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GLOBAL MIRROR SYMMETRY FOR INVERTIBLE

SIMPLE ELLIPTIC SINGULARITIES

by Todor MILANOV & Yefeng SHEN

Abstract. — A simple elliptic singularity can be described in terms of a mar-
ginal deformation of an invertible polynomial. The choice of the polynomials and
its marginal deformation are not unique. In this paper, following the earlier work
of Krawitz-Shen and Milanov-Ruan, we investigate the global mirror symmetry
phenomenon for simple elliptic singularities. We prove that the mirror symmetry
for each family is governed by a certain system of hypergeometric equations. We
conjecture that the Saito-Givental theory of the family at any special limit is mir-
ror to either the Gromov-Witten theory of an elliptic orbifold projective line or
the Fan-Jarvis-Ruan-Witten theory of an invertible polynomial, and the limits are
classified by the Milnor number of the singularity and the j-invariant at the special
limit. We prove the conjecture holds at all special limits of the Fermat polynomials
and at the Gepner points in all other cases.

Résumé. — Une singularité simple elliptique peut être décrite en termes d’une
déformation marginale d’un polynôme inversible. Le choix du polynôme et de sa
déformation n’est pas unique. Dans ce papier, suivant les travaux de Krawitz-Shen
et Milanov-Ruan, nous regardons la symétrie miroir globale pour les singularités
simples elliptiques. Nous prouvons que la symétrie miroir pour chaque famille est
règlée par un certain système d’équations hypergéométriques. Nous conjecturons
que la théorie de Saito-Givental de la famille à une limite spéciale est liée soit à la
théorie de Gromov-Witten d’une droite projective orbifold elliptique, soit à la théo-
rie Fan-Jarvis-Ruan-Witten d’un polynôme inversible. Les limites sont classifiées
par le nombre de Milnor de la singularité, et par le j-invariant à la limite spé-
ciale. Nous vérifions la conjecture pour toutes les limites spéciales des polynômes
de Fermat, et pour tous les points de Gepner dans les autres cas.

1. Introduction

In the famous mirror symmetry paper [5], the authors described a duality

of Calabi-Yau 3-folds that exchanges the A-model with the B-model. The A-

model contains information such as Kähler structure and Gromov-Witten

Keywords: mirror symmetry, simple elliptic singularities.
Math. classification: 14N35, 14B05.



272 Todor MILANOV & Yefeng SHEN

invariants while the B-model contains information such as complex struc-

tures and periods integrals. However, this picture is not complete since the

complex moduli usually has a nontrivial topology while the Kähler moduli

does not. Consider the quintic 3-fold as an example. The mirror is a family

of quintic 3-folds
5∑

i=1

X5
i − 5ψ

5∏

i=1

Xi = 0

quotient by (Z/5Z)3, with ψ ∈ P1. This new family contain special limits

ψ = 0,∞ and fifth roots of unity, which are referred to as the Gepner point,

the large complex structure limit point and the conifold limits. The mirror

theorem asserts that the contractible Kähler moduli of quintic 3-fold is

mirror to a neighborhood of the large complex structure limit [19, 27].

On the other hand, it is implicit in physics that we should study the

entire complex moduli and all the special limits. This global point of view

leads to BCOV-holomorphic anomaly equation [4] and recent spectacular

physics predictions of the Gromov-Witten invariants of quintic 3-fold up to

genus 52 [23]. In this paper we have yet another important motivation to

establish global mirror symmetry. Namely, the Gromov–Witten invariants

of the elliptic orbifold lines are known to be weak quasi-modular forms

(see [30]). Using global mirror symmetry for simple elliptic singularities

we prove that the invariants are holomorphic at the cusps, i.e., they are

quasi-modular forms (see Section 1.3).

Landau-Ginzburg phases are introduced as part of the global picture,

to describe the neighborhood of the Gepner point, or its mirror. Recently,

a candidate of Landau-Ginzburg A-model has been constructed by Fan,

Jarvis and Ruan based on a proposal of Witten [16, 15]. It is now called

the Fan-Jarvis-Ruan-Witten theory (FJRW theory). It is a Gromov-Witten

type theory which counts solutions of Witten equations. Based on this

construction, Ruan proposed a mathematical formulation of Landau-

Ginzburg/Calabi-Yau (LG/CY) correspondence [33]. This connects the

FJRW theory and Gromov-Witten theory for a pair of same initial data.

In [10], Chiodo and Ruan addressed the idea of global mirror symmetry

to build a bridge for LG/CY correspondence. In short, in this picture, the

FJRW theory is formulated as the mirror theory for the Gepner point.

1.1. The LG/CY correspondence via global mirror symmetry

Let us first briefly recall the general setup for the LG/CY correspon-

dence. Recall that a polynomial W is called quasi-homogeneous if there are

ANNALES DE L’INSTITUT FOURIER



GLOBAL MIRROR SYMMETRY 273

rational weights qi for each Xi, such that

W (λq1X1, . . . , λ
qNXN ) = λW (X1, . . . , XN ), ∀λ ∈ C∗.

The polynomial W is called non-degenerate if: (1) W has an isolated critical

point at the origin; (2) W contains no monomial of the form XiXj for i 6= j.

According to Saito [35], the choices of all qi ∈ (0, 1
2 ] are unique. Let W (x)

be a quasi-homogeneous non-degenerate polynomial,

W (x) =

s∑

i=1

N∏

j=1

X
aij

j , x = (X1, . . . , XN ).

We say that W is invertible, if its exponent matrix EW = (aij)s×N is an

invertible matrix. A diagonal matrix diag(λ1, . . . , λN ) is called a diagonal

symmetry of W if

W (λ1X1, . . . , λNXN ) = W (X1, . . . , XN ), λi ∈ C∗.

Let GW be the group of all diagonal symmetries of W . It contains an

element

JW = diag
(
exp(2π

√
−1q1), . . . , exp(2π

√
−1qN )

)
.

If the Calabi-Yau condition (
∑

i qi = 1) holds, XW = {W = 0} is a

Calabi-Yau hypersurface in the weighted projective space PN−1(c1, . . . , cN ),

where gcd(c1, . . . , cn) = 1 and qi = ci/d for a common denominator d.

The element JW acts trivially on XW , while for any group G such that

〈JW 〉 ⊆ G ⊆ GW , the group G̃ = G/〈JW 〉 acts faithfully on XW . The

LG/CY correspondence [33] predicts that the ancestor potential (A FJRW
W,G )

of the FJRW theory for (W,G) is the same as the total ancestor potential

(A GW
X ) of the GW theory for X = XW /G̃, up to analytic continuation and

the quantization of a symplectic transformation. Both A FJRW
W,G and A GW

X
will be defined in Section 3.

For an invertible polynomial W , its transpose WT is the unique invert-

ible polynomial such that EW T = (EW )T , where (EW )T is the transpose

matrix of EW . The role of the transpose WT in mirror symmetry was first

studied in [3] by Berglund and Hübsch. Later, Krawitz introduced a mirror

group GT [24]. Now a pair (WT , GT ) is referred to as the Berglund-Hübsch-

Krawitz mirror (BHK mirror) of a pair (W,G).

In order to describe the analytic continuation in the LG/CY correspon-

dence for the pair (W,G), Chiodo and Ruan [10] addressed the idea of

global mirror symmetry. They proposed to consider a global LG B-model

for the BHK mirror (WT , GT ). Such a global moduli space contains a Gep-

ner point and a large complex structure limit point. Then the FJRW theory

TOME 66 (2016), FASCICULE 1



274 Todor MILANOV & Yefeng SHEN

is formulated as the mirror theory for the Gepner point, and the GW the-

ory is formulated as the mirror theory for the large complex structure limit

point. The LG/CY correspondence is obtained by connecting the Gepner

point and the large complex structure limit point on the global moduli.

This works extremely well for G = GW . In this case, the mirror group

GT is the trivial group and the Saito-Givental theory of WT is expected

to be the right object of the global LG B-model. If G 6= GW , a global

Calabi-Yau B-model [9, 8] is used to replace the LG B-model for the genus

zero theory. However, a mathematical theory for the higher genus of such

a global B-model is not available yet. On the other hand, Costello and Li

has a different approach to construct a higher genus on the special limits

for both CY B-model and LG B-model [12, 26].

1.2. Special limits in Saito-Givental theory

In this paper, we will study the special limits (see Definition 1.1 below)

in the Saito-Givental theory of a one-parameter family deformation of in-

vertible simple elliptic singularities (ISES for brevity) and their geometric

mirrors. All ISESs are classified in Table 1.1, of type E
(1,1)
µ−2 , µ = 8, 9, 10.

Let W be an ISES in Table 1.1. Saito constructed a flat structure on

the miniversal deformation space S of W using primitive forms [37, 34].

The primitive form depends on the choice of W and a marginal monomial

φ−1, with φ−1 has degree 1 in QW , the Jacobian algebra of W . Givental’s

higher-genus formalism [21, 20] defines a total ancestor potential A SG
W (s)

for every semisimple point s ∈ S. More details of the Saito-Givental theory

will be introduced in Section 2.

In this paper, we define the special limits as follows.

Definition 1.1. — Let Wσ = W + σφ−1 be a family of simple elliptic

singularities along marginal monomial φ−1. Let p1, . . . , pl ∈ C such that for

σ = pi, the point x = 0 is not an isolated critical point of the polynomial

Wσ. We call σ (or s = (σ, 0 . . . , 0)) a special limit for the Saito-Givental

theory of W , if

σ = 0, p1, . . . , pl, ∞ ∈ C ∪ {∞}.

We denote the punctured plane C−{p1, . . . , pl} by Σ. We point out that

the point s = (σ,0) is not semisimple. Thus Givental’s formula A SG
W (s) does

not apply directly for such points. However, according to [25, 30, 29, 11],

at some special limit points σ, it is still possible to find a limit of A SG
W (s),

ANNALES DE L’INSTITUT FOURIER
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Table 1.1. Invertible simple elliptic singularities

E
(1,1)
6 E

(1,1)
7 E

(1,1)
8

Fermat X3
1 +X3

2 +X3
3 X4

1 +X4
2 +X2

3 X6
1 +X3

2 +X2
3

Fermat+Chain X2
1X2 +X3

2 +X3
3 X3

1X2 +X4
2 +X2

3 X4
1X2 +X3

2 +X2
3

X2
1X2 +X2

2 +X4
3 X3

1X2 +X2
2 +X3

3

Fermat+Loop X2
1X2 +X1X

2
2 +X3

3 X3
1X2 +X1X

3
2 +X2

3

Chain X2
1X2 +X2

2X3 +X3
3 X3

1X2 +X2
2X3 +X2

3

Loop X2
1X2 +X2

2X3 +X1X
2
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276 Todor MILANOV & Yefeng SHEN

which we will call a Saito-Givental limit

A
SG

W (σ) = lim
s→(σ,0)

A
SG

W (s).

The proof of the existence of such a limit is quite sutble. We will explain

it in Section 4.1.

Our goal is to study the Saito-Givental limit A SG
W (σ) at the special limit

points, when they exist.

Definition 1.2. — Let σ be a special limit of W . Then σ = 0 is called a

Gepner point. Two special limits are isomorphic if the Saito-Givental limit

A SG(σ) at each point exists and the two limits match.

• We say σ is an FJRW-point (or a (W ′, G′)-FJRW point) if there

exist a Saito-Givental limit A SG
W (σ) at σ, and a pair (W ′, G′), such

that A SG
W (σ) = A FJRW

W ′,G′ , where A FJRW
W ′,G′ is the total ancestor poten-

tial of the FJRW theory for (W ′, G′).

• We say σ is a GW-point (or an X -GW point) if there exist a Saito-

Givental limit A SG
W (σ) at σ, and an orbifold X , such that A SG

W (σ) =

A GW
X , where A GW

X is the total ancestor potential of X .

Usually, when the Gepner point σ = 0 for W is a (WT , GW T )-FJRW

point, this is always referred to as the LG-LG mirror symmetry [10].

Let Eσ be the elliptic curve in P2(c1, c2, c3), defined by Wσ = 0. Let j(σ)

be the j-invariant of Eσ and µ be the Milnor number of W . Based on the

calculations in [30, 25], we propose the following conjecture to understand

the mirror symmetry and classification of the special limits for invertible

simple elliptic singularities.

Conjecture 1.3. — Let W be an invertible polynomial of type E
(1,1)
µ−2 ,

then the Saito-Givental limit A SG
W (σ) exists at any special limit point in

Definition 1.1. Moreover,

a) The Saito-Givental theory at a special limit σ is isomorphic to either

a FJRW theory of a simple elliptic singularity or a GW theory of

an elliptic orbifold P1.

b) The isomorphism classes of the special limits σ are one-to-one cor-

respondent to the set of pairs (µ, j(σ)) ∈ {8, 9, 10} × {0, 1728,∞}.

In higher dimensions, such as quintic case, the points p1, . . . , pl are usu-

ally referred to as conifold points. It is still not yet known how to construct

a geometric mirror for a conifold point. If Conjecture 1.3 holds, then there

is no conifold point for invertible simple singularities at all.

Our first result is that Conjecture 1.3 is true for Gepner points.

ANNALES DE L’INSTITUT FOURIER
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Theorem 1.4. — Let W be an invertible polynomial of type E
(1,1)
µ−2 ;

then

a) If WT belongs to Tables 3.1, 3.2, or 3.3, then the Gepner point

σ = 0 of W is a (WT , GW T )-FJRW point. In other words, the

LG-LG mirror symmetry holds for such (WT , GW T ) and its BHK

mirror (W, {1}).
b) The Gepner point σ = 0 is always an FJRW point. Its isomorphism

class is determined by (µ, j(σ)), with µ = 8, 9, 10, j(σ) = 0 or 1728.

Note that in Theorem 1.4 we have excluded some of the polynomials

appearing in Table 1.1. This is because we do not know how to compute

all the FJRW invariants for them (see Section 3.3).

In this paper, we prove

Theorem 1.5. — For Fermat simple elliptic singularities,Conjecture 1.3

is true.

Let us point out that σ = ∞ for the Fermat E
(1,1)
8 polynomial is an

FJRW-point and all other special limits σ 6= 0 are GW-points. This is

a little bit surprising because usually in a one-parameter B-model fam-

ily [13], the point σ = ∞ is a GW-point. As a corollary, we get various

correspondences of LG/LG-type or of LG/CY-type.

Corollary 1.6. — For a given ISES with a fixed marginal deformation,

the total ancestor potentials of the GW theory and the FJRW theories

that are mirror partners at the special limit points are related by analytic

continuation and quantizations of symplectic transformations.

1.3. Modularity

This is the 4th in a series of papers in which we investigate mirror sym-

metry for simple elliptic singularities. One of the main motivations at the

beginning was to prove that the Gromov–Witten (GW) invariants of certain

elliptic orbifold lines are quasi-modular forms. Using the mirror symmetry

results of Krawitz–Shen [25], Milanov–Ruan [30] proved the GW invari-

ants of any genus for orbifolds P1
3,3,3,P1

4,4,2 and P1
6,3,2 are quasi-modular

forms on an appropriate finite index subgroup Γ(W ) (Γ(W ) depends on

the type of the singularity W ) of SL2(Z). Besides W = X3
1 + X3

2 + X3
3 ,

the subgroup Γ(W ) however was left undetermined and also the definition

of a quasi-modular form was relaxed by allowing finite order poles at the

cusps of Γ(W ), i.e., Milanov-Ruan proved that the GW invariants are weak

TOME 66 (2016), FASCICULE 1



278 Todor MILANOV & Yefeng SHEN

quasi-modular forms. The group Γ(W ) for the Fermat polynomials W of

type E
(1,1)
µ−2 , µ = 9, 10 is computed in [32]. In this paper we prove that the

weak quasi-modular forms are holomorphic at the cusps, i.e., Theorem 1.5

implies the following corollary.

Corollary 1.7. — Let W be a Fermat simple elliptic singularity. For

any g, genus-g Saito-Givental correlation functions are holomorphic near

the special limits.

This completes the proof that the GW invariants of the elliptic orbifold

lines are quasi-modular forms. It would be interesting to see whether this

helps to express the higher genus GW invariants explicitly in closed forms,

as polynomials of ring generators of quasi-modular forms, as in [23].

1.4. Plan of the paper

The paper is organized as follows. In Section 2, we recall Givental’s con-

struction of the B-model Gromov-Witten type potential in the setting of

Saito’s theory of primitive forms. We also derive the Picard-Fuchs equations

satisfied by the various period integrals. In Section 3, we discuss the two

types of geometric theories: the Gromov-Witten theory of elliptic orbifold

lines and the FJRW theory of simple elliptic singularities. We also recall the

reconstruction theorem in both theories. In Sections 4, we establish the LG-

LG mirror symmetry for Gepner points (Theorem 1.4) by comparing the

B-model constructed in Section 2 and the FJRW A-models constructed in

Section 3. In Section 5, we establish the global mirror symmetry for Fermat

polynomials by proving Theorem 1.5.
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2. Global B-model for simple elliptic singularities

Let W be an invertible polynomial from Table 1.1. We would like to

recall Saito’s theory of primitive forms which yields a Frobenius structure

on S. Following Givental’s higher genus reconstruction formalism we will

introduce the total ancestor potential of W . We also derive a system of

hypergeometric equations that determines the restriction of the flat coor-

dinates of the Frobenius manifold S to Σ.

2.1. Miniversal deformations

In this paper, we are interested in invertible polynomials with 3 variables

and the weights qi = 1/ai (1 6 i 6 3) for some positive integers ai satisfying

the Calabi-Yau condition

(a1, a2, a3) = (3, 3, 3), (4, 4, 2), and (6, 3, 2).

We denote the corresponding classes of invertible polynomials respectively

by E
(1,1)
6 , E

(1,1)
7 , and E

(1,1)
8 . Modulo permutation of the variables Xi(1 6

i 6 N) there are 13 types of invertible polynomials (see Table 1.1). We refer

to these polynomials as invertible simple elliptic singularities. Let QW be

the Jacobian algebra of W ,

QW = C[X1, X2, X3]/(∂X1
W,∂X2

W,∂X3
W ).

The dimension of QW is called the multiplicity of the critical point or

Milnor number and it will be denoted by µ. Let us fix a degree-1 monomial

φm(x) = Xm1
1 Xm2

2 Xm3
3 , m = (m1,m2,m3) whose projection in QW is

non-zero. Let us construct a deformation of W of the following form:

(2.1) Wσ(x) = W (x) + σ φm(x), σ ∈ Σ,

where Σ ⊂ C is the set of all σ ∈ C such that Wσ(x) has only isolated

critical points. Such deformations do not change the multiplicity of the

critical point at x = 0. The polynomials (2.1) are families of simple elliptic

singularities of type E
(1,1)
µ−2 (see [36]).

There exists a set R of weighted homogeneous monomials

(2.2) φr(x) = Xr1
1 Xr2

2 Xr3
3 , r = (r1, r2, r3) ∈ R,

such that their projections in QWσ
form a basis for all σ ∈ Σ. There is

precisely one monomial of top degree, which may be chosen to be φm,

i.e., we may assume that m = (m1,m2,m3) ∈ R. Let us point out that

TOME 66 (2016), FASCICULE 1



280 Todor MILANOV & Yefeng SHEN

the proof that such a basis exists is done on a case-by-case basis. More

generally, we consider a miniversal deformation (see e.g. [2]) of W

(2.3) F (s,x) = W (x) +
∑

r∈R
sr φr(x).

It is convenient to adopt two notations for the deformation parameters.

Namely, put

s = {sr}r∈R = (s−1, s0, s1, . . . , sµ−2),

where the second equality is obtained by putting an order on the elements

r ∈ R and enumerating them with the integers from −1 to µ− 2 in such a

way that

s−1 = sm = σ, s0 = s0, 0 = (0, 0, 0) ∈ R.

The moduli space of miniversal deformations, i.e., the range of the param-

eters sr is then defined to be the affine space S = Σ×Cµ−1. Furthermore,

each sr is assigned a degree so that F (s,x) is weighted-homogeneous of

degree 1. Note that the parameter sm = σ has degree 0. Following the ter-

minology in physics we call sm and φm marginal. Note that Wσ(x) is the

restriction of F (s,x) to the subspace Σ of marginal deformations. Except

for Fermat case, there is more than one choice of a marginal monomial. For

example, X1X2X3, X4
1X3 are both marginal for W = X3

1X2 +X2
2 +X3

3 .

2.2. Saito’s theory

Let C be the critical variety of the miniversal deformation F (s,x) (see

(2.3)), i.e., the support of the sheaf

OC := OX/〈∂X1F, ∂X2F, ∂X3F 〉,
where X = S×C3. Let q : X → S be the projection on the first factor. The

Kodaira–Spencer map (TS is the sheaf of holomorphic vector fields on S)

TS −→ q∗OC , ∂/∂si 7→ ∂F/∂si mod (FX1 , FX2 , FX3)

is an isomorphism, which implies that for any s ∈ S, the tangent space TsS
is equipped with an associative commutative multiplication •s depending

holomorphically on s ∈ S. If in addition we have a volume form ω =

g(s,x)d3x, where d3x = dX1 ∧ dX2 ∧ dX3 is the standard volume form,

then q∗OC (hence TS as well) is equipped with the residue pairing:

(2.4)
〈
ψ1, ψ2

〉
=

1

(2πi)3

∫

Γǫ

ψ1(s,y)ψ2(s,y)

Fy1
Fy2

Fy3

ω,

ANNALES DE L’INSTITUT FOURIER



GLOBAL MIRROR SYMMETRY 281

where y = (y1, y2, y3) is a unimodular coordinate system for the volume

form, i.e., ω = d3y, and Γǫ is a real 3-dimensional cycle supported on

|FXi
| = ǫ for 1 6 i 6 3.

Given a semi-infinite cycle

(2.5) A ∈ lim
←−

H3(C3, (C3)−m;C) ∼= Cµ,

where

(2.6) (C3)m = {x ∈ C3 | Re(F (s,x)/z) 6 m}.
Let dS be the de Rham differential on S. Put

(2.7) JA(s, z) = (−2πz)−3/2 zdS

∫

A
eF (s,x)/zω,

The oscillatory integrals JA are by definition sections of the cotangent

sheaf T ∗S .

According to Saito’s theory of primitive forms [37, 34], there exists a

volume form ω such that the residue pairing is flat and the oscillatory

integrals satisfy a system of differential equations. Let us point out that the

form ω is multi-valued analytic with respect to the parameter s ∈ S, so it is

analytic on the universal cover S̃ of S. If we switch the coordinate system

from s to a system of flat-homogeneous coordinates t = (t−1, t0, . . . , tµ−2),

then the differential equations have the form

(2.8) z∂iJA(t, z) = ∂i •t JA(t, z), ∂i := ∂/∂ti (−1 6 i 6 µ− 2),

and the multiplication is defined by identifying vectors and covectors via

the residue pairing. Using the residue pairing, the flat structure, and the

Kodaira–Spencer isomorphism we have

T ∗S̃ ∼= T S̃ ∼= S̃ × T0S ∼= S̃ ×QW .

Due to homogeneity, the integrals satisfy a differential equation:

(2.9) (z∂z + E)JA(t, z) = ΘJA(t, z), z ∈ C∗

where E is the Euler vector field

E =

µ−2∑

i=−1

diti∂i, (di := deg ti = deg si),

and Θ is the so-called Hodge grading operator

Θ : T ∗S → T ∗S , Θ(dti) =

(
1

2
− di

)
dti.

The compatibility of the system (2.8)–(2.9) implies that the residue pair-

ing, the multiplication, and the Euler vector field give rise to a conformal
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Frobenius structure on the universal cover S̃ of conformal dimension 1.

We refer to B. Dubrovin [14] for the definition and more details on Frobe-

nius structures and to C. Hertling [22] or to Saito–Takahashi [38] for more

details on constructing a Frobenius structure from a primitive form.

2.3. The primitive forms

The classification of primitive forms in general is a very difficult problem.

In the case of simple elliptic singularities however, all primitive forms are

known (see [37, 34]). They are given by ω = d3x/πA(σ), where πA(σ) is

the period (2.11). As we will prove below, these periods are solutions to

the hypergeometric equation (2.12), so a primitive form may be equiva-

lently fixed by fixing a solution to the differential equation that does not

vanish on Σ. Note that since πA(σ) is multi-valued function, the corre-

sponding Frobenius structure on S is multi-valued as well. In other words,

the primitive form gives rise to a Frobenius structure on the universal cover

S̃ ∼= H× Cµ−1.

The key to the primitive form is the Picard-Fuchs differential equation

for the periods of the so-called elliptic curve at infinity

(2.10) Eσ :=
{

[X1 : X2 : X3] ∈ CP
2(c1, c2, c3)

∣∣∣Wσ = 0
}
,

where ci = d/ai, 1 6 i 6 3 and d is the least common multiple of a1, a2, and

a3. Note that Eσ are the fibers of an elliptic fibration over CP
1 = C∪{∞}

whose non-singular fibers are parametrized by Σ ⊂ C ⊂ CP
1. Note that

ResEσ
Ω, where

Ω :=
dX1 ∧ dX2 ∧ dX3

dWσ
,

is a Calabi-Yau form of the elliptic curve Eσ. For every A ∈ H1(Eσ), we

define

(2.11) πA(σ) =

∫

A

ResEσ
Ω.

It is well known that the period integrals are solutions to a Fuchsian dif-

ferential equation. In particular, we obtain the following lemma,

Lemma 2.1. — Let δ = σ∂/∂σ, the elliptic period πA(σ) described

above satisfies the Picard-Fuchs equation

(2.12)

δ(δ − 1) πA(σ) = C σl(δ + lα)(δ + lβ) πA(σ),

α+ β = 1− 1

l
, C =

3∏

i=1

(
− li
l

)li

.
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If we put x = C σl, γ = α+β, the equation (2.11) becomes a hypergeometric

equation

(2.13) x(1− x)
d2πA

dx2
+
(
γ − (1 + α+ β)x

)dπA

dx
− (αβ)πA = 0

We call (α, β, γ) the weights system of the hypergeometric equation. The

explicit values are listed in Tables 2.1, 2.2 and 2.3 below.

In particular, Σ = C\{p1, . . . , pl}, where pi are the singularities of the

Picard–Fuchs equation (2.12). All the singular points are

(2.14) pi = C−1/lηi, 1 6 i 6 l, η = exp(2π
√
−1/l),

For our purposes, we will give a proof of this Lemma in Section 2.4 following

the approach of S. Gährs (see [18]). To find out α, β and γ, we will need

the mirror weight qT
i , which is the weight of Xi in the BHK mirror WT

and a charge vector (l1, l2, l3,−l) ∈ Z4 by choosing the minimal l ∈ Z>0

such that

(2.15) (l1, l2, l3) = lmE−1
W , m = (m1,m2,m3).

Table 2.1. E
(1,1)
6

W m1,m2,m3 l1, l2, l3, l qT
1 , q

T
2 , q

T
3 α, β, γ

X3
1 +X3

2 +X3
3 1, 1, 1 1, 1, 1, 3 1

3 ,
1
3 ,

1
3

1
3 ,

1
3 ,

2
3

X2
1X2 +X3

2 +X3
3 2, 0, 1 3,−1, 1, 3 1

2 ,
1
6 ,

1
3

1
6 ,

1
2 ,

2
3

X2
1X2 +X3

2 +X3
3 0, 2, 1 0, 2, 1, 3 1

2 ,
1
6 ,

1
3

1
12 ,

7
12 ,

2
3

X2
1X2 +X1X

2
2 +X3

3 1, 1, 1 1, 1, 1, 3 1
3 ,

1
3 ,

1
3

1
3 ,

1
3 ,

2
3

X2
1X2 +X1X

2
2 +X3

3 2, 0, 1 4,−2, 1, , 3 1
3 ,

1
3 ,

1
3

1
12 ,

7
12 ,

2
3

X2
1X2 +X2

2X3 +X3
3 2, 0, 1 2,−1, 1, 2 1

2 ,
1
4 ,

1
4

1
4 ,

1
4 ,

1
2

X2
1X2 +X2

2X3 +X3
3 0, 3, 0 0, 3,−1, 2 1

2 ,
1
4 ,

1
4

1
12 ,

5
12 ,

1
2

X2
1X2 +X2

2X3 +X3
3 0, 1, 2 0, 1, 1, 2 1

2 ,
1
4 ,

1
4

1
4 ,

1
4 ,

1
2

X2
1X2 +X2

2X3 +X1X
2
3 1, 1, 1 1, 1, 1, 3 1

3 ,
1
3 ,

1
3

1
3 ,

1
3 ,

2
3

X2
1X2 +X2

2X3 +X1X
2
3 3, 0, 0 4,−2, 1, 3 1

3 ,
1
3 ,

1
3

1
12 ,

7
12 ,

2
3
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Table 2.2. E
(1,1)
7

W m1,m2,m3 l1, l2, l3, l qT
1 , q

T
2 , q

T
3 α, β, γ

X4
1 +X4

2 +X2
3 2, 2, 0 1, 1, 0, 2 1

4 ,
1
4 ,

1
2

1
4 ,

1
4 ,

1
2

X3
1X2 +X4

2 +X2
3 4, 0, 0 4,−1, 0, 3 1

3 ,
1
2 ,

1
6

1
12 ,

7
12 ,

2
3

X3
1X2 +X4

2 +X2
3 1, 3, 0 1, 2, 0, 3 1

3 ,
1
2 ,

1
6

1
12 ,

7
12 ,

2
3

X2
1X2 +X2

2 +X4
3 2, 0, 2 2,−1, 1, 2 1

2 ,
1
4 ,

1
4

1
4 ,

1
4 ,

1
2

X2
1X2 +X2

2 +X4
3 0, 1, 2 0, 1, 1, 2 1

2 ,
1
4 ,

1
4

1
4 ,

1
4 ,

1
2

X3
1X2 +X1X

3
2 +X2

3 4, 0, 0 3,−1, 0, 2 1
4 ,

1
4 ,

1
2

1
12 ,

5
12 ,

1
2

X3
1X2 +X1X

3
2 +X2

3 2, 2, 0 1, 1, 0, 2 1
4 ,

1
4 ,

1
2

1
4 ,

1
4 ,

1
2

X3
1X2 +X2

2X3 +X2
3 1, 1, 1 1, 1, 1, 3 1

3 ,
1
3 ,

1
3

1
3 ,

1
3 ,

2
3

X3
1X2 +X2

2X3 +X2
3 1, 3, 0 1, 4,−2, 3 1

3 ,
1
3 ,

1
3

1
12 ,

7
12 ,

2
3

X3
1X2 +X2

2X3 +X2
3 4, 0, 0 4,−2, 1, 3 1

3 ,
1
3 ,

1
3

1
12 ,

7
12 ,

2
3

Table 2.3. E
(1,1)
8

W m1,m2,m3 l1, l2, l3, l qT
1 , q

T
2 , q

T
3 α, β, γ

X6
1 +X3

2 +X2
3 4, 1, 0 1, 2, 0, 3 1

6 ,
1
3 ,

1
2

1
12 ,

7
12 ,

2
3

X3
1X2 +X2

2 +X3
3 1, 1, 1 1, 1, 1, 3 1

3 ,
1
3 ,

1
3

1
3 ,

1
3 ,

2
3

X3
1X2 +X2

2 +X3
3 4, 0, 1 4,−2, 1, 3 1

3 ,
1
3 ,

1
3

1
12 ,

7
12 ,

2
3

X4
1X2 +X3

2 +X2
3 2, 2, 0 1, 1, 0, 2 1

4 ,
1
4 ,

1
2

1
4 ,

1
4 ,

1
2

X4
1X2 +X3

2 +X2
3 6, 0, 0 3,−1, 0, 2 1

4 ,
1
4 ,

1
2

1
12 ,

5
12 ,

1
2

2.4. Picard-Fuchs equations

Let us denote by

Xs = {x ∈ C3 | F (s,x) = 1}, s ∈ S.

The points s for which Xs is singular form an analytic hypersurface in S
called the discriminant. Its complement in S will be denoted by S ′. We will
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be interested in the period integrals

Φr(s) =

∫
φr(x)

d3x

dF
, φr(x) = Xr1

1 Xr2
2 Xr3

3 , r = (r1, r2, r3) ∈ Z3
>0.

They are sections of the middle (or vanishing) cohomology bundle on S ′
formed by H2(Xs,C). Slightly abusing the notation, we denote the restric-

tion to s−1 = σ, si = 0(0 6 i 6 µ − 2) by Φr(σ). Following the idea

of [18], we first obtain a GKZ (Gelfand–Kapranov–Zelevinsky) system of

differential equations for the periods. Using that the period integrals are

not polynomial in σ (they have singularities at the punctures of Σ) we can

reduce the GKZ system to a Picard-Fuchs equation.

2.4.1. The GKZ system

In order to derive the GKZ system, we slightly modify the polynomial

W . By definition W (x) =
∑3

i=1 φai
(x), where ai are the rows of the matrix

EW . Put

Wv,σ(x) =
3∑

i=1

vi φai
(x) + σ φ−1(x),

where v = (v1, v2, v3) are some complex parameters. For simplicity. we omit

v in the notation if v = (1, 1, 1). Let us write Xv,λ
σ = {x ∈ C3 | Wv,σ(x) =

λ}. Then we define the period integrals

(2.16) Φv,λ
r

(σ) =

∫
φr(x)

d3x

dWv,σ
, r = (r1, r2, r3) ∈ Z3

>0;

again one should think that the above integral is a section of the vanishing

cohomology for Wv,σ(x). The vanishing cohomology bundle is equipped

with a Gauss–Manin connection ∇. The following formulas are well known

(see e.g. [2])

(2.17)

∇∂/∂λ

∫
θ =

∫
dθ

dWv,σ

∇∂/∂vi

∫
θ = −

∫
∂Wv,σ

∂vi

dθ

dWv,σ
+

∫
Lie∂/∂vi

θ,

where θ is a 2-form on C3 possibly depending on the parameters v. Finally,

note that rescaling Xi 7→ λqi Xi(1 6 i 6 3) yields

Φv,λ
r

(σ) = λdeg φ
r Φv,1

r
(σ).

Let δi = vi∂/∂vi(1 6 i 6 3) and δ = σ∂/∂σ.
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Lemma 2.2. — The period integral Φv,λ
r satisfies the system of differ-

ential equations:

∂l
σ

∏

i:li<0

∂−li
vi

Φ =
∏

i:li>0

∂li
vi

Φ, 1 6 i 6 3;

(δ1, δ2, δ3)EW Φ + (m1,m2,m3)δΦ = −(1 + r1, 1 + r2, 1 + r3)Φ.

Proof. — Using (2.17) we get the following differential equations:

∂vi
Φv,λ

r
= −∂λ Φv,λ

r+ai
, 1 6 i 6 3,

and

∂σ Φv,λ
r

= −∂λ Φv,λ
r+m

, m = (m1,m2,m3),

where φm(x) is the marginal monomial. The first differential equation is

equivalent to the identity

l mk −
∑

i,li<0

aik li =
∑

j,lj>0

ajk lj .

which is true by definition (see (2.15)). For the second equation, using the

above formulas we get that the i-th entry on the LHS is

−∂λ

∫
Xi φr(X)

d3x

dWv,σ
= −(ri + 1)

∫
φr(X)

d3x

dWv,σ
,

where we used formulas (2.17) again. �

Let us define the row-vector

(2.18) ζ = (ζ1, ζ2, ζ3) = rE−1
W , r = (r1, r2, r3) ∈ Z3

>0.

Note also that the weights (qT
1 , q

T
2 , q

T
3 ) of the mirror polynomial WT are

precisely

(2.19) (qT
1 , q

T
2 , q

T
3 ) = (1, 1, 1)E−1

W

Lemma 2.3. — Let C =
∏3

i=1(−li/l)li , the period integral Φr(σ) is in

the kernel of the differential operator:

σ−l
l−1∏

k=0

(δ − k)
∏

i,li<0

−li−1∏

k=0

(
δ +

l
(
qT

i + ζi + k
)

li

)

− C
∏

i,li>0

li−1∏

k=0

(
δ +

l
(
qT

i + ζi + k
)

li

)
,

(2.20)

Proof. — Using the second equation in Lemma 2.2 we can express the

derivatives ∂vi
= v−1

i δi in terms of δ. Substituting in the first equation we

get a higher order differential equation in σ only. It remains only to notice

that the resulting equation is independent of v and λ. �
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2.4.2. Picard-Fuchs equation

Let qT
0 = 0, l0 = −l, ζ0 = 0, and set

(2.21) βi,k =
1

li
(qT

i + ζi + k), 0 6 k 6 |li| − 1.

The differential operator in (2.20) is the product of a Bessel differential

operator

(2.22)
∏

i,k

(δ + l βi,k)

and an operator of the form

(2.23)
∏

i′,k′

(δ + l βi′,k′)− Cσl
∏

i′′,k′′

(δ + l βi′′,k′′).

This is done by factoring out the common left divisors in the two summands.

There is no pair (i′, k′) and (i′′, k′′) in the operator (2.23), such that, βi′,k′ +

1 = βi′′,k′′ .

Lemma 2.4. — The numbers (2.21) satisfy the following identity:

∑

i:li>0

li−1∑

k=0

βi,k −
∑

06j63:lj<0

−lj−1∑

k′=0

(1 + βj,k′) = deg φr.

Proof. — By definition

LHS =
∑

i:li>0

(
li − 1

2
+ qT

i + ζi

)
−
∑

j;lj<0

(
−lj −

−lj − 1

2
− qT

j − ζj

)
− l − 1

2

=

3∑

i=0

(
qT

i + ζi +
li − 1

2

)
− l − 1

2
=

3∑

i=1

ζi = deg φr. �

As a consequence, we get a proof of Lemma 2.1.

Proof of Lemma 2.1. — To begin with, Lemma 2.3 (with ζi = 0) implies

(2.24)
∏

i: li<0

−li−1∏

k=0

(
δ +

l

li
(qT

i + k)

)
Φ = Cσl

∏

i: li>0

li−1∏

k=0

(
δ +

l(qT
i + k)

li

)
Φ.

The various values of qT
i and li are listed in Tables 2.1, 2.2 and 2.3. We

make the following observations:

• If the RHS of (2.24) contains a term δ+ j with j ∈ Z, 1 6 j 6 l−1,

then the the reduced equation (2.23) has the form that we claimed.

• For l = 3, δ + 1 is always a factor of the RHS of (2.24).
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• If li < 0, then for all 0 6 k 6 −li − 1, l− l(qT
i +k)
li

is always a factor

of the RHS of (2.24).

This completes the proof of Lemma 2.1. �

The action of the operator (2.23) on a period integral is again a period

integral. The latter is holomorphic at σ = 0; therefore, if it is in the kernel

of the Bessel operator (2.22), it must be a polynomial in σ. But a non-zero

period integral cannot be a polynomial. In other words the period Φr(σ)

is a solution to the Picard-Fuchs equation corresponding to the differential

operator (2.23). In particular, we can check

Lemma 2.5. — If W is a Fermat simple elliptic singularity. Let x = Cσl;

then either

(2.25) (1− x)
∂

∂x
Φr = (deg φr) Φr,

or Φr satisfies a hypergeometric equation

(2.26) x(1− x)
∂2Φr

∂x2
+ (γr − (1 + αr + βr)x)

∂Φr

∂x
− (αrβr) Φr = 0,

where the weights (αr, βr, γr) follow from (2.23) and satisfy

(2.27) αr + βr − γr = deg φr.

Moreover, for r = 0, Φr satisfies (2.26) for all invertible simple elliptic

singularities W .

The first part of the Lemma and the identity (2.27) are corollaries of

Lemma 2.4. Unfortunately, we do not have a general combinatorial rule

to determine which indexes (i′, k′) and (i′′, k′′) should appear in (2.23). In

other words, the second part of the Lemma is proved by straightforward

computation, case by case.

Example 2.6. — For W = X6
1 +X3

2 +X2
3 , φm = X4

1X2, since r3 = 0, we

write r = (r1, r2) instead of (r1, r2, r3). The weights of the hypergeometric

equations for Φr are

(2.28) (αr, βr, γr) =

(
1 + r1

12
,

7 + r1

12
,

2− r2

3

)
.

2.5. Givental’s theory

The goal in this subsection is to define the total ancestor potential

A SG
W (s) at semisimple point s for W . Following Givental, we introduce the
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Table 2.4. Weights of periods for Fermat E
(1,1)
8

φr X1 X2 X2
1 X1X2

αr, βr, γr
1
6 ,

2
3 ,

2
3

1
12 ,

7
12 ,

1
3

1
4 ,

3
4 ,

2
3

1
6 ,

2
3 ,

1
3

X3
1 X2

1X2 X4
1 X3

1X2

1
3 ,

5
6 ,

2
3

1
4 ,

3
4 ,

1
3

5
12 ,

11
12 ,

2
3

1
3 ,

5
6 ,

1
3

vector space H = QW ((z)) of formal Laurent series in z−1 with coefficients

in QW , equipped with the symplectic structure

Ω(f(z), g(z)) = resz=0(f(−z), g(z))dz.

Using the polarization H = H+ ⊕ H−, where H+ = QW [z] and H− =

QW [[z−1]]z−1 we identify H with the cotangent bundle T ∗H+.

Let s ∈ S be a semi-simple point, i.e., the critical values ui of F (1 6

i 6 µ) form locally near s a coordinate system. Let us also fix a path from

0 ∈ S to s, so that we have a fixed branch of the flat coordinates. Then we

have an isomorphism

Ψs : Cµ → H, ei 7→
√

∆i ∂ui

where ∆i is determined by (∂/∂ui, ∂/∂uj) = δij/∆i. It is well known that

Ψs diagonalizes the Frobenius multiplication and the residue pairing, i.e.,

ei • ej =
√

∆ieiδi,j , (ei, ej) = δij .

Let Sss be the set of all semi-simple points. The complement K = S \ Sss

is an analytic hypersurface also known as the caustic. It corresponds to

deformations, s.t., F has at least one non-Morse critical point. By definition

Sss → HomC(Cµ, H), s 7→ Ψs

is a multi-valued analytic map.

The system of differential equations (2.8) and (2.9) admits a unique

formal asymptotical solution of the type

ΨsRs(z)eUs/z, Rs(z) = 1 +Rs,1z +Rs,2z
2 + · · ·

where Us is a diagonal matrix with entries u1(s), . . . , uµ(s) on the diagonal

and Rs,k ∈ HomC(Cµ,Cµ). We refer to [14, 21] for more details and proofs.
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2.5.1. The quantization formalism

Let us fix a Darboux coordinate system onH given by the linear functions

qi
k, pk,i defined as follows:

qi
k(f) = Ω(dti(−z)−k−1, f), pk,i(f) = −Ω(∂iz

k, f), f ∈ H,

where {dti}i∈R is a basis of H dual to {∂i} with respect to the residue

pairing.

If R = eA(z), where A(z) is an infinitesimal symplectic transformation,

then we define R̂ as follows. Since A(z) is infinitesimal symplectic, the map

f ∈ H 7→ Af ∈ H defines a Hamiltonian vector field with Hamiltonian given

by the quadratic function hA(f) = 1
2 Ω(Af , f). By definition, the quantiza-

tion of eA is given by the differential operator eĥA , where the quadratic

Hamiltonians are quantized according to the following rules:

(pk′,e′pk′′,e′′)̂= ~
∂2

∂qe′

k′∂qe′′

k′′

, (pk′,e′qe′′

k′′)̂= (qe′′

k′′pk′,e′)̂= qe′′

k′′

∂

∂qe′

k′

,

(qe′

k′qe′′

k′′)̂= qe′

k′qe′′

k′′/~.

Note that the quantization defines a projective representation of the Poisson

Lie algebra of quadratic Hamiltonians:

[F̂ , Ĝ] = {F,G}̂+ C(F,G),

where F and G are quadratic Hamiltonians and the values of the cocycle

C on a pair of Darboux monomials is non-zero only in the following cases:

(2.29) C(pk′,e′pk′′,e′′ , qe′

k′qe′′

k′′) =

{
1 if (k′, e′) 6= (k′′, e′′),

2 if (k′, e′) = (k′′, e′′).

2.5.2. The total ancestor potential

By definition, the Kontsevich-Witten tau-function is the following gen-

erating series:

(2.30) Dpt(~; q(z)) = exp
(∑

g,n

1

n!
~g−1

∫

Mg,n

n∏

i=1

(q(ψi) + ψi)
)
,

where q(z) =
∑

k qkz
k, (q0, q1, . . .) are formal variables, ψi (1 6 i 6 n) are

the first Chern classes of the cotangent line bundles onMg,n. The function

is interpreted as a formal series in q0, q1 + 1, q2, . . . whose coefficients are

Laurent series in ~..
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Let s ∈ Sss be a semi-simple point. Motivated by Gromov–Witten theory

Givental introduced the notion of the total ancestor potential of a semi-

simple Frobenius structure (see [21, 20]). In our settings, the definition

takes the form

(2.31) A
SG

W (s) = As(~; q) := Ψ̂s R̂s e
Ûs/z

µ∏

i=1

Dpt(~∆i(s); iq(z)
√

∆i(s))

where

q(z) =

∞∑

k=0

∑

j∈R
qj

k z
k∂tj ,

iq(z) =

∞∑

k=0

iqk z
k.

The quantization Ψ̂s is interpreted as the change of variables

(2.32)

µ∑

i=1

iq(z)ei = Ψ−1
s

q(z) i.e. iqk

√
∆i =

∑

j∈R
(∂ui/∂tj) qj

k.

3. Geometric limits: GW theory and FJRW theory

The proof of Theorem 1.4 relies on a certain reconstruction property

of the mirror GW invariants and FJRW invariants. All the invariants are

defined by intersections of cohomologies on Mg,n associated with some

Cohomological Field Theory (CohFT). According to Krawitz–Shen [25],

starting with a certain initial set of 3- and 4-point genus-0 correlators, we

can determine the remaining invariants using only the axioms of a CohFT.

The goal in this section is to introduce the CohFTs relevant for Theorem 1.4

and to compute explicitly the initial data of correlators needed for the

reconstruction.

3.1. Cohomological Field Theories

Let H be a vector space of dimension N with a unit 1 and a non-

degenerate pairing η. Without loss of generality, we always fix a basis of

H, say S := {∂i, i = 0, . . . , N − 1}, and we set ∂0 = 1. Let {∂j} be the

dual basis such that η(∂i, ∂
j) = δj

i . A CohFT Λ is a set of multi linear

maps {Λg,n}, for each stable genus g curve with n marked points, i.e.,

2g − 2 + n > 0,

Λg,n : H⊗n −→ H∗(Mg,n,C).

Furthermore, Λ satisfies a set of axioms (CohFT axioms) described be-

low:
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(1) (Sn-invariance) For any σ ∈ Sn, and γ1, . . . , γn ∈ H, then

Λg,n(γσ(1), . . . , γσ(n)) = Λg,n(γ1, . . . , γn).

(2) (Gluing tree) Let

ρtree :Mg1,n1+1 ×Mg2,n2+1 →Mg,n

where g = g1 + g2, n = n1 + n2, be the morphism induced from

gluing the last marked point of the first curve and the first marked

point of the second curve; then

ρ∗tree

(
Λg,n(γ1, . . . , γn)

)

=
∑

α,β∈S

Λg1,n1+1(γ1, . . . , γn1
, α)ηα,βΛg2,n2+1(β, γn1+1, . . . , γn).

Here
(
ηα,β

)
N×N

is the inverse matrix of
(
η(α, β)

)
N×N

.

(3) (Gluing loop) Let

ρloop :Mg−1,n+2 →Mg,n,

be the morphism induced from gluing the last two marked points;

then

ρ∗loop

(
Λg,n(γ1, . . . , γn)

)
=

∑

α,β∈S

Λg−1,n+2(γ1, . . . , γn, α, β)ηα,β .

(4) (Pairing) ∫

M0,3

Λ0,3(1, γ1, γ2) = η(γ1, γ2).

If in addition the following axiom holds:

(5) (Flat identity) Let π :Mg,n+1 →Mg,n be the forgetful morphism;

then

Λg,n+1(γ1, . . . , γn,1) = π∗Λg,n(γ1, . . . , γn).

then we say that Λ is a CohFT with a flat identity.

If Λ is a CohFT; then there is a natural formal family of CohFTs Λ(t).

Namely,

Λ(t)g,n(γ1, . . . , γn) =
∞∑

k=0

1

k!
π∗ (Λg,n+k(γ1, . . . , γn, t, . . . , t)) ,

where π : Mg,n+k → Mg,n is the morphism forgetting the last k marked

points. Note that Λ(t)0,3 induces a family of Frobenius multiplications •t

on (H, η), defined by

(3.1) η(α •t β, γ) =

∫

M0,3

Λ(t)0,3(α, β, γ).
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It is well known that [28] the genus-0 part of the CohFT {Λ(t)0,n} is

equivalent to a Frobenius manifold (H, η, •t), in the sense of Dubrovin [14].

We call the vector space H the state space of the CohFT.

3.1.1. The total ancestor potential of a CohFT

For a given CohFT Λ, the correlator functions are by definition the fol-

lowing formal series in t ∈ H:

(3.2)
〈
α1·ψk1

1 , . . . , αn·ψkn
n

〉Λ

g,n
(t) =

∫

Mg,n

Λ(t)g,n(α1, . . . , αn)ψk1
1 . . . ψkn

n ,

where ψi is the i-th psi class on Mg,n, αi ∈ H, and ki ∈ Z>0. The value

of a correlator function at t = 0 is called simply a correlator. We call g

the genus of the correlator function and each αi ·ψki

i is called a descendant

(resp. non-descendant) insertion if ki > 0 (resp. ki = 0).

For each basis {∂i} in H, we fix a sequence of formal variables {qi
k}∞k=0

and define

q(z) =

∞∑

k=0

N−1∑

i=0

qi
k ∂i z

k ;

then the genus-g ancestor potential is the following generating function:

F
Λ(t)
g (q) :=

∑

n

1

n!

〈
q(ψ1) + ψ1, . . . ,q(ψn) + ψn

〉Λ

g,n
(t),

where each correlator should be expanded multi linearly in q and the re-

sulting correlators are evaluated according to (3.2). Let us point out that

we have assumed that the CohFT has a flat identity 1 ∈ H and we have

incorporated the dilaton shift in our function, so that F
Λ(t)
g is a formal

series in qk, k 6= 1 and q1 + 1. Finally, the total ancestor potential of a

CohFT Λ(t) is defined by

(3.3) A
Λ(t) (~; q) := exp

( ∞∑

g=0

~2g−2
F

Λ(t)
g (q)

)
.

3.2. GW theory of elliptic orbifold P1

Let X := P1
a1,a2,a3

be the orbifold-P1 with 3 orbifold points, such that, the

i-th one has isotropy group Z/aiZ. We are interested in 3 cases: (a1, a2, a3) =
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(3, 3, 3),(4, 4, 2),(6, 3, 2). Together with P1
2,2,2,2, they correspond to orbifold-

P1s that are quotients of an elliptic curve by a finite group. The Chen-Ruan

cohomology H∗CR(P1
a1,a2,a3

) has the following form:

H∗CR(P1
a1,a2,a3

) =

3⊕

i=1

ai−1⊕

j=1

C[∆ij ]
⊕

C[∆01]
⊕

C[∆02].

where ∆01 = 1 and ∆02 is the Poincaré dual to a point. The classes ∆ij(16

i 6 3, 1 6 j 6 ai − 1) are in one-to-one correspondence with the twisted

sectors. The latter are just orbifold points, and we define ∆ij to be the unit

in the cohomology of the corresponding twisted sector. Our index makes

the complex degrees

deg ∆ij = j/ai, 1 6 i 6 3, 1 6 j 6 ai − 1.

X is a compact Kähler orbifold. LetMXg,n,d be the moduli space of degree-d

stable maps from a genus-g orbi-curve, equipped with n marked points, to

X . Let us denote by π the forgetful map, and by evi the evaluation at the

i-th marked point

Mg,n
π←− MXg,n+k,d

evi−→ IX .

The moduli space is equipped with a virtual fundamental cycle [MXg,n,d].

Let the maps (ΛX )g,n,d : H∗CR(P1
a1,a2,a3

)⊗n −→ H∗(Mg,n;C) be defined by

(ΛX )g,n,d(α1, . . . , αn) := π∗
(

[MXg,n,d] ∩
n∏

i=1

ev∗i (αi)
)
.

Then the set of maps
{

(ΛX )g,n :=
∑

d

(ΛX )g,n,d q
d

}

form a CohFT with state space H∗CR(P1
a1,a2,a3

), where q = et02 and t02

parametrizes the class ∆02. The total ancestor potential A GW
X of X is by

definition (3.3) the total ancestor potential of the CohFT ΛX (t = 0). For

more details on orbifold Gromov–Witten theory, we refer to [6]. We will use

the ancestor Gromov-Witten invariants of X that is defined by the maps

(ΛX )g,n,d,

〈
α1 · ψk1

1 , . . . , αn · ψkn
n

〉
g,n,d

=

∫

Mg,n

(ΛX )g,n,d(α1, . . . , αn)ψk1
1 . . . ψkn

n .
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For P1
a1,a2,a3

, the orbifold Poincaré pairing takes the form

(3.4)
〈

∆i1j1 ,∆i2j2

〉
=

{
(δi1,i2δj1+j2,ak

) /ak, k = i1, i1 + i2 6= 0;

δj1+j2,3, i1 = i2 = 0.

It is easy to compute that the above 3-point correlators are

(3.5)

〈
∆i1j1

,∆i2j2
,∆i3j3

〉
0,3,0

=





1/ak, i1 = i2 = i3 = k∈{1, 2, 3}, j1 +j2 +j3 = ak;〈
∆i2j2

,∆i3j3

〉
, (i1, j1) = (0, 1);

0, otherwise.

Recall the Chen-Ruan orbifold cup product • on H∗CR(P1
a1,a2,a3

;C) is de-

fined by pairing and 3-point correlators (3.1). According to Krawitz and

Shen [25], we have the following reconstruction result.

Lemma 3.1. — The Gromov-Witten total ancestor potential A GW
X of

elliptic orbifold X = P1
3,3,3, P1

4,4,2,P
1
6,3,2 is determined by the following ini-

tial data: the Poincaré pairing, the Chen-Ruan product, and the correlator

〈∆1,1,∆2,1,∆3,1〉X0,3,1 = 1.

In particular, using Lemma 3.1, one can construct a mirror map to

identify the Gromov–Witten theory of the above orbifolds and the Saito–

Givental theory associated to certain ISES (see [25, 30]). The genus 0 recon-

struction of the GW theory for those orbifolds are obtained by Satake and

Takahashi independently [39]. Moreover, they also proved the isomorphism

between the Frobenius manifold from Gromov-Witten theory of P1
3,3,3 and

Saito’s Frobenius manifold of X3
1 +X3

2 +X3
3 + σX1X2X3 at σ =∞.

On the other hand, since the mirror symmetry identifies the correlation

functions with certain period integrals, by analyzing the monodromy of

the period integrals, one can prove that the Gromov-Witten invariants

are quasi-modular forms on some finite index subgroups of the modular

group, [30, 32]. In particular, the non-zero, genus-0, 3-point correlators are

modular forms of weight 1. Let us list the first few terms of their Fourier

series. For X = P1
3,3,3, the following correlators are weight-1 modular forms

on Γ(3) (where q = e2πiτ )





〈
∆1,1,∆2,1,∆3,1

〉
0,3

= q + q4 + 2q7 + 2q13 + · · · = η(9τ)3

η(3τ)〈
∆1,1,∆1,1,∆1,1

〉
0,3

= 1/3 + 2q3 + 2q9 + 2q12 + · · · = 3η(9τ)3+η(τ)3

3η(3τ) ,
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For X = P1
4,4,2, the following correlators are weight-1 modular forms on

Γ(4), 



〈
∆1,1,∆2,1,∆3,1

〉
0,3

= q + 2q5 + q9 + 2q13 + · · ·
〈

∆1,1,∆1,1,∆1,2

〉
0,3

= 1/4 + q4 + q8 + q16 + · · ·

For X = P1
6,3,2, the following correlators are weight-1 modular forms on

Γ(6) 



〈
∆1,1,∆2,1,∆3,1

〉
0,3

= q + 2q7 + 2q13 + 2q19 + · · ·
〈

∆1,1,∆1,1,∆1,4

〉
0,3

= 1/6 + q6 + q18 + q24 + · · ·

3.3. FJRW theory of invertible simple elliptic singularities

For any non-degenerate, quasi-homogeneous polynomial W , Fan–Jarvis–

Ruan, following a suggestion of Witten, introduced a family of moduli

spaces and constructed a virtual fundamental cycle. The latter gives rise

to a cohomological field theory, which is now called the FJRW theory.

We remark that FJRW theory is defined for a pair (W,G), where W is

a quasi-homogeneous non-degenerate polynomial and G ⊂ GW is a so-

called admissible group when it contains the exponential grading element

(e[q1], · · · , e[qn]) ∈ GW (see Proposition 2.3.5 in [16]). In our paper, we

make use of the FJRW theories associated with the invertible simple ellip-

tic singularities, i.e., W is one of the polynomials in Table 1, and G = GW .

Let us briefly review the FJRW theory only for such W and refer to [16, 15]

for the general case and more details.

3.3.1. FJRW vector space and axioms

Recall the group of diagonal symmetries GW of the polynomial W is

GW :=
{

(λ1, λ2, λ3) ∈ (C∗)3
∣∣∣W (λ1 X1, λ2 X2, λ3 X3) = W (X1, X2, X3)

}
.

The FJRW state space HW,GW
(or HW for short) is the direct sum of all

GW -invariant relative cohomology:

(3.6) HW :=
⊕

h∈GW

Hh, Hh := H∗(Ch;W∞h ;C)GW .

Here Ch(h ∈ GW ) is the h-invariant subspace of C3, Wh is the restriction of

W to Ch and ReWh is the real part of Wh, and W∞h = (ReWh)−1(M,∞),

for some M ≫ 0.
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The vector space Hh(h ∈ GW ) has a natural grading given by the degree

of the relative cohomology classes. However, for the purposes of the FJRW

theory we need a modification of the standard grading. Namely, for any

α ∈ Hh, we define

degW α :=
degα

2
+

3∑

i=1

(Θh
i − qi),

This is half of degW α in [16]. deg α is the degree of α as a relative coho-

mology class in H∗(Ch;W∞h ;C) and

h =
(
e[Θh

1 ], e[Θh
2 ], e[Θh

3 ]
)
∈ (C∗)3, Θh

i ∈ [0, 1) ∩Q

where for y ∈ R, we put e[y] := exp(2π
√
−1y). Clearly the numbers Θh

i are

uniquely determined from h. For any α ∈ Hh, we define

(3.7) Θ(α) := h.

The elements in Hh are called narrow (resp. broad) and Hh is called a

narrow sector (resp. broad sector) if Ch = {0} (resp. Ch 6= {0}). For

invertible simple elliptic singularities, the space H∗(Ch;W∞h ;Q) is one-

dimensional for all narrow sectors Hh. We always choose a generator α ∈
Hh such that

(3.8) α := 1 ∈ H∗(Ch;W∞h ;Q)GW .

In general, in order to describe the broad sectors, we have to represent the

relative cohomology classes by differential forms; then there is an identifi-

cation (see [16] and the references there)

(3.9)
(
HW,G, 〈 , 〉

)
≡
(⊕

h∈G

HB
h ,
∑

h∈G

Resh

)
,

where if Ch = {0}, then HB
h = Cωh, and if Ch 6= {0}, then HB

h :=

(QWh
ωh)

G
. Here ωh is the restriction of the standard volume form to the

fixed locus Ch. The bi-linear map Resh : HB
h × HB

h−1 → C is the residue

pairing of Wh if Ch 6= {0}, and it sends (ωh, ωh−1) to 1 if Ch = {0}. 〈 , 〉
is a non-degenerate pairing induced from the intersection of relative ho-

mology cycles. There exists a basis of the narrow sectors such that the

pairing 〈v1, v2〉, vi ∈ Hhi
, is 1 if h1h2 = 1 and 0 otherwise. The vectors

in the broad sectors are orthogonal to the vectors in the narrow sectors.

In order to compute the pairing on the broad sectors one needs to use the

identification (3.9) and compute an appropriate residue pairing. In our case

however, we can express all invariants using narrow sectors only. So a more

detailed description of the broad sectors is not needed. We refer to [16] for

more details.
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Let (W,G) be an admissible pair. Let W =
∑s

a=1 Ma, where Ma is the

a-th monomial of W . A W -spin structure on a genus-g Riemann surface

C with n marked orbifold points (z1, . . . , zn) is a collection of N (N is

the number of variables in W ) orbifold line bundles L1, . . . ,LN on C and

isomorphisms

ψa : Ma(L1, . . . ,LN )→ ωC(−z1 − · · · − zn),

where ωC is the dualizing sheaf on C and the multiplication is just the

tensor product among the orbifold line bundles. The orbifold line bun-

dles have a monodromy near each marked point zi which determines an

element hi ∈ G. In particular, if Hhi
is a narrow (resp. broad) sector

we say that the marked point is narrow (resp. broad). For fixed g, n, and

h1, . . . , hn ∈ G, Fan-Jarvis-Ruan (see [16]) constructed the compact moduli

space W g,n(h1, · · · , hn) of nodal Riemann surfaces equipped with a W -spin

structure. In this compactification the line bundles (L1, . . . ,LN ) are allowed

to be orbifold at the nodes in such a way that the monodromy around each

node is an element of G as well. The moduli space has a decomposition

into a disjoint union of moduli subspaces W g,n(Γh1,...,hn
) consisting of W -

spin structures on curves C whose dual graph is Γh1,...,hn
. Recall that the

dual graph of a nodal curve C is a graph whose vertices are the irreducible

components of C, edges are the nodes, and tails are the marked points.

The latter are decorated by elements hi ∈ G, so the tails of our graphs

are also colored respectively. We omit the subscript (h1, . . . , hn) whenever

the decoration is understood from the context. The connected component

W g,n(Γh1,...,hn
) is naturally stratified by fixing the monodromy transfor-

mations around the nodes, i.e., the strata are in one-to-one correspondence

with the colorings of the edges of the dual graph Γh1,··· ,hn
.

Fan–Jarvis–Ruan constructed a virtual fundamental cycle [W g,n(Γ)]vir

of W g,n(Γ) (see [15]), which gives rise to a CohFT

ΛW,G
g,n : (HW,G)

⊗n −→ H∗(Mg,n).

For brevity put ΛW
g,n for ΛW,GW

g,n . We define the total ancestor FJRW po-

tential A FJRW
W of (W,GW ) from the CohFT ΛW using (3.3).

Finally, let us list some general properties of the FJRW correlators of a

simple elliptic singularity W , see [16] for the proofs.

• (Selection rule) If the correlator
〈
α1 · ψk1

1 , . . . , αn · ψkn
n

〉W

g,n
is non-

zero; then

(3.10)

n∑

i=1

degW (αi) +

n∑

i=1

ki = 2g − 2 + n.
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• (Line bundle criterion). If the moduli space W g,n(h1, . . . , hn) is non-

empty, then the degree of the desingularized line bundle |Lj | is an

integer, i.e.

(3.11) deg(|Lj |) = qj(2g − 2 + n)−
n∑

k=1

Θhk

j ∈ Z.

• (Concavity) Suppose that all marked points are narrow, π is the

morphism from the universal curve to W g,n(h1, . . . , hn) and

π∗
⊕3

i=1 Li = 0 holds; then

(3.12) [W g,n(h1, . . . , hn)]vir = ctop

(
−R1π∗

3⊕

i=1

Li

)
∩ [W g,n(h1, . . . , hn)].

Let αi = 1 ∈ Hhi
, 1 6 i 6 4 be the generators (cf. (3.8)). The concavity

formula (3.12) implies that ΛW
0,4(α1, . . . , α4) ∈ H∗(M0,4,C). According to

the orbifold Grothendieck-Riemann-Roch formula (see [7], Theorem 1.1.1),

(3.13)

ΛW
0,4(α1, . . . , α4)

=

3∑

i=1


B2(qi)

2
κ1 −

4∑

j=1

B2(Θ
hj

i )

2
ψj +

∑

Γ∈Γ0,4,W (h1,...,h4)

B2(ΘhΓ
i )

2
[Γ]


,

where κ1 is the first kappa class defined by Mumford, B2 is the second

Bernoulli polynomial

B2(y) = y2 − y +
1

6
,

[Γ] is the boundary class on Mg,n corresponding to the graph Γ, and

Γ0,4,W (h1, . . . , h4) is the set of graphs with one edge decorated by GW T .

The graph Γ has 4 tails decorated by h1, h2, h3, h4 and its edge is deco-

rated by hΓ and h−1
Γ . If the moduli space W 0,4(h1, . . . , h4) is non-empty,

each component satisfies (3.11). It is easy to see that the formula does not

depend on the choice of hΓ or h−1
Γ .

3.3.2. Generators of the FJRW ring.

From now on, we will consider W as an ISES in Table (1.1). Let

(WT , GW T ) be the Berglund-Hübsch-Krawitz mirror of (W, {1}) (see its

definition in Section 1.1). We will compare the FJRW theory for (WT, GW T )

with the Saito-Givental theory for W .

Since HW T := HW T ,G
W T

is the state space of a CohFT, it has a Frobe-

nius algebra structure, where the multiplication • is defined by pairing
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and 3-point correlators (3.1). For all invertible W , M. Krawitz (see [24])

constructed a ring isomorphism

(3.14) HW T
∼= QW .

Next, we give an explicit description of the generators of HW T and the ring

isomorphism for W , which is an ISES in Table (1.1). For a more general

description, we refer the interested readers to [24], [17] and [1].

For every ISES WT , there exists a 3-tuple (a, b, c) ∈ Z3
>0 such that

GW T
∼= µa × µb × µc, µk = Z/kZ.

We assume a > b > c and omit the factor µ1. For example, for WT =

X3
1 +X1X

4
2 +X2

3

GW T =
{

(λ1, λ2, λ3)
∣∣∣λ3

1 = λ1λ
4
2 = λ2

3 = 1
}
∼= µ12 × µ2.

Let h = (i, j, k) ∈ µa×µb×µc
∼= GW T , Hh is a narrow sector and Hh

∼= C,

if

1 6 i < a, 1 6 j < b, 1 6 k < c,

In this case, we denote a generator of Hh by

ei,j,k := 1 ∈ Hh = H0(Ch;W∞h ;Q).

Example 3.2. — We compute the FJRW ring for loop singularity WT ,

with W ∈ E(1,1)
6 .

WT = X2
1X3 +X1X

2
2 +X2X

2
3 ,

GW T =

{
ei =

(
e[
i

9
], e[

4i

9
], e[−2i

9
]

)
, i = 1, . . . , 8

}
∼= µ8.

All nonzero 3-point genus-0 correlators are




〈
e1, e1, e1

〉
0,3

=
〈

e4, e4, e4

〉
0,3

=
〈

e7, e7, e7

〉
0,3

= −2;
〈

e3, ei, e9−i

〉
0,3

=
〈

e1, e4, e7

〉
0,3

= 1.

The first row uses Index Zero Axiom (see [16]) and the second row uses

Concavity Axiom (3.12). It is easy to see e3 is the identity element and the

ring relations are

2 e1 • e4 + e2
7 = 2 e4 • e7 + e2

1 = 2 e7 • e1 + e2
4 = 0.

Thus we obtain a ring isomorphism between HW T and QW :

ρ1 = e4 7→ X1, ρ2 = e1 7→ X2, ρ3 = e7 7→ X3.
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For all 13 types of ISESs with a maximal admissible group, there is a

unique narrow sector ρ−1, with degW T (ρ−1) = 1 and

Θ(ρ−1) :=
(
1− qT

1 , 1− qT
2 , 1− qT

3

)
.

There are 13 types of ISESs, but only 9 of them do not have broad

generators. The narrow sectors have the advantage that we can use the

powerful concavity axiom (3.12). Combined with the remaining properties

of the correlators and the WDVV equations this allows us to reconstruct all

genus-0 FJRW invariants. According to the reconstruction theorem in [25],

we can also reconstruct the higher genus FJRW invariants, i.e., the total

ancestor potential function A FJRW
W T .

In the remaining 4 cases, we know how to offset the complication of

having broad generators for WT = X2
1 + X1X

2
2 + X2X

3
3 . The maximal

abelian group is of order 12. Its FJRW vector space has eight generators:

e1, e3, e5, e7, e9, e11, R4, R8.

Here R4 and R8 are the cohomology classes represented by the following

forms:

Rh = dX1 ∧ dX2 ∈ H2(Ch;W∞h ;Q), h = 4, 8 ∈ GW T .

Note that R4 and R8 are GW T -invariant elements in QWh
ωh where h ∈

GW T acts on each factor Xi and dXi as multiplication by e[qT
i ]. Although

one of the ring generators (R4) is broad, we have enough WDVV equations

to reconstruct the correlators containing broad sectors from correlators

with only narrow elements and apply the concavity axioms.

For the other three types of ISESs, we can still compute some genus-0 4-

point correlators with broad sectors, but we do not know how to reconstruct

the complete theory only from correlators with narrow elements. In other

words, for 10 out of the 13 ISESs, we can compute all the FJRW invariants.

These cases and the corresponding ring generators ρi of the FJRW ring

HW T are listed in tables below.

3.3.3. Classification of ring structure

According to isomorphism (3.14), in order to classify the FJRW rings for

ISES, it is enough to classify the Jacobian algebras. For any special limit

in the Saito-Givental theory for ISES, we need the ring structure for the

classification. Let us first focus on special limits at σ = 0. According to

Saito [36], simple elliptic singularities are classified by their Milnor num-

ber and the elliptic curve at infinity. It follows that the Jacobian algebras
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Table 3.1. Generators of the FJRW ring HW T , W ∈ E(1,1)
6

WT GW T Θ(ei,j,k) ρ1 ρ2 ρ3 ρ−1

X3
1 +X3

2 +X3
3 µ3

3 e[ i
3 ], e[ j

3 ], e[ k
3 ] e2,1,1 e1,2,1 e1,1,2 e2,2,2 = ρ1ρ2ρ3

X2
1X3 +X1X

2
2 +X2X

2
3 µ8 e[ i

9 ], e[ 4i
9 ], e[− 2i

9 ] e4 e1 e7 e6 = ρ1ρ2ρ3

X2
1 +X1X

2
2 +X2X

3
3 µ12 e[ i

2 ], e[− i
4 ], e[ i

12 ] R4 e1 e7 e9 = ρ2ρ
2
3

Table 3.2. Generators of the FJRW ring HW T , W ∈ E(1,1)
7

WT GW T Θ(ei,j,k) ρ1 ρ2 ρ−1

X4
1 +X4

2 +X2
3 µ2

4 × µ2 e[ i
4 ], e[ j

4 ], e[ 1
2 ] e2,1 e1,2 e2,2 = ρ2

1ρ
2
2

X3
1X2 +X1X

3
2 +X2

3 µ8 × µ2 e[− 3i
8 ], e[ i

8 ], e[ 1
2 ] e1 e5 e6 = ρ2

1ρ
2
2

X3
1 +X1X

4
2 +X2

3 µ12 × µ2 e[−i
3 ], e[ i

12 ], e[ 1
2 ] e1 e5 e10 = ρ1ρ

3
2

X3
1 +X1X

2
2 +X2X

2
3 µ12 e[ i

3 ], e[− i
6 ], e[ i

12 ] e5 e1 e8 = ρ1ρ2ρ3

A
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Table 3.3. Generators of the FJRW ring HW T , W ∈ E(1,1)
8

WT GW T Θ(ei,j,k) ρ1 ρ2 ρ−1

X6
1 +X3

2 +X2
3 µ6 × µ3 × µ2 e[ i

6 ], e[ j
3 ], e[ 1

2 ] e2,1 e1,2 e5,2 = ρ4
1ρ2

X3
1 +X1X

2
2 +X3

3 µ6 × µ3 e[−i
3 ], e[ i

6 ], e[ j
3 ] e1,1 e2,2 e4,2 = ρ1ρ2ρ3

X4
1 +X1X

3
2 +X2

3 µ12 × µ2 e[−i
4 ], e[ i

12 ], e[ 1
2 ] e2 e7 e9 = ρ2

1ρ
2
2

Table 3.4. Classification of ring structure

(
µ, j(0)

)
W

(8,0) X3
1 +X3

2 +X3
3 , X

2
1X2 +X3

2 +X3
3 , X

2
1X2 +X1X

2
2 +X3

3 , X
2
1X2 +X2

2X3 +X1X
2
3

(8,1728) X2
1X2 +X2

2X3 +X3
3

(9,0) X3
1X2 +X4

2 +X2
3 , X

3
1X2 +X2

2X3 +X2
3

(9,1728) X4
1 +X4

2 +X2
3 , X

2
1X2 +X2

2 +X4
3 , X

3
1X2 +X1X

3
2 +X2

3

(10,0) X6
1 +X3

2 +X2
3 , X

3
1X2 +X2

2 +X3
3

(10,1728) X4
1X2 +X3

2 +X2
3

T
O

M
E

6
6

(
2

0
1

6
)
,

F
A

S
C

IC
U
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of the ISES with 3 variables can be classified into 6 isomorphic classes,

parametrized by the pair consisting of the Milnor number µ = dim QW

and j(0), the j-invariant of Eσ=0:

For any two polynomials in the same list, it is easy to find a linear map

between the generators X1, X2, X3 of the corresponding Jacobian algebras,

such that it induces a ring isomorphism. Let us point out that the choice

of such linear maps is not unique in general. In Section 4.4, we can always

adjust some constants such that the ring isomorphism will be extended to

an isomorphism of Frobenius manifold, as well as an isomorphism of the

corresponding ancestor total potential.

3.3.4. Reconstruction of all genera FJRW invariants

For an ISES WT , its total ancestor potential A FJRW
W T can be recon-

structed from genus-0 primary correlators. This technique is already used

in [25] for three special examples of ISESs. As the reconstruction proce-

dures used there only require tautological relations on cohomology of mod-

uli spaces of curves and the FJRW ring structure, we can easily generalize to

all other examples. We sketch the general procedures here and refer to [25]

for readers who are interested in more details. There are three steps.

First, we express the correlators of genus at least 2 and the correlators

with descendant insertions in terms of correlators of genus-0 or genus-1 with

non-descendant insertions (called primary correlators). This step is based

on a tautological relation which splits a polynomial of ψ-classes and κ-

classes with higher degree to a linear combination of products of boundary

classes and polynomials of ψ-classes and κ-classes of lower degrees. This is

called g-reduction. The reason why g-reduction works in our case is that

the Selection rule imposes a constraint on the degree of the polynomials

involving ψ- and κ- classes (see Theorem 6.2.1 in [16]). In general, for an

arbitrary CohFT this argument fails and one has to use other methods (e.g.

Teleman’s reconstruction theorem).

Next, we reconstruct the non-vanishing genus-1 primary correlators from

genus 0 primary correlators using Getzler’s relation. The latter is a relation

in H4(M1,4), which gives identities involving the FJRW corrletors with

genus 0 and 1. In order to obtain the desired reconstruction identity, i.e.,

to express genus-1 in terms of genus-0 correlators, one has to make an

appropriate choice of the insertions corresponding to the 4 marked points

in M1,4 (see Theorem 3.9 in [25]).

Finally, to reconstruct the genus-0 correlators we use the WDVV equa-

tions. We say that a homogeneous element α ∈ HW T is primitive if it

ANNALES DE L’INSTITUT FOURIER



GLOBAL MIRROR SYMMETRY 305

cannot be decomposed as a product a′ • a′′ of two elements a′ and a′′ of

non-zero degrees. We also say that a genus-0 correlator is a basic corre-

lator if there are at most two non-primitive insertions, neither of which

is the identity. We use the WDVV equation to rewrite a primary genus-

0 correlator which contains several non-primitive insertions to correlators

with fewer non-primitive insertions and correlators with a fewer number of

marked points. Again the Selection rule should be taken into account in

order to obtain a bound for the number of marked points. It turns out that

all correlators are determined by the basic correlators with at most four

marked points (see Lemma 3.7 in [25]).

Lemma 3.3. — For an invertible simple elliptic singularity WT the total

ancestor FJRW potential A FJRW
W T of (WT , GW T ) is reconstructed from the

pairing, the FJRW ring structure constants and the 4-point basic correla-

tors with one of the insertions being a top degree element.

3.3.5. The 4-point genus-0 FJRW invariants

We introduce the following notation.

Definition 3.4. — Let Ξ(ρ1, ρ2, ρ3) be a degree 1 monomial with lead-

ing coefficient 1. For simplicity, we denote by 〈Ξ, ρ−1〉W
T

0,4 a basic correlator

such that the first three insertions give a factorization of Ξ.

This is well defined because the WDVV equations guarantee that

〈Ξ, ρ−1〉W
T

0,4 does not depend on the choices of the factorization. For ex-

ample, let Ξ(ρ1, ρ2, ρ3) = ρ2
1ρ

2
2; then the notation 〈Ξ, ρ−1〉W

T

0,4 represents

any of the following choices of correlators:
〈
ρ1, ρ1, ρ

2
2, ρ−1

〉W T

0,4
,
〈
ρ1, ρ2, ρ1ρ2, ρ−1

〉W T

0,4
,
〈
ρ2, ρ2, ρ

2
1, ρ−1

〉W T

0,4
.

But it does not represent
〈

1, ρ1, ρ1ρ
2
2, ρ−1

〉W T

0,4
, which is not a basic corre-

lator.

Lemma 3.5. — Let WT be an ISES; then the total FJRW potential

A FJRW
W T for (WT , GW T ) can be reconstructed from the FJRW algebra, and

the basic 4-point FJRW correlators 〈Ξ, ρ−1〉W
T

0,4 . Furthermore, if WT is an

ISES as in Tables 3.1, 3.2, or 3.3, then

(3.15)
〈

Ξ(ρ1, ρ2, ρ3), ρ−1

〉W T

0,4
=

{
qT

i if Ξ = Mi,

0 otherwise.

where Mi are the homogeneous monomials such that W = M1 +M2 +M3.
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Proof. — In [25, Theorem 3.4], it was proved for three special simple

elliptic singularities WT = X3
1 +X3

2 +X3
3 , X

3
1 +X1X

2
2 +X2X

2
3 and X3

1 +

X1X
2
2 + X3

3 , their FJRW correlators with symmetry group GW T can be

reconstructed from their FJRW algebra and some basic 4-point correlators.

We apply the same method to all cases of simple elliptic singularities here.

Finally, using WDVV equations in each case, it is again not hard to verify

all 4-point basic correlators without insertion ρ−1 can be reconstructed too.

For the second part of the lemma, we use WDVV and concavity to com-

pute FJRW correlators. We show the argument works for singularities of

Fermat type and of loop type. Other cases are similar. For a Fermat type

singularity, put Mi = X
1/qT

i

i , since all insertions are narrow, we apply the

Concavity Axiom (3.13) to compute

(3.16)
〈
ρi, ρi, ρ

1/qT
i −2

i , ρ−1

〉W T

0,4
.

Note that deg Li = −2 and the degree shifting numbers are (2qT
i , 2q

T
i , 1−

qT
i , 1 − qT

i ), thus the dual graphs will have ΘΓ = 0, 0, 1 − 3qT
i . The corre-

lator (3.16) becomes

1

2

(
B2(qT

i ) +B2(1− 3qT
i ) + 2B2(0)− 2B2(qT

i )− 2B2(1− qT
i )
)

= qT
i .

For loop type, WT = X2
1 X3 + X1 X

2
2 + X2 X

2
3 . Let us compute

〈
ρ1, ρ1, ρ2, ρ−1

〉W T

0,4
, which is not concave. However, the Concavity Ax-

iom (3.13) implies

〈
e2, e4, e7, e2

〉W T

0,4
= −2

9
.

On the other hand, WDVV equations show





〈
e1 • e4, e4, e7, e2

〉W T

0,4
+
〈

e1, e4, e4, e7 • e2

〉W T

0,4
=
〈

e7 • e4, e4, e1, e2

〉W T

0,4
;

〈
e4 • e4, e1, e7, e2

〉W T

0,4
+
〈

e4, e4, e1, e7 • e2

〉W T

0,4
=
〈

e4 • e7, e1, e4, e2

〉W T

0,4
;

We observe up to symmetry,
〈

e5, e1, e7, e2

〉W T

0,4
=
〈

e8, e1, e4, e2

〉W T

0,4
. Re-

call the ring relations in Example 3.2, we obtain

〈
ρ1, ρ1, ρ2, ρ−1

〉W T

0,4
=
〈

e4, e4, e1, e6

〉W T

0,4
=

1

3
. �
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4. Mirror symmetry at Gepner points

4.1. The Saito–Givental limit

Now we will discuss the existence of Saito-Givental limit at the spe-

cial limit point of simple elliptic singularities. In general, Givental’s for-

mula (2.31) only defines a total ancestor potential at a semisimple points

s ∈ S, because the asymptotic operator Rs(z) (see Section 2.5) has sin-

gularities along the caustic K ⊂ S consisting of non-semisimple s. It is a

famous question under which conditions the potentials at semisimple points

extend to non-semisimple points. Teleman generalizes the formula to Co-

hFT level and one would also ask whether such CohFTs extend to non-

semisimple points as well. Both extension problems are highly nontrivial,

see [40, 11, 29] for discussions. In particular, the extension problem of the

Saito-Givental ancestor potentials at caustics is already solved for generic

isolated singularity by the first author recently [29], using Eynard-Orantin

recursion.

For simple elliptic singularities, the extension problem at the special

limit points that appear in Theorem 1.4 and Theorem 1.5 can be solved

by the reconstruction technique [25]. More explicitly, the extension follows

from the convergence of certain generating functions, and the convergence

relies on the reconstruction, both in genus zero and higher genus. Since the

proof of the convergence is quite cumbersome, we do not repeat the process

here. We briefly explain the argument and refer the readers to the proof of

Theorem 1.2 in [25] for details.

The logic of our argument are seperated in two steps. In the first step,

we identify the genus-0 generating functions with no descendent insertions

between Saito-Givental theory at those special limit points and Gromov-

Witten theory of elliptic orbifold P1s or FJRW theory of some simple ellip-

tic singularities. We call the identification the genus zero mirror symmetry.

The genus-0 generating functions of the Saito–Givental theory are well de-

fined for all s ∈ S. At other points, we can simply treat them as meromor-

phic functions. According to the genus zero reconstruction, we only need

to match a few genus zero invariants in Saito-Givental theory with those

in GW theory or FJRW theory. In the final sections of this paper, we will

do the calculations to match those invariants.

In the second step, we can use the reconstruction (both at genus zero and

higher genus) of the correlation functions (see Section 3.2 and Section 3.3.4

for the genus zero part and [25] for the higher genus part) for both GW-

point and FJRW-point to prove that the GW (or FJRW) total ancestor
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potential is convergent at the points, which are mirror to s ∈ S, such that

σ = sµ−1 is sufficiently close to the special point and it coincides with the

Saito–Givental ancestor potential A SG
W (s) (see (2.31)). An upshot is that

A SG
W (s) extends holomorphically through the caustic K and the special

limit points of all Fermat simple elliptic singularities.

All in all, as long as we can check the genus zero mirror symmetry at

the special limit point σ, one can define the Saito-Givental limit A SG
W (σ)

at those special limits σ by

(4.1) A
SG

W (σ) := lim
s→(σ,0)

A
SG

W (s).

There is an alternative way to proceed provided that we know that the

genus-0 CohFTs are the same. It is based on Teleman’s classification of

semisimple CohFTs [40]. More explicitly, Coates and Iritani proved that

for a smooth projective variety which satisfies the so-called Genus-Zero

Convergence condition and Analytic Semisimplicity condition, then its GW

total ancestor potential is convergent, in the sense that it is a rational

element in some Fock space, see Theorem 6.5 in [11]. We refer the readers

to [11] for the details of the explanation.

The same technique can be applied to the orbifold GW theory and FJRW

theory. Then we only need to check the Genus-Zero Convergence condition

and the Analytic Semisimplicity condition. In GW theory of elliptic orb-

ifold P1s and FJRW theory of simple elliptic singularities, the first condition

can be checked by explicit estimation of genus zero invariants based on the

reconstruction; the second condition follows from genus zero mirror sym-

metry and the properties of isolated singularities. Again, the existence of

the limit is guaranteed by the genus zero mirror symmetry and appropri-

ate estimation. The advantage of this approach is that one can prove a

stronger result. Namely, the higher-genus Saito–Givental CohFT (not only

its ancestor potential) extends through the caustic K and the special limits

of the Fermat simple ellitptic singularities. The details in the proofs of the

above statements can be found in Lemma 3.2 in [30] for the case of ancestor

potentials and in Proposition 5.5 in [31] for the CohFTs.

In the rest of this section, our goal is to prove Theorem 1.4. According

to the reconstruction results in FJRW theory (see Lemma 3.5) we need to

compute certain 3- and 4- point genus-0 correlators in Saito’s theory and

compare them to the ones in the mirror FJRW theory.
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4.2. B-model 3-point genus-0 correlators

We continue to use the same notation as in Section 2.4. Namely, let

W = M1 + M2 + M3 be an ISES with a miniversal deformation given

by a monomial φm(x), m = (m1,m2,m3). We choose a primitive form

ω = d3x/π(σ) in a neighborhood of σ = 0, such that π(σ) is the solution

to the Picard-Fuchs equation (2.12) satisfying the initial conditions π(0) =

c, π′(0) = 0, where the constant c is such that the residue pairing (see (2.4))

satisfies

〈1, φm〉|s=0 = 1 .

Let {tr} be the flat coordinate system, such that tr(0) = 0 and the flat

vector fields ∂r := ∂/∂tr agree with ∂/∂sr at s = 0.

The primitive form induces an isomorphism between the tangent and the

vanishing cohomology bundle via the following period mapping:

∂/∂tr 7→ −∇−1
∂

∂λ

∇ ∂
∂tr

∫
ω

dF
=

∫
δr(s,x)

ω

dF

=

∫
δr(s,x)

1

π(σ)

d3x

dF
,

(4.2)

where δr is some homogeneous polynomial (in x) of degree deg(φr). Note

that the Kodaira–Spencer isomorphism takes the form

(4.3) ∂/∂tr 7→ δr(s,x) mod (FX1 , FX2 , FX3).

We know ∂r1 • ∂r2 is induced from multiplication in q∗OC , and the pairing

is

〈
δr1 , δr2

〉
:= η(∂r1 , ∂r2) = Res

δr1(s,x)δr2(s,x)

(∂X1
Wσ) (∂X2

Wσ)(∂X3
Wσ)

d3x

π(σ)2
.

By definition, the restriction of the 3-point correlators to the marginal

direction is
〈
δr1 , δr2 , δr3

〉
0,3

=
〈
δr1 , δr2 · δr3

〉

= Res
δr1

(σ,x)δr2
(σ,x)δr3

(σ,x)

(∂X1
Wσ) (∂X2

Wσ)(∂X3
Wσ)

d3x

π(σ)2
.

(4.4)

Note that the 3-point correlator depends only on the product Ξ := δr1
δr2
δr3
.

Therefore we can simply use the notation 〈Ξ〉0,3 instead. Finally, Defini-

tion (4.4) makes sense even if we replace δr, r = r1, r2, r3 by arbitrary

polynomials, not only the ones that correspond to flat vector fields via (4.3).
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4.3. B-model 4-point genus-0 correlators

Let F SG
0 be the genus-0 generating functions for the Frobenius manifolds

of miniversal deformations near the origin. By definition,
〈
δr1 , . . . , δrn

〉SG

0,n
=

∂nF SG
0

∂ tr1 . . . ∂ trn

∣∣∣
t=0

.

Thus, using that ∂/∂σ = δm at σ = 0, we get

(4.5)
〈
δr1 , δr2 , δr3 , δm

〉SG

0,4
= ∂σ

〈
δr1 , δr2 , δr3

〉∣∣∣
σ=0

.

In order to compute 4-point correlators of the form (4.5) it is enough to de-

termine δr(σ,x) up to linear terms in σ. To begin with, we notice that φr+m

lies in the Jacobian ideal of Wσ. More precisely, the following Lemma holds.

Lemma 4.1. — There are polynomials gr,i ∈ C[σ,X1, X2, X3] such that

(1− Cσl) φr+m =

3∑

i=1

gr,i ∂iWσ.

This Lemma can be proved in all cases by using Saito’s higher residue

pairing. However, in what follows, we need an explicit formula for

gr := (gr,1, gr,2, gr,3) .

Therefore we verified the Lemma on a case-by-case basis. Some of our com-

putations will be given below. The remaining cases are completely analo-

gous.

There are several corollaries of Lemma 4.1. First of all, note that under

the period map (4.2) the Gauss–Manin connection takes the form (2.8)

(with z ≡ −∂−1
λ ). It follows that if deg(φr) is not integral, then the re-

striction of the section (4.2) of the vanishing cohomology bundle to the

marginal deformation subspace must be flat, i.e., the sections

(4.6) [δr ω](σ) :=

∫
δr(σ,x)

ω

dWσ
, deg(φr) /∈ Z

are independent of σ. Furthermore, using formulas (2.17) for the Gauss-

Manin connection we get

(1− Cσl)
∂

∂σ
Φr = −

∫ 3∑

i=1

∂i gr,i
d3x

dWσ

Both sides must have the same degree, i.e.,

(4.7) (1− Cσl)
∂

∂σ
Φr =

∑

r′

cr,r′(σ)Φr′ ,
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where the sum is over all r′, such that degφr = deg φr′ and cr,r′(σ) ∈ C[σ]

are some polynomials.

Lemma 4.2. — Suppose deg(φr) /∈ Z; then we have

(4.8) δr = φr − σ
∑

r′,r′ 6=r

cr,r′(0)φr′ +O(σ2),

where O(σ2) denotes terms that have order of vanishing at σ = 0 at least 2.

Proof. — Follows easily from (4.7). We omit the details. �

Let M(X1, X2, X3) ∈ C[x] be a weight-1 monomial with leading coef-

ficient 1. Our next goal is to evaluate the following auxiliary expression

(recall Definition 3.4):

〈M,φm〉0,4 := ∂σ〈M〉0,3|σ=0 .

Lemma 4.3. — The number 〈M,φm〉0,4 is non-zero iff M = Mi for some

i = 1, 2, 3. In the latter cases the numbers are given as follows

(4.9)
(
〈M1, φm〉0,4, 〈M2, φm〉0,4, 〈M3, φm〉0,4

)
= −(m1,m2,m3)E−1

W .

Proof. — For the second part, we apply the operators Xi ∂Xi
, i = 1, 2, 3,

to the identity

M1 +M2 +M3 = Wσ − σφm(x)

and take the residue. We get

〈M1〉0,3 a1i + 〈M2〉0,3 a2i + 〈M3〉0,3 a3i = −σmi 〈φm〉0,3.

It remains only to differentiate with respect to σ and set σ = 0.

For the first part, because M is a weight-1 monomial with coefficient 1,

we can use the relations in the Jacobian algebra of Wσ to rewrite M as a

product of φm and a function of σ. Let us write M = h(σ)φm. For example,

in the Fermat E
(1,1)
6 case,

X3
1 = −3σφ111; (1 +

σ3

27
)X2

1X2 = 0.

If M 6= Mi, i = 1, 2, 3, then h(σ) either does not vanish at σ = 0 or vanishes

at σ = 0 with order at least 2. In both cases, 〈M,φm〉0,4 vanish. �

Now we are ready to compute the 4-point correlators that are needed for

the reconstruction of the CohFT. Let δr(s, x), r = r1, r2, r3 be polynomi-

als corresponding to the flat vector fields ∂/∂tr via the Kodaira–Spencer

isomorphism (4.3). Put

Ξ(s,x) = δr1
(s, x)δr2

(s, x)δr3
(s, x).
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Note that Ξ(0,x) is a homogeneous monomial (see (4.8)) with leading co-

efficient 1.

Lemma 4.4. — The 4-point genus-0 correlators with a top degree inser-

tion δm are

〈
δr1 , δr2 , δr3 , δm

〉SG

0,4
=

{
−qT

i if Ξ(0,x) = Mi,

0 otherwise.

Proof. — The same argument as in the proof of the first part of

Lemma 4.3 also works for Ξ(σ,x). Thus if Ξ 6= Mi, i=1,2,3, we have
〈

Ξ, δm

〉SG

0,4
= 0.

In order to finish the proof we need only to compute the correlators when

Ξ(0,x) = Mi for some i = 1, 2, 3. Note that the diagonal entries of the

matrix EW are always at least 2 (see Table 1.1). Therefore, it is enough to

compute the following correlators:




〈
δ100, δ100, δr, δm

〉SG

0,4
, r = (a11 − 2, a12, a13),

〈
δ010, δ010, δr, δm

〉SG

0,4
, r = (a21, a22 − 2, a23),

〈
δ001, δ001, δr, δm

〉SG

0,4
, r = (a31, a32, a33 − 2).

We do not have a uniform computation since we need to use Lemma 4.2,

for which the coefficients cr,r′(0) can be computed only on a case-by-case

basis. Let us sketch the main steps of the computation in several examples,

leaving the details and the remaining cases to the reader. We will make use

of the notation

δ(σ,x) ≈ φ(σ,x), δ, φ ∈ C[x],

which means first order approximation at σ = 0, i.e., δ(σ,x) − φ(σ,x) =

O(σ2).

Case 1. — W = X3
1 +X3

2 +X3
3 ∈ E

(1,1)
6 and φm = X1X2X3. Since W is

symmetric in X1, X2, X3 it is enough to compute only one of the correlators,

say Ξ = M1. After a straightforward computation (the notation is the same

as in Lemma 4.1) we get

g100 =
(1

3
φ011,−

σ

9
φ002,

σ2

27
φ101

)
.

It follows that δ100 ≈ φ100 and then using formula (4.9) we get
〈
δ100, δ100, δ100, δm

〉SG

0,4
= −1

3
.
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Case 2. — W = X4
1 + X4

2 + X2
3 ∈ E

(1,1)
7 and φm = X2

1X
2
2 . In this

case M3 = 0 in the Jacobian algebra of W and W is symmetric in X1 and

X2. It is enough to compute only one of the correlators, say the one with

Ξ(0,x) = M1. We have

g100 =
(1

4
φ020,−

σ

8
φ110, 0

)
.

It follows that

δ100 ≈ φ100, δ200 ≈ φ200 +
σ

4
φ020.

Using formula (4.9) we find
〈
δ100, δ100, δ400, δm

〉SG

0,4
= −1

4
.

Case 3. — W = X3
1X2 + X2

2 + X3
3 ∈ E

(1,1)
8 and φm = X1X2X3. In

this case, since M2 = 0 in the Jacobian algebra, we need to compute two

correlators. We have



g100

g010

g001


 =




1
3φ001 − σ2

54φ200
σ2

18φ110 −σ
9φ010

− 1
6φ201 + σ2

27φ110
1
2φ111 −σ2

9 φ210

−σ
9φ010 − σ2

54φ101
σ2

9 φ011
1
3φ110


 .

It follows that we have the following linear approximations:

δ100 ≈ Φ100, δ001 ≈ Φ001, δ110 ≈ Φ110.

The correlators then become
〈
δ100, δ100, δ110, δm

〉SG

0,4
= −1

3
,
〈
δ001, δ001, δ001, δm

〉SG

0,4
= −1

3

Case 4. — The Fermat type E
(1,1)
8 , i.e. W = X6

1 +X3
2 +X2

3 and φm =

X4
1X2. In this case M3 = 0, so again we have to compute two correlators.

We have

g100 =
(1

6
φ020 +

σ2

27
φ200,−

2σ

9
φ300, 0

)
,

g010 =
(
− σ

18
φ300 +

σ2

27
φ110,

1

3
φ400, 0

)
.

It follows that the first order approximations that we need are

δ100 ≈ Φ100, δ010 ≈ Φ010, δ400 ≈ Φ400 +
σ

2
Φ210.

Formulas (4.9) and (4.5) imply
〈
δ100, δ100, δ400, δm

〉SG

0,4
= −1

6
;
〈
δ010, δ010, δ010, δm

〉SG

0,4
= −1

3
. �
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4.4. Proof of Theorem 1.4

The 4-point correlators in Lemma 3.5 and Lemma 4.4 have opposite

signs. If ρ−1 7→ δm, we rescale the primitive form by (−1) and define

(4.10) HW T → T ∗SW , ρr 7→ (−1)1−deg φrδr, r = (r1, r2, r3),

where ρr = ρr1
1 ρ

r2
2 ρ

r3
3 . For the new basis, the 3-point correlators in the

Saito–Givental theory do not change, while the 4-point correlators are

rescaled by (−1). Lemma 3.5 and Lemma 4.4 imply that the map (4.10)

identifies A FJRW
W T and A SG

W (σ = 0). If ρ−1 7→ cδm for some nonzero con-

stant c > 1, we need to rescale the ring generators furthermore to obtain

an suitable mirror map. Thus Theorem 1.4, a) is proved.

On the other hand, since we already computed all basic 4-point genus-0

correlators for Saito-Givental limit at Gepner point σ = 0, we can use it

here to identify two Gepner points of Saito-Givental theory, if they have

isomorphic rings. We notice that all the ring structures at Gepner points

are already listed in Section 3.3.3. The following Lemma gives a complete

classification for the Gepner points, in the sense of Definition 1.2. In par-

ticular it gives a proof for part b) of Theorem 1.4.

Lemma 4.5. — If W1 and W2 are invertible simple elliptic singularities,

and QW1
∼= QW2

, then there exists a ring isomorphicm Ψ : QW1
∼= QW2

,

such that Ψ preserves the Saito-Givental limits at Gepner point, i.e. Ψ :

A SG
W1

(σ) = A SG
W2

(σ) for σ = 0.

Proof. — We will construct explicitly linear isomorphisms Ψ inducing

the ring isomorphisms; then one has to check that they also preserve the

4-point correlators in Lemma 4.4. For example, let W1 = X3
1 + X3

2 + X3
3

and W2 = X2
1X2 +X2

2X3 +X1X
2
3 , both marginal X1X2X3. We construct

a ring homomorphism

Ψ : QW1
→ QW2

which sends {Yi = Xi/λi}3
i=1, a basis of generators of QW1

to {Ψ(Yi)}3
i=1 ∈

QW2 ,

(Ψ(Y1),Ψ(Y2),Ψ(Y3)) = (X1, X2, X3)




1 1 1

1 e[ 1
3 ] e[ 2

3 ]

1 e[ 2
3 ] e[ 1

3 ]


 .

Here the parameters λ1, λ2, λ3 are as follows

(4.11) λ4
1λ2λ3 = e[

1

3
]λ1λ

4
2λ3 = e[

2

3
]λ1λ2λ

4
3 = − 1

27
.
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We extend Ψ to be a ring isomorphism. Since, δm1
= δm2

= X1X2X3, one

can check
〈

Ψ(X1),Ψ(X1),Ψ(X1),Ψ(X1X2X3)
〉

0,4,W2

= −27λ4
1λ2λ3

〈
X1, X1, X1, X1X2X3

〉
0,4,W2

= −1

3
.

Similarly, due to the other two identities in (4.11), we can check all the 4-

point genus-0 correlators listed in Lemma 4.4 matches. Thus Ψ : A SG
W1

(σ) =

A SG
W2

(σ) for σ = 0.

For each W , we can fix the choice of φm. We list the isomorphism for

those examples in Table 4.1. We always choose {Yi = Xi/λi}3
i=1. Cases of

other choices of φm are obtained by rescaling the ring generators appropri-

ately. �
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Table 4.1. Classification of Gepner points

W φm Ring Generators Constraints

X3
1 +X3

2 +X3
3 X1X2X3 (Y1, Y2, Y3)

X2
1X2 +X3

2 +X3
3 X2

2X3 ( X1√
3

+X2,
−X1√

3
+X2, X3) −4λ4

1λ2 = 4λ1λ
4
2 = λ3 = 1

X2
1X2 +X1X

2
2 +X3

3 X1X2X3 ( X1

e[ 1
6 ]

+X2,
X1

e[ 5
6 ]

+X2, X3) −3
√
−3λ4

1λ2 = −3
√
−3λ1λ

4
2 = λ3 = 1

X3
1X2 +X4

2 +X2
3 X1X

3
2 (Y1, Y2)

X3
1X2 +X2

2X3 +X2
3 X1X2X3 (X1, X2) −2λ4

1λ
4
2 = 8λ1λ

7
2 = 1

X4
1 +X4

2 +X2
3 X2

1X
2
2 (Y1, Y2)

X2
1X2 +X2

2 +X4
3 X2

1X
2
3 (X1, X3) −4λ6

1λ
2
2 = λ2

1λ
6
2 = 1

X3
1X2 +X1X

3
2 +X2

3 X2
1X

2
2 (X1 +X2,−X1 +X2) −64λ6

1λ
2
2 = 64λ2

1λ
6
2 = 1

X6
1 +X3

2 +X2
3 X4

1X2 (Y1, Y2)

X3
1X2 +X2

2 +X3
3 X1X2X3 (X1, X3) 8λ10

1 λ2 = −2λ4
1λ

4
2 = 1
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5. Global mirror symmetry for Fermat simple elliptic
singularities

The goal in this section is to prove Theorem 1.5. For special limit σ 6=
0,∞, it is enough to prove it only for one of the points pk = C−1/lηk,

1 6 k 6 l. The remaining cases follow easily due to the Z/lZ-symmetry of

Σ. For all those limits except σ = ∞ for W = X6
1 + X3

2 + X2
3 , according

to the reconstruction Lemma 3.1, we need to construct an appropriate

mirror map from the Chen–Ruan orbifold cohomology ring to the limit of

Jacobian algebras, such that after choosing an appropriate primitive form,

the Poincaré pairing is identified with the residue pairing and the 3-point

correlator (see Lemma 3.1 ) is the same for both the Gromov–Witten and

the Saito–Givental CohFTs. Finally, we also prove the Saito-Givental limit

σ = ∞ for W = X6
1 + X3

2 + X2
3 is isomorphic to an FJRW theory. This

agrees with the physicists’ prediction that the monodromy of the Gauss–

Manin connection around the large volume limit point should be maximally

unipotent, while as we will see below, the monodromy around σ = ∞ is

diagonalizable.

The limit of the Saito-Givental theory of ISESs at σ = ∞ is already

discussed in [30] for (W,φm = X1X2X3), where

W = X3
1 +X3

2 +X3
3 ∈ E

(1,1)
6 , X3

1X2 +X2
2X3 +X2

3 ∈ E
(1,1)
7 ,

X3
1X2 +X2

2 +X3
3 ∈ E

(1,1)
8 .

Namely, it was proved that the Saito-Givental theory at σ = ∞ is mirror

to the Gromov-Witten theory respectively of P1
3,3,3,P

1
4,4,2 and P1

6,3,2.

5.1. Construction of a mirror map

We construct a mirror map based on solving the systems of hypergeomet-

ric equations. We will introduce explicit how to construct it near σ = pk.

For the special limit σ =∞, the construction is similar.

5.1.1. Non-twisted sectors

The primitive form is chosen to be ω = d3x/πA(σ), where the cycle

A ∈ H1(Eσ) is invariant with respect to the local monodromy around

σ = pk. Recall that πA is a solution to the hypergeometric equation (2.13)
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with weights (α, β, γ), where γ = α + β. The invariance of A implies near

x = 1, we have

(5.1) πA(σ) = λW F
(1)
1 (x) := λW 2F1 (α, β, 1, 1− x) , λW ∈ C∗.

Since the j-invariant of Eσ always has the form

j(σ) =
P (σ)

(1− Cσl)N

for some polynomial P (σ) ∈ C[σ] and some integer N . We can always

choose a second cycle B ∈ H1(Eσ), such that(1)

(5.2) πB(σ) =
NλW

2π
√
−1

(
F

(1)
2 (x)− ln P (pk)

N
F

(1)
1 (x)

)
,

where F
(1)
2 (x) is also a solution to the hypergeometric equation (2.13) such

that

F
(1)
2 (x) = ln(1− x)F

(1)
1 (x) +

∞∑

n=1

bn(1− x)n,

with

bn =
(α)n(β)n

(n!)2

( 1

α
+· · ·+ 1

α+ n− 1
+

1

β
+· · ·+ 1

β + n− 1
−2
(1

1
+· · ·+ 1

n

))
.

We can check the following τ is the modulus of the elliptic curve Eσ.

(5.3) τ :=
πB(σ)

πA(σ)
.

If we put Q = exp(2π
√
−1τ), then the j-invariant always has a Q-expansion

j(σ) =
1

Q
+ 744 + 196884Q+ · · ·

Note that the residue pairing implies

(5.4)
〈

1, φ−1

〉
=

1

K(1− C σl)
,

where K is some fixed constant. Since the residue pairing must be identified

with the Poincaré pairing, the mirror map should satisfy

(5.5) ∆01 7→ 1, ∆02 7→ K(1− C σl)φ−1(x)π2
A.

The next step is to identify the divisor coordinate t02 in the orbifold GW

theory and the modulus τ . In order to get the correct q-expansion, we define

(5.6) q := exp(t−1), t−1 :=
2π
√
−1

L
τ,

(1) The coefficients are chosen to match the expansion of the j-invariant, formula (5.3),
and (5.6).
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Here(2) L = 3, 4, 6 respectively for the elliptic orbifolds P1
3,3,3,P

1
4,4,2,P

1
6,3,2.

This implies

(5.7)〈
∆01,∆02

〉
7→
〈

1,
∂

∂ t−1

〉
=
∂σ

∂τ

∂τ

∂ t−1

〈
1,

∂

∂σ

〉
=

L

2π
√
−1

∂σ

∂τ

1

π2
A

〈
1, φ−1

〉

is a constant. The last equality follows from equation (4.3) and (4.4). By

formulas (5.1), (5.2), (5.3), (5.4), (5.6), we can fix the constant λW by

choosing 〈
∆01,∆02

〉
7→
〈

1,
∂

∂ t−1

〉
= 1.

In computations below, for our convenience, we may choose πA(σ) different

than formula (5.1) by a scalar. This will not change the Frobenius mani-

fold structure since we can always rescale the ring generators to offset its

influence.

5.1.2. Twisted sectors

In order to complete the construction, we need to identify the twisted

cohomology classes ∆ij with monomials δr(σ,x). The key observation is

that the sections

(5.8)

∫
δr(σ,x)

ω

dWσ

of the vanishing cohomology bundle of Wσ are flat on the restriction of

the Gauss–Manin connection to Σ× {0} ⊂ Σ× Cµ−1. In general, we need

flatness on Σ×Cµ−1. However, since we only need to match the invariants

in Lemma 3.1 and Lemma 3.5, the above formula is enough. This way our

choice of δr depends on an invertible matrix of size (µ− 2)× (µ− 2). The

matrix is decomposed into 1×1 and 2×2 blocks according to Lemma 2.5. In

particular, the entries of a 2×2 block are obtained from a basis of solutions

of hypergeometric equations (2.26) with weights (αr, βr, γr) near x = 1:

(5.9)





F
(1)
1,r (x) = 2F1 (αr, βr;αr + βr − γr + 1; 1− x) ,

F
(1)
2,r (x) = 2F1 (γr − αr, γr − βr; γr − αr − βr + 1; 1− x)

×(1− x)γr−αr−βr .

The correlation functions in the Saito–Givental CohFT are invariant with

respect to the translation t−1 7→ t−1 + 2π
√
−1, see (5.6). The coefficient

in front of qd, d ∈ Z, is called the degree-d part of the correlator function.

(2) We remark that L is the order of the cyclic group µL, where each corresponding
orbifold here can be obtained as a µL-quotient of some elliptic curve.
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By taking the degree-0 part of the 3-point functions, we obtain a Frobe-

nius algebra structure on the Jacobian algebra QW that under the mirror

map should be identified with the Frobenius algebra corresponding to the

Chen–Ruan orbifold (classical) cup product. Using also that the mirror map

preserves homogeneity we obtain a system of equations for the matrix. It

remains only to see that these equations have a solution. Let us list the

explicit formulas for the mirror map. We omit the details of the compu-

tations, which by the way are best done with the help of some computer

software–Mathematica.

5.2. Global mirror symmetry for Wσ = X3
1 +X3

2 +X3
3 + σX1X2X3

The j-invariant

j(σ) = −σ
3(−216 + σ3)3

(27 + σ3)3
=
−27x(8 + x)3

(1− x)3
, x = −σ

3

27
.

Φr satisfies a first order differential equation (2.25) and can be solved

Φr = (1− x)− deg φrδr.

Here δr are some flat sections. The residue pairing implies

(5.10)
〈
X1X2X3

〉
:= Res

X1X2X3

(∂X1
Wσ) (∂X2

Wσ) (∂X3
Wσ)

d3x =
1

27(1− x)
.

5.2.1. GW-point at root of unity at x = 1

We have pl = −3 and

πA(σ) = 2F1

(
1

3
,

1

3
; 1; 1− x

)
,

πB(σ) =
3

2π
√
−1

(
F

(1)
2 (x)− ln P (pk)

3
· F (1)

1 (x)

)
.

The Fourier series of 1− x in q = e2πiτ/3 is

(5.11) 1− x = −27q − 324q2 − 2430q3 − 13716q4 + · · ·
A natural basis for the flat sections with non-integral degrees are

δr = (1− x)1/3φr(x)πA, δr′ = (1− x)2/3φr′(x)πA.

Here r = (1, 0, 0), (0, 1, 0), (0, 0, 1) and r′ = (1, 1, 1)− r. Applying (4.4), we

know the non-vanishing correlators
〈
· · ·
〉

0,3,0
are

〈
1, δr, δr′

〉
0,3,0

=
〈
δr, δr, δr

〉
0,3,0

=
〈
δ1,0,0, δ0,1,0, δ0,0,1

〉
0,3,0

=
1

27
.

ANNALES DE L’INSTITUT FOURIER



GLOBAL MIRROR SYMMETRY 321

The mirror map is given by (5.5), (5.6), and it identifies the ring generators

by

(5.12)




∆11

∆21

∆31


 7→




1 1 1

1 e[ 2
3 ] e[ 1

3 ]

1 e[ 1
3 ] e[ 2

3 ]







δ1,0,0

δ0,1,0

δ0,0,1


 .

It is easy to check that this identification agrees with the Chen-Ruan orb-

ifold cohomology ring of P1
3,3,3 (see (3.4), (3.5)). For example, from (5.12)

we have
〈

∆11,∆11,∆11

〉
0,3,0

7→
∑

r;deg φr=1/3

〈
δr, δr, δr

〉
0,3,0

+ 6
〈
δ1,0,0, δ0,1,0, δ0,0,1

〉
0,3,0

=
1

3
.

Finally,
〈

∆11,∆21,∆31

〉
0,3,1
7→ 1 for Lemma (3.1) follows from

〈
∆11,∆21,∆31

〉
0,3

7→ (1− (1− x))1/3 − 1

9
πA = q + q4 + 2q7 + · · · = η(9τ)3

η(3τ)
.

5.2.2. GW-point at infinity

For this limit, the mirror symmetry is already verified in [30]. It maps

the twisted sector ∆i,j to δr, where i-th index of r is j.

5.3. Global mirror symmetry for Wσ = X4
1 +X4

2 +X2
3 + σX2

1X
2
2

The j-invariant

j(σ) =
16(12 + σ2)3

(4− σ2)2
=

64(3 + x)3

(1− x)2
, x =

σ2

4
.

For r = (10, 01, 11, 21, 12), Φr satisfies a first order differential equa-

tions (2.25). On the other hand, both Φ20 and Φ02 satisfy a second or-

der hypergeometric equation with weights α20 = β02 = 3/4, β20 = α02 =

1/4, γ20 = γ02 = 1/2, which comes from the following system of first order

differential equations:

(5.13)

{
(4− σ2) ∂σΦ20(σ) = σ

2 Φ20(σ)− Φ02(σ);

(4− σ2) ∂σΦ02(σ) = σ
2 Φ02(σ)− Φ20(σ).
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It follows that Φ02 = LΦ20 (and Φ20 = LΦ02) where L is the differential

operator

L = −(4− σ2)∂σ +
σ

2
.

Moreover, here the residue pairing implies

(5.14)

〈
X2

1X
2
2

〉
=

1

32(1− x)
,
〈
X4

1

〉
=
〈
X4

2

〉
=
−x1/2

32(1− x)
,

〈
X3

1X2

〉
=
〈
X1X

3
2

〉
= 0.

5.3.1. GW-point at root of unity at x = 1

We are looking for σ = 2x1/2 = ±1. We pick p2 = 2. The Fourier series

for 1− x in terms of q = e2πiτ/4 is

1− x = 64q2 − 1536q4 + 19200q6 + · · · .

We choose

πA(σ) = 2F1

(
1

4
,

1

4
; 1; 1− x

)
,

πB(σ) =
2

2π
√
−1

(
F

(1)
2 (x)− ln P (pk)

2
· F (1)

1 (x)

)
.

Let us construct a basis of flat sections. For first order equations,

(5.15) δr(σ,x) = (x− 1)
deg φr φr(x)πA(σ), r = (10, 01, 11, 21, 12)

Then for second order equations, we can obtain a pair of polynomials δ20

and δ02 that determine flat sections (5.8) by solving the following system:

(5.16)


φ20 πA

φ02 πA


 =


2F1

(
1
4 ,

3
4 ; 3

2 ; 1− x
)

(x− 1)−1/2
2F1

(
1
4 ,− 1

4 ; 1
2 ; 1− x

)

2F1

(
1
4 ,

3
4 ; 3

2 ; 1− x
)
−(x− 1)−1/2

2F1

(
1
4 ,− 1

4 ; 1
2 ; 1− x

)




δ20

δ02


.

Now the genus-0 3-point Saito-Givental correlators for flat sections δr can

be calculated using residue formula (5.14). Based on this, we can check

that after a linear transformation, we actually match those flat sections to
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flat elements in Chen-Ruan cohomology of P1
4,4,2 via the following mirror

map



∆1,1 7→ δ10 +
√
−1δ01, ∆1,2 7→ 2

√
−1δ11 + 2δ02,

∆1,3 7→ 4
√
−1δ2,1 − 4δ1,2;

∆2,1 7→
√
−1δ10 + δ01, ∆2,2 7→ 2

√
−1δ11 − 2δ02,

∆2,3 7→ −4δ2,1 + 4
√
−1δ1,2;

∆01 7→ 1, ∆3,1 7→ 8δ20, ∆02 7→ 32(1− x)φ−1 π
2
A.

It is not hard to check this map matches all the pairing (3.4) using (5.14).

For example,

〈
8δ20, 8δ20

〉
= 16

〈
φ20 + φ02, φ20 + φ02

〉
2F1

(
1

4
,

3

4
;

3

2
; 1− x

)−2

=
1

2
.

The last equality is a consequence of the hypergeometric identity

2F1

(
1

4
,

3

4
;

3

2
; 1− x

)2

(1 + x1/2) = 2.

We can also check the mirror map matches Chen-Ruan product (3.5). For

example,
〈

∆1,1,∆1,1,∆1,2

〉
0,3
7→1

8

(
2F1

(
1

4
,−1

4
;

1

2
; 1−x

)
+1

)
2F1

(
1

4
,

1

4
; 1; 1−x

)

=
1

4
+ q4 + q8 + q16 + · · · .

The last equality follows from mirror map (5.3) and a hypergeometric iden-

tity

2F1

(
1

4
,−1

4
;

1

2
; 1− x

)2

=
1 + x1/2

2
.

The degree-1 genus-0 3-point correlator in Lemma 3.1 is verified by
〈

∆11,∆21,∆31

〉
0,3
7→1

8
(1−x)

1/2
2F1

(
1

4
,

3

4
;

3

2
; 1−x

)
2F1

(
1

4
,

1

4
; 1; 1−x

)

= q + 2q5 + q9 + 2q13 + · · · .

5.3.2. GW-point at infinity

Near the point σ =∞, we choose

πA(σ) =

(
1

4x

)1/4

2F1

(
1

4
,

3

4
; 1;

1

x

)
,

πB(σ) =
2

2π
√
−1

(
F

(1)
2 (x)− ln P (pk)

2
· F (1)

1 (x)

)
,
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where F
(1)
2 (x) is defined by (same bn as in (5.2)),

F
(1)
2 (x) = −(ln x)F

(1)
1 (x) +

∞∑

n=1

bn x
−n.

The Saito-Givental limit at this point is mirror to the Gromov-Witten

theory of P1
4,4,2. We construct a mirror map (5.3) for the Kähler class. It

implies an Fourier expansion

x−1 = 64q4 − 2560q8 + 84736q12 + ...

We choose the flat sections for the first order differential equations

δr = (x− 1)deg φrφr πA.

For the second order differential equations, we solve (5.13) to obtain

(5.17)


φ20 πA

φ02 πA




=


 x−3/4

2F1

(
3
4 ,

5
4 ; 1

2 ; 1
x

)
x−1/4

2F1

(
1
4 ,

3
4 ; 1

2 ; 1
x

)

−2x−1/4
2F1

(
1
4 ,

3
4 ; 1

2 ; 1
x

)
− 1

2x
−3/4

2F1

(
3
4 ,

5
4 ; 1

2 ; 1
x

)




δ20

δ02


.

The entries comes from the solutions of a hypergeometric equation (2.26)

near x =∞:

(5.18)

{
F

(∞)
1 (x) = 2F1

(
α, α− γ + 1;α− β + 1;x−1

)
x−α ,

F
(∞)
2 (x) = 2F1

(
β, β − γ + 1;β − α+ 1;x−1

)
x−β .

We construct a mirror map as follows

(5.19)



∆1,1 7→ 2δ10, ∆1,2 7→ −4
√

2δ02, ∆1,3 7→ −8δ1,2;

∆2,1 7→ 2
√
−1δ01, ∆2,2 7→ −2

√
2δ20, ∆2,3 7→ 8

√
−1δ2,1;

∆01 7→ 1, ∆3,1 7→ 4
√
−1δ11, ∆02 7→ 32(1− x)X2

1X
2
2 π

2
A.

Now, everything can be checked as before using Mathematica. In particular,

we get

〈
∆1,1,∆2,1,∆3,1

〉
0,3
7→ πA(σ)/2 = q + 2q5 + q9 + · · · .
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5.4. Global mirror symmetry for Wσ = X6
1 +X3

2 +X2
3 + σX4

1X2

The j-invariant

j(σ) = 1728
4σ3

27 + 4σ3
=
−1728x

1− x , x = − 4

27
σ3.

In order to construct the mirror map for twisted sectors, we have to find a

basis of homogeneous flat sections (with non-integer degrees) of the Gauss–

Manin connection. The periods corresponding to the polynomials φ(k,1) and

φ(k+2,0) satisfy

(5.20)





(27 + 4σ3)∂σ Φ(k+2,0) = −(k + 3)σ2 Φ(k+2,0) −
9(k + 1)

2
Φ(k,1)

(27 + 4σ3)∂σ Φ(k,1) =
3(k + 3)σ

2
Φ(k+2,0) − (k + 1)σ2Φ(k,1)

Moreover, we know Φ(k,1) satisfies a hypergeometric equation (see Sec-

tion 2.4). Let

(5.21) Lk :=
2

3(k + 3)σ

(
(27 + 4σ4)∂σ + (k + 1)σ2

)
, k = 0, 1, 2

5.4.1. GW-point at root of unity at x = 1

Near p2 = 3
2 (−2)1/3, we choose N = 1,

πA(σ) = 2F1

(
1

12
,

7

12
; 1; 1− x

)
,

πB(σ) =
1

2π
√
−1

(
F

(1)
2 (x)− ln P (pk) · F (1)

1 (x)
)
.

The Saito-Givental limit at this point is mirror to the Gromov-Witten

theory of P1
6,3,2. The mirror map for Kähler class implies Fourier expansion

1− x = −1728q6 − 1700352q12 + · · ·

Up to some constant for each element, we choose the following map from

the non-twisted sectors in GW theory to the flat sections,

∆0,1 7→ 1, ∆02 7→ 36(1− x)X4
1X2π

2
A.

For the twisted sectors, we choose flat sections from solutions of first order

differential equations

∆11 ∼ (1− x)1/6 φ10 πA, ∆15 ∼ (1− x)5/6 φ31 πA.
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Others are obtained by solving equations (5.20) near x = 1,

∆21 ∼ (1− x)1/3
(
F

(1)
2,20 φ01 + (−2)−1/3 F

(1)
2,01 φ20

)
πA,

∆12 ∼ (1− x)1/3
(
F

(1)
1,20 φ01 − 3(−2)−1/3 F

(1)
1,01 φ20

)
πA,

∆31 ∼ (1− x)1/2
(
F

(1)
2,30 φ11 + (−2)−1/3 F

(1)
2,11 φ30

)
πA,

∆13 ∼ (1− x)1/2
(
F

(1)
1,20 φ11 − 2(−2)−1/3 F

(1)
1,11 φ30

)
πA,

∆22 ∼ (1− x)2/3
(
F

(1)
2,40 φ21 + (−2)−1/3 F

(1)
2,21 φ40

)
πA,

∆14 ∼ (1− x)2/3
(
F

(1)
1,40 φ21 −

5

3
(−2)−1/3 F

(1)
1,21 φ40

)
πA,

The proportions can be fixed by identify the pairing and the ring structure

constants. For the 3-point correlator we get
〈

∆1,1,∆2,1,∆3,1

〉
0,3
7→ q + 2q7 + · · ·

5.4.2. FJRW-point at infinity

The Picard-Fuchs equation for the periods πA has weights (α, β, γ) =

(1/12, 7/12, 2/3). Since α − β is not an integer, the monodromy is diago-

nalizable and we have the following basis of solutions (eigenvectors for the

monodromy around σ =∞) near x =∞ :

πA∞
:= x−1/12

2F1

( 1

12
,

5

12
;

1

2
;x−1

)
,

πB∞
:= λ x−7/12

2F1

( 7

12
,

11

12
;

3

2
;x−1

)
,

where the constant λ will be fixed later on. Put

t−1 = πB∞
/πA∞

≈ λ x− 1
2 ,

where ≈ means that we truncated terms of order O(σ2). It is easy to check

(by using the differential equation for the periods) that when restricted to

the subspace of marginal deformation, t−1 is a degree 0 flat coordinate, i.e.,

the residue pairing 〈1, ∂/∂t−1〉 is a constant.

For first order differential equations, we get flat sections

A(1,0) = (x− 1)1/6φ10πA(σ), A(3,1) = (x− 1)5/6φ31πA(σ).
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The solutions to the differential equations (5.20) near x =∞, are


 φ(k,1) πA(σ)

φ(k+2,0) πA(σ)




=


 F

(∞)
1,(k,1)(x) F

(∞)
2,(k,1)(x)

LkF
(∞)
1,(k,1)(x) LkF

(∞)
2,(k,1)(x)




 A(k,1)

A(k+2,0)


 , k = 0, 1, 2

Here F
(∞)
i,r (x) is from (5.18) and Lk is from (5.21). Let cr be given below

r = 10 01 20 11 30 21 40 31

cr λ1 λ2 −λ2
1C0

3 λ1λ2 −λ3
1C0 λ1λ

2
2

4λ4
1C0

5
2λ5

1C0

9

The constants appearing in the table are given as follows:

(5.22) λ6
1 = 24C2

0 , λ2
2 =

λ4
1

C0
, C3

0 = −27

4
.

Let δr(s,x) be polynomials, such that the geometric sections (see (4.6))

[δrω] = crAr.

Now we compute the pairing and the necessary genus-0 correlators. The

pairing is
〈
δ10, δ31

〉
=
〈
δ01, δ21

〉
=
〈
δ20, δ40

〉
=
〈
δ11, δ11

〉
=
〈
δ30, δ30

〉
= 1.

All 3-point correlator functions that do not have insertion 1 (otherwise the

correlator reduces to a 2-point one) have a limit at σ = ∞. The non-zero

limits are as follows:〈
δ10, δ10, δ40

〉
0,3

=
〈
δ10, δ01, δ11

〉
0,3

=
〈
δ01, δ01, δ20

〉
0,3

= 1.

〈
δ10, δ20, δ30

〉
0,3

=
〈
δ20, δ20, δ20

〉
0,3

= −3.

In other words, the Jacobian algebra extends over σ = ∞. If we denote

the extension by QW ∞ , then it is not hard to see that δ10 and δ01 are

generators and we have

QW ∞ := C[δ10, δ01]/
(
4δ3

10δ01, δ
4
10 + 3δ2

01

)
.

Finally, we set

λ =
λ4

1λ2

54
.
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The nonzero 4-point genus-0 basic correlators are

〈
δ01, δ01, δ01, δ−1

〉
0,4

=
∂

∂ t−1

〈
λ3

2

(
x1/12Φ01 +

3

4C0
x−1/4Φ20

)3 〉∣∣∣
x=∞

= −λ
2
2C0

4λ4
1

∂

∂ t−1

(
λx−1/2

)
= −1

4
.

and 〈
δ10, δ10, δ

2
10δ01, δ−1

〉
0,4

= −1

4
.

Recall that ρ1, ρ2 are generators of the FJRW ring for
(
W ′ = X4

1X2 +X3
2 +

X2
3 , GW ′

)
. We construct the following mirror map from HW ′ to QW ∞ ,

(
ρ1, ρ2

)
7→
(

(−1)5/6δ01, (−1)2/3δ10

)

Using Lemma 3.5, it is easy to check that this map identifies the FJRW

theory of (W ′, GW ′) to the Saito-Givental limit of Wσ = X6
1 +X3

2 +X2
3 +

σX4
1X2 at σ =∞,

A
FJRW

W ′ = lim
σ→∞

A
SG

W (σ).
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