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Direct numerical simulations (DNS) of the wake of a circular disk placed normal to
a uniform flow show that, as the Reynolds number is increased, the flow undergoes
a sequence of successive bifurcations, each state being characterized by specific time
and space symmetry breaking or recovering (Fabre, Auguste & Magnaudet, Phys.
Fluids, vol. 20 (5), 2008, p. 1). To explain this bifurcation scenario, we investigate the
stability of the axisymmetric steady wake in the framework of the global stability
theory. Both the direct and adjoint eigenvalue problems are solved. The threshold
Reynolds numbers Re and characteristics of the destabilizing modes agree with the
study of Natarajan & Acrivos (J. Fluid Mech., vol. 254, 1993, p. 323): the first
destabilization occurs for a stationary mode of azimuthal wavenumber m =1 at
ReA

c =116.9, and the second destabilization of the axisymmetric flow occurs for
two oscillating modes of azimuthal wavenumbers m ± 1 at ReB

c = 125.3. Since these
critical Reynolds numbers are close to one another, we use a multiple time scale
expansion to compute analytically the leading-order equations that describe the
nonlinear interaction of these three leading eigenmodes. This set of equations is given
by imposing, at third order in the expansion, a Fredholm alternative to avoid any
secular term. It turns out to be identical to the normal form predicted by symmetry
arguments. Though, all coefficients of the normal form are here analytically computed
as the scalar product of an adjoint global mode with a resonant third-order forcing
term, arising from the second-order base flow modification and harmonics generation.
We show that all nonlinear interactions between modes take place in the recirculation
bubble, as the contribution to the scalar product of regions located outside the
recirculation bubble is zero. The normal form accurately predicts the sequence of
bifurcations, the associated thresholds and symmetry properties observed in the DNS
calculations.

1. Introduction

When a steady flow loses its stability owing to the variation of a control parameter,
it bifurcates towards a new state, that may be either steady or unsteady. If the
bifurcation is supercritical and a single eigenmode is responsible for the instability,
the dynamics close to the threshold will occur in the one-dimensional slow manifold
spanned by the destabilizing eigenmode. The only degree of freedom is then the
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amplitude along the unstable eigenmode direction, which is ruled by a first-order
differential equation of polynomial form, the normal form. When several eigenmodes
are concomitantly responsible for the destabilization of the steady state, the same
reasoning holds, the dimension of the slow manifold being then equal to the number
of bifurcating modes, and the normal form involves one degree of freedom per
bifurcating mode. Such cases are known as multiple codimension bifurcations, and
usually require several independent parameters to be tuned for the different modes to
be simultaneously neutral. The normal form then describes the nonlinear interactions
between each bifurcating mode and reduces the dynamics of the whole system to
a low-dimensional model. For codimension larger than one, the normal form may
successfully predict complex behaviours (Crawford & Knobloch 1991). The analysis
requires the following steps to be achieved:

(i) resolution of the linear stability problem to identify the marginally stable modes,
(ii) computation of the nonlinear terms governing the time-asymptotic evolution of

these modes and
(iii) truncation of the system at some given order and analysis of the resulting

dynamics.
In many physical problems, the structure of the normal form may be directly
deduced from phase and symmetry considerations, and multiple codimension
bifurcation theory has been successfully used to unravel complex bifurcation structures
(Golubitsky & Stewart 1985; Cross 1986; Crawford, Golubitsky & Langford 1988;
Golubitsky & Langford 1988; Chossat & Iooss 1994). However, these problems
were involving a base state inhomogeneous only in a single direction, making the
expansion procedure tractable. Wakes, and more generally open flows are more
complex since the base flow is usually strongly non-parallel. Analysing their stability
thus requires to consider modes that are inhomogeneous in both the cross-stream and
the streamwise directions, called global modes in reference to their specific streamwise
structure, first introduced by Jackson (1987) and Zebib (1987) (see Chomaz 2005, for a
review).

The flow past a circular cylinder is a simple example of codimension one bifurcation,
where the steady flow is destabilized by an oscillating global mode at the Reynolds
number Re = 47 (Ding & Kawahara 1999; Barkley 2006). The flow undergoes a Hopf
bifurcation, and the normal form reduces to the Stuart–Landau amplitude equation
that reads

Ȧ = λA − μA|A|2, (1.1)

where A is the amplitude of the bifurcating mode and λ its linear complex growth
rate. In this case, the complex Landau coefficient μ has been computed by fitting
methods from experimental measurements (Provansal, Mathis & Boyer 1987) or
from direct numerical simulations (DNS) (Dušek, Le Gal & Fraunie 1994). In this
context, the Landau coefficient is relative to the particular point in space where the
experimental or numerical signal is extracted, and to the particular variable that is
indeed measured. Recently, the Landau coefficient has been obtained by a standard
weakly nonlinear stability analysis based on the bifurcating global mode (Sipp &
Lebedev 2007), which showed that the nonlinear self-interaction was mainly acting
through base flow modifications and not through harmonics generation.

We consider here the wake past a flat circular disk of diameter D, placed
orthogonally with respect to a uniform flow of velocity U∞, at low Reynolds numbers
Re < 150, where Re = DU∞/ν and ν is the kinematic viscosity of the fluid. This
problem has been recently addressed using DNS calculations by Fabre, Auguste &
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Magnaudet (2008). When the Reynolds number is increased from sufficiently low
values, the flow undergoes several successive bifurcations. A first steady bifurcation
occurs for Re ≃ 115: it breaks the axisymmetry but preserves the time invariance,
leading to a three-dimensional steady state with a reflectional symmetry. A Hopf
bifurcation then occurs for Re ≃ 121: it breaks the remaining reflectional symmetry
and the time invariance, leading to a fully three-dimensional periodic state. A third
bifurcation finally occurs for Re ≃ 140, where the flow remains unsteady, but restores
a reflectional symmetry normal to that preserved by the first bifurcation. Natarajan
& Acrivos (1993) have carried out a global stability analysis of the axisymmetric
disk flow in the same range of Reynolds number. These authors have shown that
the axisymmetric state is successively destabilized by a stationary mode of azimuthal
wavenumber m =1 at Re = 116.5 and by an oscillating mode of same azimuthal
wavenumber at Re = 126.5. One should note that the DNS calculations and the
stability analysis provide consistent results concerning the first steady bifurcation,
but that the critical Reynolds numbers corresponding to the onset of unsteadiness
predicted by both approaches do not match. This could have been expected, though,
as the analysis of Natarajan & Acrivos (1993) considered only small disturbances
superimposed on the axisymmetric base flow, and not on the three-dimensional state
issuing from the first m =1 bifurcation.

In this study, since the two critical Reynolds numbers associated to the destabili-
zation of the axisymmetric base flow are close to one another, we analytically
compute the dynamics in the three-dimensional slow manifold supported by the
stationary m =1 mode and the two oscillating m = ±1 modes identified by Natarajan
& Acrivos (1993). Owing to the specific symmetries of the flow, i.e. invariance under
time translation and O(2) symmetry, if we retain only the lowest order nonlinear
terms, the normal form describing this interaction should read

Ȧ = λAA − μAA|A|2 − νAA|B+|2 − νA

∗A|B−|
2

− χAB
+B−∗A∗, (1.2a)

Ḃ+ = λBB
+ − μBB

+|B+|2 − νBB
+|B−|

2
− ηBB

+|A|2 − χBB
−A2, (1.2b)

Ḃ− = λBB
− − μBB

−|B−|
2

− νBB
−|B+|2 − ηBB

−|A|2 − χBB
+A∗2

, (1.2c)

where A is the complex amplitude of the stationary mode, B± are the amplitudes
of the two counter-rotating oscillating modes and the superscript ∗ stands for the
complex conjugate. The normal form (1.2) is therefore generic as being the leading-
order system of polynomial differential equations that remains invariant under a
translation of t0 in time (t → t + t0), a rotation of angle θ0 (θ → θ + θ0) and reflection
(θ → −θ). This imposes invariance of (1.2) under phase transformations

(A, B+, B−) −→ (A, B+eiψ , B−eiψ ) (t → t + t0), (1.3a)

(A, B+, B−) −→ (Aeiϕ, B+eiϕ, B−e−iϕ) (θ → θ + θ0), (1.3b)

(A, B+, B−) −→ (A∗, B−, B+) (θ → −θ), (1.3c)

that may be easily verified (see Golubitsky, Stewart & Schaeffer 1988, for details).
It may also be verified that the normal form (1.2) is exhaustive, i.e. no other term
of same polynomial order can be added to any of (1.2) without breaking the phase
invariance.

In their study, Fabre et al. (2008) have deduced, from symmetry breaking
considerations, a normal form of structure similar to (1.2) and estimated all coefficients
by a trial and error procedure based on their DNS calculations. However, for the
present codimension two bifurcation, the determination of the exact normal form (1.2)
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requires to compute 15 real coefficients. As will be discussed in § 4, the sequence
of bifurcations depends on the sign of only two coefficients whereas the precise
threshold values depend on four coefficients. Consequently, an infinite number of
coefficient set corresponds to the same bifurcation diagram, and the procedure
followed by Fabre et al. (2008) does not result in a unique set of coefficients. One
could imagine to estimate all 15 coefficients using transient dynamics computed
by DNS. However, such a procedure, although it has been used successfully for
codimension one bifurcations (Provansal et al. 1987), is a formidable task no one has
ever attempted for multiple codimension problems. In the present study, we carry out
a thoroughly analytical asymptotic expansion of the flow field based on the global
modes destabilizing the axisymmetric wake. The normal form (1.2) is then rigorously
derived at the third order of a standard weakly nonlinear analysis as the result of a
Fredholm alternative applied to resonant terms. All coefficients of the normal form
are analytically computed as the scalar product between an adjoint global mode
and a resonant forcing terms determined by the first- and second-order solutions.
These coefficients, which describe the nonlinear interactions between modes, are of
particular interest since they determine the effective bifurcation sequence. Though, we
would like to emphasize here that performing the analytical derivation of this normal
form provides additional insight into the flow physics. The base flow modification and
the harmonic generation are indeed exactly computed as part of the second-order
solution. As will be shown in § 4, this is essential to discuss some realistic features of
the bifurcated flow. Moreover, each coefficient of (1.2) is shown to result from several
nonlinear interactions between modes, that may be investigated separately. This study
completes that of Fabre et al. (2008) by shedding new light on the physical origin of
the coupling terms between modes, in particular we shall show that all interactions
take place only in the recirculating bubble, which can therefore be viewed as the
effective wavemaker. The resulting dynamics is then analysed and compared to that
observed in the DNS computations. It turns out that our analytical study predicts
with a remarkable precision the bifurcation diagram observed in Fabre et al. (2008),
as well as the associated flow topologies.

The paper is organized as follows. The problem formulation is presented in § 2. The
global linear stability analysis is presented in § 3, where we compute the leading modes
and their associated adjoint modes that are required to compute the coefficients of the
normal form. In § 4, we carry out the standard weakly nonlinear analysis: the values
of all coefficients of the normal form (1.3) are given and the associated sequence of
bifurcations is discussed and compared to that observed in the DNS calculations of
Fabre et al. (2008). The sensitivity of this sequence of bifurcations to experimental
imperfections is discussed in § 5.

2. Flow configuration and methodology

In the following, all quantities are made non-dimensional using D and U∞. Standard
cylindrical coordinates r , θ and z with origin taken at the centre of the disk are used.
The state vector q stands for the flow field (u, p)T , where T designates the transpose,
u = (u, v, w)T is the fluid velocity where u, v and w are the radial, azimuthal and axial
components and p is the pressure. The fluid motion is governed by the incompressible
Navier–Stokes equations

∇ · u = 0 , ∂t u + ∇u · u + ∇p −
1

Re
∇2u = 0, (2.1)
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z−∞ z∞ r∞ nt DoF0 DoFm

M1 −100 200 25 397 992 1 802 527 2 603 136
M2 −100 150 25 362 672 1 642 617 2 372 198
M3 −70 200 25 394 173 1 784 759 2 577 497
M4 −100 200 20 379 576 1 720 445 2 484 574
M5 −100 200 25 290 609 1 316 891 1 901 769

Table 1. Properties of the meshes as a function of parameters z−∞, z∞ and r∞, corresponding
to the inlet, outlet and lateral boundaries. Here nt is the number of triangles, DoF0 is the
number of degrees of freedom for a state vector (u,w, p)T used in the base flow calculations
and DoFm is the number of degrees of freedom for a state vector (u, v,w, p)T used in the
stability analysis. Meshes M1 and M2 have the same vertex densities but with a different
location of the outlet boundary. In the same way, M1 and M3 differ by the location of the
inlet boundary, while M1 and M4 differ by the location of the lateral boundary. M1 and M5

have the same spatial extent but M5 is built with lower vertex densities.

∂Ωin

∂Ωa

∂Ωb

∂Ωout

∂Ωext

–2.50 0

2

4.5

5.25z–∞
z

∞
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∞

Figure 1. Schematic of the mesh structure: z−∞, z∞ and r∞ are, respectively, the location of
the inlet, outlet and lateral boundaries. The inner solid lines delimit regions characterized by
different vertex densities. The black shaded area corresponds to the region of highest vertex
density and the grey shaded area is the near-wake region Ωin used for the normalization of
the global modes.

with Re = U∞D/ν, as previously introduced. The computational domain is shown in
figure 1. The disk is located on the axis of an enclosing cylinder of radius r = r∞.
The boundaries ∂Ωa and ∂Ωext represent the revolution axis of the disk and the
boundary of the enclosing cylinder, respectively. The inlet ∂Ωin and outlet ∂Ωout are
located respectively at z = z−∞ and z = z∞ (see table 1 for numerical values). We use
the inlet conditions u =(0, 0, 1)T on ∂Ωin, no-slip conditions u = 0 on the body wall
∂Ωb and no-stress conditions (−p I + Re−1∇u) · n = 0 on the outlet ∂Ωout . On the
external boundary ∂Ωext , we impose a free slip boundary condition u = v = ∂rw = 0,
so that the body surface ∂Ωb is the only source of vorticity, as would be the case
without this artificial boundary. Note that for computational reasons, the width of
the disk L cannot be chosen strictly equal to zero, so that we use a very small width
corresponding to an aspect ratio L/D = 10−3.

The numerical approach is based on a finite element method. A given equation
is first multiplied by r to avoid the singularity on the r = 0 axis. Its associated
variational formulation is then derived, and spatially discretized using a mesh
composed of triangular elements. The FreeFem++ software (http://www.freefem.org)
is used to generate the triangulation with the Delaunay–Voronoi algorithm. The
mesh refinement is controlled by the vertex densities on both external and internal
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Figure 2. Steady axisymmetric base flow at the threshold of the first instability (Re = 116.9).
The solid line in the flow indicates the separatrix of the recirculation zone.

boundaries. Regions where the mesh density varies are depicted in figure 1. To avoid
any computational difficulty, a zone of width 0.05 and high vertex density (250 vertex
per unit length) is defined at the axis r = 0 and around the disk, corresponding
to the black shaded area in figure 1. The unknown velocity and pressure fields
(u, p)T are spatially discretized using a basis of Taylor–Hood elements (P2 elements
for velocities and P1 elements for pressure). The sparse matrices resulting from
the projection of the variational formulations onto the basis of finite elements are
built with the FreeFem++ software. The matrix inverses are computed using the
UMFPACK library, which consists in a sparse direct LU solver (Davis & Duff
1997; Davis 2004). Five different meshes, denoted M1–M5 have been used to assess
convergence in numerical results. These meshes exhibit various spatial extents and
vertex densities, detailed in table 1. The corresponding number of degrees of freedom
for an axisymmetric and a three-dimensional state vector, such as those used in the
base flow calculations and the stability analysis, respectively, are also provided. In the
following, we will focus on the finest mesh M1 to present all results. A comparison of
the results obtained with the meshes M1 − M5 is given in Appendix A.

3. Linear analysis

The aerodynamic flow field q =(u, p)T is decomposed into an axisymmetric
steady base flow q0 =(u0, 0, w0, p0)T and a three-dimensional perturbation q1 =
ǫ(u1, v1, w1, p1)T of amplitude ǫ assumed, in this section, infinitesimal.

3.1. Base flow calculations

The base flow q0 is sought as a steady axisymmetric solution of the Navier–Stokes
equations:

∇ · u0 = 0, ∇u0 · u0 + ∇p0 −
1

Re
∇2u0 = 0. (3.1)

On the axis ∂Ωa , the condition given by mass and momentum conservation as r → 0
for axisymmetric solutions is u0 = ∂rw

0 = 0. An approximate guess solution satisfying
the required boundary conditions is first obtained by time marching the axisymmetric
equations (2.1). The solution q0 of the steady nonlinear equations (3.1) is then
obtained using an iterative Newton method involving the resolution of simple linear
problems, as described in Barkley, Gomes & Henderson (2002) and Sipp & Lebedev
(2007). In the present study, the iterative process is carried out until the L2-norm of
the residual of the governing equations for q0 becomes smaller than 10−12. Figure 2
shows contours of axial velocity w0 of the base flow for Re = 116.9. We observe a
recirculation region of length ≃ 2.1 diameters, developing in the lee of the disk, with
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negative values of the axial velocity close to the axis reaching 60 % of the free-stream
velocity.

3.2. Global eigenmode analysis

At leading order in ǫ, q1 =(u1, p1)T is a solution of the unsteady equations linearized
about q0 that read

B∂t q
1 + A q1 = 0, (3.2)

where A and B are the linear operators defined by

A =

(
C( ·, u0) − 1

Re
∇2 ∇

∇T 0

)
, B =

(
I 0
0 0

)
, (3.3)

and C(a, b) is the advection operator ∇a · b + ∇b · a. Note that the operator C is
symmetric, i.e. C(a, b) = C(b, a). Since the base flow is axisymmetric, eigenmodes take
the form of normal modes

q1 = q̂1(r, z)e(σ+iω)t+imθ + c.c., (3.4)

where q1 = (û1, v̂1, ŵ1, p̂1)T is the so-called global mode for which both the cross-
stream and streamwise directions are eigendirections. The azimuthal wavenumber
of the global mode is m, its growth rate and pulsation are σ and ω, respectively.
Substitution of the development (3.4) in (3.2) leads to a generalized eigenvalue
problem for σ + iω and q̂1 that reads

(σ + iω)Bq̂1 + Amq̂1 = 0, (3.5)

where Am is the linear operator

Am =

(
Cm, 0( ·, u0) − 1

Re
∇m

2 ∇m

∇m
T 0

)
. (3.6)

In (3.6), ∇m is the gradient operator relative to the azimuthal wavenumber m, and
Cm, n(â, b̂) is the symmetric advection operator for a pair of normal modes â and b̂ of
respective azimuthal wavenumbers m and n, i.e. Cm, n(â, b̂) = ∇m â · b̂ + ∇n b̂ · â. Owing
to the normal mode expansion (3.4), these operators are complex, since θ derivatives
introduce product by im, and a complete expansion of these operators can be found
in Appendix C. The global mode satisfies the boundary conditions

û1 = 0 on ∂Ωin ∪ ∂Ωb (inlet and body), (3.7a)

(−p̂1 I + Re−1∇m û1) · n = 0 on ∂Ωout (outlet), (3.7b)

û1 = ∂r v̂
1 = ∂rŵ

1 = 0 on ∂Ωext (external boundary). (3.7c)

The conditions at the axis ∂Ωa depend on the azimuthal wavenumber m: û1 = ∂rŵ
1 =

∂r p̂
1 = 0 for m = 0, ∂r û

1 = ∂r v̂
1 = ŵ1 = p̂1 = 0 for |m| =1 and q̂1 = 0 for |m| � 2. This

eigenvalue problem is solved using an Arnoldi method based on a shift-invert
strategy, as in Ehrenstein & Gallaire (2005). Owing to the symmetries of the
problem, one should note that system (3.5) is invariant under the (û1, v̂1, ŵ1, p̂1, m) →
(û1, −v̂1, ŵ1, p̂1, −m) transformation, so that we investigate only the case m � 0 in
this section. Moreover, if (q̂1, σ + iω) is solution of problem (3.5), then (q̂1 ∗

, σ − iω)
is also a solution, i.e. eigenvalues are complex conjugates, so that all spectra in the
(σ, ω) plane are symmetric with respect to the real axis.

In the following, 〈, 〉 is the inner product defined by 〈â, b̂〉 =
∫

Ω
â∗ · b̂ r dr dz where

â and b̂ belong to �n and · refers to the canonical hermitian scalar product in �n.
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To normalize the global modes, we define arbitrarily a near-wake domain Ωin as
z ∈ [−2.5, 5.25] and r < 2, corresponding to the grey shaded area in figure 1. All
global modes are normalized by imposing first the phase of the radial velocity
to be zero at a particular location, namely û1(0, 1) must be real positive for
m = ± 1. The eigenmode energy is then normalized to unity in Ωin by imposing
that

〈
q̂1, δinBq̂1

〉
= 1, where δin is the function defined as δin(r, z) = 1 if (r, z) ∈ Ωin

and 0 otherwise. These normalization choices have no effect on the dynamics but ease
the comparison between results when the convergence tests are carried out.

For a given global mode q̂1, we also compute its adjoint global mode q̂1† that
verifies the adjoint eigenvalue problem

(σ − iω)Bq̂1† + A†
mq̂1† = 0, (3.8)

where A†
m is the adjoint of operator Am, obtained by integrating by parts system

(3.5) (see Schmid & Henningson 2001, for details)

A†
m =

(
C†

m, 0( ·, u0) − 1
Re

∇m
2 −∇m

∇m
T 0

)
. (3.9)

C†
m, n(â, b̂) = ∇n b̂

T
· â − ∇m â · b̂ is the adjoint advection operator. It is worthwhile not-

ing that C†
m, n is not symmetric. We would like to emphasize that the terms describing

the convection of disturbances by the base flow, namely ∇m û1 · u0 and −∇m û1† · u0

have opposite signs between the direct and adjoint advection operators. As a result,
disturbances are convected downstream for Am and upstream for A†

m, inducing a
spatial separation of direct and adjoint modes (Chomaz, Huerre & Redekopp 1990).
This convective non-normality is specific to open flows (Chomaz 2005).

The adjoint boundary conditions are defined so that all boundary terms arising
from the integration by parts are nil. We obtain

û1† = 0 on ∂Ωin ∪ ∂Ωb, (3.10a)

(u0 · n)û1† + (p̂1† I + Re−1∇m û1†) · n = 0 on ∂Ωout , (3.10b)

û1† = ∂r v̂
1† = ∂rŵ

1† = 0 on ∂Ωext . (3.10c)

The condition on the axis ∂Ωa is identical to that applied to the direct global mode.
This eigenproblem is solved via the same Arnoldi method, and adjoint global modes
are normalized so that

〈
q̂1†, Bq̂1

〉
= 1. Since the adjoint problem (3.8) has been

formulated for continuous operators with associated adjoint boundary conditions,
the spatial discretizations of problems (3.5) and (3.8) are not hermitian to one
another, because operator B does not correspond to the scalar product in cylindrical
coordinates. Consequently, we check a posteriori that both problems have identical
spectra, and that the bi-orthogonality relation is satisfied for the 10 leading global
modes, as will be detailed in the following.

In the linear framework, we compute the leading global modes and their adjoint
global modes, that will be used in § 4 to compute the coefficients of the normal
form (1.2). The threshold Reynolds numbers and characteristics of the destabilizing
global modes agree with the results of Natarajan & Acrivos (1993): the first
instability is steady (i.e. ωA = 0) and occurs at ReA

c = 116.9 for m =1 and the second
instability occurs at ReB

c = 125.3 for an m =1 oscillating mode of frequency ωB =0.760,
corresponding to a Strouhal number StB =ω

B
D/(2πU∞) of 0.121. Figure 3(a) shows

the eigenvalue spectra at the first critical Reynolds number ReA
c . m = 1 modes are

shown as diamonds in the upper half-plane whereas m = 0 and m = 2 modes are



Global mode interaction and pattern selection in the wake of a disk 167

1.5

1.0

0.5

0

0

2

A

B

A

B

m = 1

m = 1

m = 0,2

0

2

m = 0,2

–0.20 –0.15 –0.10 –0.05 0 0.05

–0.20 –0.15 –0.10 –0.05 0 0.05

ω

–0.5

–1.0

(a)

(b)

–1.5

1.5

1.0

0.5

0ω

σ

–0.5

–1.0

–1.5

Figure 3. m= 0, 1, 2 eigenvalue spectra in the (σ, ω) plane for the wake of a disk. (a)
Threshold of the first instability at ReA

c = 116.9. (b) Threshold of the second instability at

ReB
c = 125.3. All spectra are symmetric with respect to the real axis. The upper half-plane

shows m= 1 disturbances as diamonds, and the lower half-plane shows m= 0, 2 disturbances
as + and o symbols, respectively. The large diamonds labelled A and B correspond respectively
to the steady and oscillating destabilizing m= 1 modes.

shown respectively as + and o symbols in the lower half-plane. The marginally
unstable eigenvalue labelled A vanishes at threshold and corresponds to the large
closed diamond. In the following, the eigenvector associated to this steady global
mode is denoted q̂1

A. Figure 4(a) shows the spatial structure of the axial velocity
ŵ1

A: one observes a low-speed region extending far downstream. Since the azimuthal
wavenumber of this global mode is m = 1, the axial velocity perturbation is opposite
on the other side of the revolution axis, which induces an increase of the streamwise
velocity of the total flow. The stationary global mode therefore mainly induces an

off-axis displacement of the wake. The associated adjoint global mode q̂
1†
A is presented

in figure 4(b). It is dominated by high magnitudes of adjoint axial velocity ŵ
1†
A within

the recirculating area, the maximum value being reached close to the separating
streamline, but it is also intense far upstream of the disk. As mentioned previously,
the downstream localization of the global mode and the upstream localization of
the adjoint global mode result from the convective non-normality of the linearized
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Figure 4. Steady global mode and adjoint global mode at the threshold of the first instability,
ReA

c = 116.9. (a) Spatial distribution of axial velocity ŵ1
A for the global mode. (b) Spatial

distribution of axial velocity ŵ
1†
A for the adjoint global mode. The black hue corresponds to

vanishing perturbations.
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Figure 5. Same as figure (4) for the oscillating global mode at threshold. Only the real
part is shown here.

Navier–Stokes operator (see Chomaz 2005). Figure 3(b) shows the eigenvalue spectra
at the second instability threshold ReB

c =125.3. The eigenvalue corresponding to
the first destabilizing eigenmode q̂1

A has moved to the unstable (σ > 0) half-plane.
Moreover, the oscillating eigenvalue labelled B , corresponding to the large open
diamond, which was in the stable domain (σ < 0) in figure 3(a), is now crossing the
σ = 0 axis. The marginally unstable eigenvalue iωB is associated to the eigenvector
denoted q̂1

B+ , and q̂1
B− stands for the symmetric eigenmode associated to the azimuthal

wavenumber m = −1 for the same eigenvalue iωB . Since these modes are oscillating,
their eigenvectors are complex, and figure 5(a) shows the spatial structure of the real
part of ŵ1

B+ . One observes positive and negative velocity perturbations alternating
downstream of the disk, in a regular periodic way that allows to define a local spatial
wavelength of about 7 diameters. The imaginary part of ŵ1

B+ (not shown here) displays
a similar structure, but is approximately in spatial quadrature since its extrema are
located where the real part vanishes. This global mode corresponds therefore to a
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q̂1 A B C D E F

γ 1 1.87 × 10−7 6.31 × 10−9 3.01 × 10−7 1.71 × 10−7 2.22 × 10−9

Table 2. Value of the γ parameter defined by (3.11) computed for the six leading eigenmodes of
azimuthal wavenumber m= 1 at the second instability threshold ReB

c = 125.3. The eigenmodes
labelled A and B are the two leading modes discussed in the present study, and the subsequent
modes are labelled C, D, E and F .

spiral perturbation in the lee of the disk, which rotates in time at the frequency ωB .
One should note that the eigenmode for the m = −1 perturbation is similar, but has
the opposite pitch and rotates in time in the opposite direction at the same frequency
ωB . As for the stationary mode, the adjoint global mode q̂

1†

B+ shown in figure 5(b)
is intense only in the recirculating area and a few diameters upstream of the disk,
where it presents a weak oscillation, and it vanishes downstream of the disk. As a
way to quantify the precision of the present computations, we present in table 2 the
magnitude of the ratio

γ =

〈
q̂

1†
A , Bq̂1

〉

〈
q̂

1†
A , Bq̂1

A

〉 (3.11)

for the six leading eigenmodes of azimuthal wavenumber m =1 at the second
instability threshold ReB

c = 125.3. It can be seen that the bi-orthogonality condition
is respected with excellent precision, since γ is less than 10−7 if q̂1 �= q̂1

A. As a
consequence, we can conclude that our numerical procedure accurately estimates the
direct and adjoint global modes.

4. Weakly nonlinear analysis

4.1. Presentation

Since the critical Reynolds numbers for both destabilizing modes are close to one
another, we implement here an asymptotic expansion where these three modes have
the same order of magnitude. The Reynolds number Re is assumed to vary in a
range close to the mean critical Reynolds number Rec = (ReA

c + ReB
c )/2 = 121.1. The

departure from criticality is assumed to be of order ǫ2. Therefore, we introduce the
order unity parameter δ, such that

1

Re
=

1

Rec

− ǫ2δ. (4.1)

The threshold Reynolds numbers ReA
c and ReB

c are then rescaled into the criticality
parameters δA and δB , so that

1

ReA
c

=
1

Rec

− ǫ2δA,
1

ReB
c

=
1

Rec

− ǫ2δB . (4.2)

In practice, ǫ is chosen equal to 10−1, so that δA = −2.97×10−2 and δB = 2.77×10−2.
However, the results, and in particular the final bifurcation diagram, are mainly
insensitive to the precise choice of Rec and of ǫ, as shown in appendix B. As
mentioned in the introduction, the weakly nonlinear analysis requires the introduction
of multiple time scales with a fast time scale t and a slow time scale t1 = ǫ2t . The
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∂t term in (2.1) is therefore transformed into ∂t + ǫ2∂t1
. Note that the growth rates

σA and σB are non-zero at Rec, since the stationary mode q̂1
A is slightly unstable

and the oscillating modes q̂1
B± are slightly stable. However, with the present scaling

assumption, the growth rates σA and σB of these modes differ from zero only at order
ǫ2. We define ω0 as the frequency of modes q̂1

B± at the mean critical Reynolds number
Rec, i.e. ω0 = ωB(Rec) = 0.764, so that at Rec,

σA = ǫ2σ̃A, (4.3a)

σB + iωB = iω0 + ǫ2σ̃B, (4.3b)

where the second-order growth rates σ̃A and σ̃B are assumed to be of order unity.
This second-order departure from neutrality is taken into account by replacing the
leading-order operator Ac

m = Am(Rec) defined in (3.6), for which q̂1
A and q̂1

B± are not

neutral, by the shifted operator Ãc
m = Ac

m − ǫ2Sm, where Sm is the shift operator
defined by

S1q̂1
A = σ̃Aq̂1

A, (4.4a)

S1q̂1
B+ = σ̃B q̂1

B+, (4.4b)

S
−1q̂1

B− = σ̃B q̂1
B−, (4.4c)

S
±1q̂ = 0 for the remaining m = ±1 modes, (4.4d)

Smq̂ = 0 for all other m. (4.4e)

It is worthwhile emphasizing that Ãc
m has precisely the same spectra than Ac

m at the
critical Reynolds number Rec, excepted that q̂1

A and q̂1
B± are now neutral. The shift

operator is required only to apply the formalism of weakly nonlinear analyses to a
rigourous multiple codimension bifurcation. However, this operator is only formal
and in practice, we do not need to construct it explicitely, since its effect is simply
to bring the growth rates σA and σB to zero at the same Reynolds number, without
changing the eigenmodes shape. To the authors’ knowledge, the use of such a method
has not been reported yet, but it is somehow straightforward.

The flow field q is expanded as

q = q0 + ǫq1 + ǫ2q2 + ǫ3q3 + · · · (4.5)

and the governing equations (2.1) then give rise to a series of equations at successive
orders of ǫ.

4.2. Orders 0 and 1

At order ǫ0, the equations are the nonlinear equations (2.1) for the Reynolds number
Rec, i.e. q0 is the steady axisymmetric solution computed, as in § 3.1, for Rec. The
equations at order ǫ1 are the linearized equations given by (3.2) at Rec:

B∂t q
1 + Ãc q1 = 0, (4.6)

where Ãc is the shifted evolution operator acting in the real space, at the critical

Reynolds number Rec, obtained from Ãc
m by inverse Fourier transform in time and

in the azimuthal direction. Equation (4.6) specifies that q1 is a superposition of
eigenmodes destabilizing the steady state q0:

q1 = Aq̂1
Aeiθ + B+q̂1

B+eiθ+iω0t + B−q̂1
B−e−iθ+iω0t + c.c., (4.7)
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AA∗ B+B+∗ B−B−∗ AA B+B+ B−B− B+A B+A∗ B+B− B+B−∗ B−A B−A∗

m 0 0 0 2 2 −2 2 0 0 2 0 −2
ω 0 0 0 0 2ω0 2ω0 ω0 ω0 2ω0 0 ω0 ω0

Table 3. Order 2 nonlinear forcing terms gathered by their amplitude dependency, and
corresponding azimuthal and temporal periodicity (m,ω). Nine terms have been omitted as
they are complex conjugated of the ones presented here.

where A is the complex amplitude of the steady mode q̂1
A, and B+ and B− are the

complex amplitudes of the oscillating mode q̂1
B+ and q̂1

B− respectively, (A, B+, B−)
being, at this stage, unknown functions of the slow time t1.

4.3. Order 2

At order ǫ2 we obtain the linearized Navier–Stokes equations applied to q2:

B∂t q
2 + Ãc q2 = F2, (4.8)

forced by a term F2 depending only on zero and first-order solutions

F2 = −(δ∇2u0 + C(u1, u1), 0)T . (4.9)

The first term −δ∇2u0 in (4.9) is linear and arises from the Reynolds number variation,
quantified by δ and acting here on the base flow. The other contribution −C(u1, u1)
is nonlinear and is due to the transport of the first-order solution q1 by itself. Since
the first-order solution is made of six different contributions of respective amplitudes
A, A∗, B+, B+∗, B− and B−∗, its self-transport generates 21 different nonlinear terms.
Each of these terms, denoted F̂2

i je
(imθ+iωt) (the subscripts i and j stand for one of

the six first-order amplitudes) exhibits a specific spatial periodicity m and frequency
ω, gathered in table 3. These forcing terms are non-resonant, since associated to
azimuthal wavenumbers different from m = ±1, so that the forced equation (4.8)
can be inverted. The second-order solution q2 is thus sought as the superposition
of the response q2

δ
to the viscous forcing term −δ∇2u0 of (4.9), which describes the

axisymmetric base flow modification when the Reynolds number is varied, and of the
21 responses q̂2

i j to each individual forcing terms F̂2
i j , i.e.

q2 = δq̂2
δ

+ |A|2q̂2
AA∗ + |B+|2q̂2

B+ B+∗ + |B−|
2
q̂2

B− B−∗ (4.10a)

+ A2q̂2
AAe2iθ + B+B−∗q̂2

B+ B−∗e2iθ + c.c. (4.10b)

+ B+A∗q̂2
B+ A∗eiω0t + B−Aq̂2

B− Aeiω0t + B+B−q̂2
B+ B−e2iω0t + c.c. (4.10c)

+ B+2q̂2
B+ B+e2iθ+2iω0t + B−2

q̂2
B− B−e−2iθ+2iω0t + c.c. (4.10d)

+ B+Aq̂2
B+ Ae2iθ+iω0t + B−A∗q̂2

B− A∗e−2iθ+iω0t + c.c.. (4.10e)

Each response q̂2
i j is solution of a linear problem

(iωB + Ãc)q̂2
i j = F̂2

i j , (4.11)

with m and ω for each couple (i, j ) being collected from table 3. As already mentioned,
none of the combinations (m, ω) gathered in table 3 is an eigenvalue in figure 3 since

none of them is m = ±1, so that iωB+Ãc are always non-degenerate linear operators.
The axial velocity components of some of the 21 forcing terms and of their associated
responses are shown in figure 6. The transport of the stationary mode of amplitude
A by itself generates the forcing term F̂2

AA of azimuthal wavenumber m = 2 and
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Figure 6. Second-order forcing terms and associated responses: representation of various flow
fields appearing at order ǫ2 in the weakly nonlinear analysis. Figures on the left show the real
part of the axial component of the forcing terms F̂2

i j , and figures on the right show the real

part of the associated response ŵ2
ij . (a)–(b) Flow field of amplitude A2 (m= 2, ω = 0), (c)–(d )

flow field of amplitude B+A∗ (m= 0, ω = ω0) and (e)–(f ) flow field of amplitude B+B−∗ (m= 2,
ω =0). Note that the vertical scale is twice the horizontal scale.

zero frequency, shown in figure 6(a), whose associated response q̂2
AA is shown in

figure 6(b). The advection of the spiralling mode of amplitude B+ by the stationary
mode of amplitude A∗ (and vice versa) results in an axisymmetric forcing term beating
at the frequency ω0. As seen in figures 6(c) and 6(d), the forcing term F̂2

B+ A∗ and

its associated response q̂2
B+ A∗ are nearly periodic in space with a local wavelength

close to that of the eigenmode q̂1
B+ . Finally, the advection of the spiralling mode of

amplitude B+ by the corotating spiralling mode of amplitude B− (and vice versa)
generates a second-order forcing term F̂2

B+ B− of azimuthal wavenumber m = 2 and
zero frequency presented along with its associated response in figures 6(e) and 6(f ).

4.4. Order 3

The problem at order ǫ3 is similar to that obtained at order ǫ2, as the third order
solution q3 obeys the forced linear Navier–Stokes equations

B∂t q
3 + Ãcq3 = F3. (4.12)

The forcing term F3 depends only on lower order solutions and reads

F3 = −(∂t1 q1 − Sq1 + δ∇2u1 + C(u1, u2), 0)T , (4.13)

where S is the shift operator acting in the real space obtained from the operator
Sm introduced in (4.4) by inverse Fourier transform in time and in the azimuthal
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direction. The first term −∂t1 q1 in (4.13) corresponds to the slow time evolution of
the unknown amplitudes A, B+, B−, and will be referred to as the slow variation
term. The second term Sq1 comes from the fact that, at the critical Reynolds number
Rec, the growth rates of the eigenmodes are zero at leading order, but depart from
criticality at order ǫ2. To ease the discussion, this term will therefore be referred to
as the off-criticality term. The third term −δ∇2u1 arises from the Reynolds number
variation acting here on the order ǫ1 solution. The last term −C(u1, u2) is due to
the advection of the first-order solution q1 by the second-order solution q2 and vice
versa.

The first three forcing terms are linear and therefore resonate. The term −C(u1, u2)
splits into two contributions: the linear term −C(u1, u2

δ
) takes into account the action

of the Reynolds number variation through modifications of the axisymmetric base
flow, and the nonlinear terms of various space and time periodicity generated through
the combinations of the six contributions of the first-order solution together with the
21 other contributions of the second-order solution. Each of these terms is denoted
F̂3

i je
(imθ+iωt), the subscripts i (respectively j ) standing for the amplitude of the first-

order (respectively second order) solution. Among these nonlinear forcing terms,
many are resonant. This is for instance the case of the terms corresponding to the
advection of the stationary mode q̂1

A (m = 1, ω = 0), by second-order contributions
satisfying (m =0, ω = 0) (see table 3). To avoid secular terms, or in other words, to
be able to solve the expansion procedure at the third order, compatibility conditions
have to be enforced using the Fredholm alternative (Friedrichs 1973). Specifically,
the resonant forcing terms must be orthogonal to the kernel of the adjoint linearized
Navier–Stokes operator. The compatibility conditions impose A, B+, B− to obey the
relation

dA

dt1
=

1

ǫ2
Ȧ = λ̃AA − μ̃AA|A|2 − ν̃AA|B+|2 − ν̃∗

A
A|B−|

2
− χ̃AB

+B−∗A∗, (4.14a)

dB+

dt1
=

1

ǫ2
Ḃ+ = λ̃BB

+ − μ̃BB
+|B+|2 − ν̃BB

+|B−|
2

− η̃BB
+|A|2 − χ̃BB

−A2, (4.14b)

dB−

dt1
=

1

ǫ2
Ḃ− = λ̃BB

− − μ̃BB
−|B−|

2
− ν̃BB

−|B+|2 − η̃BB
−|A|2 − χ̃BB

+A∗2
, (4.14c)

which turns out to be identical to the normal form (1.2) if all coefficients in (1.2) are
rescaled into their second-order counterparts defined as

(λA, μA, . . . , χB) = ǫ2(λ̃A, μ̃A, . . . , χ̃B). (4.15a)

The values of all complex coefficients of system (4.14) are computed as scalar products
between the adjoint global modes q̂1† and the resonant forcing terms F̂3. For instance
the χ̃A coefficient arises from a forcing term of amplitude B+B−∗A∗, generated by
three different q1–q2 interactions:

F̂3
B+ B−∗ A∗ = −C1, 0

(
û1

B+, û2∗

B− A

)
− C1, 0

(
û1∗

B−, û2
B+ A∗

)
− C−1, 2

(
û1∗

A , û2
B+ B−∗

)
. (4.16)

It can be easily checked that, for instance, the interaction between the spiralling mode
q̂1

B+ (m =1, ω = ω0), and the axisymmetric response û2∗

B− A (m = 0, ω = −ω0) is indeed
resonant with the stationary mode û1

A. The axial velocity component of F̂3
B+ B−∗ A∗ is

presented in figure 7(a). This forcing is extended downstream but reaches a maximum
in the recirculating bubble. Since 〈q̂

1†
A , Bq̂1

A〉 =1 with the present normalization, χ̃A is
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Figure 7. Representation of various resonant forcing fields appearing at order ǫ3 in the
weakly nonlinear analysis. (a) Axial component of the forcing term of amplitude B+B−∗A∗

responsible for coefficient χ̃A in equation (4.14a). (b) Coupling density field χ̃A(r, z), defined as
the scalar product between this forcing term and the adjoint global mode q̂

1†
A . (c) Real part

of the axial component of the forcing term of amplitude B−A2 responsible for coefficient χ̃B

in (4.14b) and (4.14c). (d) Real part of the coupling density field χ̃B(r, z), defined as the scalar

product between this forcing term and the adjoint global mode q̂
1†

B+ . Note that the vertical
scale is twice the horizontal scale in figures 7(a) and 7(c).

given by

χ̃A = −
〈

q̂
1†
A , F̂3

B+ B−∗ A∗

〉
. (4.17)

It can be seen from (4.17) that the value of the second-order coefficient χ̃A is
independent of the choice of ǫ, giving that the nonlinear coefficients of (1.2) should
scale as ǫ2. This is a well-known result, since the precise value of the nonlinear
coefficients in a normal form depends on the normalization of the modes amplitudes.
Consequently, all results will be hereinafter presented in terms of the second-order
coefficients. Figure 7(b) shows the coupling density χ̃A(r, z) = q̂

1†
A (r, z) · F̂3

B+ B−∗ A∗(r, z),
such that the coupling coefficient χ̃A reads χ̃A =

∫
Ω

χ̃A(r, z)rdrdz. One observes that the
coupling density χ̃A(r, z) vanishes outside the recirculation bubble, since the adjoint
global mode is localized within the recirculation bubble and upstream of the disk
(figure 4b), and the nonlinear forcing F̂3

B+ B−∗ A∗ is localized downstream (figure 7a).
This indicates that the resonant forcing of mode q̂1

A owing to the B+B−∗A∗ interaction
is efficient only in the recirculation bubble. It is worthwhile emphasizing that this
result can be generalized to all nonlinear coefficients of the normal form (4.14), that
are computed as the scalar product of a forcing term localized downstream of the disk,
with an adjoint global mode localized upstream of the disk and in the recirculation
bubble. They are therefore only determined by a coupling that occurs within the
recirculation bubble. The recirculation region may therefore be viewed as the effective
wavemaker since all nonlinear interactions between the instability modes take place
in this region. Even though nonlinear forcing terms and nonlinear responses are all
spatially extended downstream, the region outside the recirculation bubble may be
viewed as passive since values of the flow field there do not influence the dynamics
of the leading modes.
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Figure 8. Theoretical bifurcation diagram associated to the normal form (4.14). Solid
(respectively dashed) lines denote stable (respectively unstable) branches.

Similarly, χ̃B results from a forcing term of amplitude B−AA, whose real part of the
axial velocity component is shown in figure 7(c). It arises from different contributions:

F̂3
B− AA = −C1, 0

(
û1

A, û2
B− A

)
− C−1, 2

(
û1

B−, û2
AA

)
, (4.18a)

χ̃B = −
〈

q̂
1†

B+, F̂3
B− AA

〉
. (4.18b)

This means that the spiralling mode q̂1
B− can force the production of the counter-

rotating spiralling mode q̂1
B+ by its nonlinear interaction with the m =2 stationary

solution q̂2
AA shown in figure 6(b), or by interacting first with the stationary mode q̂1

A

to produce the second-order solution q̂2
B− A (m = 0, ω = ω0), which eventually interacts

with q̂1
A again. The real part of the associated coupling density field χ̃B(r, z) =

q̂1
B+(r, z) · F̂3

B− AA(r, z), shown in figure 7(d), is also localized in the recirculation region,
meaning that the spiralling mode q̂1

B+ is receptive to the forcing owing to the B−AA

interaction only close to the disk and in the recirculating bubble.
We obtain

λ̃A = 2.01 + 71.4δ λ̃B = −1.85 + 76.4i + (66.7 + 9.35i)δ
μ̃A = 3.11 μ̃B = 2.42 + 0.0321i
ν̃A =6.88 − 1.11i ν̃B =3.13 − 0.816i

η̃B = 0.955 − 3.47i
χ̃A = 4.57 χ̃B =1.62 − 1.36i.

4.5. Bifurcation diagram

We set now A = |A|eiφA , B+ = |B+|eiφ+
B and B- = |B−|eiφ−

B . An exhaustive description of
the solutions of system (4.14), up to ternary bifurcations, can be found in Golubitsky
et al. (1988). In this section, we comment only the solutions relevant to our problem.
The bifurcation diagram is shown in figure 8, where the quantity Θ = |A|+ |B+|+ |B−|
is plotted as a function of the Reynolds number. Note that Θ has no particular
physical meaning but yields a convenient visualization of the bifurcation sequence.
The solid thick lines (respectively thin dashed lines) correspond to stable (respectively
unstable) solutions that are of three different kinds, as will now be explained.



176 P. Meliga, J.-M. Chomaz and D. Sipp

4.5.1. Pure modes

In addition to the trivial steady axisymmetric solution (A, B+, B−) = (0, 0, 0),
equations (4.14) have three types of solutions involving a single mode. The pure
steady state SS (A, 0, 0) is ruled by the real Landau equation for A:

Ȧ = ǫ2(λ̃A − μ̃AA|A|2), (4.19)

so that A2 = |A|2 = λ̃A/μ̃A and φ̇A = 0, and we can impose φ
A
= 0 by choosing the

phase of the initial disturbance to be zero. The pure Hopf states RW (0, B+, 0) and
(0, 0, B−) are associated with spiralling modes, whose amplitude is governed by the
complex Landau equation for B±:

Ḃ± = ǫ2(λ̃BB
± − μ̃BB

±|B±|2), (4.20)

so that

|B±|2 =
λ̃Br

μ̃Br

, (4.21a)

φ±
B

= ǫ2(λ̃Bi − μ̃Bi|B
±|2)t + φ±

B

0
. (4.21b)

The standing wave SW (0, B+, B−) corresponds to the superimposition of two
counter-rotating spiralling modes of same amplitude |B±|2 governed by the amplitude
equation

Ḃ± = ǫ2(λ̃BB
± − (μ̃B + ν̃B) B±|B±|2), (4.22)

of solutions

|B±|2 =
λ̃Br

μ̃Br + ν̃Br

, (4.23a)

φ±
B
(t) = ǫ2(λ̃Bi − (μ̃Bi + ν̃Bi) |B±|2)t + φ±

B

0
. (4.23b)

4.5.2. Mixed modes

Mixed modes MM (A, B+, B−) correspond to a superposition of the three global
modes, i.e. one stationary mode and two counter-rotating spiral modes of same
amplitude |B±|. Introducing the phase φ =φ+

B
− φ−

B
− 2φ

A
allows to reduce system

(4.14) to a three-dimensional polar system for |A|, |B±| and φ that reads:

˙|A| = ǫ2
(
λ̃A|A| − μ̃A|A|3 − (2ν̃Ar + χ̃A cos φ) |A||B±|2

)
, (4.24a)

˙|B±| = ǫ2
(
λ̃Br |B

±| − (μ̃Br + ν̃Br) |B±|3 − (η̃Br + χ̃Br cos φ ± χ̃Bi sinφ) |B±||A|2
)
,

(4.24b)

φ̇ = 2ǫ2
(
χ̃Br |A|2 + χ̃A|B±|2

)
sinφ. (4.24c)

The phase φ is thus solution of sin φ = 0, so that it comes from (4.24c) that φ is
invariant. The solutions of system (4.24) are such that

cos φ = ± 1, (4.25a)

|A|2 =
λ̃A(μ̃Br + ν̃Br) − (2ν̃Ar + cos φχ̃A)λ̃Br

μ̃A(μ̃Br + ν̃Br) − (2ν̃Ar + cos φχ̃A)(η̃Br + cosφχ̃Br)
, (4.25b)

|B±|2 =
−λ̃A(η̃Br + cos φχ̃Br) + μ̃Aλ̃Br

μ̃A(μ̃Br + ν̃Br) − (2ν̃Ar + cos φχ̃A)(η̃Br + cosφχ̃Br)
, (4.25c)

φ±
B
(t) = ǫ2

(
λ̃Bi − (μ̃Bi + ν̃Bi)|B

±|2 − (η̃Bi + χ̃Bi cosφ)|A|2
)
t ± (φ + 2φ

A
)/2, (4.25d)
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Figure 9. Streamwise vorticity of the SS mode. (a) Cross-sectional contours of streamwise
vorticity, computed at the bifurcation threshold ReA

c , at the axial position z = 20. (b) For the
same axial position, trajectory of the vortex core in the (x, y) plane as the Reynolds number is
increased in the range 117.1 <Re < 123, for the solution computed up to the second order. This
lateral shift of the longitudinal vortex dipole is due to the self-induction of the perturbation,
accounted for by the second harmonic term q̂2

AA in the asymptotic expansion (4.10).

so that the mixed modes come in two different states, referred to as MM 0 (cos φ = 1)
and MM π (cosφ = −1) respectively. Note that since coefficient χ̃A is real, (4.14a) leads
to φ̇A = 0, so that we can again impose φ

A
=0 without particularizing the solution of

the system.

4.6. Bifurcating modes

Unless otherwise specified, all flow fields presented in this section refer to the second-
order nonlinear solution q = q0 + ǫq1 + ǫ2q2, the term of order ǫ2 being essential
to discuss some realistic features. For the present coefficient values, the domains of
existence and the stability of the different modes are shown in figure 8:

(a) For low Reynolds numbers Re < 117.1, the trivial steady axisymmetric solution
Θ = 0 is stable. It exhibits an infinite number of symmetry planes.

(b) The first bifurcation occurs at Res = 117.1, where the trivial state bifurcates to
the pure steady state SS. The threshold of this bifurcation, for which λ̃A =0, departs
slightly from the critical Reynolds number issuing from the direct stability analysis
ReA

c , as it is obtained by considering the linear approximation of the growth rate.
As discussed previously, the stationary mode that bifurcates corresponds to a shift of
the wake in one direction, associated with the appearance of a pair of longitudinal
vortices. If one only looks at the first-order solution, the longitudinal vortex dipole
is centred, but the asymptotic second-order solution allows to describe the off-axis
displacement of the dipole under its self-induction (figures 9a and 9b). Figure 9(a)
shows cross-sectional contour plots of the streamwise vorticity at a Reynolds number
Re =118.5 above threshold, the section being taken 20 diameters downstream of
the disk. We observe a counter-rotating vortex dipole which is reminiscent of that
observed experimentally in axisymmetric wakes in this regime (Thompson, Leweke
& Provansal 2001), and usually designated as ‘vortex threads’. Note that the cores
of the vortex dipole, defined as the points of extremal streamwise vorticity of q, are
located off the centreplane x = 0 at threshold, as each vortex induces a velocity at the
centreline of the other, hence causing them to be convected away from the centreplane.
This nonlinear effect is shown in figure 9(b), where the position of the vortex core
in the (x, y) plane is plotted as a function of the Reynolds number. The vertical
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Figure 10. (a)–(b) Streamwise velocity ŵ and (c)–(d ) streamlines of the SS solution, expanded
up to the second order (i.e. q = q0 + ǫq1 + ǫ2q2) at Re =123. (a)–(c) (x, z) plane and (b)–(d )
(y, z) plane.
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Figure 11. Numerically computed dye lines corresponding to the second-order SS solution
shown in figure 10. The dark grey line represents the revolution axis and the wake has moved
off-axis only in the (x, z) side view.

position of the core barely changes, whereas the maximum horizontal deviation is
zero at threshold and increases when the Reynolds number is increased, i.e. when
the amplitude of the perturbation is increased. It finally reaches approximately 0.1
disk diameter for Re = 123. In the present asymptotic expansion procedure, this effect
is taken into account through the second-order term C1, 1(q̂

1
A, q̂1

A) corresponding to
the generation of the m =2 harmonic q̂2

AA. Indeed, when the nonlinear contribution
of this harmonic is removed, the vortex dipole remains on the y-axis (grey circular
symbol in figure 9b).

When considering the flow field, these vortex threads break the reflectional
symmetry with respect to the (y, z) plane but preserve that with respect to the (x, z)
plane, as evidenced by the axial velocity fields of the saturated flow field shown
in figure 10: one thus observes that figures 10(a) and 10(c), showing the (x, z)
plane, are not symmetric with respect to the (y, z) plane, whereas figures 10(b) and
10(d), showing the (y, z) plane, are symmetric with respect to the (x, z) plane. The
breaking of the rotational symmetry is also evidenced in figure 11, which simulates
an experimental dye visualization and shows numerically computed dye lines emitted
from the disk surface and transported by the second-order analytic solution. Such
visualization has been obtained by following the displacement of 360 particles
emitted from t =0 to t = 30 at the position r =0.4 and z =0.01, with a uniform
distribution in azimuth. Note that the symmetry plane can be arbitrarily rotated as
the phase φ

A
has been here arbitrarily selected.
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Figure 12. Flow after the second bifurcation: axial velocity w of the MM π solution,
expanded up to the second order – Re = 136. (a) (x, z) plane and (b) (y, z) plane.
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Figure 13. Numerically computed dye lines based on the asymptotic expansion up to the
second order, corresponding to the MM π solution shown in figure 12. (a) (x, z) plane: the
x −→ −x symmetry is broken by a drift of the wake towards positive values of x downstream
of the disk, (b) (y, z) plane and (c) three-dimensional representation.
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Figure 14. Flow after the third bifurcation: axial velocity w of the SW solution, expanded
up to the second order – Re = 144. (a) (x, z) plane and (b) (y, z) plane.
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Figure 15. Numerical dye lines corresponding to the SW solution shown in figure 14. (a) (x, z)
plane: the x −→ −x symmetry is recovered, (b) (y, z) plane and (c) three-dimensional
representation.

(c) A second bifurcation occurs at ReA
π

= 123.7, where the SS state bifurcates to the
MM π branch where cosφ = −1 (φ = π). At threshold, the SS branch loses its stability
to disturbances of small amplitudes |B+| = |B−| = |B±|, their second-order growth rate
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being given by

σ̃A
π

= λ̃Br − (η̃Br − χ̃Br)
λ̃A

μ̃A

. (4.26)

In the present case, the mode of invariant phase φ = π destabilizes first the SS
branch since χ̃Br is positive (see Golubitsky et al. 1988, for more details) and the Hopf
bifurcation from the SS branch occurs in favour of the MM π mode. The resulting
pattern breaks the reflectional symmetry of the SS mode with a periodic flapping
of the wake in the (y, z) plane, associated with a shedding of vortices, as seen in
figure 12, showing the axial velocity component in the (x, z) and (y, z) planes for the
Reynolds number Re =136. The dye lines computed using the periodic flow given by
the second-order asymptotic expansion are shown in figure 13, and illustrate the loss
of all symmetries of the flow. Moreover, figure 13 demonstrates the ability of such
asymptotic expansion to represent complex flows with dye lines exhibiting realistic
knitted hairpin structures. Were χ̃Br negative, then the SS mode would have bifurcated
to the MM 0 branch. In the present case, this branch is not selected and is unstable.
Still, the corresponding numerical dye lines are shown in figure 16 for comparison
at the same Reynolds number Re = 136, although one should keep in mind that the
resulting flow is unstable and should not be observed.

(d) A third bifurcation occurs at ReB
π

= 143.7, where the MM π branch bifurcates to
the SW branch, where A = 0. The critical Reynolds number is found by considering
the backward bifurcation from the SW to the MM π states, i.e. by studying how the SW
branch loses its stability to disturbances of small amplitude |A|, whose second-order
growth rate is given by

σ̃B
π

= λ̃A − (2ν̃Ar − χ̃A)
λ̃Br

μ̃Br + ν̃Br

. (4.27)

As reported in Golubitsky et al. (1988), the SW branch, rather than the RW branch,
is selected here, since ν̃Br >μ̃Br . The condition for this bifurcation to occur is χ̃A > 0,
i.e. the development of the standing wave must restabilize the stationary eigenmode
q̂1

A, which is the case here. Views of the axial velocity component at the Reynolds
number Re =144 are shown in figure 14, and the associated numerical dye lines at this
Reynolds number are shown in figure 15. Comparing to the analogous representation
of the MM π branch shown in figures 12 and 13, the difference may appear subtle, but
the symmetry with respect to the (y, z) plane is recovered, as shown in figures 14(a)
and 15(a), whereas the wake was shifted up in figures 12(a) and 13(a).

4.7. Comparison with the DNS calculations

DNS of the wake of a circular disk placed normal to a uniform flow have been
performed by Fabre et al. (2008). In this study, it has been observed that, as
the Reynolds number is increased, the flow undergoes a sequence of successive
bifurcations, each state being characterized by specific time and space symmetry
breaking or recovering. These authors report a first bifurcation at the Reynolds
number Res ≃ 115, leading to a steady state with a reflectional symmetry, correspon-
ding to the present SS branch. Then, a Hopf bifurcation is found for ReA

π
≃ 121,

leading to a so-called reflectional symmetry breaking state, characterized by the
periodic shedding of vortices twisted around the symmetry axis, with no symmetry
plane. The bifurcation threshold and symmetry properties therefore agree with that of
the present MM π branch. Finally, a third bifurcation is observed for ReB

π
≃ 140 and

allows the flow to recover a planar symmetry, the recovered symmetry plane being
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Figure 16. Numerical dye lines corresponding to the unstable MM 0 solution expanded up to
the second order – Re = 136. (a) (x, z) plane, (b) (y, z) plane and (c) three-dimensional represen-
tation. It turns out that interestingly, this mode preserves the reflectional symmetry of the SS
solution. The result is reminiscent of the dye lines pattern observed experimentally in the wake
past spheres, as in Gumowski et al. (2008), for instance. Note that the question of symmetry
preserving/breaking in sphere flows has also been addressed in the recent study of Pier (2008).

found to be orthogonal to that initially selected in the steady state. This bifurcation
threshold and symmetry properties agree with that of the present SW branch.

The whole bifurcation sequence, including the third bifurcation, predicted by the
present asymptotic expansion matches qualitatively and quantitatively for threshold
values with that found in the DNS calculations. Note that as mentioned in § 1, there
exist other techniques to compute the coefficients of the normal form (4.14). For
instance, one could investigate experimentally or numerically the transient dynamics
at various Reynolds numbers. In the case of the cylinder wake, such procedure has
allowed Provansal et al. (1987) to compute with accuracy the Landau coefficient
associated with the Hopf bifurcation. Though, such methods can be expected to also
yield results in good agreement with that presented here, since we show in appendix B
that the sensitivity of the bifurcation diagram to small variations in the different
coefficients is remarkably small.



Global mode interaction and pattern selection in the wake of a disk 183

2.4

0.13

0.12

0.11
MM

π

SW

RW

0.10

LR St
2.2

2.0

1.8
110 135

Re

160 120 140

Re

160

(a) (b)

Figure 17. (a) Recirculation length Lr for the mean flow as a function of the Reynolds
number. (b) Strouhal number St of the unsteady flow as a function of the Reynolds number.

2

1
r

z

0
0 2 4 6

–82 17

8 10 12

Figure 18. Axial velocity component ŵ2
δ of the base flow modification owing to the variation

of the Reynolds number. The solid line in the flow indicates the separatrix of the recirculation
zone.

4.8. Recirculation length and Strouhal number evolution

We investigate now the impact of the bifurcation sequence on the recirculation
length and frequency of the bifurcated flow. Figure 17(a) shows the evolution of the
recirculation length as a function of the Reynolds number. The vertical grey lines
stand for the different bifurcation thresholds. The solid line corresponds to that of the
mean flow obtained by time and azimuthal average, given in the present formalism
by the axisymmetric stationary solution up to the second order

q = q0 + ǫ2
(
δq̂2

δ
+ |A|2q̂2

AA∗ + |B+|2q̂2
B+ B+∗ + |B−|

2
q̂2

B− B−∗

)
, (4.28)

and the dashed line corresponds to that of the axisymmetric base flow obtained as
q0 + ǫ2δq̂2

δ
. The results sketched in this figure show that increasing the Reynolds

number yields an increase in the recirculation length of the base flow. Figure 18
shows the axial velocity component ŵ2

δ of the base flow modification owing to the
variation of the Reynolds number. It can be seen that the increase in the recirculation
length is due to ŵ2

δ being negative in the wake. It is possible to note that on the
SS branch, this effect is exactly counterbalanced by the positive values of ŵ2

AA∗ , so

that the overall recirculation length remains almost constant between Res and ReA
π
.

For Reynolds numbers larger than ReA
π
, the positive values of ŵ2

AA∗ and ŵ2
B±B±∗ in

the wake (not shown here) become dominant and the overall recirculation length
continuously decreases down to 1.8 disk diameters. Note that in the case of the wake
past a circular cylinder, a similar decrease of the recirculation length as the Reynolds
number is increased above the critical value Re = 47 has been shown to arise due
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to the strong mean flow correction induced by the existence of an unstable mode
(Zielinska et al. 1997).

Another consequence of this successive bifurcation scenario is the prediction of the
frequency at the onset of unsteadiness. The frequency of the bifurcated flow is given
by ω = ω0 + ǫ2ω̃nl where ω̃nl is the second-order nonlinear correction obtained from
equations (4.23b) and (4.25d) as φ̇±

B
= ǫ2ω̃nl . Figure 17(b) shows the evolution of

the Strouhal number St = Dω/(2πU∞) as a function of the Reynolds number. The
continuous line represents the frequency of the selected MM π and SW modes, and the
dashed lines represent the frequency of the unstable SW and RW modes. As already
commented, the bifurcation from the nonlinear SS branch to the MM π solution
occurs earlier than that from the axisymmetric state to the oscillating modes. The
remarkable feature is that the Strouhal number at the bifurcation is lower than that
predicted solely by the stability analysis of the axisymmetric state by approximately
10 % (0.11 at ReA

π
on the MM π branch and 0.12 at ReB

c on the SW branch). This
provides a simple explanation for the discrepancy between the shedding frequency
predicted by the linear stability theory and by the full Navier–Stokes computations,
as mentioned in Fabre et al. (2008).

5. Influence of external noise on the sequence of bifurcations

In experimental set-ups, the geometry of the apparatus, and in particular supporting
devices, induce steady perturbations that may affect the bifurcation properties. In this
section, we investigate the sensitivity of the theoretical bifurcation diagram shown in
figure 8 to such perturbations. We consider that the imperfections act as a small-
amplitude steady forcing term in the Navier–Stokes equations, that now read

∇ · u = 0, ∂t u + ∇u · u + ∇p −
1

Re
∇2u = f s, (5.1)

where f s is the steady forcing term, which, anticipating on the dominant balance,
may be taken of order ǫ3. The associated disturbance f s can then be decomposed
into the superposition of perturbations of various azimuthal wavenumbers:

f s = ǫ3

∞∑

m=0

f̂ m
s (r, z)eimθ . (5.2)

Being assumed of order three in ǫ, this steady external forcing directly adds on to the
third order forcing term in expansion (4.13). Among all contributions arising from
f s , only f̂ 1

s is resonant and adds the new term

αf =
〈

q̂
1†
A , f̂ 1

s

〉
(5.3)

to the amplitude equation (4.14a) for the stationary mode q̂1
A, so that the perturbed

system reads

Ȧ = ǫ2(αf + λ̃AA − μ̃AA|A|2 − ν̃AA|B+|2 − ν̃∗
A
A|B−|

2
− χ̃AB

+B−∗A∗), (5.4a)

Ḃ+ = ǫ2(λ̃B − μ̃BB
+|B+|2 − ν̃BB

+|B−|
2

− η̃BB
+|A|2 − χ̃BB

−A2), (5.4b)

Ḃ− = ǫ2(λ̃B − μ̃BB
−|B−|

2
− ν̃BB

−|B+|2 − η̃BB
−|A|2 − χ̃BB

+A∗2
). (5.4c)

Interestingly, for |B±| = 0, the imaginary part of (5.4a) reduces to

φ̇A =
|αf |

|A|
sin(φf − φ

A
), (5.5)



Global mode interaction and pattern selection in the wake of a disk 185

0.8

0.6

Θ 0.4

0.2

0
105 120 135 150

Res
Re

ReA
π ReB

π

SS

MM
π

SW
|αr|

Figure 19. Bifurcation diagram for various forcing amplitudes |αf |.

where φf = arg(αf ), so that a steady solution requires that φ
A

= φf ± π. The plane
corresponding to the symmetry lost at the first bifurcation threshold is no more
arbitrary, but is selected by the forcing term, even if of very small amplitude (order
ǫ3). Figure 19 shows the perturbed bifurcation diagrams for |αf | = 2.5 × 10−2 and
10−1. The first steady bifurcation degenerates into an imperfect bifurcation, so that
the amplitude A of the steady mode q̂1

A is non-zero even at Reynolds numbers lower
than the first threshold. The Hopf bifurcation from the SS to the MM π branch is
preserved and occurs at a Reynolds number very close to the threshold ReA

π
= 123.7

found in the unperturbed case: we obtain ReA∗
π

= 123.6 for |αf | = 2.5×10−2 and 123.4
for |αf | = 10−1. The bifurcation from the MM π to the SW branch also degenerates
into an imperfect bifurcation, so that the flow ultimately remains three-dimensional
without recovering its lost reflectional symmetry, even for very low forcing amplitudes.

6. Conclusion

In this study, we have considered the nonlinear dynamics of the wake of a
circular disk placed normal to a uniform flow. The performed linear stability analysis
agrees with the results of Natarajan & Acrivos (1993). The first destabilization of
the axisymmetric steady flow occurs for a stationary global mode of azimuthal
wavenumber m =1 and the second destabilization occurs for two oscillating global
modes of azimuthal wavenumbers m = ± 1. Since the critical Reynolds numbers for
these three bifurcating modes are close to one another, we have assumed that the
nonlinear dynamics close to these threshold Reynolds numbers could be described by
the slow manifold spanned by the three destabilizing eigenmodes. To derive rigorously
the normal form governing the dynamics in the slow manifold, a multiple time scale
expansion has been carried out. In this procedure, the first-order solution is made of
the three modes with unknown amplitudes. The second order is decomposed into the
base flow modification owing to the variation in the Reynolds number and harmonics
generated by the nonlinear self-interaction of the first-order solution. At third order,
resonant terms are generated and the resulting solvability conditions impose the
nonlinear equations that must be satisfied by the unknown amplitudes, the so-called
normal form. Coefficients of the normal form have been systematically computed.
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σA σB ωB

M1 5.3 × 10−6 4.7 × 10−6 0.7604
M2 −9.9 × 10−5 −9.0 × 10−5 0.7605
M3 −5.5 × 10−5 −4.0 × 10−5 0.7604
M4 1.3 × 10−5 1.6 × 10−5 0.7605
M5 8.9 × 10−5 6.6 × 10−5 0.7604

Table 4. Dependence of the eigenvalues on the different meshes characterized in table 1.
The real eigenvalue σA is computed at ReA

c = 116.9 and the complex eigenvalue σB + iωB is

computed at ReB
c = 125.3.

They are given by the scalar product between a resonant forcing term arising at
the third order and the adjoint of the forced mode. Owing to the convective non-
normality of the linearized Navier–Stokes operator, we have shown that strikingly, the
region where all nonlinear interactions take place is located within the recirculating
bubble. Analysing the dynamics resulting from the normal form, we find that the
wake undergoes a first bifurcation for Re = 117.1, where the axisymmetry is lost but
the time invariance is preserved, leading to a three-dimensional steady state with a
reflectional symmetry. A Hopf bifurcation then occurs for Re = 123.7, where both
the remaining reflectional symmetry and the time invariance are broken, leading to a
fully three-dimensional periodic state. A third bifurcation then occurs for Re = 143.7,
where the flow remains unsteady, but recovers the reflectional symmetry normal to that
lost at the first bifurcation threshold. The non-trivial bifurcation sequence involving
nonlinear interactions between unstable modes of the axisymmetric base flow agrees
remarkably with the recent observations made by Fabre et al. (2008) using DNS. These
authors have reported three successive bifurcations at Reynolds numbers Re ≃ 115,
121 and 140, giving rise to bifurcated states with symmetry features identical to the
ones found in this study. Furthermore, the frequency they have observed for the mixed
state is lower than the frequency of the oscillating mode at threshold, an effect that
results from the existence of the MM π mixed mode in the present study. This suggests
that the three-dimensional dynamics of the whole system is efficiently captured using
a reduced order model based on the destabilization of the axisymmetric steady
state.

Appendix A. Sensitivity of the results to mesh spacing

The eigenvalues, as well as the nonlinear coefficients of normal form (4.14) have
been calculated for the five meshes M1–M5, differing by the location of the external
boundaries and by the vertex densities. Results are given in table 4 for the values
of the linear growth rate σ and frequency ω at threshold, for both eigenmodes q̂1

A

and q̂1
B± . Even for the coarser mesh M5, the growth rate is zero down to the fourth

digit, and the frequency of the oscillating mode is converged down to the third digit.
On table 5, the coupling coefficients of normal form (4.14) are compared for the
different meshes. Even for this very involved computations, coefficients are converged
down to the third digit. Therefore, we can conclude that the present work is precise
down to better than 1 %. Note that this is the numerical precision but not the
convergence of the asymptotic expansion, whose precision increases as |Re − Rec|
decreases.



Global mode interaction and pattern selection in the wake of a disk 187

μ̃A ν̃Ar ν̃Ai χ̃A μ̃Br μ̃Bi ν̃Br ν̃Bi η̃Br η̃Bi χ̃Br χ̃Bi

M1 3.11 6.88 −1.11 4.57 2.42 0.0321 3.13 −0.816 0.955 −3.47 1.62 −1.36
M2 3.11 6.88 −1.11 4.57 2.42 0.0332 3.13 −0.814 0.955 −3.47 1.62 −1.36
M3 3.11 6.88 −1.11 4.57 2.42 0.0329 3.13 −0.815 0.955 −3.47 1.62 −1.36
M4 3.11 6.88 −1.11 4.57 2.42 0.0320 3.13 −0.817 0.955 −3.47 1.62 −1.36
M5 3.11 6.88 −1.11 4.56 2.42 0.0310 3.13 −0.807 0.962 −3.47 1.62 −1.36

Table 5. Coefficient values of normal form (4.14) obtained for the different meshes
characterized in table 1.
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Figure 20. Bifurcation diagram obtained for different choices of the reference Reynolds
number Rec = 116.9, 121.1 and 125.3.

Appendix B. Comparison of bifurcation diagrams obtained with various

choices of the reference Reynolds number

Figure 20 presents the bifurcation diagram obtained for different choices of the
reference Reynolds number Rec. Computations for Rec = 116.9 and Rec = 125.3
yield slightly different nonlinear coefficients, resulting in diagrams in good agreement
with each other (see figure 20). It can be seen that the choice of Rec has no significant
impact on the dynamics, both in terms of mode selection and symmetry breaking.
We find a small effect on the bifurcation thresholds related to the MM π branch: the
second threshold ReA

π
varies by less that 0.5 %, from 123.3 to 124.4, and the third

threshold ReB
π

varies by approximately 3 %, from 140.9 to 146.7. This sensitivity is
remarkably small since the expansion procedure is meant for small departures from
threshold, which is no more the case at the third bifurcation threshold ReB

π
.

Appendix C. Expression of the complex differential operators

For a normal mode â of azimuthal wavenumber m, the gradient operator and the
velocity gradient tensor respectively read

∇m =

⎛
⎝

∂r

im
r

∂z

⎞
⎠ , ∇m â =

⎛
⎜⎝

∂r û
im
r
û − 1

r
v̂ ∂zû

∂r v̂
im
r
v̂ + 1

r
û ∂zv̂

∂rŵ
im
r
ŵ ∂zŵ

⎞
⎟⎠ . (C 1)
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For a couple of normal modes â and b̂ of respective azimuthal wavenumbers m and
n, the general form of the linearized advection operator Cm, n(â, b̂) therefore reads

Cm, n(â, b̂) =

⎛
⎜⎝

ûb∂r ûa + ûa∂r ûb + i
r
(mv̂bûa + nv̂aûb) − 2

r
v̂bv̂a + ŵb∂zûa + ŵa∂zûb)

ûb∂r v̂a + ûa∂r v̂b + i
r
(m + n)v̂bv̂a + 1

r
(v̂bûa + v̂aûb) + ŵb∂zv̂a + ŵa∂zv̂b

ûb∂rŵa + ûa∂rŵb + i
r
(mv̂bŵa + nv̂aŵb) + ŵb∂zŵa + ŵa∂zŵb

⎞
⎟⎠ .

(C 2)

The linearized advection operator used in the order one problem (3.6) now reads

Cm, 0(û
1, u0) =

⎛
⎜⎝

û0∂r û
1 + û1∂r û

0 + i
r
mv̂1û0 + ŵ0∂zû

1 + ŵ1∂zû
0)

û0∂r v̂
1 + 1

r
v̂1û0 + ŵ0∂zv̂

1

û0∂rŵ
1 + û1∂rŵ

0 + i
r
mv̂1ŵ0 + ŵ0∂zŵ

1 + ŵ1∂zŵ
0

⎞
⎟⎠ . (C 3)

Finally, the adjoint linearized advection operator used in the adjoint problem (3.8)
reads

C†
m, 0(û

1, u0) =

⎛
⎜⎝

−u0∂r û
1 + û1∂ru

0 − w0∂zû
1 + ŵ1∂rw

0

−u0∂r v̂
1 + 1

r
v̂1u0 − w0∂zv̂

1

−u0∂rŵ
1 + û1∂zu

0 − w0∂zŵ
1 + ŵ1∂zw

0

⎞
⎟⎠ . (C 4)
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