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Abstract

This paper is concerned with the global projective synchronization issue for fractional

neural networks in the Mittag-Leffler stability sense. Firstly, a fractional-order

differential inequality in the existing literature for the Caputo fractional derivative,

with 0 < α < 1, is improved, which plays a central role in the synchronization analysis.

Secondly, hybrid control strategies are designed via combing open loop control and

adaptive control, and unknown control parameters are determined by the adaptive

fractional updated laws to achieve global projective synchronization. In addition,

applying the fractional Lyapunov approach and Mittag-Leffler function, the projective

synchronization conditions are addressed in terms of linear matrix inequalities (LMIs)

to ensure the synchronization. Finally, two examples are given to demonstrate the

validity of the proposed method.

Keywords: neural networks; fractional calculus; Mittag-Leffler stability; projective

synchronization; adaptive control law

1 Introduction

Fractional calculus dates from  years ago and deals with arbitrary (noninteger) order

differentiation and integration. Although it has a long history, it did not drawmuch atten-

tion from researchers due to its complexity and difficult application. However, in the last

decades, the theory of fractional calculus developed mainly as a pure theoretical field of

mathematics and has been used in various fields as rheology, viscoelasticity, electrochem-

istry, diffusion processes, and so on; see, for instance, [–] and the references therein.

It is well known that comparedwith integer-ordermodels, fractional-order calculus pro-

vides amore accurate instrument for the description ofmemory and hereditary properties

of various processes. Taking these facts into account, the incorporation of the fractional-

order calculus into a neural network model could better describe the dynamical behav-

ior of the neurons, and many efforts have been made. In [], a fractional-order cellu-

lar neural network model was firstly proposed by Arena et al., and chaotic behavior in

noninteger-order cellular neural networks was discussed in []. In [], the author pointed

out a fractional-order three-cell network, which put forward limit cycles and stable orbits

for different parameter values. Besides, it is important to point out that fractional-order

neural networks are expected to play an important role in parameter estimation [–].
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Therefore, as noted in [], it is very significant and interesting to study fractional-order

neural networks both in the area of theoretical research and in practical applications.

Recently, the dynamic analysis of fractional-order neural networks has received consid-

erable attention, and some excellent results have been presented in [–]. Zhang et al.

[] discussed the chaotic behaviors in fractional-order three-dimensional Hopfield neu-

ral networks.Moreover, a fractional-order four-cell cellular neural networkwas presented,

and its complex dynamical behavior was investigated using numerical simulations in [].

Kaslik and Sivasundaram [] considered nonlinear dynamics and chaos in fractional-

order neural networks. Nowadays, there have been some advances in the stability analysis

of fractional-order neural networks. The Mittag-Leffler stability and generalized Mittag-

Leffler stability of fractional-order neural networks were investigated in [–]. The

α-stability and α-synchronization of fractional-order neural networks were demonstrated

in []. Yang et al. [] discussed the finite-time stability analysis of fractional-order

neural networks with delay. Kaslik and Sivasundaram [] investigated the dynamics of

fractional-order delay-free Hopfield fractional-order, including stability, multistability, bi-

furcations, and chaos. Stability analysis of fractional-order Hopfield neural networks with

discontinuous activation functions was made in []. In [] and [], the global Mittag-

Leffler stability and asymptotic stability were considered for fractional-order neural net-

works with delays and impulsive effects. The uniform stability issue was investigated in

[]. In addition, Wu et al. [] discussed the global stability issue of the fractional-order

interval projection neural network.

Since Pecora and Carroll [] firstly put forward chaos synchronization in , more

and more researchers pay enough attention to studying synchronization. The increas-

ing interest in researching synchronization stems from its potential applications in

bioengineering [], secure communication [], and cryptography []. As we know,

synchronization exists in various types, such as complete synchronization [], anti-

synchronization [], lag synchronization [], generalized synchronization [], phase

synchronization [], projective synchronization [–], and so on. Among all kinds

of synchronization, projective synchronization, characterized by a scaling factor that two

systems synchronize proportionally, is one of the most interesting problems. Meanwhile,

it can be used to extend binary digital to M-nary digital communication for achieving

fast communication []. Very recently, some results with respect to synchronization of

fractional-order neural networks have been proposed in [, –]. In [], the com-

plete synchronization of fractional-order chaotic neural networks was considered via

nonimpulsive linear controller. Several results with respect to chaotic synchronization

of fractional-order neural networks have been proposed in [–]. In addition, Wang

et al. [] investigated the projective cluster synchronization for the fractional-order

coupled-delay complex network via adaptive pinning control. In [], the global pro-

jective synchronization of fractional-order neural networks was discussed, and several

control strategies were given to ensure the realization of complete synchronization, anti-

synchronization, and stabilization of the addressed neural networks. Razminia et al. []

considered the synchronization of fractional-order Rössler system via active control. By

using the approach in [], Bao and Cao [] considered the projective synchronization

of fractional-order memristor-based neural networks, and some sufficient criteria were

derived to ensure the synchronization goal. However, most reports related to projective

synchronization of neural networks system have utilized the direct Lyapunov method,
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which can be a bit complicated. We applied the Mittag-Leffler theory to achieve synchro-

nization of fractional-order system. In addition, it should be pointed out that an LMI

analysis technique was not applied to develop the synchronization criteria, and hence the

above results have a certain degree of conservatism.

Motivated by the previouswork, in this paper, our aim is to investigate the globalMittag-

Leffler projective synchronization of fractional-order neural networks by using the LMI

analysis approach. The main novelty of our contribution lies in three aspects: () a new

differential inequality of the Caputo fractional derivatives of the quadratic form, with  <

α < , is established, which is applied to derive the synchronization conditions; () the

hybrid control scheme is designed via combing open-loop control and adaptive control,

and unknown control parameters are determined by the adaptive fractional updated laws;

() by applying the Mittag-Leffler stability theorem in [, ], the global Mittag-Leffler

synchronization conditions are presented in terms of LMIs to ensure the synchronization

of fractional neural networks.

The rest of this paper is organized as follows. In Section , some definitions and a lemma

are introduced, and a new differential inequality of the Caputo fractional derivatives of

the quadratic form, with  < α < , is presented. A model description is given in Section .

Some sufficient conditions for Mittag-Leffler projective synchronization are derived in

Section . Section  presents some numerical simulations. Some general conclusions are

drawn in Section .

2 Preliminaries

In this section, some basic definitions and lemmas about fractional calculations are pre-

sented.

Definition . ([]) The fractional integral of order α for a function f is defined as

Iαf (t) =


Ŵ(α)

∫ t

t

f (τ )

(t – τ )–α
dτ ,

where t ≥ t and α > .

Definition . ([]) Caputo’s fractional derivative of order α of a function f ∈ Cn([t,

+∞],R) is defined by

Dαf (t) =


Ŵ(n – α)

∫ t

t

f n(τ )

(t – τ )α–n+
dτ ,

where t ≥ t, and n is a positive integer such that n– < α < n. Particularly, when  < α < ,

Dαf (t) =


Ŵ( – α)

∫ t

t

f ′(τ )

(t – τ )α
dτ .

Lemma . ([]) Let � = [a,b] be an interval on the real axis R, let n = [α] +  for α /∈ N

or n = α for α ∈ N . If y ∈ Cn[a,b], then

IαDαy(t) = y(t) –

n–
∑

k=

y(k)(a)

k!
(x – a)k .
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In particular, if  < α <  and y(t) ∈ C[a,b], then

IαDαy(t) = y(t) – y(a).

Lemma . ([]) Assume that x ∈ C[a,b] satisfies

Dαx(t) = f
(

t,x(t)
)

≥ 

for all t ∈ [a,b]. Then x(t) is nondecreasing for  < α < . If

Dαx(t) = f
(

t,x(t)
)

≤ ,

then x(t) is nonincreasing for  < α < .

Aguila-Camacho et al. [] established the fractional-order differential inequality


C
t
Dα

t x
(t)≤ x(t)CtD

α
t x(t) for theCaputo fractional derivativewith  < α < . In Lemma.,

based on the proof line from [], we make a generalization of this inequality. We prove

that 

DαxT (t)Px(t) ≤ xT (t)PDαx(t) for all α ∈ (, ), where P is a positive definite matrix.

Obviously, we can see that the differential inequality in Lemma . is more general.

Lemma . Suppose x(t) = (x(t),x(t), . . . ,xn(t))
T ∈ Rn is a vector, where xi(t) are contin-

uous and differentiable functions for all i = , , . . . ,n, and P ∈ Rn×n is a positive definite

matrix. Then, for a general quadratic form function xT (t)Px(t), we have




DαxT (t)Px(t) ≤ xT (t)PDαx(t) ∀α ∈ (, ). ()

Proof In order to ensure the completeness of the proof process, we recall some steps in

the proof from Aguila-Camacho et al. []. We believe that this can make the proof easily

understood for the readers.

It is easy to see that inequality () is equivalent to

xT (t)PDαx(t) –



DαxT (t)Px(t)≥  ∀α ∈ (, ). ()

According to Definition ., we have

Dαx(t) =


Ŵ( – α)

∫ t

t

x′(τ )

(t – τ )α
dτ , ()




Dα

(

xT (t)Px(t)
)

=


Ŵ( – α)

∫ t

t

[xT (τ )Px(τ )]′

(t – τ )α
dτ

=


Ŵ( – α)

∫ t

t

xT (τ )P ˙x(τ )

(t – τ )α
dτ . ()

Substituting () and () into (), we have



Ŵ( – α)

∫ t

t

(xT (t) – xT (τ ))P ˙x(τ )

(t – τ )α
dτ ≥ . ()
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For convenience, we introduce the auxiliary variable y(τ ) = x(t) – x(τ ). Next, based on

variable transformation, we obtain

–


Ŵ( – α)

∫ t

t

yT (τ )P ˙y(τ )

(t – τ )α
dτ ≥ ,

namely,



Ŵ( – α)

∫ t

t

yT (τ )P ˙y(τ )

(t – τ )α
dτ ≤ . ()

By applying integration by parts to () it follows that

–

[

yT (τ )Py(τ )

Ŵ( – α)(t – τ )α

]
∣

∣

∣

∣

τ=t

+
yT (t)Py(t)

Ŵ( – α)(t – t)α
+

α

Ŵ( – α)

∫ t

t

yT (τ )Py(τ )

(t – τ )α+
dτ ≥ . ()

Now the issue of Lemma . is transformed into (). Let us discuss the first term of (),

which is singular at τ = t, so we consider the corresponding limit:

lim
τ→t

yT (τ )Py(τ )

Ŵ( – α)(t – τ )α

= lim
τ→t

(x(t) – x(τ ))TP(x(t) – x(τ ))

Ŵ( – α)(t – τ )α

= lim
τ→t

xT (t)Px(t) – xT (t)Px(τ ) + xT (τ )Px(τ )

Ŵ( – α)(t – τ )α
. ()

It is easy to see that () is satisfied with L’Hôpital’s rule. By applying L’Hôpital’s rule it

follows that

lim
τ→t

–xT (t)P ˙x(τ ) + xT (τ )P ˙x(τ )

–αŴ( – α)(t – τ )α–

= lim
τ→t

[xT (τ ) – xT (t)]P ˙x(τ )(t – τ )–α

αŴ( – α)
= .

Thus, () is reduced to

yT (t)Py(t)

Ŵ( – α)(t – t)α
+

α

Ŵ( – α)

∫ t

t

yT (τ )Py(τ )

(t – τ )α+
dτ ≥ . ()

It is evidently true for (). This completes the proof. �

Remark . If the matrix P from Lemma . is transformed as the identity matrix E, then




DαxT (t)x(t)≤ xT (t)Dαx(t) ∀α ∈ (, ).

In particular, when x(t) ∈ R is a continuous and differentiable function, we obtain




Dαx(t) ≤ x(t)Dαx(t) ∀α ∈ (, )

by applying Lemma . to every component of vector.
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3 Model description

In this section, we introduce a class of vector fractional-order neural networks as the drive

system described by

Dαx(t) = –Cx(t) +Af
(

x(t)
)

+ I, ()

where x(t) = [x(t),x(t), . . . ,xn(t)]
T ∈ Rn is the state vector of the system, C = diag(c, c,

. . . , cn) represents the self-connection weight, where ci ∈ R and i ∈ l = (, , . . . ,n), A =

(aij)n×n is the interconnection weight matrix, and f (x(t)) = [f(x(t)), f(x(t)), . . . , fn(x(t))]
T ∈

Rn and I = [I, I, . . . , In]
T denote the activation function vector and external input vector,

respectively.

The response system is described by

Dαy(t) = –Cy(t) +Af
(

y(t)
)

+ I + u(t), ()

where y(t) = [y(t), y(t), . . . , yn(t)]
T ∈ Rn is the state vector of the response system, and

u(t) = (u(t),u(t), . . . ,un(t))
T ∈ Rn is a control input vector.

Assumption  The activation functions fj are Lipschitz-continuous on R, that is, there

exists constant lj >  (j ∈ l) such that

∣

∣fj(u) – fj(v)
∣

∣ ≤ lj|u – v|

for all u 	= v ∈ R. For convenience, we define L = diag(l, l, . . . , ln).

Definition . We say that systems () and () are projectively synchronized if there

exists a nonzero constant β for any two solutions x(t) and y(t) of systems () and ()

with different initial values x and y such that

lim
t→∞

∥

∥y(t) – βx(t)
∥

∥ = ,

where ‖ · ‖ denotes the Euclidean norm of a vector.

The synchronization error is defined by e(t) = y(t) – βx(t), where e(t) = (e(t), e(t),

. . . , en(t))
T ∈ Rn. According to Definition ., the error system can be described by

Dαe(t) = –Ce(t) +A
[

f
(

y(t)
)

– βf
(

x(t)
)]

+ ( – β)I + u(t). ()

In what follows, we will design appropriate control schemes to derive the projective

synchronization conditions between systems () and ().

4 Main results

In this section, we resolve the problem of projective synchronization by converting the

issue of projective synchronization into stability problem. More specially, the projective

synchronization of systems () and () is equivalent to the stability of the error system

(). We will prove the stability of error system () with two different control schemes.
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In the first control scheme, we choose the following control input u(t) in the response

system:

⎧

⎪

⎨

⎪

⎩

u(t) = v(t) +w(t),

v(t) = A[βf (x(t)) – f (βx(t))] + (β – )I,

w(t) = –K(y(t) – βx(t)),

()

with K = diag(k,k, . . . ,kn), where ki >  are the projective coefficients.

Remark . Note that the control scheme () is a hybrid control, v(t) is an open loop

control, and w(t) is a linear control.

Then, applying the control scheme () to the error system (), we obtain that

Dαe(t) = –Ce(t) +A
[

f
(

y(t)
)

– f
(

βx(t)
)]

–Ke(t). ()

Obviously, e(t) =  is a trivial solution of the error system (). Next, we mainly prove the

stability of the error system () for the zero solution.

Theorem . Let Assumption  be satisfied. Suppose that there exists a positive defini-

tive matrix P such that B = 

(PC + CTPT – PAL – LTATPT + PK + KTPT ) > . Then sys-

tems () and () are globally Mittag-Leffler projective synchronized based on the control

scheme ().

Proof Construct the Lyapunov function

V (t) =



eT (t)Pe(t).

Taking the time fractional-order derivative of V (t), by Lemma . we have

DαV (t) =Dα 


eT (t)Pe(t)≤ eT (t)PDαe(t). ()

Substituting Dαe(t) from () into () yields

DαV (t) ≤ eT (t)P
(

–Ce(t) +A
[

f
(

y(t)
)

– f
(

βx(t)
)]

–Ke(t)
)

.

Based on Assumption , we obtain

DαV (t) ≤ eT (t)P
(

–Ce(t) +ALe(t) –Ke(t)
)

= –eT (t)P(C –AL +K)e(t)

= –



eT (t)

(

PC +CTPT – PAL – LTATPT + PK +KTPT
)

e(t)

= –



eT (t)Be(t),

where PC + CTPT – PAL – LTATPT + PK + KTPT > . Because B also is a positive ma-

trix, it is clear that λmin(B)‖e‖
 ≤ eT (t)Be(t)≤ λmax(B)‖e‖

, where λmin(B) and λmax(B) are

minimum and maximum eigenvalues of the matrix B, respectively.
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Hence,

DαV (t) ≤ –



λmin(B)‖e‖

.

So, according to the Mittag-Leffler stability theorem [, ], we get that system () is

Mittag-Leffler stable. Namely, systems () and () are Mittag-Leffler projectively syn-

chronized. This completes the proof. �

In the second control scheme, we choose the following control input u(t) in the re-

sponse system:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

u(t) = v(t) +w(t),

v(t) = A[βf (x(t)) – f (βx(t))] + (β – )I,

w(t) = –K(t)(y(t) – βx(t)),

Dαki(t) =
∑n

j= ej(t)Pjiγi(yi – βxi),

()

where K(t) = diag(k(t),k(t), . . . ,kn(t)), and γi >  are constants.

Remark . In fact, the control scheme () is also a hybrid control, v(t) is an open-loop

control, and w(t) is a adaptive feedback control. Applying the control scheme (), we

obtain the error system

Dαe(t) = –Ce(t) +A
[

f
(

y(t)
)

– f
(

βx(t)
)]

–K(t)e(t). ()

Then we will prove that system () is asymptotically stable.

Theorem . Let Assumption  be satisfied. Suppose that there exist a positive matrix

P and adaptive constant matrix K such that � = 

(PC + CTPT – PAL – LTATPT +

PK + KTPT ) > . Then systems () and () are projectively synchronized by the control

scheme ().

Proof Construct the auxiliary function

V(t) =U(t) +

n
∑

i=



γi

(

ki(t) – ki
)
,

whereU(t) =


eT (t)Pe(t), and each ki is an adaptive constant to be determined in the later

analysis.

It follows from Lemma . and Remark . that the fractional-order derivative of V(t)

can be described by

DαV(t) =DαU(t) +

n
∑

i=



γi
Dα

(

ki(t) – ki
)

≤ eT (t)PDαe(t) +

n
∑

i=



γi

(

ki(t) – ki
)

Dαki(t). ()
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Inserting () into () and applying Assumption  yield

DαV(t) ≤ eT (t)P
(

–Ce(t) +A
[

f
(

y(t)
)

– f
(

βx(t)
)]

–K(t)e(t)
)

+

n
∑

i=



γi

(

ki(t) – ki
)

Dαki(t)

= eT (t)P
(

–C +AL –K(t)
)

e(t) +

n
∑

i=



γi

(

ki(t) – ki
)

(

n
∑

j=

ej(t)Pjiγi(yi – βxi)

)

= eT (t)P
(

–C +AL –K(t)
)

e(t) +

n
∑

i=

n
∑

j=

ej(t)Pji

(

ki(t) – ki
)

(yi – βxi)

= eT (t)P
(

–C +AL –K(t)
)

e(t) + eT (t)P
(

K(t) –K
)

e(t)

= –eT (t)P(C –AL +K)e(t)

= –



eT (t)

(

PC +CTPT – PAL – LTATPT + PK +KTPT
)

e(t)

= –eT (t)�e(t)

with appropriate constant matrix � = 

(PC + CTPT – PAL – LTATPT + PK + KTPT ) > .

It is clear that DαV(t)≤ –eT (t)�e(t). Note that

λmin(P)e
T (t)e(t) ≤ eT (t)Pe(t) ≤ λmax(P)e

T (t)e(t).

Hence,

–eT (t)�e(t) ≤ λmin(�)eT (t)e(t)≤ –
λmin(�)

λmax(P)
eT (t)Pe(t),

DαV(t) ≤ –
λmin(�)

λmax(P)
U(t), t ≥ .

Define λmin(�)
λmax(P)

= λ. Then

DαV(t) ≤ –λU(t). ()

According to Lemma ., we know that V(t) is a nonincreasing function and V(t) ≤

V(), t ≥ . This implies that U(t) and ki(t) are bounded on t ≥ . Then, it is easy to find

that DαV(t) also is bounded on t ≥ . Meanwhile, we know that

n
∑

i=



γi

(

ki(t) – ki
)

Dαki(t) = eT (t)P
(

K(t) –K
)

e(t)

is bounded. So there exists a constantM >  such that

∣

∣DαU(t)
∣

∣ ≤ M, t ≥ . ()

We will further prove that limt→∞ U(t) = . Otherwise, there would exist a constant ε > 

and a nondecreasing time series {ti} satisfying limi→∞ ti = ∞ such that

U(ti) ≥ ε, i = , , . . . . ()
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According to (), we have

DαU(t) ≤M, t ≥ . ()

Denote T = (Ŵ(α+)ε
M

)

α > . For ti – T < t < ti, i = , , . . . , taking the integrals of both sides

of () from t to ti, we get

U(ti) –U(t)≤
M

Ŵ(α)

∫ ti

t

(ti – τ )α– dτ

=
M

Ŵ(α + )
(ti – t)α

≤
ε


,

which, together with (), gives U(t) ≥ ε

, ti – T < t < ti, i = , , . . . . In the same way, for

ti < t < ti + T , i = , , . . . . combining () with () yields

U(t) –U(ti) ≥ –
M

Ŵ(α)

∫ t

ti

(t – τ )α– dτ

= –
M

Ŵ(α + )
(t – ti)

α

≥ –
ε


,

which shows that U(t) ≥
ε

, ti < t < ti + T , i = , , . . . .

Based on the above description, we obtain

U(t)≥
ε


()

for ti –T ≤ t ≤ ti +T , i = , , . . . . Without loss of generality, we assume that these intervals

are disjoint and t – T > . Namely,

ti– + T < ti – T < ti + T < ti+ – T , ()

where i = , , . . . . It follows from () and () that, for ti – T < t < ti + T , we have

DαV(t) ≤ –
ε


λ. ()

Taking the integrals of both sides of (), we obtain

V(ti + T) –V(ti – T)

≤ –
ε

Ŵ(α)
λ

∫ ti+T

ti–T

(ti + T – τ )α– dτ

= –
α–ελT

α

Ŵ(α + )
.

In addition, by () we get

V(ti– + T) ≥ V(ti – T), i = , , . . . , ()

and V(t + T) ≥ V().
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It follows from () and () that

V(ti + T) –V()

= V(ti + T) –V(ti – T) +V(ti – T) –V(ti– + T) + · · · +V(t + T) –V()

≤ –
α–ελT

α

Ŵ(α + )
i,

which reveals that V(ti + T) → –∞ as i → +∞. However, this is a contradictions with

V(t) ≥ . As a result, limt→∞ U(t) = , and we conclude that limt→∞ e(t) = . Thus, the

drive system () and response system () are globally asymptotically projectively synchro-

nized. �

5 Illustrative examples

In this section, we give two examples to illustrate the validity and effectiveness of the pro-

posed theoretical results.

Example  In system (), choose x = (x,x,x)
T , α = ., fj(xj) = tanh(xj) for j = , , ,

c = c = c = , I = I = I = , and

A = (aij)× =

⎛

⎜

⎝

 –. 

. . .

–.  .

⎞

⎟

⎠
.

Under these parameters, system () has a chaotic attractor, which is shown in Figure .

In the control scheme (), choose k = ., k = ., k = .. Then system

() also has a chaotic attractor. After using an appropriate LMI solver to get the feasible

numerical solution, we get that the positive definite matrix P could be

P =

⎛

⎜

⎝

. . –.

. . .

–. . .

⎞

⎟

⎠
.

By Theorem . we see that systems () and () are Mittag-Leffler projectively syn-

chronized, which is verified in Figures -.

Figure 1 Chaotic behavior of system (10) with initial value (0.1, –0.08, 0.3).
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Figure 2 Evolutions of drive-response systemwith β = 3.

Figure 3 Synchronization errors with β = 3.

Figure 4 Trajectories of drive-response systemwith β = 3.
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Figure 5 Evolutions of drive-response systemwith β = 1.

Figure 6 Synchronization errors with β = 1.

In Figure , the projective synchronization error system converges to zero, which shows

that the drive and response systems are globally asymptotically projectively synchronized.

Similarly, projective synchronization with projective coefficient β = , β = – is simu-

lated in Figures -.

Example  In system (), the chosen parameters α, f (x), C, I , A are the same as in Ex-

ample , so that system () has a chaotic attractor. In the following, we consider response

system. In the control scheme (). we choose k() = ., k() = ., k() = .,

r = r = r = , k = k = k = . Using the Matlab LMI toolbox, we find that the linear

matrix inequality is feasible and the feasible solution is

P =

⎛

⎜

⎝

. . –.

. . .

–. . .

⎞

⎟

⎠
.
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Figure 7 Trajectories of drive-response systemwith β = 1.

Figure 8 Evolutions of drive-response systemwith β = –1.

Figure 9 Synchronization errors with β = –1.
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Figure 10 Trajectories of drive-response systemwith β = –1.

Figure 11 Chaotic behavior of system (10) with initial value (0.2, –0.5, 0.8).

Figure 12 Evolutions of drive-response systemwith β = 3.
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Figure 13 Synchronization errors with β = 3.

Figure 14 Trajectories of drive-response systemwith β = 3.

Therefore, according to Theorem ., we conclude that systems () and () are syn-

chronized, which is verified in Figures -.

6 Conclusions

In this paper, the global Mittag-Leffler projective synchronization issue for fractional

neural networks is investigated. A lemma about the Caputo fractional derivative of the

quadratic form in the literature has been improved. Based on a hybrid control scheme,

the Mittag-Leffler projective synchronization conditions have been presented in terms of

LMIs, and hence the results obtained in this paper are easily checked and applied in prac-

tical engineering.

It would be interesting to extend the results proposed in this paper to fractional-order

neural networks with delays. This issue will be the topic of our future research.
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