
Global Model-Checking of Infinite-State Systems

Nir Piterman1,� and Moshe Y. Vardi2,��

1 Weizmann Institute of Science, Department of Computer Science, Rehovot 76100, Israel
nir.piterman@weizmann.ac.il

http://www.wisdom.weizmann.ac.il/˜nirp
2 Rice University, Department of Computer Science, Houston, TX 77251-1892, USA

vardi@cs.rice.edu
http://www.cs.rice.edu/˜vardi

Abstract. In this paper we extend the automata-theoretic framework for rea-
soning about infinite-state sequential systems to handle also the global model-
checking problem. Our framework is based on the observation that states of
such systems, which carry a finite but unbounded amount of information, can
be viewed as nodes in an infinite tree, and transitions between states can be simu-
lated by finite-state automata. Checking that the system satisfies a temporal prop-
erty can then be done by a two-way automaton that navigates through the tree.
The framework is known for local model checking. For branching time proper-
ties, the framework uses two-way alternating automata. For linear time properties,
the framework uses two-way path automata. In order to solve the global model-
checking problem we show that for both types of automata, given a regular tree,
we can construct a nondeterministic word automaton that accepts all the nodes in
the tree from which an accepting run of the automaton can start.

1 Introduction

An important research topic over the past decade has been the application of model
checking to infinite-state systems. A major thrust of research in this area is the applica-
tion of model checking to infinite-state sequential systems. These are systems in which
a state carries a finite, but unbounded, amount of information, e.g., a pushdown store.
The origin of this thrust is the important result by Muller and Schupp that the monadic
second-order theory of context-free graphs is decidable [MS85]. As the complexity
involved in that decidability result is nonelementary, researchers sought decidability re-
sults of elementary complexity. This started with Burkart and Steffen, who developed
an exponential-time algorithm for model-checking formulas in the alternation-free µ-
calculus with respect to context-free graphs [BS92]. Researchers then went on to extend
this result to the µ-calculus, on one hand, and to more general graphs on the other

� Supported in part by the European Commission (FET project ADVANCE, contract No IST-
1999-29082). This work was carried out at the John von Neumann Minerva Center.

�� Supported in part by NSF grants CCR-9988322, CCR-0124077, CCR-0311326, IIS-9908435,
IIS-9978135, EIA-0086264, and ANI-0216467 by BSF grant 9800096, and by a grant from
the Intel Corporation.

R. Alur and D.A. Peled (Eds.): CAV 2004, LNCS 3114, pp. 387–400, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

388 Nir Piterman and Moshe Y. Vardi

hand, such as pushdown graphs [BS95,Wal96], regular graphs [BQ96], and prefix-
recognizable graphs [Cau96]. One of the most powerful results so far is an exponential-
time algorithm by Burkart for model checking formulas of the µ-calculus with respect
to prefix-recognizable graphs [Bur97]1. Some of this theory has also been reduced to
practice. Pushdown model-checkers such as Mops [CW02], Moped [ES01], and Bebop
[BR00] (to name a few) have been developed. Successful applications of these model-
checkers to the verification of software are reported, for example, in [CW02].

We usually distinguish between local and global model-checking. In the first set-
ting we are given a specific state of the system and determine whether it satisfies a given
property. In the second setting we compute (a finite representation) of the set of states
that satisfy a given property. For many years global model-checking algorithms were
the standard; in particular, CTL model checkers [CES86], and symbolic model-checkers
[BCM+92] perform global model-checking. While local model checking holds the
promise of reduced computational complexity [SW91] and is more natural for ex-
plicit LTL model-checking [CVWY92], global model-checking is especially important
where the model-checking is only part of the verification process. in [CKKV01] global
model-checking is used to supply coverage information, which informs us what parts
of the design under verification are relevant to the specified properties. In [LBBO01] an
infinite-state system is abstracted into a finite-state system. Global model-checking is
performed over the finite-state system and the result is then used to compute invariants
for the infinite-state system. In [PRZ01] results of global model-checking over small
instances of a parameterized system are generalized to invariants for every value of the
system’s parameter.

An automata-theoretic framework for reasoning about infinite-state sequential sys-
tems was developed in [KV00,KPV02]. The automata-theoretic approach uses the the-
ory of automata as a unifying paradigm for system specification, verification, and syn-
thesis [EJ91,Kur94,VW94]. Automata enable the separation of the logical and the algo-
rithmic aspects of reasoning about systems, yielding clean and asymptotically optimal
algorithms. Traditionally automata-theoretic techniques provide algorithms only for lo-
cal model-checking [CVWY92,KV00,KPV02]. As model-checking in the automata-
theoretic approach is reduced to the emptiness of an automaton, it seems that this limita-
tion to local model checking is inherent to the approach. For finite-state systems we can
reduce global model-checking to local model-checking by iterating over all the states
of the system, which is essentially what happens in symbolic model checking of LTL
[BCM+92]. For infinite-state systems, however, such a reduction cannot be applied. In
this paper we remove this limitation of automata-theoretic techniques. We show that the
automata-theoretic approach to infinite-state sequential systems generalizes nicely to
global model-checking. Thus, all the advantages of using automata-theoretic methods,
e.g., the ability to handle regular labeling and regular fairness constraints, the ability
to handle µ-calculus with backward modalities, and the ability to check realizability
[KV00,ATM03], apply also to the more general problem of global model checking.

We use two-way tree alternating automata to reason about properties of infinite-state
sequential systems. The idea is based on the observation that states of such systems can

1 The monadic second-order theory and µ-calculus model-checking over high-order pushdown
graphs is also decidable [KNU03,Cac03]. The complexity of both problems is nonelementary.

Global Model-Checking of Infinite-State Systems 389

be viewed as nodes in an infinite tree, and transitions between states can be simulated
by finite-state automata. Checking that the system satisfies a temporal property can then
be done by a two-way alternating automaton. Local model checking is then reduced to
emptiness or membership problems for two-way tree automata.

In this work, we give a solution to the global model-checking problem. The set
of configurations of a prefix-recognizable system satisfying a µ-calculus property can
be infinite, but it is regular, so it is finitely represented. We show how to construct a
nondeterministic word automaton that accepts all the configurations of the system that
satisfy (resp., do not satisfy) a branching-time (resp., linear-time) property. In order
to do that, we study the global membership problem for two-way alternating parity
tree automata and two-way path automata. Given a regular tree, the global member-
ship problem is to find the set of states of the automaton and locations on the tree from
which the automaton accepts the tree. We show that in both cases the question is not
harder than the simple membership problem (is the tree accepted from the root and
the initial state). Our result matches the upper bounds for global model checking estab-
lished in [EHRS00,EKS01,Cac02]. Our contribution is in showing how this can be done
uniformly in an automata-theoretic framework rather than via an eclectic collection of
techniques.

2 Preliminaries

Labeled Rewrite Systems. A labeled transition graph is G = 〈Σ,S, L, ρ, s0〉, where
Σ is a finite set of labels, S is a (possibly infinite) set of states, L : S → Σ is a
labeling function, ρ ⊆ S × S is a transition relation, and s0 ∈ S0 is an initial state.
When ρ(s, s′), we say that s′ is a successor of s, and s is a predecessor of s′. For a
state s ∈ S, we denote by Gs = 〈Σ,S, L, ρ, s〉, the graph G with s as its initial state.
An s-computation is an infinite sequence of states s0, s1, . . . ∈ Sω such that s0 = s
and for all i ≥ 0, we have ρ(si, si+1). An s-computation s0, s1, . . . induces the s-trace
L(s0) · L(s1) · · · ∈ Σω. Let Ts ⊆ Σω be the set of all s-traces.

A rewrite system is R = 〈Σ, V,Q,L, T 〉, where Σ is a finite set of labels, V is a
finite alphabet, Q is a finite set of states, L : Q × V ∗ → Σ is a labeling function that
depends only on the first letter of x (Thus, we may write L : Q× V ∪ {ε} → Σ. Note
that the label is defined also for the case that x is the empty word ε). The finite set of
rewrite rules T is defined below. The set of configurations of the system is Q × V ∗.
Intuitively, the system has finitely many control states and an unbounded store. Thus, in
a configuration (q, x) ∈ Q× V ∗ we refer to q as the control state and to x as the store.
We consider here two types of rewrite systems. In a pushdown system, each rewrite rule
is 〈q, A, x, q′〉 ∈ Q×V ×V ∗×Q. Thus, T ⊆ Q×V ×V ∗×Q. In a prefix-recognizable
system, each rewrite rule is 〈q, α, β, γ, q′〉 ∈ Q × reg(V) × reg(V) × reg(V) × Q,
where reg(V) is the set of regular expressions over V . Thus, T ⊆ Q × reg(V) ×
reg(V) × reg(V) × Q. For a word w ∈ V ∗ and a regular expression r ∈ reg(V) we
write w ∈ r to denote thatw is in the language of the regular expression r. We note that
the standard definition of prefix-recognizable systems does not include control states.
Indeed, a prefix-recognizable system without states can simulate a prefix-recognizable
system with states by having the state as the first letter of the unbounded store. We use
prefix-recognizable systems with control states for the sake of uniform notation.

390 Nir Piterman and Moshe Y. Vardi

The rewrite system R starting in configuration (q0, x0) induces the labeled transi-

tion graph G(q0,x0)
R = 〈Σ,Q × V ∗, L′, ρR, (q0, x0)〉. The states of GR are the config-

urations of R and 〈(q, z), (q′, z′)〉 ∈ ρR if there is a rewrite rule t ∈ T leading from
configuration (q, z) to configuration (q′, z′). Formally, if R is a pushdown system, then
ρR((q, A · y), (q′, x · y)) if 〈q, A, x, q′〉 ∈ T ; and if R is a prefix-recognizable system,
then ρR((q, x · y), (q′, x′ · y)) if there are regular expressions α, β, and γ such that
x ∈ α, y ∈ β, x′ ∈ γ, and 〈q, α, β, γ, q′〉 ∈ T . Note that in order to apply a rewrite
rule in state (q, z) ∈ Q × V ∗ of a pushdown graph, we only need to match the state
q and the first letter of z with the second element of a rule. On the other hand, in an
application of a rewrite rule in a prefix-recognizable graph, we have to match the state
q and we should find a partition of z to a prefix that belongs to the second element of
the rule and a suffix that belongs to the third element. A labeled transition graph that is
induced by a pushdown system is called a pushdown graph. A labeled transition system
that is induced by a prefix-recognizable system is called a prefix-recognizable graph.

Consider a prefix-recognizable system R = 〈Σ, V,Q,L, T 〉. For a rewrite rule ti =
〈 s, αi, βi, γi, s′ 〉 ∈ T , let Uλ = 〈V,Qλ, q0λ, ηλ, Fλ〉, for λ ∈ {αi, βi, γi}, be the non-
deterministic automaton for the language of the regular expression λ. We assume that
all initial states have no incoming edges and that all accepting states have no outgoing
edges. We collect all the states of all the automata for α, β, and γ regular expressions.
Formally,Qα =

⋃
ti∈T Qαi , Qβ =

⋃
ti∈T Qβi , and Qγ =

⋃
ti∈T Qγi .

We define the size ‖T ‖ of T as the space required in order to encode the rewrite rules
in T and the labeling function. Thus, in a pushdown system, ‖T ‖ =

∑
〈q,A,x,q′〉∈T |x|,

and in a prefix-recognizable system, ‖T ‖ =
∑

〈q,α,β,γ,q′〉∈T |Uα| + |Uβ| + |Uγ |.
We are interested in specifications expressed in the µ-calculus [Koz83] and in LTL

[Pnu77]. For introduction to these logics we refer the reader to [Eme97]. We want to
model check pushdown and prefix-recognizable systems with respect to specifications
in these logics. We differentiate between local and global model-checking. In local
model-checking, given a graph G and a specification ϕ, one has to determine whether
G satisfies ϕ. In global model-checking we are interested in the set of configurations s
such that Gs satisfies ϕ. As G is infinite, we hope to find a finite representation for this
set. It is known that the set of configurations of a prefix-recognizable system satisfying
a monadic second-order formula is regular [Cau96,Rab72], which implies that this also
holds for pushdown systems and for µ-calculus and LTL specifications.

In this paper, we extend the automata-theoretic approach to model-checking of se-
quential infinite state systems [KV00,KPV02] to global model-checking. Our model-
checking algorithm returns a nondeterministic finite automaton on words (NFW, for
short) recognizing the set of configurations that satisfy (not satisfy, in the case of LTL)
the specification. The complexity of our algorithms matches the previously known up-
per bounds [EHRS00,EKS01,Cac02]2.

Theorem 1. Global model-checking for a system R and a specification ϕ is solvable

– in time (‖T ‖)3 · 2O(|ϕ|) and space (‖T ‖)2 · 2O(|ϕ|), where R is a pushdown system
and ϕ is an LTL formula.

2 In order to obtain the stated bound for prefix-recognizable systems and LTL specifications one
has to combine the result in [EKS01] with our reduction from prefix-recognizable systems to
pushdown systems with regular labeling [KPV02].

Global Model-Checking of Infinite-State Systems 391

– in time (‖T ‖)3 · 2O(|ϕ|·|Qβ|) and space (‖T ‖)2 · 2O(|ϕ|·|Qβ|), where R is a prefix-
recognizable system and ϕ is an LTL formula.

– in time 2O(‖T‖·|ϕ|·k), where R is a prefix-recognizable system and ϕ is a µ-calculus
formula of alternation depth k.

Alternating Two-Way Automata. Given a finite set Υ of directions, an Υ -tree is a set
T ⊆ Υ ∗ such that if υ · x ∈ T , where υ ∈ Υ and x ∈ Υ ∗, then also x ∈ T . The
elements of T are called nodes, and the empty word ε is the root of T . For every υ ∈ Υ
and x ∈ T , the node x is the parent of υ · x. Each node x 	= ε of T has a direction in
Υ . The direction of the root is the symbol ⊥ (we assume that ⊥ 	∈ Υ). The direction of
a node υ · x is υ. We denote by dir(x) the direction of node x. An Υ -tree T is a full
infinite tree if T = Υ ∗. A path π of a tree T is a set π ⊆ T such that ε ∈ π and for
every x ∈ π there exists a unique υ ∈ Υ such that υ · x ∈ π.

Given two finite sets Υ and Σ, a Σ-labeled Υ -tree is a pair 〈T, V 〉 where T is an
Υ -tree and V : T → Σ maps each node of T to a letter in Σ. When Υ and Σ are not
important or clear from the context, we call 〈T, V 〉 a labeled tree.

A tree is regular if it is the unwinding of some finite labeled graph. More formally,
a transducer D is a tuple 〈Υ,Σ,Q, q0, η, L〉, where Υ is a finite set of directions, Σ is
a finite alphabet, Q is a finite set of states, q0 ∈ Q is a start state, η : Q × Υ → Q is
a deterministic transition function, and L : Q → Σ is a labeling function. We define
η : Υ ∗ → Q in the standard way: η(ε) = q0 and η(ax) = η(η(x), a). Intuitively, a
transducer is a labeled finite graph with a designated start node, where the edges are
labeled by Υ and the nodes are labeled by Σ. A Σ-labeled Υ -tree 〈Υ ∗, τ〉 is regular if
there exists a transducer D = 〈Υ,Σ,Q, q0, η, L〉, such that for every x ∈ Υ ∗, we have
τ(x) = L(η(x)). The size of 〈Υ ∗, τ〉, denoted ‖τ‖, is |Q|, the number of states of D.

Alternating automata on infinite trees generalize nondeterministic tree automata and
were first introduced in [MS87]. Here we describe alternating two-way tree automata.
For a finite set X , let B+(X) be the set of positive Boolean formulas over X (i.e.,
Boolean formulas built from elements in X using ∧ and ∨), where we also allow the
formulas true and false, and, as usual, ∧ has precedence over ∨. For a set Y ⊆ X
and a formula θ ∈ B+(X), we say that Y satisfies θ iff assigning true to elements in
Y and assigning false to elements in X \ Y makes θ true. For a set Υ of directions,
the extension of Υ is the set ext(Υ) = Υ ∪ {ε, ↑} (assuming Υ ∩ {ε, ↑} = ∅). An
alternating two-way automaton over Σ-labeled Υ -trees is A = 〈Σ,Q, q0, δ, F 〉, where
Σ is the input alphabet,Q is a finite set of states, q0 ∈ Q is an initial state, δ : Q×Σ →
B+(ext(Υ) ×Q) is the transition function, and F specifies the acceptance condition.

A run of an alternating automaton A over a labeled tree 〈Υ ∗, V 〉 is a Σr-labeled
Γ -tree, for some set Γ of directions, where Σr = Υ ∗ × Q. The root ε of Tr is labeled
by (ε, q0). The labels of a node and its successors have to satisfy the transition function:
Consider y ∈ Tr with r(y) = (x, q) and δ(q, V (x)) = θ. Then there is a (possibly
empty) set S ⊆ ext(Υ) × Q, such that S satisfies θ, and for all 〈c, q′〉 ∈ S, there is
γ ∈ Γ such that γ ·y ∈ Tr and the following hold: (a) If c ∈ Υ , then r(γ ·y) = (c ·x, q′).
(b) If c = ε, then r(γ · y) = (x, q′). (c) If c =↑, then x = υ · z, for some υ ∈ Υ and
z ∈ Υ ∗, and r(γ · y) = (z, q′).

A run 〈Tr, r〉 is accepting if all its infinite paths satisfy the acceptance condition.
We consider here parity acceptance conditions [EJ91]. A parity condition over a state

392 Nir Piterman and Moshe Y. Vardi

set Q is a finite sequence F = {F1, F2, . . . , Fm} of subsets of Q, where F1 ⊆ F2 ⊆
. . . ⊆ Fm = Q. The number m of sets is called the index of A. Given a run 〈Tr, r〉
and an infinite path π ⊆ Tr, let inf (π) ⊆ Q be such that q ∈ inf (π) if and only if
there are infinitely many y ∈ π for which r(y) ∈ Υ ∗ × {q}. That is, inf (π) is the set
of states that appear infinitely often in π. A path π satisfies the condition F if there is
an even i for which inf (π) ∩ Fi 	= ∅ and inf (π) ∩ Fi−1 = ∅. An automaton accepts a
labeled tree if and only if there exists a run that accepts it. We denote by L(A) the set
of all Σ-labeled trees that A accepts. The automaton A is nonempty iff L(A) 	= ∅. The
Büchi condition F ⊆ Q is equivalent to the parity condition 〈∅, F,Q〉 [Büc62]. A path
π satisfies the Büchi condition F iff inf (π) ∩ F 	= ∅.

The size of an automaton is determined by the number of its states and the size of
its transition function. The size of the transition function is |η| = Σq∈QΣa∈Σ|η(q, a)|
where, for a formula in B+(ext(Υ) × Q) we define |(∆, q)| = |true| = |false| = 1
and |θ1 ∨ θ2| = |θ1 ∧ θ2| = |θ1| + |θ2| + 1.

We say that A is one-way if δ is restricted to formulas inB+(Υ×Q), it is advancing
if δ is restricted toB+((Υ∪{ε})×Q). We say that A is nondeterministic if its transitions

are of the form
∨
i∈I

∧
υ∈Υ (υ, qiυ)), in such cases we write δ : Q×Σ → 2Q

|Υ |
. In the

case that |Υ | = 1, A is a word automaton.
Given an alternating two-way parity tree automaton A with n states and index k,

we can construct an equivalent nondeterministic one-way parity tree automaton whose
number of states is exponential in nk and whose index is linear in nk [Var98], and we
can check the nonemptiness of A in time exponential in nk [EJS93]. The membership
problem of an automatonA and a regular tree 〈Υ ∗, τ〉 is to determine whetherA accepts
〈Υ ∗, τ〉; or equivalently whether 〈Υ ∗, τ〉 ∈ L(A). For q ∈ Q and w ∈ Υ ∗, we say that
A accepts 〈Υ ∗, τ〉 from (q, w) if there exists an accepting run of A that starts from state
q reading node w (i.e. a run whose root is labeled by (w, q) and satisfies the transition).
The global membership problem of A and regular tree 〈Υ ∗, τ〉 is to determine the set
{(q, w) | A accepts 〈Υ ∗, τ〉 from (q, w)}.

We use acronyms in {1, 2} × {A,N} × {B,P} × {T,W} to denote the different
types of automata. The first symbol stands for the type of movement: 1 for 1-way or
advancing automata (we often omit the 1) and 2 for 2-way automata. The second symbol
stands for the branching mode:A for alternating and N for nondeterministic. The third
symbol stands for the type of acceptance: B for Büchi and P for parity, and the last
symbol stands for the object the automaton is reading:W for words and T for trees. For
example, a 2APT is a 2-way alternating parity tree automaton and an NBW is a 1-way
nondeterministic Büchi word automaton.

Alternating Automata on Labeled Transition Graphs. Consider a labeled transition
graph G = 〈Σ,S, L, ρ, s0〉. Let ∆ = {ε,�,�}. An alternating automaton on labeled
transition graphs (graph automaton, for short) [Wil99]3 is a tuple S = 〈Σ,Q, q0, δ, F 〉,
where Σ, Q, q0, and F are as in alternating two-way automata, and δ : Q × Σ →
B+(∆ × Q) is the transition function. Intuitively, when S is in state q and it reads a
state s of G, fulfilling an atom 〈�, t〉 (or �t, for short) requires S to send a copy in
state t to some successor of s. Similarly, fulfilling an atom �t requires S to send copies

3 See related formalism in [JW95].

Global Model-Checking of Infinite-State Systems 393

in state t to all the successors of s. Thus, graph automata cannot distinguish between
the various successors of a state and treat them in an existential or universal way.

Like runs of alternating two-way automata, a run of a graph automaton S over a
labeled transition graphG = 〈Σ,S, L, ρ, s0〉 is a Σr-labeled Γ -tree 〈Tr, r〉, where Γ is
some set of directions, Σr = S ×Q. The root ε of Tr is labeled by (s0, q0). The labels
of a node and its successors have to satisfy the transition function: Consider y ∈ Tr with
r(y) = (s, q) and δ(q, L(s)) = θ. Then there is a (possibly empty) set S ⊆ ∆ × Q,
such that S satisfies θ, and for all 〈c, q′〉 ∈ S, we have: (a) If c = ε, then there is γ ∈ Γ
such that γ · y ∈ Tr and r(γ · y) = (s, q′). (b) If c = �, then for every successor s′ of
s, there is γ ∈ Γ such that γ · y ∈ Tr and r(γ · y) = (s′, q′). (c) If c = �, then there is
a successor s′ of s and γ ∈ Γ such that γ · y ∈ Tr and r(γ · y) = (s′, q′). Acceptance is
defined as in 2APT runs. The graph G is accepted by S if there is an accepting run on
it. We denote by L(S) the set of all graphs that S accepts and by Sq = 〈Σ,Q, q, δ, F 〉
the automaton S with q as its initial state.

We use graph automata as our branching time specification language. A labeled
transition graph G satisfies a graph automaton S, denoted G |= S, if S accepts G.
Graph automata have the same expressive power as the µ-calculus. Formally, given a µ-
calculus formula ψ, of length n and alternation depth k, we can construct a graph parity
automaton Sψ such that L(Sψ) is exactly the set of graphs satisfying ψ. The automaton
Sψ has n states and index k [Wil99].

We use NBW as our linear time specification language. A labeled transition graph
G satisfies an NBW N , denoted G |= N , if Ts0 ∩ L(N) 	= ∅ (where s0 is the initial
state of G)4. We are especially interested in cases whereΣ = 2AP , for some set AP of
atomic propositionsAP , and in languagesL ⊆ (2AP)ω definable by NBW or formulas
of the linear temporal logic LTL [Pnu77]. For an LTL formula ϕ, the language of ϕ,
denoted L(ϕ), is the set of infinite words that satisfy ϕ. For every LTL formula ϕ, we
can construct an NBW Nϕ with 2O(|ϕ|) states such that L(Nϕ) = L(ϕ) [VW94].

Given a graph G and a specification S, the global model-checking problem is to
compute the set of configurations s of G such that Gs |= S. Whether we are interested
in branching or linear time model-checking is determined by the type of automaton.

3 Global Membership for 2APT

In this section we solve the global membership problem for 2APT. Consider a 2APT
A = 〈Σ,S, s0, ρ, α〉 and a regular tree T = 〈Υ ∗, τ〉. Our construction consists of a few
stages. First, we modify A into a 2APT A′ that starts its run from the root of the tree
in an idle state. In this idle state it goes to a node in the tree that is marked with a state
of A. From that node, the new automaton starts a fresh run of A from the marked state.
We convert A′ into an NPT P [Var98]. Second, we combine P with an NBT D′ that
accepts only trees that are identical to the regular tree T and in addition have exactly
one node marked by some state of A. We check now the emptiness of this automaton
A′′. From the emptiness information we derive an NFW N that accepts a word w ∈ Υ ∗

4 Notice, that our definition dualizes the usual definition for LTL. Here, we say that a linear time
specification is satisfied if there exists a trace that satisfies it. Usually, a linear time specification
is satisfied if all traces satisfy it.

394 Nir Piterman and Moshe Y. Vardi

in state s ∈ S (i.e. the run ends in state s of A; state s is an accepting state of N) iff A
accepts T from (s, w).

Theorem 2. Consider a 2APT A = 〈Σ,S, s0, ρ, α〉 and a regular tree T = 〈Υ ∗, τ〉.
We can construct an NFW N = 〈Υ,R′ ∪ S, r0, ∆, S〉 that accepts the word w in state
s ∈ S iff A accepts T from (s, w). Let n be the number of states of A and h its index;
the NFW N is constructible in time exponential in nh and polynomial in ||τ ||.
Proof. Let S+ = S ∪ {⊥} and Υ = {υ1, . . . , υk}. Consider the 2APT A′ = 〈Σ ×
S+, S

′, s′0, ρ′, α′〉 where S′ = S ∪ {s′0}, s′0 is a new initial state, α′ is identical to α
except having s′0 belonging to some odd set of α′, and ρ′ is defined as follows.

ρ′(s, (σ, t)) =

ρ(s, σ) s 	= s′0∨
υ∈Υ (υ, s′0) s = s′0 and t = ⊥∨
υ∈Υ (υ, s′0) ∨ (ε, s′) s = s′0 and t = s′

Clearly, A′ accepts a (Σ × S+)-labeled tree T ′ iff there is a node x in T ′ labeled by
(σ, s) for some (σ, s) ∈ Σ × S and A accepts the projection of T ′ on Σ when it starts
its run from node x in state s. Let P = 〈Σ×S+, P, p0, ρ1, α1〉 be the NPT that accepts
exactly those trees accepted by A′ [Var98]. If A has n states and index h then P has
(nh)O(nh) states and index O(nh).

Let D = 〈Υ,Σ,Q, q0, η, L〉 be the transducer inducing the labeling τ of T . We
construct an NBT D′ that accepts (Σ × S+)-labeled trees whose projection on Σ is
τ and have exactly one node marked by a state in S. Consider the NBT D′ = 〈Σ ×
S+, Q × {⊥,�}, (q0,⊥), η′, Q × {�}〉 where η′ is defined as follows. For q ∈ Q let
pendi(q) = 〈(η(q, υ1),�), . . . , (η(q, υi),⊥), . . . , (η(q, υk),�)〉 be the tuple where the
j-th element is the υj-successor of q and all elements are marked by � except for the
i-th element, which is marked by ⊥. Intuitively, a state (q,�) accepts a subtree all of
whose nodes are marked by ⊥. A state (q,⊥) means that D′ is still searching for the
unique node labeled by a state in S. The transition to pendi means that D′ is looking
for that node in direction υi ∈ Υ .

η′((q, β), (σ, γ)) =

{〈(η(q, υ1),�), . . . , (η(q, υk),�)〉} β = �, γ = ⊥ and σ = L(q)
{〈(η(q, υ1),�), . . . , (η(q, υk),�)〉} β = ⊥, γ ∈ S and σ = L(q)
{pendi(q) | i ∈ [1..k]} β = γ = ⊥ and σ = L(q)
∅ Otherwise

Clearly, D′ accepts a (Σ × S+)-labeled tree T ′ iff the projection of T ′ on Σ is exactly
τ and all nodes of T ′ are labeled by ⊥ except one node labeled by some state s ∈ S.

Let A′′ = 〈Σ × S+, R, r0, δ, α2〉 be the product of D′ and P where R = (Q ×
{⊥,�})×P , r0 = ((q0,⊥), p0), δ is defined below and α2 = 〈F ′

1, . . . , F
′
m〉 is obtained

from α1 = 〈F1, . . . , Fm〉 by setting F ′
1 = ((Q×{⊥,�})×F1)∪(Q×{⊥}×P) and for

i > 1 we have F ′
i = (Q×{�})×Fi. Thus, ⊥ states are visited finitely often, and only

the state ofP is important for acceptance. For every state ((q, β), p) ∈ (Q×{⊥,�})×P
and letter (σ, γ) ∈ Σ × S+ the transition function δ is defined by:

δ(((q, β), p), (σ, γ)) ={

〈((q1, β1), p1), . . . , ((qk, βk), pk)〉
∣
∣
∣
∣

〈p1, . . . , pk〉 ∈ ρ1(p, (σ, γ)) and
〈(q1, β1), . . . , (qk, βk)〉 ∈ η′((q, β), (σ, γ))

}

Global Model-Checking of Infinite-State Systems 395

A tree T ′ accepted by A′′ has a unique node x labeled by a state s of A, all other nodes
are labeled by ⊥, and if T is the projection of T ′ on Σ then A accepts T from (s, x).

The number of states of A′′ is ‖τ‖ · (nh)O(nh) and its index is O(nh). We can
check whetherA′′ accepts the empty language in time exponential in nh. The emptiness
algorithm returns the set of states of A′′ whose language is not empty [EJS93]. From
now on we remove from the state space of A′′ all states whose language is empty. Thus,
transitions of A′′ contain only tuples in which all states have non empty language.

We are ready to construct the NFW N . The states of N are the states of A′′ in (Q×
{⊥})× P in addition to S (the set of states of A). Every state in S is an accepting sink
of N . For the transition of N we follow transitions of ⊥-states. Once we can transition
into a tuple where the ⊥ is removed, we transition into the appropriate accepting states.

LetN = 〈Υ,R′∪S, r0, ∆, S〉, whereR′ = R∩(Q×{⊥}×P), r0 is the initial state
of A′′, S is the set of states of A (accepting sinks in N), and ∆ is defined as follows.
Consider a state ((q,⊥), p) ∈ R′. For every tuple 〈 ((q1,�), p1), . . ., ((qi,⊥), pi), . . .,
((qk,�), pk) 〉 in δ(((q,⊥), p), (L(q),⊥)), we add ((qi,⊥), pi) to ∆(((q,⊥), p), υi).
For every tuple 〈((q1,�), p1), . . . , ((qk,�), pk)〉 in δ(((q,⊥), p), (L(q), s)), we add s
to ∆(((q,⊥), p), ε). In the full version we show that N accepts w ∈ Υ ∗ in a state s ∈ S
iff A accepts T from (w, s).

4 Two-Way Path Automata on Trees

Path automata on trees are a hybrid of nondeterministic word automata and nondeter-
ministic tree automata: they run on trees but have linear runs. Here we describe two-
way nondeterministic Büchi path automata. We introduced path automata in [KPV02],
where they are used to give an automata-theoretic solution to the local linear time
model checking problem. A two-way nondeterministic Büchi path automaton (2NBP,
for short) on Σ-labeled Υ -trees is a 2ABT where the transition is restricted to disjunc-
tions. Formally, S = 〈Σ,P, p0, δ, F 〉, where Σ, P , p0, and F are as in an NBW, and
δ : P × Σ → 2(ext(Υ)×P) is the transition function. A path automaton that visits the
state p and reads the node x ∈ T chooses a pair (d, p′) ∈ δ(p, τ(x)), and then follows
direction d and moves to state p′. It follows that a run of a 2NBP on a labeled tree
〈Υ ∗, τ〉 is a sequence of pairs r = (x0, p0), (x1, p1), The run is accepting if it visits
F infinitely often. As usual, L(S) denotes the set of trees accepted by S.

We studied in [KPV02] the emptiness and membership problems for 2NBP. Here,
we consider the global membership problem of 2NBP. Consider a 2NBP S = 〈 Σ, P ,
p0, δ, F 〉 and a regular tree 〈Υ ∗, τ〉. Just like in the case of 2APT, we first modify S
into a 2NBP S′ that starts its run from the root of the tree in an idle state. In this idle
state it goes to some node in the tree. From that node, the new automaton starts a fresh
run of S from some state in P . We then construct an ABW A such that A accepts the
word aω iff S′ accepts the tree T . We check the emptiness of A, and from the emptiness
information derive an NFW N that accepts a word w ∈ Υ ∗ in state p ∈ P (i.e. the run
ends in state p of S; state p is an accepting state ofN) iff S accepts 〈Υ ∗, τ〉 from (p, w).

Theorem 3. Consider a 2NBP S = 〈Σ,P, p0, δ, F 〉 and a regular tree 〈Υ ∗, τ〉. We
can construct an NFW N = 〈Υ,Q′ ∪ P, q0, ∆, P 〉 that accepts the word w in a state

396 Nir Piterman and Moshe Y. Vardi

p ∈ P iff S accepts T from (p, w). We constructN in time O(|P |2 · |δ| · ‖τ‖) and space
O(|P |2 · ‖τ‖).

Proof. Consider the 2NBP S′ = 〈Σ,P ′, p0, δ
′, F 〉 where P ′ = P ∪ {p0} and p0 /∈ P

is a new state, for every p ∈ P and σ ∈ Σ we have δ′(p, σ) = δ(p, σ), and for
every σ ∈ Σ we have δ′(p0, σ) =

∨
υ∈Υ (p0, υ) ∨

∨
p∈P (ε, p). Thus, S′ starts reading

〈Υ ∗, τ〉 from the root in state p0, the transition of p0 includes either transitions down the
tree that remain in state p0 or transitions into one of the other states of S. Thus, every
accepting run of S′ starts with a sequence (p0, w0), (p0, w1), . . . , (p0, wn), (p, wn),
Such a run is a witness to the fact that S accepts 〈Υ ∗, τ〉 from (p, wn). We would like
to recognize all words w ∈ Υ ∗ and states p′ ∈ P for which there exist runs as above
with p = p′ and wn = w.

Consider the regular tree 〈Υ ∗, τ〉. Let Dτ be the transducer that generates the labels
of τ where Dτ = 〈Υ,Σ,Dτ , d

0
τ , ρτ , Lτ 〉. For a word w ∈ Υ ∗ we denote by ρτ (w)

the unique state that Dτ gets to after reading w. In [KPV02] we construct the ABW
A = 〈{a}, Q, q0, η, F ′〉 whereQ = (P ′∪(P ′×P ′))×Dτ×{⊥,�}, q0 = 〈p0, d

0
τ ,⊥〉,

and F ′ = (F ×Dτ ×{⊥})∪ (P ′×Dτ ×{�}). We use the following definitions. Two
functions fα : P ′ × P ′ → {⊥,�} where α ∈ {⊥,�}.

f⊥(p, q) = ⊥ f�(p, q) =
{
⊥ if p ∈ F or q ∈ F
� otherwise

For every state p ∈ P ′ and letter σ ∈ Σ the set Cσp is the set of states from which p
is reachable by a sequence of ε-transitions reading letter σ and one final ↑-transition
reading σ. Now η is defined for every state in Q as follows.

η(p, d, α) =
∨

∨
p′∈P ′

∨
β∈{⊥,�}(ε, 〈p, p′, d, β〉) ∧ (ε, 〈p′, d, β〉)

∨
υ∈Υ

∨
〈υ,p′〉∈δ′(p,Lτ (d))(a, 〈p′, ρτ (d, υ),⊥〉)

∨
〈ε,p′〉∈δ′(p,Lτ(d))(ε, 〈p′, d,⊥〉)

η(p1, p2, d, α) =

∨

∨
〈ε,p′〉∈δ′(p1,Lτ (d))(ε, 〈p′, p2, d, fα(p′, p2)〉)

∨
p′∈P ′

∨
β1+β2=α

(
(ε, 〈p1, p

′, d, fβ1(p1, p
′)〉)∧

(ε, 〈p′, p2, d, fβ2(p′, p2)〉)

)

∨
υ∈Υ,〈υ,p′〉∈δ′(p1,Lτ(d))

∨
p′′∈CLτ (d)

p2
(a, 〈p′, p′′, ρτ (d, υ), fα(p′, p′′)〉)

Finally, we replace every state of the form {〈p, p, d, α〉 | p ∈ F or α = ⊥} by true.
In [KPV02] we show that L(A) 	= ∅ iff 〈Υ ∗, τ〉 ∈ L(S′) by translating an accepting

run of S′ on 〈Υ ∗, τ〉 into an accepting run tree of A on aω and vice versa. As shown
in [KPV02] the number of states of A is O(|P |2 · ‖τ‖) and the size of its transition
is O(|δ| · |P |2 · ‖τ‖). It is also shown there that because of the special structure of A
its emptiness can be computed in space O(|P |2 · ‖τ‖) and in time O(|δ| · |P |2 · ‖τ‖).
From the emptiness algorithm we can get a table T : Q → {0, 1} such that T (q) = 1
iff L(Aq) 	= ∅. Furthermore, we can extract from the algorithm an accepting run of Aq

on aω. It follows that in case (p, d, α) ∈ P ×Dτ × {⊥,�} the run is infinite and the
algorithm in [KPV02] can be used to extract from it an accepting run ofP on the regular
tree 〈Υ ∗, τd〉. If (p, p′, d, α) ∈ P ×P ×Dτ ×{⊥,�} the run is finite and the algorithm

Global Model-Checking of Infinite-State Systems 397

in [KPV02] can be used to extract from it a run of P on the regular tree 〈Υ ∗, τd〉 that
starts in state p and ends in state p′ both reading the root of Υ ∗.

We construct now the NFWN . LetN = 〈Υ,Q′∪P, q0, ∆, P 〉 whereQ′ = ({p0}∪
({p0}×P))×Dτ ×{⊥,�} and P is the set of states of S (that serves also as the set of
accepting states), q0 = 〈p0, d

0
τ ,⊥〉 is the initial state of A, and ∆ is defined as follows.

Consider a state 〈p0, d, α〉 ∈ Q′. For every υ ∈ Υ such that the language of
〈p0, ρτ (d, υ),⊥〉 is not empty, and {(a, 〈p0, ρτ (d, υ),⊥〉)} |= η(〈p0, d, α〉), we add
〈p0, ρτ (d, υ),⊥〉 to ∆(〈p0, d, α〉, υ). For every state p ∈ P such that the language of
〈p0, p, d, β〉 is not empty, the language of 〈p, d, β〉 is not empty, and {(ε, 〈p0, p, d, β〉),
(ε, p, d, β)} |= η(〈p0, d, α〉), we add 〈p0, p, d, β〉 to∆(〈p0, d, α〉, ε). For every state p ∈
P such that the language of 〈p, d,⊥〉 is not empty, and {(ε, 〈p, d,⊥〉)} |= η(〈p0, d, α〉),
we add (the accepting state) p to ∆(〈p0, d, α〉, ε).

Consider a state 〈p0, p, d, α〉 ∈ Q′. For every υ ∈ Υ and for every p′ ∈ C
Lτ (d)
p such

that the language of 〈p0, p
′, ρτ (d, υ), fα(p0 ,p′)〉 is not empty, and {(a, 〈p0, p

′, ρτ (d, υ),
fα(p0, p

′)〉)} |= η(〈p0, p, d, α〉), we add the state 〈p0, p
′, ρτ (d, υ), fα(p0, p′)〉 to the

transition∆(〈p0, p
′, d, α〉, υ). For every p′ such that the language of 〈p′, p, d, fα(p′, p)〉

is not empty, and {(ε, 〈p′, p, d, fα(p′, p)〉)} |= η(〈p0, p, d, α〉), we add the state p′ to
the transition ∆(〈p0, p, d, α〉, ε). For every state p′ ∈ P such that the language of
〈p0, p

′, d, β1〉 is not empty, the language of 〈p′, p, d, β2〉 is not empty, and we have
{(ε, 〈p0, p

′, d, β1〉), (ε, 〈p′, p, d, β〉)} |= η(〈p0, p, d, α〉), we add the state 〈p0, p
′, d, β1〉

to the transition ∆(〈p0, p, d, α〉, ε).
This completes the definition of the automaton. In the full version we prove that N

accepts w ∈ Υ ∗ in a state p ∈ P iff S accepts 〈Υ ∗, τ〉 from (p, w).

5 Global Model Checking

In this section we solve the global model-checking problem by a reduction to the global
membership problem. The constructions are somewhat different from the constructions
in [KV00,KPV02] as we use the global-membership of 2APT and 2NBP instead of
the emptiness of 2APT and membership of 2NBP. We start with branching time model
checking and then proceed to linear time.

Consider a rewrite system R = 〈Σ, V,Q,L, T 〉. Recall that a configuration of R
is a pair (q, x) ∈ Q × V ∗. Thus, the store x corresponds to a node in the full infinite
V -tree. An automaton that reads the tree V ∗ can memorize in its state space the state
component of the configuration and refer to the location of its reading head in V ∗ as the
store. We would like the automaton to “know” the location of its reading head in V ∗. A
straightforward way to do so is to label a node x ∈ V ∗ by x. This, however, involves an
infinite alphabet. We show that labeling every node in V ∗ by its direction is sufficiently
informative to provide the 2APT with the information it needs in order to simulate
transitions of the rewrite system. Let 〈V ∗, τ

V
〉 be the tree where τ

V
(x) = dir(x).

Theorem 4. Given a pushdown or a prefix-recognizable system R = 〈Σ, V,Q,L, T 〉
and a graph automaton W = 〈Σ,W,w0, δ, F 〉, we can construct a 2APT A on V -
trees and a function f that associates states of A with states of R such that A accepts
〈V ∗, τ

V
〉 from (p, x) iff G(f(p),x)

R |= W . The automaton A hasO(|Q| · ‖T ‖ · |V |) states,
and has the same index as W .

398 Nir Piterman and Moshe Y. Vardi

The construction in Theorem 4 reduces the global model-checking problem to the
global membership problem of a 2APT. By Theorem 2, we then have the following.

Theorem 5. Global model-checking for a pushdown or a prefix-recognizable system
R = 〈Σ, V,Q,L, T 〉 and a graph automaton W = 〈Σ,W,w0, δ, F 〉, can be solved in
time exponential in nk, where n = |Q| · ‖T ‖ · |V | and k is the index of W .

According to [Wil99], we can conclude with an EXPTIME bound also for the
global model-checking problem of µ-calculus formulas, matching the lower bound in
[Wal96]. Note that the fact the same complexity bound holds for pushdown and prefix-
recognizable rewrite systems stems from the different definition of ‖T ‖ in the two cases.

We now turn to linear time specifications. As branching time model-checking is ex-
ponential in the system and linear time model-checking is polynomial in the system, we
do not want to reduce linear time model-checking to branching time model-checking.

As before, the 2NBP reads the full infinite V -tree. It uses its location as the store
and memorizes as part of its state the state of the rewrite system. For pushdown systems
it is sufficient to label a node in the tree by its direction. For prefix-recognizable systems
we label a node x, in addition to its direction, by the regular expressions β for which
x ∈ β. We denote this tree by 〈V ∗, τβ〉 and its size is exponential in |Qβ |.

Theorem 6. Given a pushdown or a prefix-recognizable system R = 〈Σ, V,Q,L, T 〉
and an NBW N = 〈Σ,W,w0, η, F 〉, we can construct a 2NBP S on V -trees and a
function f that associates states of S with states of R such that S accepts 〈V ∗, τ

V
〉

(or 〈V ∗, τβ〉) from (s, x) iff G(f(s),x)
R |= N . The size of the transition function of S is

O(‖T ‖ · |N |) and it has O(|Q| · ‖T ‖ · |N |) states in the case of pushdown systems, and
O(|Q| · (|Qα| + |Qγ |) · |T | · |N |) states in the case of prefix-recognizable systems.

Combining Theorem 3 and Theorem 6 we get the following.

Theorem 7. Global model-checking for a rewrite system R and NBW N is solvable in
time O((‖T ‖ · |N |)3) and space O((‖T ‖ · |N |)2) when R is a pushdown system and
in time (‖T ‖ · |N |)3 · 2O(|Qβ |) and space (|T | · |N |)2 · 2O(|Qβ |) when R is a prefix-
recognizable system.

Our complexity coincides with the one in [EHRS00], for pushdown systems, and
with the result of combining [EKS01] and [KPV02], for prefix-recognizable systems.

6 Conclusions

We have shown how to extend the automata-theoretic approach to model-checking in-
finite state sequential rewrite systems to global model-checking. In doing so we have
shown that the restriction of automata-theoretic methods to local model-checking is not
an inherent restriction of this approach. Our algorithms generalize previous automata-
theoretic algorithms for local model-checking [KV00,KPV02]. The complexity of our
algorithm matchs the complexity bounds of previous algorithms for global model-
checking [EHRS00,EKS01,KPV02,Cac02] and show that a uniform solution exists in
the automata-theoretic framework.

Global Model-Checking of Infinite-State Systems 399

We believe that our algorithms generalize also to micro-macro stack systems [PV03]
and to high order pushdown systems [KNU03,Cac03] as the algorithms for local model-
checking over these types of systems are also automata-theoretic.

References

[ATM03] R. Alur, S. La Torre, and P. Madhusudan. Modular strategies for infinite games on
recursive game graphs. In 15th CAV, LNCS 2725, 67–79, Springer-Verlag, 2003.

[BCM+92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic
model checking: 1020 states and beyond. IC, 98(2):142–170, 1992.

[BQ96] O. Burkart and Y.-M. Quemener. Model checking of infinite graphs defined by graph
grammars. In 1st Infinity, ENTCS 6, 1996.

[BR00] T. Ball and S. Rajamani. Bebop: A symbolic model checker for boolean programs.
In 7th SPIN Workshop, LNCS 1885, 113–130, 2000. Springer.

[BS92] O. Burkart and B. Steffen. Model checking for context-free processes. In 3rd Con-
cur, LNCS 630, 123–137. Springer, 1992.

[BS95] O. Burkart and B. Steffen. Composition, decomposition and model checking of
pushdown processes. Nordic J. Comput., 2:89–125, 1995.

[Büc62] J.R. Büchi. On a decision method in restricted second order arithmetic. In Proc.
Internat. Congr. Logic, Method. and Philos. Sci. 1960, pages 1–12, 1962.

[Bur97] O. Burkart. Model checking rationally restricted right closures of recognizable
graphs. In 2nd Infinity, 1997.

[Cac02] T. Cachat. Uniform solution of parity games on prefix-recognizable graphs. In 4th
Infinity, ENTCS 68(6), 2002.

[Cac03] T. Cachat. Higher order pushdown automata, the Caucal hierarchy of graphs and
parity games. In 30th ICALP, LNCS 2719, 556–569, 2003. Springer.

[Cau96] D. Caucal. On infinite transition graphs having a decidable monadic theory. In 23rd
ICALP, volume 1099 of LNCS, 194–205. Springer, 1996.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. TOPLAS, 8(2), 1986.

[CKKV01] H. Chockler, O. Kupferman, R.P. Kurshan, and M.Y. Vardi. A practical approach to
coverage in model checking. In 13th CAV, LNCS 2102, 66–78. Springer, 2001.

[CVWY92] C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory efficient
algorithms for the verification of temporal properties. FMSD, 1:275–288, 1992.

[CW02] H. Chen and D. Wagner. Mops: an infrastructure for examining security properties
of software. In 9th CCS, 235–244, 2002. ACM.

[EHRS00] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for
model checking pushdown systems. In 12th CAV, LNCS 1855, 232–247, 2000.
Springer.

[EJ91] E.A. Emerson and C. Jutla. Tree automata, µ-calculus and determinacy. In 32nd
FOCS, 368–377, 1991.

[EJS93] E.A. Emerson, C. Jutla, and A.P. Sistla. On model-checking for fragments of µ-
calculus. In 5th CAV, LNCS 697, 385–396, 1993. Springer.

[EKS01] J. Esparza, A. Kucera, and S. Schwoon. Model-checking LTL with regular valua-
tions for pushdown systems. In 4th STACS, LNCS 2215, 316–339, 2001. Springer.

[Eme97] E.A. Emerson. Model checking and the µ-calculus. In Descriptive Complexity and
Finite Models, 185–214. AMS, 1997.

[ES01] J. Esparza and S. Schwoon. A BDD-based model checker for recursive programs.
In 13th CAV, LNCS 2102, 324–336, 2001. Springer.

400 Nir Piterman and Moshe Y. Vardi

[JW95] D. Janin and I. Walukiewicz. Automata for the modal µ-calculus and related results.
In 20th MFCS, em LNCS, 552–562. Springer, 1995.

[KNU03] T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-order pushdown trees are easy. In
5th FOSSACS, LNCS 2303, 205–222, 2003. Springer.

[Koz83] D. Kozen. Results on the propositional µ-calculus. TCS, 27:333–354, 1983.
[KPV02] O. Kupferman, N. Piterman, and M.Y. Vardi. Model checking linear properties of

prefix-recognizable systems. In 14th CAV, LNCS 2404, 371–385. Springer, 2002.
[Kur94] R.P. Kurshan. Computer Aided Verification of Coordinating Processes. 1994.
[KV00] O. Kupferman and M.Y. Vardi. An automata-theoretic approach to reasoning about

infinite-state systems. In 12th CAV, LNCS 1855, 36–52. Springer, 2000.
[LBBO01] Y. Lakhnech, S. Bensalem, S. Berezin, and S. Owre. Incremental verification by

abstraction. In 7th TACAS, LNCS 2031, 98–112, 2001. Springer.
[MS85] D.E. Muller and P.E. Schupp. The theory of ends, pushdown automata, and second-

order logic. TCS, 37:51–75, 1985.
[MS87] D.E. Muller and P.E. Schupp. Alternating automata on infinite trees. TCS, 54, 1987.
[Pnu77] A. Pnueli. The temporal logic of programs. In 18th FOCS, 46–57, 1977.
[PRZ01] A. Pnueli, S. Ruah, and L. Zuck. Automatic deductive verification with invisible

invariants. In 7th TACAS, LNCS 2031, 82–97, 2001. Springer.
[PV03] N. Piterman and M.Y. Vardi. Micro-macro stack systems: A new frontier of decid-

ability for sequential systems. In 18th LICS, 381–390, 2003. IEEE.
[Rab72] M.O. Rabin. Automata on infinite objects and Church’s problem. AMS, 1972.
[SW91] C. Stirling and D. Walker. Local model checking in the modal µ-calculus. TCS,

89(1):161–177, 1991.
[Var98] M.Y. Vardi. Reasoning about the past with two-way automata. In 25th ICALP, 1998.
[VW94] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. IC, 115(1), 1994.
[Wal96] I. Walukiewicz. Pushdown processes: games and model checking. In 8th CAV, 1996.
[Wil99] T. Wilke. CTL+ is exponentially more succinct than CTL. In 19th FSTTCS, 1999.

	1 Introduction
	2 Preliminaries
	3 Global Membership for 2APT
	4 Two-Way Path Automata on Trees
	5 Global Model Checking
	6 Conclusions
	References

