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Global Minimum-Jerk Trajectory Planning
of Robot Manipulators

Aurelio Piazzi, Member, IEEE, and Antonio Visioli, Member, IEEE

Abstract—A new approach based on interval analysis is devel-
oped to find the global minimum-jerk (MJ) trajectory of a robot
manipulator within a joint space scheme using cubic splines. MJ
trajectories are desirable for their similarity to human joint move-
ments and for their amenability to path tracking and to limit robot
vibrations. This makes them attractive choices for robotic appli-
cations, in spite of the fact that the manipulator dynamics is not
taken into account. Cubic splines are used in a framework that as-
sures overall continuity of velocities and accelerations in the robot
movement. The resulting MJ trajectory planning is shown to be a
global constrained minimax optimization problem. This is solved
by a newly devised algorithm based on interval analysis and proof
of convergence with certainty to an arbitrarily good global solu-
tion is provided. The proposed planning method is applied to an
example regarding a six-joint manipulator and comparisons with
an alternative MJ planner are exposed.

Index Terms—Global optimization, interval algorithm, manipu-
lator trajectory planning, minimum jerk.

I. INTRODUCTION

I
T IS well known that robot manipulators are highly non-

linear, coupled multivariable systems with nonlinear con-

straints. For this reason, making an optimal control is a very

difficult task and provided methods result in impractically com-

plicated algorithms. An alternative simpler approach is to plan

a robot path along which an optimization can be achieved and

then to control the robot to track the path. Thus, the optimum

control problem is actually divided in two separate steps: op-

timum path planning for off-line processing, followed by on-line

path tracking. In order to reduce the computational effort, path

planning is often performed taking into account kinematic con-

straints and disregarding the robot dynamics. A sequence of

path points, whose number is a tradeoff between exactness and

computational expense, is usually specified in terms of a de-

sired position and orientation of the tool frame in the Carte-

sian space. Each of these via points is then mapped into a set

of joint angles/offsets (knots) by application of the inverse kine-

matics. These knots are then interpolated with smooth functions

to be optimized subject to constraints accordingly chosen for a

specific robot application. Cubic splines are widely used for in-

terpolation since they can assure the continuity of velocity and
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acceleration [1] and prevent large oscillations of the trajectory

which can result with higher order polynomials. In this frame-

work, the total motion time can be minimized subject to con-

straints on velocities, accelerations, and jerks [1], [2].

If the traveling time is determined by the operative context

(e.g., due to time constraints in automated robotic cells), an in-

teresting approach is to minimize the jerk. The importance of

minimizing the jerk in trajectory planning is primarily due to

the fact that joint position errors decrease when the jerk de-

creases, as asserted by Kyriakopoulos and Saridis, who pro-

posed the formulation of an analytic solution for minimum-jerk

(MJ) point-to-point trajectories [3]. Moreover, MJ joint trajecto-

ries are desirable for their similarity to human joints movements

and to limit excessive wear on the robot and the excitation of

resonances so that the robot life-span is expanded [4]. With this

aim, using trigonometric splines, Simon and Isik [5] presented a

closed-form solution to minimize the integral of the squared jerk

under the suboptimal assumption that the time spacing between

the knots is even. For the same problem, Simon [6] devised a sto-

chastic optimization method based on neural networks in order

to obtain trajectories that are however numerical rather than an-

alytic functions of time.

In this paper, in order to obtain MJ cubic splines joint

trajectories, we first formalized the proposed planning as

a global constrained minimax optimization problem. Then,

to solve it, we expose a newly devised algorithm, based on

interval analysis, which converges within an arbitrary precision

to a global solution. This MJ algorithm is logically divided

into two parts. The first one is dedicated to construct a new

search domain that eliminates the linear constraint (given by

the imposed total motion time) so to obtain an equivalent

unconstrained minimax optimization problem. The second

part solves this unconstrained problem through an exhaustive

branch-and-bound procedure where the bounding is performed

via inclusion functions. The concept of inclusion function (see

Section III) is fundamental in interval analysis, which is a gen-

eralization of the “standard” real analysis over the arithmetic of

real intervals [7]. Interval analysis has been proved to be a very

useful tool for global optimization [8], and it has already been

applied to motion planning problems [2], [9].

The paper is organized as follows. In Section II, the problem

of the MJ trajectory planning is formalized. Section III intro-

duces interval analysis, while the MJ algorithm with conver-

gence analysis (Theorem 1) is exposed in Section IV. An illustra-

tive example, regarding a six-degrees-of-freedom manipulator,

is described in Section V and comparisons with the trigono-

metric spline method of Simon and Isik [5] are exposed. In

0278–0046/00$10.00 © 2000 IEEE
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particular, both planning methods are checked against a full sim-

ulation of the PUMA 560 robot dynamics. Concluding remarks

are reported in the last section.

II. MJ TRAJECTORY PLANNING

Given interspaced points of the tool frame Cartesian path,

these are transformed, by the application of the inverse kine-

matics into sets of joint displacements (knots)

where is the displacement of the th joint of

the -joint robot at knot . Hence, the sequences of displace-

ments at a given joint are given by

. Each of these sequences will be exactly interpolated

by cubic polynomials which have to assure an overall conti-

nuity of position (displacement), velocity and acceleration. In

this context, assigning the velocity and acceleration for the first

and last knot implies that two extra knots have to be inserted

in second and penultimate positions [1]. So, for each th joint

we describe the displacement sequence of the knots as follows:

with

, , , and are free displace-

ment parameters. Joint velocity and acceleration at the th knot

are, respectively, denoted by and . Velocities , and

accelerations , are assigned data of the problem. Denote

by the elapsed time necessary for the th spline to con-

nect knot to knot for (note that is indepen-

dent of the considered joint . A convenient parameterization

of spline naturally incorporates continuity of positions

and velocities [4]

(1)

The unknown parameters in each spline can be determined

imposing the continuity of acceleration, i.e., solving the fol-

lowing system of linear equations :

...

(2)

It can be easily seen that, once the ’s have been fixed, the

above system (2) admits a unique solution for any assigned data

set [1]. The total traveling time required to perform the robot

task is evidently and can be fixed based on the velocity

and acceleration constraints or the time required to do a certain

task in an automated cell. The jerk is evidently constant on each

spline and its expression is given by

(3)

Denoting by the jerk of the th spline at joint

, where is the vector of the spline times,

the optimal trajectory planning problem with MJ criterion can

be posed as the following constrained minimax optimization

problem:

(4)

subject to

(5)

Solving the MJ trajectory problem is to find a global min-

imizer corresponding to the global min-

imum : ; .

The data set of the above optimization problem (4), (5) can be

displayed as follows :

(displacement, velocity, and

acceleration at the first knot)

(displacements at the

intermediate knots)

(displacement, velocity, and

acceleration at the last knot)

(total traveling time).

(6)

The global optimization problem (4) and (5) always admits

a solution for any generically chosen data set (6) because cor-

responding functions are well-defined rational functions

without singularities over . In this context, we make the fol-

lowing assumption.

Assumption 1: It is known a sufficiently small such

that

(7)

contains all global minimizers of problem (4) and (5).

Remark 1: From a technical viewpoint, it is not an issue to

choose a proper . Indeed, in order to make a sound implemen-

tation of a given spline trajectory, all its spline times must

be significantly greater than the sampling time associated to the

actual path update rate [4].

Remark 2: The minimax optimization problem (4) and (5)

can also be posed by weighting the relative importance of the

jerk in different joints:

(8)

subject to , where are

user-chosen weights. This problem formulation may be useful

in practical trajectory planning in order to accomodate actuator

specifications especially when many joints are involved (e.g.,

redundant manipulators). For simplicity, in our subsequent de-

velopment we still consider problem (4) and (5) because refor-

mulation (8) is trivial and does not change the mathematical pe-

culiarities of the original minimax problem.
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III. INTERVAL ANALYSIS

Let denote the set of real

intervals. The interval arithmetic defined over is given by

(9)

(10)

(11)

if (12)

Regarding the algebraic structure, the mathematical systems

and are commutative semigroups containing the

“units” [0, 0] and [1, 1], respectively. The absolute value of an

interval , i.e., : can be deter-

mined as

if

if

otherwise.

(13)

Let be a multidimensional interval (box) of , i.e.,

. The midpoint of be des-

ignated by mid( ). Moreover, denote with :

and , respectively,

the set of all subboxes of and the “width,” or the measure,

of . Consider : , a real scalar function defined

over the box ; for any define by :

the range of over .

Definition 1: A function : is an inclusion func-

tion of if

1) ;

2) .

The concept of inclusion function is central in the devel-

opment of interval analysis and the use of it characterizes the

so-called “interval algorithms,” especially in deterministic

global optimization [8]. There are a large variety of inclu-

sion functions: natural interval extensions, standard centered

forms, meanvalue forms, Taylor forms, Cornelius-Lohner

forms, etc. The simplest inclusion function is the natural

interval extension, which can be obtained by substituting, in

the expression of a given , the requested box argument

and then by performing the necessary interval compu-

tations. For example, given

and rewriting it as , its natural

interval extension with can be com-

puted as follows:

.

IV. MJ ALGORITHM

Introduce the -dimensional interval

A

and denote by a vector point in .

Taking into account Assumption 1, it can be easily shown that

problem (4) and (5) is equivalent to

A

(14)

subject to

(15)

Now, define the following “pyramid” domains in

A (16)

A (17)

where is a positive integer and be given by

(18)

Hence, minimax problem (14) and (15) can be succinctly

rewritten as

(19)

Remark 3: The proposed reformulation (19) has the merit

of reducing the dimensionality of the search domain from to

. A global minimizer of problem (19) is obviously

related to a global minimizer of problem (4) and (5)

by equation .

The interval algorithm to be devised in the sequel relies on

the following result.

Property 1: Let any closed set of satisfying the in-

clusions: . On Assumption 1, the constrained

minimax optimization problem (4) and (5) is equivalent to

(20)

Proof: By definitions (16) and (17), evidently,

. On the other hand, Assumption 1 implies

that any global minimizer of problem (4) and (5) must have

. Considering that all the points in satisfy

the inequality , it follows that no

global minimizers can be found in . Hence, the

search domain of the global optimization problem (19) can

be enlarged from to any closed set without

modifying the solution set of (19).

The function to be minimized in (20) can be formally intro-

duced as the following nonsmooth function :

(21)

The concept of inclusion function, introduced in Section III,

can be easily extended to nonsmooth maxfunctions such as

. Specifically, consider a box B A .
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The value of an inclusion function of computed on B is

denoted by

B B B (22)

Introduce also B where B indicates

a (standard) inclusion function of computed on B. Then,

B (23)

B (24)

and the obtained inclusion function for the maxfunction

still satisfies statements 1) and 2) of Definition 1.

Essentially, the first part of the following MJ algorithm aims

to obtain all the boxes B A whose set union is a domain

satisfying the inclusion of Property 1. Then, these boxes have

to pass to the second part of the algorithm that is directly derived

from the basic Hansen’s algorithm [8, p. 111].

Input of the MJ Algorithm: the data set (6), the box A , the

threshold integer , and the precision parameter .

Output of the MJ Algorithm: lower and upper

bound of satisfying ; the approximate

global minimizer which satisfies

.

The MJ Algorithm

First part

1. Choose a vector point ~hhh
a
2 T� and set

j+ := f(~hhh
a
).

2. Initialize list L := f(A� ; �1)g.

3. Denote the first pair of L by (Y; y).

4. If y > �1 then go to 10 (terminate first

part).

5. Bisect Y on its maximum dimension,

thus obtaining boxes V1 and V2 and

denote Vi := [h�i1; h
+

i1]� � � � � [h�i; n�1; h
+

i; n�1](i

= 1; 2):

6. Remove (Y; y) from the top of the list L.

7. For i = 1; 2 do

(a) If T� n�1

l=1
h�il < � then go to (f) (box Vi

is rejected).

(b) If T � n�1

l=1
h+
il < �=pt then insert (Vi; �1)

at the top of the list L and go to (f)

(box Vi can neither be rejected nor

used for inclusion function

evaluation).

(c) Set v := F (Vi)
�

.

(d) If v > j+ then go to (f) (box Vi is

rejected).

(e) Insert (Vi; v) at the end of the list L.

(f) End of i-loop.

8. Go to 3.

Second part

9. Denote the first pair of the L by

(Y, y).

10. Set ccc := mid(Y) and s := f(ccc).

11. If s < j+ then set j+ := s and ~hhh
a
:= ccc.

TABLE I

DATA KNOTS IN THE ILLUSTRATIVE EXAMPLE

TABLE II

RESULTING OPTIMAL SPLINE TIMES

12. Bisect Y on its maximum dimension,

thus obtaining boxes V1 and V2 such

that Y = V1 [ V2.

13. Remove (Y; y) from the top of L.

14. For i = 1; 2

(a) Set v := F (Vi)
�

.

(b) Enter the pair (Vi; v) at the end of L.

(c) End of i-loop.

15. Set j� := fthe minimum of the second

elements of all pairs of Lg (the

minimum of all the lower bounds

associated to the boxes of the list L).

16. Discard from L all pairs (Z; z) that

satisfy j+ < z (midpoint test).

17. If j+ � j� > " then go to 9.

18. End.

The following theorem relies on Property 1 and on the gen-

eralization for maxfunctions of Hansen’s algorithm.

Theorem 1: For any positive values of and , the MJ al-

gorithm converges with certainty and solves the optimization

problem (4) and (5) in accordance with the given output defini-

tion.

Proof: Denote by the set of global minimizers con-

tained in A . The first part of the MJ algorithm, based on Prop-

erty 1, is devoted to the algorithmic determination of the do-

mains and satisfying the following inclusions:

(25)

(26)

(27)

and at completion of the first part, the list contains all the

boxes whose union is . Indeed, the starting box A is exhaus-

tively processed by a depth-first subdivision strategy for which
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Fig. 1. The resulting trajectory of joint 1 for the example.

1) boxes completely contained in A are rejected [see

7(a)];

2) boxes not completely contained in are not used for

inclusion function evaluation and put at the top of list

for subsequent bisection;

3) boxes completely contained in are used for the in-

clusion function evaluation of step 7(c) and saved at the

end of the list . They are not further bisected.

If directive 7(d) is omitted, then, at the end of the first part

of the algorithm, we obtain the domain , satisfying the in-

clusions (26), as the union of all the boxes of list . By virtue

of statement 1) in Definition 1, the presence of instruction 7(d)

causes the rejection of boxes of which surely do not contain

global minimizers. Hence, at termination of the first part, we ac-

tually obtain satisfying (25) and (27).

The second part of the algorithm is devoted to determining,

within the prescribed precision , a global minimum of

over (or that is exactly the same problem). It is basically a

branch-and-bound procedure where the branching is performed

by bisecting a box which has been longest in and the bounding

is made via inclusion function evaluations. At the th iteration,

the list is described by

Z Z

where is the list length. By virtue of steps 10, 11, and 15, we

have

for all (28)

with , denoting the values of variables , at the

closing of the th iteration. Moreover,

Z for all (29)

because the midpoint test at step 16 only discards boxes not

containing global minimizers. The bisection strategy and the list

ordering by age issued by instructions 9, 12, and 14(b) imply

that, for any given , there exists a (finite) for

which

Z (30)

Define by the global minimum of over Z . Con-

sidering the properties 1) and 2) of any inclusion function (Def-

inition 1) and that, moreover, the limit in 2) holds uniformly

whenever boxes span in a bounded domain, it follows that

(31)

for a sufficiently small [see steps 14(a) and (b)]. Taking into

account the continuity of over the bounded domain , it

holds

Z (32)

for a sufficiently small . Combine inequalities (31) and (32) to

obtain

Z (33)

As (cf. step 15) and

defining to get it follows that

Z

that implies

(34)
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Fig. 2. The resulting trajectory of joint 2 for the example.

Fig. 3. The resulting trajectory of joint 3 for the example.

By virtue of steps 10–12, we have

(35)

This arises from the function evaluation at step 10 made with

mid(Y) which is a point belonging to both V and V (on the

boundary). Eventually, from inequalities (34) and (35) we infer

. Hence, in a finite number of iterations, the algo-

rithm necessarily halts at step 17 with the required global mini-

mizer .

It is worth stressing that the convergence proof does not de-

pend on the number of global minimum points which is not

known in general.
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Fig. 4. The resulting trajectory of joint 4 for the example.

Fig. 5. The resulting trajectory of joint 5 for the example.

V. AN ILLUSTRATIVE EXAMPLE

The previous interval algorithm has been implemented in

C++ language exploiting the PROFIL/BIAS libraries made

by Knüppel [10]. As an illustrative example, we considered

the case of a trajectory composed of five splines of a six-de-

grees-of-freedom robot manipulator. The joint displacements

are indicated in Table I. We set the total traveling time to 9.1 s

and the other parameters and to 0.01 and 10, respectively,

while has been fixed to 0.1. Initial and final velocities and
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Fig. 6. The resulting trajectory of joint 6 for the example.

TABLE III
COMPARISON BETWEEN MJ ALGORITHM (CUBIC SPLINES) AND SIMON AND ISIK’S PROCEDURE (TRIGONOMETRIC SPLINES)

accelerations are set to zero, as it is in the ordinary cases.

In constructing the inclusion function of the maxfunction

, we adopted the Baumann meanvalue form [8, p. 42].

The resulting global minimax jerk is 49.35 /s3 and the

optimal spline times are reported in Table II. The plots of

velocities, accelerations, and jerks of the six joints are reported

in Figs. 1–6. It can be noticed that the maximum value of the

jerk is attained by joint 2 in the penultimate and last spline and

by joint 3 in the first, second, and third spline of the trajectory.

The same example can be approached with the MJ planning

procedure of Simon and Isik [5]. They use trigonometric splines

that are continuous functions up to third derivative with free

velocity, acceleration, and jerk values at the endpoints of the

spline segments. By solving a finite set of algebraic linear sys-

tems, these free values are used to minimize the integral of the

squared jerk over the total motion time which is equally di-

vided into three spline times of 3.033 s. The trajectories obtained

with the MJ algorithm (cubic splines) and with the Simon and

Isik’s procedure have been compared. In particular, using the

Matlab Robotics Toolbox made by Corke [11], both trajectories

have been used to compute the joint torque and the derivative

of the joint torque for the PUMA 560 robot dynamics. For each

joint, Table III reports the maximum values of jerk, torque, and

torque variation (derivative). It appears that the overall max-

imum jerk for Simon and Isik’s procedure is 80.80 /s3 which

is much greater than the corresponding 49.35 /s3 obtained with

the MJ algorithm. Moreover, for each joint, the maximum jerk

is smaller than the maximum jerk associated with the trigono-

metric splines. The same property holds comparing the max-

imum torque variations in the two last columns of Table III.

In particular, the maximum torque variations for the trigono-

metric splines are 3.17–4.46 times greater than those for the

cubic splines. By examining the maximum torques, we reveal

that, for joints 1 and 6, the cubic spline maximum torque is
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Fig. 7. Jerk functions for joint 3 with MJ algorithm and Simon and Isik’s procedure.

Fig. 8. Torque functions for joint 3 with MJ algorithm and Simon and Isik’s procedure (PUMA 560 dynamics).

greater than the trigonometric one, whereas for the other joints

2–5 the contrary holds. For joint 3, that reaches the maximum

jerk value for both the cubic and trigonometric splines, Figs. 7

and 8 show the jerk and torque functions planned with the MJ

algorithm and Simon and Isik’s procedure.

Remark 4: Minimizing the maximum jerk in joint space (i.e.,

minimizing the jerk uniformly over the total motion time) has a

beneficial effect in reducing the actuator and mechanical strain.

This is due to the fact that, considering the manipulator dy-

namics, the derivative of vector torque depends on the typically

dominant term of the inertia matrix multiplied by the vector joint

jerk [4]. Therefore, minimaximizing the joint jerk, which is the

aim of the MJ algorithm, helps in reducing the torque variations

which in turn reduces the actuator and mechanical strain.
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Remark 5: For the presented example, the trajectory plan-

ning based on the MJ algorithm appears superior to the one of

Simon and Isik from the viewpoint of minimizing actuator and

mechanical strain and joint wear. On the other hand, the use of

trigonometric splines has the advantage of permitting to easily

alter the planned trajectory in mid-course if necessary in order,

for example, to avoid unexpected obstacles in real-time environ-

ments. Hence, the MJ algorithm planner is particularly suitable

to be applied in automated robotic cells where the total motion

time is fixed by the cell scheduler which ensures that velocity

and acceleration constraints be satisfied.

VI. CONCLUSIONS

In this paper, the global MJ joint-space trajectory planning of

an -joint robot manipulator has been presented. Cubic splines

have been employed because their simplicity does not preclude

the possibility to exactly interpolate given knots, assuring the

continuity of velocities and accelerations; moreover, they do

not exhibit large overshoot displacements. The problem can

be reformulated as a global constrained minimax optimization

problem for which a solution can be obtained through the

presented MJ algorithm. This approach can be successfully

exploited in a variety of real automation settings. Specifically,

interesting applications can be found in the off-line program-

ming of robot manipulators in automated plants with scheduled

time constraints and in operating aerospace environments. In

fact, once the total traveling time of the motion has been fixed,

minimizing the jerk is desirable because it reduces the actuator

and mechanical strain and the joint wear. This implies that

trajectory tracking performances by the robot control system

are improved and there is also a positive effect on expanding

the robot lifespan.
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