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Abstract: A novel approach based on genetic algorithms (GA) is developed to find a global 
minimum-jerk trajectory of a space robotic manipulator in joint space. The jerk, the third 
derivative of position of desired joint trajectory, adversely affects the efficiency of the control 
algorithms and stabilization of whole space robot system and therefore should be minimized. 
On the other hand, the importance of minimizing the jerk is to reduce the vibrations of 
manipulator. In this formulation, a global genetic-approach determines the trajectory by 
minimizing the maximum jerk in joint space. The planning procedure is performed with respect 
to all constraints, such as joint angle constraints, joint velocity constraints, joint angular 
acceleration and torque constraints, and so on. We use an genetic algorithm to search the 
optimal joint inter-knot parameters in order to realize the minimum jerk. These joint inter-knot 
parameters mainly include joint angle and joint angular velocities. The simulation result shows 
that GA-based minimum-jerk trajectory planning method has satisfactory performance and real 
significance in engineering. 
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1. INTRODUCTION 
 
Space robots are playing more and more important 

roles in current space operation. As well known, the 
space robots are highly nonlinear, coupled multi-
bodies system with nonlinear constraints. Moreover, 
the dynamics coupling between the manipulator and 
the base (spacecraft or satellite) will affect the 
performance of manipulator [1]. For these reasons, it 
is very difficult to realize the optimal control and 
provided methods result in impractically complicated 
algorithms. A simpler approach is to plan a robot's 
trajectory along which an optimal result can be 
obtained, then control the robot to track this trajectory. 
Therefore, the optimum control can be realized by 
following two steps: optimum trajectory planning for 
off-line processing; followed by on-line trajectory 
track. In this paper, we will focus on optimizing 
motion trajectory of space manipulator according to 

the defined optimum index to realize minimum-jerk 
trajectory planning. 

The jerk, the third derivative of position of desired 
joint trajectory, adversely affects the efficiency of the 
control algorithms and stabilization of whole space 
robot system. Because of the dynamic coupling 
between the robotic manipulator and the base, the jerk 
of robotic manipulator will affect the stabilization of 
the base, especially, when the space robot is in free-
floating situation. If the travelling time of robotic 
manipulator is determined by the operative mission, 
an interesting problem is to how to realize the smooth 
motion of robotic manipulator, that is to plan 
minimum-jerk trajectory. The key problem of 
minimizing the jerk in trajectory planning is that the 
joint position errors decrease when the jerk decreases 
which was attested by Kyriakopoulos and Saridis [2]. 
On the other hand, minimum jerk trajectory planning 
is desirable to expand the robot life-span. Therefore, 
we propose to find a global optimum method for 
minimum jerk trajectory planning. 

There are many studies on trajectory planning or 
path planning of space robots. Agrawal and Xu [3] 
addressed the global optimum path planning for 
redundant space manipulator. They considered the 
linear and angular momentum as constraint conditions, 
then using Lagrange multiplier technique to change 
the optimum problems subject to constraint conditions 
to non-constraint problems. Then, using differential 
and algebraic equations to solve the objective 
functions. Dubowsky and Torres [4] proposed a 
method called the Enhanced Disturbance Map (EDM) 
to plan the space manipulator motions so that the 
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disturbance to the space base is relatively minimized. 
Their technique aims at understanding the 
complicated problem and developing the algorithm to 
reduce the disturbance. Papadopoulos [5] exhibited 
the nonholonomic behavior of free-floating space 
manipulator by planning the path of space manipulator. 
They proposed a path planning method in Cartesian 
space to avoid dynamically singular configurations. 
Yoshida and Hashizume [6] utilized the ETS-VII as an 
example to address a new concept called Zero 
Reaction Maneuver (ZRM) that is proven particularly 
useful to remove the velocity limit of manipulation 
due to the reaction constraint and the time loss due to 
wait for the attitude recovery. Moreover, they found 
that the existence of ZRM is very limited for a 6 DOF 
manipulator, besides the kinematically redundant arm. 
However, the redundant manipulator gives rise to the 
computational cost and complicated kinematics 
problems. Hence, it is not best way to use the 
redundant manipulator from the view of engineering 
point. Fernandes, Gurvits, and Li [7] presented a 
method for near optimum attitude control of space 
manipulator using internal motion. This formulation 
considered a two point boundary value problem but it 
did not consider the problem of the end-effector 
following a path. As a result, the holonomic and 
nonholonomic momentum conservation constraints lie 
in the null space of the Jacobian Matrix. This may not 
be true if the end-effector must follow certain 
trajectory. 

According to the previous researches, there are a 
few researches on the optimum trajectory planning 
according to a detailed optimum index. In the 
meanwhile, these topics are interesting and important 
to realize the optimum control and smooth motion of 
space robot system. Therefore, it is necessary to 
investigate the minimum-jerk based trajectory 
planning of space robot. In general, the optimum 
trajectory planning mainly includes optimum 
trajectory planning in Cartesian space (OTPCS) and 
optimum trajectory planning in Joint space (OTPJS). 
OTPCS is to plan the optimum trajectory along the 
assigned geometric path. The main objective of 
OTPCS is to avoid the obstacle successfully. For our 
research topic, OTPCS is not necessary here. However, 
OTPJS is key problem. In comparison to OTPCS, 
OTPJS is more difficult than OTPCS because the 
optimum trajectory should be found in joint space. 
Moreover, OTPJS provides an opportunity to fully use 
the capability of a manipulator. Especially, when the 
space robotic manipulator has some inherent physical 
constraints and environmental constraints, it is an 
important problem to optimize the motion trajectory 
of robotic manipulator. In this paper, we present a new 
approach based on a genetic algorithm to deal with 
OTPJS problem in a more general and practical style. 

Genetic Algorithms (GA) is population-based, 

stochastic, and global search methods. Their 
performance is better than that of some classical 
techniques and they have been successfully used in 
the path planning of industrial robotic manipulator [8]. 
An optimal solution is quite difficult to achieve using 
traditional methods for multi-parameters system. 
However, GA has these search abilities that can 
provide the possibility to find optimal solutions. In 
this paper, to obtain the minimum jerk trajectory, we 
formalize the proposed trajectory as a global 
constrained minimax optimization problem using GA. 
According to the trajectory planning strategies 
introduced in the following section, we divide whole 
trajectory into several trajectory segments, the path 
point connecting with two segments is called knot 
point. Our proposed method is to search optimum 
parameters of each knot point, such as, joint angle and 
joint angular velocity, then to realize minimum jerk 
trajectory planning. We will use the GA to search the 
optimal parameters of each knot point globally. 

This paper is organized as follows. In Section 2, we 
firstly describe the fundamental knowledge about 
modelling and trajectory planning strategies of space 
robot system, then address the problem about 
minimum jerk trajectory planning. Some basic 
concepts and kernels of genetic algorithms are simply 
introduced in Section 3. In Section 4, a new algorithm 
to solve the optimal trajectory planning problem based 
on the GA is proposed. In Section 5, the simulation 
study and result are shown to illustrate the 
effectiveness of our proposed method. Final Section 
summarizes the whole paper and give some 
conclusions. 

 
2. MODELLING AND TRAJECTORY 

PLANNING 
 

2.1. Modelling and equations of motion 
Consider a free-flying space robot shown in Fig. 1, 

composed of robotic manipulator connected by 
revolution joints and a spacecraft, the manipulator 
mounted on the spacecraft. As shown in Fig. 1, we 
define two coordinate systems, one is the inertial 
coordinate system  in the orbit, the other is the 
spacecraft coordinate system 0Σ attached on the 
spacecraft body with its origin at the centroid of the 
spacecraft. The COM is the center of total system 
mass, all vectors in this paper are expressed in terms 
of coordinate IΣ . For whole space robot system, the 
external force or torque on the space base Fb, which 
can be generated by jet thrusters or reaction wheels, 
and Fe can be assumed zero before the end-effector 
contacts the objective. Therefore the linear and 
angular momenta of whole system are conservative 
when Fb = 0, the motion of system is governed by 
only inertial force/torque of the manipulator joint τ . 
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Thus, it is easy to derive the kinematics and dynamics 
equations of motion as follows. 

The kinematic equation of a space robot in velocity 
level is to represent the relationship between the end-
effector and joint velocity of manipulator. The 
equation is expressed as follows [9]: 

e m b bx J J xφ= + .   (1) 

The dynamics equation of the space robot system is 
expressed in the following form [9,10]:  

  
0b bm bb

T
mbm m

H H cx
cH H φ τ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
+ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦
.  (2) 

The detailed definition and symbols in all equations 
and Fig. 1 mentioned above can be obtained from 
papers [10]. According to the above assumption, we 
can obtain the following momentum equation from (2). 

b b bm
L

H x H const
P

φ
⎡ ⎤

+ = =⎢ ⎥
⎣ ⎦

   (3) 

Assume 
L
P
⎡ ⎤
⎢ ⎥
⎣ ⎦

 = 0 for simplification, thus, from (3), 

we obtain  

1
b b bmx H H φ−= − .   (4) 

Substituting (4) into (1), we get 

e gx J φ=  or eg xJ 1−=φ ,   (5) 

where 1 ,g m b b bmJ J J H H−= −  the matrix Jg is called 
Generalized Jacobian Matrix (GJM) or Space 
Jacobian Matrix (SJG). GJM is used to calculate the 
joint angular velocity and end-effector velocity. 
Moreover, it is also used to check whether the space 
manipulator system IΣ causes the dynamics 

singularities. When the determinant of GJM is equal 
to zero or the GJM loses full rank, the manipulator 
appears the dynamics singularities. In addition, the 
GJM can be used to design controller usually. 

 
2.2. Trajectory planning method 

In general, we use the high order polynomial 
function to generate the trajectory of robotic 
manipulator. However, the path must be smooth and 
continuous in order to ensure the motion stabilization 
of manipulator, that is, the first and second differential 
of the polynomial with respect to time must be smooth 
curves according to continuity constraints. The 
number of inter-knots and the positions of them 
should be defined before trajectory planning. In this 
paper, the number of inter-knots is defined manually, 
and the parameters of inter-knots are optimized using 
GA. 

Here, we define the point-to-point trajectory 
planning as a simple theme to address our optimum 
problem. The trajectory refers to a time history of 
position, velocity, and acceleration for each joint. 
Suppose that the point-to-point trajectory is connected 
by several segments with continuous acceleration at 
each inter-knot. The position of each inter-knot is 
supposed to be unknown in the following section of 
the paper. Of course, the inter-knot can also be given 
as particular points that should be passed through. 
This is useful especially when there is an obstacle in 
the working area. 

Given an open chain space manipulator with n 
degree of freedom (DOF) revolute joints. Let iq , 
i=1,…,n, denote the joint variables. Thus, the robotic 
manipulator trajectories consist of a finite sequence of 
position, velocity and acceleration of each joint. 
According to the motion equation of robotic 
manipulator, we can calculate the sequence of torque 
values. To obtain the minimum jerk based motion 
trajectory, the problem is to search some optimal inter-
knots where the position and velocity of joint satisfy 
the constraint conditions. Therefore, the problem is 
changed to optimize the multiple parameters of joint 
trajectories. 

In order to satisfy the initial and final conditions as 

well as continuity constraints. we use 4 4, ,4 5
m

− −…  
iterative trajectory planning strategy [11], in which m 
quad polynomials and one fifth order polynomial are 
used to inter-knot m+2 points. Let's define that there 
are mp inter-knots between the initial and the final 
points. Thus, the initial point and mp inter-knot, a quad 
polynomial is used to describe these segments as 
follows: 

2 3 4
0 1 2 3 4( ) ,

0, , 1, 1, , .
ij ij ij ij ij ijQ t a a t a t a t a t

i m j n

= + + + +

= − =… …
 (6) 

 

Fig. 1. Dynamics model of space robot system. 
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According to the position trajectory of joint, ijQ  
and definition of jerk, we can obtain the jerk function 
with respect to time. 

3
3 4( ) 6 24 ,ij ij ij ijJerk Q t a a t= = +   (7) 

where 
3 ( )ijQ t represents the third derivative of ( )ijQ t . 

The coefficients are given as follows 

0 ,ij ija q=                                 (8) 

1 ,ij ij ija v T=                                (9) 

2
2

1 ,
2ij ij ija a T=                            (10) 

2
3 ( 1, ) ( 1, )4( ) 3 ,ij i j ij i j ij ij ij ij ija q q v T v T a T+ += − − − − (11) 

2
4 ( 1, ) ( 1, )

13( ) 2 .
2ij i j i j ij ij ij ij ija v q q v T a T+ += − − − +  (12) 

The acceleration ( 1, )i ja +  in each inter-knot can be 
obtained as: 

 4 3 2
( 1, ) 2

12 6 2ij ij ij
i j

ij

a a a
a

T
+

+ +
= .  (13) 

The segment between the m inter-knot and final point 
can be described by a five order polynomial as 
follows: 

2 3 4
0 1 2 3 4

5
5

( )

, 1, , .

mj mj mj mj mj mj

mj

Q t b b t b t b t b t

b t j n

= + + + +

+ = …
(14) 

Thus the jerk with respect to time in this segment can 
be obtained: 

(3) 2
3 4 5( ) 6 24 60 ,mj mj mj mjmjJerk Q t b b t b t= = + + (15) 

where the coefficients mjkb  in (14) are derived as 
follows: 

 0 ,mj mjb q=     (16) 

 1 ,mj mj mjb v T=     (17) 

 2
2

1 ,
2mj mj ijb a T=    (18) 

 3 1 2 3
110 4 ,
2mjb c c c= − +    (19) 

 4 1 2 315 7 ,mjb c c c= − + −    (20) 

 5 1 2 3
16 3 ,
2mjb c c c= − +    (21) 

where 

 1 2 1 0 ,mj ij ij ijc q b b b= − − −   (22) 

 2 2 12mj ij ij ijc v T b b= − − ,   (23) 

 2
3 22mj ij ijc a T b= − .   (24) 

In quad and five order polynomial equations, we 

normalize time t as 1 1

1
.i i

i i i
t

T
τ τ τ τ
τ τ

− −

−

− −
= =

−
 Thus, 

normalized time variable [ ]0,1t∈ ; τ is the real time 
in seconds, iτ  is real time at the end of ith trajectory 
segment. iT  is the real time required to travel 
through the ith segment 1i i iT τ τ −= − . 

As formulated above, the total parameters to be 
determined are the joint angles, angular velocities of 
all inter-knots ( 2n m× ). All these parameters can be 
determined and optimized using the GA. 

 
2.3. Minimum-jerk trajectory planning  

The trajectory planning problem is generally 
defined here as the point to point problem, i.e., that of 
determining the time history of the robot joints and 
spacecraft state (position and orientation) in order to 
move the end-effector of the robot from a given initial 
state to a final state in inertial space. However, such 
planning trajectory only ensures that the end-effector 
of robot move to the desired state. Whereas, this 
trajectory must be optimized in order to satisfy 
kinematic and dynamic constraints and reduce the 
vibrations. Especially, for space robot system, 
optimizing the motion trajectory becomes a more and 
more important problem in order to minimize to the 
disturbance because of the vibration of robotic 
manipulator. Moreover, the disturbance is with respect 
to the vibrations of manipulator. Therefore, minimum 
jerk trajectory planning is a significant research topic. 

The global minimum-jerk trajectory planning 
problem may be stated as follows: 

Minimize  

0
max ( , , ) , 1, , , 1, , ,

m

ij
i

Jerk q q t i m j n
=

Γ = = =∑ … … (25) 

where ijJerk  represents the jerk of jth joint at ith 
inter-knot point, which can be computed by 
calculating three derivative of position of desired 
trajectory. Moreover, the class of trajectories in n 
dimensional joint space, .tQ  tQ  is a high order 
polynomial to represent the trajectory of joint. The 
trajectories satisfy the constraints as follows: 

(1) Initial and final condition: 

 
0 0 0 0 0 0, , ,

, , .
f f f f f ft t t t t t

Q q Q v Q a

Q q Q v Q a

= = =

= = =
  (26) 

(2) Kinematics constraints: 
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min max

min max

min max

( ) ,

( ) ,

( ) ,
1, , , [0, ].

i i i

i i i

i i i

f

q Q t q

v Q t v

a Q t a
i n t t

≤ ≤

≤ ≤

≤ ≤

= ∈…

   (27) 

(3) Dynamics constraints: 

 min max

min max

, 1, , ,
( ) ,

i i i

b b b

i n
f f t f
τ τ τ≤ ≤ =

≤ ≤

…   (28) 

where min
iτ  and max

iτ  are the lower and upper 
computed torque of ith joint, and minbf and maxbf  
are lower and upper permitted disturbance force and 
momenta to the spacecraft, respectively. ( )bf t  
represents the computed dynamics disturbance force 
and moment to the spacecraft. 

(4) Smooth motion constraints: 
The key problem of optimal trajectory planning is 

to search the optimal parameters of inter-knots. 
Therefore, the position, velocity and acceleration of 
joint at any inter-knot should satisfy the following 
continuity constraints in order to keep the smooth 
motion of manipulator. 

 1

1

1

( )
( )

( ) ( )
( ) ( )

i i i

i i i

i i i i

i i i i

Q t q
Q t q

Q t Q t
Q t Q t

+

+

+

=⎧
⎪ =⎪
⎨ =⎪
⎪ =⎩

   (29) 

 
3. GENETIC ALGORITHMS 

 
3.1. A brief review of genetic algorithm 

Genetic algorithm (GA) is a kind of heuristic global 
searching algorithm based on the mechanics of natural 
selection and natural genetics by Holland and his 
students, Goldberg [12]. The global search 
characteristics of GA can be found from reference 
[13], we will not verify it here. The global solutions 
can be found for both linear and nonlinear 
formulations. A genetic algorithm has the following 
basic characteristics: (a) it works in representational 
space after encoding the parameters by alphabets or 
real values; (b) it searches from a population of points 
instead of a single point; (c) The optimal solution 
searching process is independent of the form of the 
objective function; (d) it uses probabilistic operation 
rules. Based on motivations mentioned above, we use 
GA as our global optimal algorithm.  

Generally speaking, a GA starts to evolve by 
generating (usually in a random way) an initial 
population of chromosomes. Then, the value of a 
function called fitness function is evaluated for each 
chromosome of the population. After this, a set of 

genetic operators (selection, crossover and mutation) 
are used in succession to create a new population of 
chromosomes for the next generation. The process of 
evaluation and creation of new successive generations 
is repeated until the satisfaction of a convenient 
termination condition. The basic optimal processes of 
GA can mainly be illustrated in Fig. 2. In the 
following section, we will introduce the kernels of GA. 

 
3.2. Genetic operators and control parameters 

The kernels of GA are its genetic operator and 
control parameters form Fig. 2. The basic operators of 
GA mainly include selection, crossover, mutation, and 
inversion, we will simply introduce these operators in 
the following section. 

Selection: The individual chromosomes are selected 
based on the binary tournament selection strategy. 
According to this strategy, two chromosomes are 
picked at random from the population and that with 
the higher fitness value is copied into a mating pool 
(i.e., it survives and reproduces its structure into the 
new population). This process is repeated until the 
mating pool is full. 

Crossover: A uniform crossover operator was used. 
This operator works as follows: two parent 
chromosomes are selected based on the crossover 
probability. For the pair of the selected parents a 
template or mask chromosome is randomly generated. 
The bit-value at each position of the template specifies 
the bit-value of the corresponding position of the child 
chromosome. Specifically, where there is “1” in the 
template, the corresponding gene from the first parent 
passes its value to the child, otherwise the second 
parent passes its bit-value to the child. The process is 
repeated with the parents exchanged to produce the 

 
Fig. 2. Optimization procedure using genetic algorithm.
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second child. Therefore, offspring contain a mixture 
of genes from each parent. 

Mutation: Mutation is a random alteration of the 
value of a string position. In binary coding, this means 
changing a 1 to 0 and vice versa. In GA, its 
probability of occurrence is generally kept small, as a 
higher occurrence rate would lead to a loss of 
important data. GA, with 100% mutation rate 
becomes random search in the solution space. 

Inversion: Inversion is a reordering operator applied 
on the bits of a single chromosome. It works by 
reversing the order of genes between two randomly 
chosen positions within the selected chromosome. 

The last critical aspect in designing a GA is the 
selection of the suitable settings for the GA’s control 
parameters. Unfortunately, there is no formal way to 
define the appropriate parameters' settings. Tradi-
tionally, this is achieved experimentally. A description 
of each one of the control parameters is given below: 

Population size: Determines how many chromo-
somes, i.e., how much genetic material, are available 
during the genetic search. A too small population size 
decreases the ability of the GA to adequately cover the 
search space. A too large population size significantly 
increases the time needed by the GA to evaluate the 
chromosomes and thus results in an ineffective search. 

Crossover rate: Specifies the frequency with which 
the crossover operator is applied to the individual’s 
chromosomes in a new generation. A too low 
crossover rate causes the introduction of fewer new 
individual’s into the population and may lead to 
search stagnation since the process of reproduction 
tends to dominate. A too high rate leads to a very fast 
exploration of the search space but the GA 
performance may be degraded as strong individuals 
are discarded very fast before reproducing their 
structure. 

Mutation rate: Specifies the probability that a 
gene’s value of a newly created chromosome will be 
changed. Mutation governs the introduction of new 
unexplored areas in the search. A high mutation rate 
increases the diversity in the population but introduces 
excessive randomness in the search. Conversely, a too 
low mutation rate reduces the diversity and leads to 
sub-optimal solution. 

Generation gap: This parameter specifies the 
proportion of the individuals in the population which 
are replaced by the offspring in each generation. 
Usually, a generation gap of one is use, i.e., the whole 
population is replaced in each generation. 

GA is inevitably slower than calculus based 
methods in the problem domain where they can be 
used. However, all calculus based methods are lack of 
either robustness or global optimum, so that GA is 
useful for highly complicated, nonlinear and 
discontinuous problems as well as combination 
problem. 

4. MINIMUM JERK ALGORITHMS 
USING GA 

 
In this section, we use the genetic algorithms to 

solve the optimal trajectory planning described by the 
cost function (25) with dynamics model under initial 
and final conditions and constraints. It is important to 
select the appropriate trajectory planning strategy for 
optimum trajectory planning in joint space. Firstly, 
some inter-knots are selected to generate the trajectory 
segments. In each trajectory segment, a suitable 
polynomial will be used to obtain the local trajectory. 
The inter-knot parameters, such as, position and 
velocity of each trajectory segment will be code and 
optimized using GA. Thus, the whole trajectory will 
be planned iteratively and its performance can be 
calculated according to the fitness function in which 
cost function and constraints are taken into account. 
The parameters of inter-knots of each trajectory 
segment are optimized by the GA. Meantime, the path 
are evolved into optimum trajectory connecting initial 
and final points in the joint space.  

From above section, we obtain that the coefficients 
of polynomials depend on trajectory parameters, ijq , 

ijv , and ija  if the travel time ft  of every trajectory 
segment is fixed. Therefore, these parameters will be 
evolved by genetic algorithm. They should be 
encoded because GA works in the representation 
space. Here, we use binary numbers to code the 
parameters. 

The target of optimizing trajectory planning 
problem in our research is to obtain minimum jerk 
with satisfactory joint position, velocity, acceleration, 
torque, and continuity constraints. Therefore, we can 
obtain new algorithm procedure to optimize trajectory 
using genetic algorithm as follows: 

Step 1: Choose the number of inter-knots m, then 
determine trajectory planning strategies for each 
trajectory segment according to description method in 
Section 2.2. Encode the parameters of every inter-knot 
using the chromosomes of GA. 

Step 2: Define fitness function according to cost 
function and constraints. Define GA parameters, such 
as population size np, generation number ng, crossover 
probability pc and effective gene number ne. Let 
generation number ng=1. 

Step 3: Randomly generate a population of binary 
strings, popk = bsl

k | l =1,...,np. 
Step 4: Let l=1. 
Step 5: Decode each binary string bsl

k into para-
meter popl

k ={qij,vij,| i=1,...,m, j=1,...,n}. Using 4-4-
,...,-4-5 iterative trajectory planning strategy to plan 
the trajectory Qij

k with popl
k according to (6)-(24). 

Step 6: Compute the maximum joint angle, joint 
angular velocity, qijmax, vijmax in the constraint 
conditions, such as angle constraints, angular velocity 
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limits, acceleration limits, with respect to the 
trajectory Qij

k. 
Step 7: Compute the absolute values of each joint 

jerk and choose the maximal jerk at each inter-knot 
point according to maximal position and velocity of 
joint, qijmax, vijmax. 

Step 8: Let l=l+1, and go to Step 5, until l=np. 
Step 9: Summarize the maximal values of all jerks 

from l=0 to l=np according to fitness function. Collect 
the minimum fitness function value. 

Step 10: Let k=k+1, generate a new population 
popk using reproduction, crossover and mutation 
operators. Go to Step 4, until k=ng 

Step 11: Obtain the minimum fitness function value, 
thus, the parameters in this situation is optimal values. 
Get the optimum trajectory Qij

*. 
 

5. SIMULATION STUDY 
 
In this section, In order to verify the performance of 

minimum jerk trajectory planning method using GA 
mentioned above. Let's consider an example to better 
understand the optimum algorithms. A model of a 
planar 2 DOF free-flying space robot is shown in Fig. 
3. The parameters of the space robot are shown in 
Table 1. For a real space robot system, the joint angle, 
angular velocity, acceleration, and torque of the 
manipulator should have constraint values, we can 
define the constraint conditions of the model of space 
robot as follows. 

In the simulation study, we plan a point to point 
trajectory in joint space. The manipulator starts from 
q1s = pi/18, q2s = pi/25 in joint space, and the end 
point, q1e = 4×pi/3, q2e = 6×pi/5. The initial and 
final velocities, and accelerations are taken to be zero. 
According to our optimal objective, we need use the 
GA to search the best inter-knot points in the 
constraint conditions. These optimized parameters 
mainly include joint angle, joint angular velocities at 
each inter-knot point. To simplify the complicated 
computation, two inter-knots and two second 
execution time for each segment are chosen. We can 
use the trajectory planning method mentioned above 
to plan three segment trajectories. The termination 
conditions of 600 generation are used. 

According to the simulation result, Fig. 4 shows the 
average value of objective function (GA optimization) 
versus number of generation. A continuous decrease in 
average of objective function is also indicative of a 
smooth convergence to a solution. Fig. 5 shows the 
joint position trajectory of joint q1 and q2. The plot 

 

 

Fig. 3. Model of 2 DOF planar space robot system. 
 

Table 1. Parameters of space robot system. 
Space Manipulator  Base 

(Link0) Link1 Link2 
Mass (Kg) 40 4 3 
Length (m) 1 1 1 
I (Kg·m2) 6.67 0.33 0.25 

 

Fig. 4. Average value of objective function (GA
optimization) versus number of generation.

 

 

Fig. 5. Joint position trajectory versus time. 
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shows that both q1 and q2 start from initial position at t 
= 0s, and reach the final position at t = 6s. Fig. 6 
shows the joint angular velocities trajectory whose 
values are limited in the constraints of joint angular 
velocity. Fig. 7 shows the joint angular acceleration 
after optimization. Moreover, the acceleration values 
are limited in the constraint conditions. Fig. 8 shows 
the joint torque when the manipulator tracking the 
planned trajectory. Fig. 9 shows the joint jerk after 
optimizing the trajectory. In order to compare the 
minimized jerk after optimum with the normal jerk no 
optimized. We have compared the optimal jerk with 
non optimal jerk, and we find that the maximum jerk 
optimized is smaller than the non optimal jerk. Thus, 
the space manipulator can realize minimum-jerk 
motion from initial point to final point and exert the 
capability fully. 

The goal of simulation is to verify the performance 
of GA optimization. From the simulation result, the 
parameters of two inter-knot points can be obtained as 
follows. 

 1 1 2 10.8779, 0.0302,mp mpθ θ= − =  

 1 1 2 11.2203, 0.0557,mp mpθ θ= − =  

 1 2 2 20.2613, 1.8693,mp mpθ θ= =  

 1 2 2 23.8885, 2.0571.mp mpθ θ= =  

Because the number of inter-knots is chosen 
manually, it is necessary to study how many inter-
knots are optimal for optimization. Obviously, the 
more inter-knots, the more problem complicated, 
which certainly cost more computation time. Thus, 
choosing the smallest number of inter-knot is optimal. 
However, optimal precision may increase when 
adding the number of inter-knot, which will be 
verified in the future work. 

 
6. CONCLUSION 

 
In this paper, a new scheme for global minimum-

jerk trajectory planning method is developed. The 
method is based on the genetic algorithms which can 

Fig. 6. Joint angular velocity trajectory versus time. 
 

Fig. 7. Joint angular acceleration trajectory versus
time. 

 

Fig. 8. Joint torque versus time. 
 

Fig. 9. Joint jerk versus time. 
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globally search most satisfactory parameters of inter-
knot to generate the optimal motion trajectory. The 
optimal trajectory obtained is fitful for high velocity 
and high precision dynamic control. The performance 
for the two DOF planar space robot is good and 
suggest its potential application to real space robot 
system. 

As well known, the natural characteristics of space 
robot is how to minimize the disturbance to the base 
due to the motion of manipulator. Therefore, it is an 
significant research topic to optimize the motion path 
of manipulator during its operation in order to 
minimize the disturbance. On the other hand, when 
the manipulator captures the object, the collision 
between the end-effector and objects is existent 
consequentially. So optimizing the approach trajectory 
of end-effector can reduce or avoid the collision fully. 
These two problems are importance for satellite 
service by space robot in the future. 

 
REFERENCES 

[1] P. F. Huang, Y. S. Xu, and B. Liang, “Dynamic 
balance control of multi-arm free-floating space 
robots,” International Journal of Advanced 
Robotic Systems, vol. 2, no. 2, pp. 117-125, 2005.  

[2] K. J. Kyriakopoulos and G. N. Saridis, 
“Minimum-jerk path generation,” Proc. of IEEE 
International Conference on Robotics and 
Automation, Philadelphia, PA, pp. 364-369, 
1988. 

[3] O. P. Agrawal and Y. Xu, “On the global 
optimum path planning for redundant space 
manipulator,” IEEE Trans. on System, Man, and 
Cybernetics, vol. 24, no. 9, pp. 1306-1316, 
September 1994. 

[4] S. Dubowsky and M. A. Torres, “Path planning 
for space manipulator to minimize spacecraft 
attitude disturbances,” Proc. of IEEE Interna-
tional Conference on Robotics and Automation, 
1991. 

[5] E. Papadopouls, “Path planning for space 
manipulators exhibiting nonholonomic behavior,” 
Proc. of IEEE International Conference Intelli-
gent Robots and Systems 1992. 

[6] K. Yoshida and K. Hashizume, “Zero reaction 
maneuver: Flight velification with ETS-VII 
space robot and extension to kinematically 
redundant arm,” Proc. of IEEE International 
Conference on Robotics and Automation, 2001.  

[7] C. Fernandes, L. Gurvits, and Z. X. Li, 
“Foundation of nonholonmic motion planning,” 
Technical Report No. 577, Dept. of Computer 
Science, New York University, August 1991. 

[8] S. D. Sun, A. S. Morris, and A. M. S. Zalzala, 
“Trajectory generation for redundant manipula- 
tor using virus evolutionary genetic algorithm,” 
Robotica, vol. 14, pp. 227-234, 1996 

[9] Y. Xu and T. Kanade, Space Robotics: 
Dynamics and Control, Kluwer Academic 
Publishers, November 1992.  

[10] P. F. Huang, Y. S. Xu, and B. Liang, “Capturing 
uncontrolled spinning satellite by a space 
manipulator,” Proc. of the Second ISATED 
International Multi-Conference Automation, 
Control, and Application(ACIT-ACA), Novosi-
birsk, Russia, 2005. 

[11] K. S. Fu, R. C. Gonzalez, and C. S. G. Lee, 
Robotics: Control, Sensing, Vision, and Intelli- 
gence, McGraw-Hill, Inc., 1987. 

[12] J. H. Holland, Adaptation in Natural and 
Artificial System, The University of Michigan 
Press, Ann Arbor, MI, 1975. 

[13] D. E. Goldberg, Genetic Algorithms in Search, 
Optimization, and Machine Learning, Addison- 
Wesley, Reading, MA, 1989. 

 
 
 

Panfeng Huang received the B.S. and 
M.S. degrees from Northwestern 
Polytechnical University in 1998, 2001, 
respectively, and the Ph.D. degree 
from the Chinese University of Hong 
Kong in the area of Automation and 
Robotics in 2005. He is currently an 
Associate Professor of College of 
Astronautics and Vice Director of 

Research Center for Intelligent Robotics at the 
Northwestern Polytechnical University. His research 
interests include modelling, kinematics, dynamics, 
trajectory planning, and control of space robots.  
 
 
 

Yangsheng Xu received the B.S. and 
M.S. degrees from Zhejiang Univer-
sity, and Ph.D. from the University of 
Pennsylvania in the area of Robotics. 
He was a Faculty Member in Robotics 
Institute, School of Computer Science 
at Carnegie Mellon University from 
1989-1999. He is currently a Professor 
of Automation and Computer-aided 

Engineering at the Chinese University of Hong Kong. His 
research interests are in the areas of robotics, interface, 
dynamics and control, and micro-spacecraft.  
 
 
 

Bin Liang received the Ph.D. degree 
in Robotics from the Tsinghua Univer-
sity, China. He is currently a Professor 
at Harbin Institute of Technology and 
Director of Shenzhen space tech-
nology center. He has been working in 
areas of design and control of robots, 
and intelligent spacecraft systems. 


