σε,δ
∇uε,0 + ∇wε,δ

]∥∥∥∥
L2(Ω)

+ c|με,δ|‖wε,δ‖L2(Ω) + |Rλ|

≤ c(ε2|I+
δ |1/2 + ε ‖wε,δ‖H1(Ω) + |με,δ|‖wε,δ‖L2(Ω) + |Rλ|)

≤ c((ε + |με,δ|)(ε|I+
δ |1/2 + |με,δ|) + |Rλ|).

Then, in the same way as in the proof of Lemma 4.1 we get the L∞-estimate (4.34) and Ru ∈ C0(Ω). �

4.4. Main term of the expansion

In this section we assume Ω = �(0, 1) is a disk, Bδ is radially symmetric and satisfies assumption (4.5). We
compute the main term of the expansion of με,δ with respect to ε and δ and give an estimate for the remainder.
We show that Rλ is asymptotically smaller than με,δ as (ε, δ) → 0 by writing uniform estimates for Rλ. First
of all we introduce the notations

hε := σ2
ε,0|∇uε,0|2, h0 := σ2

0,0|∇u0,0|2, Rh = hε − h0.

According to Theorem 3.3 we have uε,0 ∈ C0(Ω) and consequently hε ∈ C1(Ω) in view of (3.5). We also clearly
have h0 ∈ C∞(Ω) so that Rh ∈ C1(Ω). In view of the definitions of I±δ we have∫

I+
δ

r − r∗ ≥ 0 and −
∫

I−
δ

r − r∗ ≥ 0.

Therefore, introducing the notation l(δ) we have

l(δ) :=
∫

I+
δ

(r − r∗) −
∫

I−
δ

(r − r∗) ≥ 0. (4.35)

With a slight abuse of notation, in what follows we use the notation hε(r), h0(r) and Rh(r), where r = |x|, for
the one-dimensional functions associated with hε, h0 and Rh.

Theorem 4.3. We have the expansion

με,δ = εl(δ)α−2h′
0(r

∗) + Rμ as (ε, δ) → 0, (4.36)

where Rμ = O((ε1/2 + δ)εl(δ)).
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Proof. First we introduce the decomposition

με,δ = μ1
ε,δ + μ2

ε,δ (4.37)

with

μ1
ε,δ :=

∫
Ω

σε,δ − σε,0

σε,δσε,0
h0, (4.38)

μ2
ε,δ :=

∫
Ω

σε,δ − σε,0

σε,δσε,0
Rh. (4.39)

To get the expansion of μ1
ε,δ, we use a Taylor expansion of h0 ∈ C∞(0, 1) about r = r∗:

h0(r) = h0(r∗) + h′
0(r

∗)(r − r∗) +
h′′

0(ζ)
2

(r − r∗)2,

where ζ ∈ [r∗, r] or ζ ∈ [r, r∗] depending on the sign of r − r∗. Note that ζ actually depends on r. Plugging the
Taylor expansion in μ1

ε,δ we consider the following expansion

μ1
ε,δ = μ11

ε,δ + μ12
ε,δ + μ13

ε,δ (4.40)

with

μ11
ε,δ := h0(r∗)

∫
Ω

σε,δ − σε,0

σε,δσε,0
,

μ12
ε,δ := h′

0(r
∗)
∫

Ω

(σε,δ − σε,0)(r − r∗)
σε,δσε,0

,

μ13
ε,δ :=

∫
Ω

(σε,δ − σε,0)h′′
0 (ζ)(r − r∗)2

2σε,δσε,0
·

We observe that σε,0σε,δ = α(α + ε) in I+
δ ∪ I−δ so that in view of |I+

δ | = |I−δ | we immediately get

μ11
ε,δ = 0. (4.41)

Now we turn to the computation of μ12
ε,δ. We have

μ12
ε,δ = εh′

0(r
∗)

(∫
I+

δ

r − r∗

α(α + ε)
−
∫

I−
δ

r − r∗

α(α + ε)

)
= ε

h′
0(r∗)

α(α + ε)
l(δ)

= εα−2h′
0(r

∗)l(δ) + R12(ε, δ), (4.42)

with
R12(ε, δ) = O(ε2l(δ)).

It holds

|μ13
ε,δ| ≤

ε

2α(α + ε)
sup

r∈[r∗−δ,r∗+δ]

|h′′
0 (ζ)(r − r∗)|

∫
Ω

|(χI+
δ
− χI−

δ
)(r − r∗)|.

Since (χI+
δ
− χI−

δ
)(r − r∗) ≥ 0 we observe that

∫
Ω

|(χI+
δ
− χI−

δ
)(r − r∗)| =

∫
Ω

(χI+
δ
− χI−

δ
)(r − r∗) = l(δ).
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We also have, since h0 ∈ C∞(0, 1)
sup

r∈[r∗−δ,r∗+δ]

|h′′
0(ζ)(r − r∗)| ≤ cδ

Finally this yields using (4.11) ∣∣μ13
ε,δ

∣∣ ≤ cεδl(δ). (4.43)

Next, since Rh ∈ C1(0, 1) we consider the expansion

Rh(r) = Rh(r∗) + R′
h(ζ)(r − r∗)

where ζ ∈ [r∗, r] or ζ ∈ [r, r∗] depending on the sign of r − r∗. Note that ζ depends on r. Introduce

μ2
ε,δ = μ21

ε,δ + μ22
ε,δ

with

μ21
ε,δ := Rh(r∗)

∫
Ω

σε,δ − σε,0

σε,δσε,0
,

μ22
ε,δ :=

∫
Ω

(σε,δ − σε,0)R′
h(ζ)(r − r∗)

σε,δσε,0
·

We clearly have, for the same reasons for which we had μ11
ε,δ = 0, that

μ21
ε,δ = 0. (4.44)

For μ22
ε,δ we use

|μ22
ε,δ| ≤

ε

α(α + ε)
sup

r∈[r∗−δ,r∗+δ]

|R′
h(ζ)|

∫
Ω

|(χI+
δ
− χI−

δ
)(r − r∗)|

≤ ε

α(α + ε)
l(δ) sup

r∈[r∗−δ,r∗+δ]

|R′
h(ζ)| . (4.45)

We now proceed to estimate supr∈[r∗−δ,r∗+δ] |R′
h(ζ)|. First we have

Rh = (σε,0)2|∇uε,0|2 − (σ0,0)2|∇u0,0|2 = gεg̃ε

with

gε := σε,0∇uε,0 − σ0,0∇u0,0,

g̃ε := σε,0∇uε,0 + σ0,0∇u0,0.

Next we prove that
‖R′

h‖L∞(r∗/2,1) ≤ c
√

ε

We have R′
h = g′εg̃ε + gεg̃

′
ε. We have seen in (3.7) that gε satisfies the equation

d
dr

[rd−1gε(r)] = −rd−1(λεuε(r) − λ0u0(r)),

which gives
rd−1g′ε(r) = (d − 1)rd−2gε(r) − rd−1(λεuε(r) − λ0u0(r)). (4.46)

Since ‖gε‖L∞(0,1) ≤ c
√

ε and ‖λεuε(r) − λ0u0(r)‖L∞(0,1) ≤ c
√

ε in view of Theorem 3.3, equation (4.46) yields

‖g′ε‖L∞(r∗/2,1) ≤ c
√

ε.
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Using Theorem 3.3 we also get ‖g̃ε‖L∞(0,1) ≤ c and we deduce in a similar way ‖g̃′ε‖L∞(r∗/2,1) ≤ c. Combining
these results with R′

h = g′εg̃ε + gεg̃
′
ε we get

‖R′
h‖L∞(r∗/2,1) ≤ c

√
ε.

Inserting this result into (4.45) we obtain

|μ22
ε,δ| ≤ cε3/2l(δ) (4.47)

Finally, considering the decomposition

με,δ = μ11
ε,δ + μ12

ε,δ + μ13
ε,δ + μ21

ε,δ + μ22
ε,δ

and gathering (4.41), (4.42), (4.43), (4.44), (4.47) we have proved (4.36). �

In view of (4.36) we need to show that εα−2h′
0(r

∗)l(δ) ≥ 0 for all ε > 0, δ > 0 to prove the main result. Since
α > 0 and l(δ) ≥ 0 one should prove that h′

0(r
∗) > 0. This is given in the following

Lemma 4.4. If m < m then h′
0(r

∗) > 0.

Proof. We have h0 = σ2
0,0|∇u0,0|2 ∈ C∞(Ω) when Ω = �(0, 1). We compute

h′
0 = 2σ2

0,0ū
′
0,0ū

′′
0,0.

We have seen in Section 3 that u0,0 is given by the Bessel functions (3.3) and (3.4) for d = 2 and d = 3,
respectively. It is a standard result that ū′

0,0 is negative, decreasing on [0, r1
d] and increasing on [r1

d, 1], where
0 < r1

d < 1 is defined in Figure 1. Thus we get

h′
0(r) > 0 for r ∈ [0, r1

d[, (4.48)

h′
0(r) = 0 for r = r1

d, (4.49)
h′

0(r) < 0 for r ∈]r1
d, 1]. (4.50)

Thanks to the assumption m < m we get r∗ < r0
d < r1

d which completes the proof using (4.48). �

4.5. Estimate of the remainder

In this section we give the estimate with respect to (ε, δ) for the remainder Rλ in expansion (4.19).

Theorem 4.5. We have the estimate

|Rλ| ≤ cε2l(δ)
(
|I+

δ |1/2 + l(δ)
)

as (ε, δ) → 0, (4.51)

where c > 0 is independent of (ε, δ).

Proof. Step 1. First of all we define the following functions

F0 := σε,0∇uε,0, F1 := σε,0∇wε,δ, F2 := σε,δ∇Ru.

For the sake of simplicity we will denote indistinctly F0, F1, F2 and uε,0, wε,δ,Ru for the functions taking
arguments in R

d or for their one-dimensional counterparts. We decompose F0, F1 and F2 into a smooth and a
nonsmooth part. In view of (4.22)−(4.23) we have

−r1−d d
dr

[rd−1F1(r)] = r1−d d
dr

[
rd−1 (σε,δ − σε,0)σε,0

σε,δ
u′

ε,0

]
+ με,δ uε,0 + λε,0wε,δ,
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Dividing by r1−d and integrating from 0 to r we get

−rd−1F1(r) = rd−1 (σε,δ − σε,0)σε,0

σε,δ
u′

ε,0 +
∫ r

0

td−1 (με,δuε,0(t) + λε,0wε,δ(t))dt,

where we have used u′
ε,0(0) = 0 and limt→0 td−1F1(t) = 0. This yields

F1(r) = − (σε,δ − σε,0)σε,0

σε,δ
u′

ε,0 + F11(r), (4.52)

where
F11(r) = −r1−d

∫ r

0

td−1 (με,δuε,0(t) + λε,0wε,δ(t))dt. (4.53)

In a similar way, we get

F2(r) = −(σε,δ − σε,0)
[
(σε,δ − σε,0)

σε,δ
u′

ε,0 + w′
ε,δ

]
+ F21(r), (4.54)

F21(r) = −r1−d

∫ r

0

td−1 (με,δ wε,δ + Rλuε,δ + λε,δRu)dt. (4.55)

and

F0(r) = −r1−d

∫ r

0

td−1 (λε,0uε,0)dt. (4.56)

In (4.54) we can replace w′
ε,δ using (4.52). After simplification this yields

F2(r) = − (σε,δ − σε,0)
σε,0

F11(r) + F21(r), (4.57)

Step 2. Next we decompose R2
λ and R3

λ in the following way

R2
λ = R21

λ + R22
λ + R23

λ and R3
λ = R31

λ + R32
λ + R33

λ

where

R21
λ :=

∫
Ω

(σε,δ − σε,0)2

σε,δσ2
ε,0

(F0)2, R22
λ :=

∫
Ω

(σε,δ − σε,0)2

σε,δσ2
ε,0

F0F1,

R23
λ :=

∫
Ω

(σε,δ − σε,0)2

σ2
ε,δσε,0

F0F2,

and

R31
λ :=

∫
Ω

σε,δ − σε,0

σ2
ε,0

F0F1, R32
λ :=

∫
Ω

σε,δ − σε,0

σ2
ε,0

(F1)2,

R33
λ :=

∫
Ω

σε,δ − σε,0

σε,0σε,δ
F1F2.

Now we compute using (4.52):

R21
λ + R31

λ =
∫

Ω

(σε,δ − σε,0)2

σε,δσ2
ε,0

(F0)2 +
∫

Ω

σε,δ − σε,0

σ2
ε,0

F0

[
− (σε,δ − σε,0)σε,0

σε,δ
∇uε,0 + F11

]

=
∫

Ω

σε,δ − σε,0

σ2
ε,0

F0F11.
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Using again (4.52) we get

R22
λ + R32

λ =
∫

Ω

(σε,δ − σε,0)2

σε,δσ2
ε,0

F0

[
− (σε,δ − σε,0)σε,0

σε,δ
∇uε,0 + F11

]

+
∫

Ω

σε,δ − σε,0

σ2
ε,0

[
− (σε,δ − σε,0)σε,0

σε,δ
∇uε,0 + F11

]2

=
∫

Ω

− (σε,δ − σε,0)2

σε,δσ2
ε,0

F0F11 +
σε,δ − σε,0

σ2
ε,0

(F11)2.

For the other two terms, using (4.52) and (4.57) we get

R23
λ + R33

λ =
∫

Ω

σε,δ − σε,0

σε,0σε,δ

[
(σε,δ − σε,0)

σε,δ
F0 + F1

]
F2

=
∫

Ω

σε,δ − σε,0

σε,0σε,δ
F11

[
− (σε,δ − σε,0)

σε,0
F11 + F21

]

=
∫

Ω

σε,δ − σε,0

σε,0σε,δ
F11F21 − (σε,δ − σε,0)2

σ2
ε,0σε,δ

(F11)2.

We proceed with further simplifications by summing all terms:

R2
λ + R3

λ =R21
λ + R31

λ + R22
λ + R32

λ + R23
λ + R33

λ

=
∫

Ω

[
σε,δ − σε,0

σ2
ε,0

− (σε,δ − σε,0)2

σε,δσ2
ε,0

]
F0F11

+
∫

Ω

[
σε,δ − σε,0

σ2
ε,0

− (σε,δ − σε,0)2

σ2
ε,0σε,δ

]
(F11)2 +

∫
Ω

σε,δ − σε,0

σε,0σε,δ
F11F21

=
∫

Ω

σε,δ − σε,0

σε,δσε,0
(F0F11 + (F11)2 + F11F21).

We have obtained

R2
λ + R3

λ =
∫

Ω

σε,δ − σε,0

σε,δσε,0
F

with
F := F0F11 + (F11)2 + F11F21 = F11(F0 + F11 + F21).

Step 3. Since the functions uε,0, wε,δ, uε,δ and Ru are in C0(Ω) due to Theorem 3.3, Lemmas 4.1 and 4.2, we
get F0, F11, F21 ∈ C1(0, 1) and a fortiori F ∈ C1(0, 1). Therefore it is possible to consider the Taylor expansion

F (r) = F (r∗) + F ′(ζ)(r − r∗)

where ζ ∈ [r∗, r] or ζ ∈ [r, r∗] depending on the sign of r − r∗. Replacing in the previous expression we get

R2
λ + R3

λ = F (r∗)
∫

Ω

σε,δ − σε,0

σε,δσε,0
+
∫

Ω

σε,δ − σε,0

σε,δσε,0
F ′(ζ)(r − r∗).

As already observed above we have ∫
Ω

σε,δ − σε,0

σε,δσε,0
= 0
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and ∣∣∣∣
∫

Ω

σε,δ − σε,0

σε,δσε,0
F ′(ζ)(r − r∗)

∣∣∣∣ ≤ εl(δ)
α(α + ε)

sup
r∈[r∗−δ,r∗+δ]

|F ′(r)| ≤ c. (4.58)

We give now an estimate for the supremum in (4.58). We have

F ′ = F ′
11(F0 + F11 + F21) + F11(F ′

0 + F ′
11 + F ′

21)

Using (4.56) we get
sup

r∈[r∗−δ,r∗+δ]

|F0(r)| ≤ c.

and
F ′

0 = r−1(1 − d)F0 − λε,0uε,0

so that
sup

r∈[r∗−δ,r∗+δ]

|F ′
0(r)| ≤ c.

According to (4.53) we get
F ′

11 = r−1(1 − d)F11 − (με,δuε,0 + λε,0wε,δ)

so that

sup
r∈[r∗−δ,r∗+δ]

|F ′
11(r)| ≤ c

(
sup

r∈[r∗−δ,r∗+δ]

|F11(r)| + |με,δ| + ‖wε,δ‖L∞(0,1)

)
,

where we have used the fact that uε,0 is uniformly bounded on Ω independently of ε and λε,0 ≤ c as well. Using
expression (4.53) we get

sup
r∈[r∗−δ,r∗+δ]

|F11(r)| ≤ c(|με,δ| + ‖wε,δ‖L∞(0,1))

and consequently
sup

r∈[r∗−δ,r∗+δ]

|F ′
11(r)| ≤ c(|με,δ| + ‖wε,δ‖L∞(0,1)).

Using Lemma 4.1 we obtain
sup

r∈[r∗−δ,r∗+δ]

|F ′
11(r)| ≤ c(ε|I+

δ |1/2 + |με,δ|).

According to (4.55) we get

sup
r∈[r∗−δ,r∗+δ]

|F21(r)| ≤ c(|με,δ|‖wε,δ‖L∞(0,1) + |Rλ| + ‖Ru‖L∞(0,1))

and
F ′

21(r) = r−1(1 − d)F21 − (με,δ wε,δ + Rλuε,δ + λε,δRu)

so that
sup

r∈[r∗−δ,r∗+δ]

|F ′
21(r)| ≤ c(|με,δ|‖wε,δ‖L∞(0,1) + |Rλ| + ‖Ru‖L∞(0,1)).

Gathering the previous results we obtain

sup
r∈[r∗−δ,r∗+δ]

|F ′(r)| ≤ c(|με,δ| + ‖wε,δ‖L∞(0,1))(c + |Rλ| + ‖Ru‖L∞(0,1))).

Plugging this result into (4.58) we obtain∣∣∣∣
∫

Ω

σε,δ − σε,0

σε,δσε,0
F ′(ζ)(r − r∗)

∣∣∣∣ ≤ εl(δ)c(|με,δ| + ‖wε,δ‖L∞(0,1))(c + |Rλ| + ‖Ru‖L∞(0,1))).
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So finally we have obtained

|R2
λ + R3

λ| ≤ εl(δ)c(|με,δ| + ‖wε,δ‖L∞(0,1))(c + |Rλ| + ‖Ru‖L∞(0,1))). (4.59)

Step 4. We have the estimate
|R1

λ| ≤ |με,δ|‖wε,δ‖L2(Ω) (4.60)

Gathering (4.60) and (4.59) we obtain

|Rλ| = |R1
λ + R2

λ + R3
λ|

≤ |με,δ|‖wε,δ‖L2(Ω) + cεl(δ)(|με,δ| + ‖wε,δ‖L∞(0,1))(c + |Rλ| + ‖Ru‖L∞(0,1))) (4.61)

Using (4.27), (4.34) and (4.36) we get the estimates

‖Ru‖L∞(Ω) ≤ cε2(|I+
δ |1/2 + l(δ) + |Rλ|),

‖wε,δ‖L∞(Ω) ≤ cε(|I+
δ |1/2 + l(δ)).

Using these estimates in (4.61) yields

|Rλ| ≤ ε2l(δ)(|I+
δ |1/2 + l(δ))(c + |Rλ|) (4.62)

Since ε2l(δ)(|I+
δ |1/2 + l(δ)) goes to zero when (ε, δ) → 0, we can move the term depending on |Rλ| in the

right-hand side of (4.62) to the left-hand side and we obtain (4.51). �

4.6. Main result

We can now state the main result of this paper. Let B∗ = �(0, r∗) as given by Proposition 3.1.

Theorem 4.6. If m < m there exists ε0 > 0 such that for all B ∈ B we have

λε(B∗) ≤ λε(B) for all 0 < ε < ε0

and the equality occurs only when B = B∗ almost everywhere in Ω.

Proof. Thanks to Theorem 2.3 we can assume B is radially symmetric. In view of the proof of Corollary 3.10,
for all ε > 0 there exists a δ(ε) > 0 such that

λε(B∗
δ(ε)) ≤ λε(B) (4.63)

holds with δ(ε) → 0 as ε → 0 and δ(ε) strictly increasing. In view of (4.19) and (4.36) we have

λε(Bδ) = λε,δ = λε,0 + με,δ + Rλ(ε, δ)
= λε,0 + εl(δ)α−2h′

0(r
∗) + Rμ + Rλ(ε, δ)

According to Theorems 4.3 and 4.5 we have

|Rμ| ≤ c(ε1/2 + δ)εl(δ)

|Rλ| ≤ cε2l(δ)
(
|I+

δ |1/2 + l(δ)
)

,

In view of Lemma 4.4 we have h′
0(r

∗) > 0. Therefore there exists ε0 > 0 and δ0 > 0 such that for all ε < ε0

and δ < δ0 we have λε(Bδ) ≥ λε,0 = λε(B∗). In particular one can choose Bδ = B∗
δ(ε) for ε small enough, and

using (4.63) we get
λε(B∗) ≤ λε(Bδ) = λε(B∗

δ(ε)) ≤ λε(B), (4.64)

which gives (4.1). The case λε(B∗
δ(ε)) = λε(B∗) only occurs when l(δ(ε)) = 0 which implies B∗

δ(ε) = B∗ almost
everywhere in view of (4.35). �
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5. Optimum of Type II

The results of Section 4 can be extended to the case of the Type II optimum. The proof is similar, so we
will only give the main results and describe the differences with Section 4. The main difference between optima
of Type I and II is that the minimizers of Type II depend on ε, due to the fact that there are two connected
components. The proofs of the results in Section 4 should be modified accordingly.

In this section we assume m > m in order to deal with optima of Type II. Let δ > 0 be given, then according
to Theorem 3.9 there exists ε0(δ) and a radially symmetric set B∗

δ satisfying (3.29), (3.30) and (3.31) for
0 < ε ≤ ε0(δ). For such ε we introduce a new set B∗

ε = B∗
ε,0 ∪ B∗

ε,1 with

B∗
ε,0 = �(0, ξ0

ε), (5.1)

B∗
ε,1 = �(0, 1) \�(0, ξ1

ε ), (5.2)

and sets I∗±k
δ , k = 0, 1 such that

I∗+k
δ := {x ∈ Ω | χB∗

δ,k
(x) − χB∗

ε,k
(x) = 1}, (5.3)

I∗−k
δ := {x ∈ Ω | χB∗

δ,k
(x) − χB∗

ε,k
(x) = −1}. (5.4)

where B∗
δ = B∗

δ,0 ∪ B∗
δ,1 as in Theorem 3.9. We also define I∗k

δ := I∗+k
δ ∪ I∗−k

δ . The positions ξ0
ε and ξ1

ε are
chosen so that ∫

Ω

χI∗+0
δ

− χI∗−0
δ

= 0 and
∫

Ω

χI∗+1
δ

− χI∗−1
δ

= 0. (5.5)

Such ξ0
ε and ξ1

ε exist and are unique. Indeed |I∗−0
δ | and |I∗+0

δ | are obviously increasing and decreasing functions
of ξ0

ε , respectively, and continuous as well. For ξ0
ε small enough we have |I∗−0

δ | = 0 and for ξ0
ε large enough we

have |I∗+0
δ | = 0 so there exists a unique ξ0

ε such that |I∗−0
δ | = |I∗+0

δ |. Due to the volume constraint |B∗
ε | = m

and since B∗
ε has two connected components, ξ1

ε is uniquely determined by the choice of ξ0
ε and we have

m = |B∗
δ,0| + |B∗

δ,1|
= |I∗+0

δ | + |B∗
ε,0 ∩ B∗

δ,0| + |I∗+1
δ | + |B∗

ε,1 ∩ B∗
δ,1|

= |I∗+0
δ | + |B∗

ε,0| − |I∗−0
δ | + |I∗+1

δ | + |B∗
ε,1 ∩ B∗

δ,1|
= |B∗

ε,0| + |I∗+1
δ | + |B∗

ε,1 ∩ B∗
δ,1|

which yields

|I∗+1
δ | = m − |B∗

ε,0| − |B∗
ε,1 ∩ B∗

δ,1| = |B∗
ε,1| − |B∗

ε,1 ∩ B∗
δ,1| = |I∗−1

δ |.

Thus ξ0
ε and ξ1

ε can be chosen in a unique way so that (5.5) occurs. In addition since B∗
δ satisfies (3.29), (3.30)

we have
|ξ0

ε − ξ0| ≤ δ and |ξ1
ε − ξ1| ≤ δ. (5.6)

Following (3.29)−(3.30) we consider any radially symmetric set Bδ = Bδ,0 ∪ Bδ,1 such that

�(0, ξ0 − δ) ⊂ Bδ,0 ⊂ �(0, ξ0 + δ), (5.7)

�(0, 1) \�(0, ξ1 + δ) ⊂ Bδ,1 ⊂ �(0, 1) \�(0, ξ1 − δ), (5.8)

and satisfying ∫
Ω

χI+0
δ

− χI−0
δ

= 0 and
∫

Ω

χI+1
δ

− χI−1
δ

= 0. (5.9)
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where I±k
δ , k = 0, 1 are defined by

I+k
δ := {x ∈ Ω | χBδ,k

(x) − χB∗
ε,k

(x) = 1}, (5.10)

I−k
δ := {x ∈ Ω | χBδ,k

(x) − χB∗
ε,k

(x) = −1}. (5.11)

We also define Ik
δ := I+k

δ ∪ I−k
δ . Due to assumptions (5.7)−(5.8) and to (5.6) we have

I+0
δ ⊂ �(0, ξ0

ε + 2δ) \�(0, ξ0
ε), I+1

δ ⊂ �(0, ξ1
ε ) \�(0, ξ1

ε − 2δ),
I−0
δ ⊂ �(0, ξ0

ε ) \�(0, ξ0
ε − 2δ), I−1

δ ⊂ �(0, ξ1
ε + 2δ) \�(0, ξ1

ε ).

As in Section 4, we aim at obtaining an asymptotic expansion of λε,δ = λε(Bδ) with respect to (ε, δ) of the type

uε,δ = uε,0 + wε,δ + Ru(ε, δ), (5.12)
λε,δ = λε,0 + με,δ + Rλ(ε, δ), (5.13)

We introduce the notations

l0ε(δ) :=
∫

I+0
δ

r − ξ0
ε −

∫
I−0

δ

r − ξ0
ε ≥ 0,

l1ε(δ) :=
∫

I+1
δ

r − ξ1
ε −

∫
I−1

δ

r − ξ1
ε ≤ 0.

and lε(δ) = l0ε(δ) − l1ε(δ) ≥ 0. The asymptotic expansions (5.12)−(5.13) follow the same procedure as in
Section 4.2. The L∞-estimates from Section 4.3 are still valid for optima of Type II. The estimate of με,δ is
slightly different from the estimate in Section 4.4.

Theorem 5.1. We have the expansion:

με,δ = εα−2(h′
0(ξ

0
ε )l0ε(δ) + h′

0(ξ
1
ε )l1ε(δ)) + Rμ as (ε, δ) → 0, (5.14)

where Rμ = O((ε1/2 + δ)εlε(δ)).

Proof. We only discuss the main changes compared with the proof of Theorem 4.3. We use a Taylor expansion
of h0 ∈ C∞(0, 1) about r = ξ0

ε and r = ξ1
ε :

h0(r) = h0(ξ0
ε ) + h′

0(ξ
0
ε )(r − ξ0

ε ) +
h′′

0 (ζ0)
2

(r − ξ0
ε )2, (5.15)

h0(r) = h0(ξ1
ε ) + h′

0(ξ
1
ε )(r − ξ1

ε ) +
h′′

0 (ζ1)
2

(r − ξ1
ε )2, (5.16)

where ζk ∈ [ξk
ε , r] or ζk ∈ [r, ξk

ε ] depending on the sign of r − ξk
ε . Plugging these Taylor expansions in μ1

ε,δ we
consider the following expansion

μ1
ε,δ = μ11

ε,δ + μ12
ε,δ + μ13

ε,δ (5.17)

with

μ11
ε,δ := h0(ξ0

ε)
∫

I0
δ

σε,δ − σε,0

σε,δσε,0
+ h0(ξ1

ε)
∫

I1
δ

σε,δ − σε,0

σε,δσε,0
,

μ12
ε,δ := h′

0(ξ
0
ε)
∫

I0
δ

(σε,δ − σε,0)(r − ξ0
ε )

σε,δσε,0
+ h′

0(ξ
1
ε )
∫

I1
δ

(σε,δ − σε,0)(r − ξ1
ε)

σε,δσε,0
,

μ13
ε,δ :=

∫
I0

δ

(σε,δ − σε,0)h′′
0 (ζ0)(r − ξ0

ε)2

2σε,δσε,0
+
∫

I1
δ

(σε,δ − σε,0)h′′
0 (ζ1)(r − ξ1

ε )2

2σε,δσε,0
.
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In view of σε,0σε,δ = α(α + ε) in Ik
δ and |I+k

δ | = |I−k
δ |, k = 0, 1 (see (5.9)) we get∫

Ik
δ

σε,δ − σε,0

σε,δσε,0
= 0 and μ11

ε,δ = 0. (5.18)

The computation of μ12
ε,δ gives

μ12
ε,δ = εα−2(h′

0(ξ
0
ε )l0ε(δ) + h′

0(ξ
1
ε )l1ε(δ)) + R12(ε, δ), (5.19)

with
R12(ε, δ) = O(ε2(l0ε(δ) − l1ε(δ)).

All other terms in the expansion of με,δ can be estimated by a straightforward adaptation of the proof of
Theorem 4.3. In particular, note that thanks to (5.9) we also have μ21

ε,δ = 0 as in (4.44). �

In view of (5.14) we need to show that the main term εα−2(h′
0(ξ

0
ε)l0ε(δ) + h′

0(ξ
1
ε )l1ε(δ)) is positive for all ε > 0,

δ > 0 to prove the main result. Since α > 0 and l0ε(δ) ≥ 0, l1ε(δ) ≤ 0 one needs to prove that h′
0(ξ0

ε) > 0,
h′

0(ξ
1
ε) < 0. The proof of Lemma 5.2 is similar to the proof of Lemma 4.4 and is left to the reader.

Lemma 5.2. If m > m then h′
0(ξ

0
ε ) > 0 and h′

0(ξ
1
ε ) < 0 for ε small enough.

Finally we need to estimate the remainder Rλ as in Section 4.5. The proof follows the same ideas as in
Theorem 4.5 with the difference that we need to consider the two connected components of Bδ here.

Theorem 5.3. We have the estimate

|Rλ| ≤ cε2lε(δ)
(
|I+

δ |1/2 + lε(δ)
)

as (ε, δ) → 0, (5.20)

where c > 0 is independent of (ε, δ).

Proof. Step 1 and Step 2 are identical to the corresponding steps in the proof of Theorem 5.1. Then, as in the
proof of Theorem 5.1 we introduce the function

F := F0F11 + (F11)2 + F11F21 = F11(F0 + F11 + F21).

Since the functions uε,0, wε,δ, uε,δ and Ru are in C0(Ω) due to Theorem 3.3, Lemma 4.1 and 4.2, we get
F0, F11, F21 ∈ C1(0, 1) and a fortiori F ∈ C1(0, 1). Therefore it is possible to consider the Taylor expansions

F (r) = F (ξ0
ε ) + F ′(ζ0)(r − ξ0

ε)

F (r) = F (ξ1
ε ) + F ′(ζ1)(r − ξ1

ε)

where ζk ∈ [ξk
ε , r] or ζk ∈ [r, ξk

ε ] depending on the sign of r − ξk
ε , k = 0, 1. This leads to

R2
λ + R3

λ =
∑

k=0,1

F (ξk
ε )
∫

Ik
δ

σε,δ − σε,0

σε,δσε,0
+
∫

Ik
δ

σε,δ − σε,0

σε,δσε,0
F ′(ζk)(r − ξk

ε ).

Thanks to (5.5) we have ∫
Ik

δ

σε,δ − σε,0

σε,δσε,0
= 0 for k = 0, 1.

We also have ∣∣∣∣∣
∫

Ik
δ

σε,δ − σε,0

σε,δσε,0
F ′(ζk)(r − ξk

ε )

∣∣∣∣∣ ≤ εlkε (δ)
α(α + ε)

sup
r∈[ξk

ε−δ,ξk
ε +δ]

|F ′(r)| ≤ c. (5.21)
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The rest of the proof is similar to the corresponding part in the proof of Theorem 5.1, except that the estimates
have to be written on the two components I0

δ and I1
δ . Finally we obtain

|Rλ| ≤ ε2lε(δ)(|I+
δ |1/2 + lε(δ))(c + |Rλ|) (5.22)

Since ε2lε(δ)(|I+
δ |1/2 + lε(δ)) goes to zero when (ε, δ) → 0, we can move the term depending on |Rλ| in the

right-hand side of (5.22) to the left-hand side and we obtain (5.20). �

Finally we obtain the main result for optimizers of Type II.

Theorem 5.4. If m > m there exists ε0 > 0 such that for all B ∈ B and for all 0 < ε < ε0 there exists ξ0
ε , ξ1

ε

such that
λε(B∗

ε ) ≤ λε(B)

where B∗
ε = B∗

ε,1 ∪ B∗
ε,2 with

B∗
ε,1 = �(0, ξ0

ε), (5.23)

B∗
ε,2 = �(0, 1) \�(0, ξ1

ε ), (5.24)

and the equality occurs only when B = B∗
ε almost everywhere in Ω. In addition we have

(ξ0
ε , ξ1

ε) → (ξ0, ξ1) as ε → 0. (5.25)

Proof. The proof is similar to the proof of Theorem 4.6 and is left to the reader. The convergence (5.25) is
readily seen from the fact that δ(ε) → 0 as ε → 0 and from (5.6) we get |ξk

ε − ξk| ≤ δ(ε) for k = 0, 1. �

6. Conclusion

In this paper we have exhibited global minimizers of the ground state for two phase conductors in low contrast
regime, i.e. when β − α = ε is small, and when Ω = �(0, 1). The result have been obtained in two and three
dimensions for simplicity but can be easily extended to higher dimensions, the only difference residing in the
solutions of the one-dimensional equation (3.1)−(3.2). The global minimum depends on the volume constraint
|B| = m. When m < m the minimizer is a centered disk, and when m > m the minimizer is the union of a
centered disk and of a centered ring touching the boundary of Ω. When m > m, the global optimizer depends
on ε, which was to be expected since the optimal set has two connected components. In the general case, i.e.
when β > 0 and α > 0 are arbitrary, we conjecture that the global minimizers are also of this nature, i.e. of
Type I or of Type II as introduced in Proposition 3.1, and that the threshold m depends on (α, β). However,
the strategy developed in this paper cannot be applied in the general case and a new idea should be found to
solve this question.

It does not seem that the technique used in this paper can be extended to the case where Ω is not a ball.
Indeed the foundation of our result is the convergence of the gradient in L∞(Ω) in Theorem 3.3 which relies
on the additional regularity provided by the radial symmetry of the problem. Without this symmetry, the
convergence is unlikely as the gradient may have singularities for a nonsmooth set B. Even if the eigenvalue can
be lowered as in Theorems 3.7 and 3.9, it is not even known if problem (1.4)−(1.5) has a solution so we could
not prove yet a result such as Corollary 3.10. Consequently for a general Ω the primary mathematical question
is to determine the existence of a solution to (1.4)−(1.5).
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