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Global models for moving contact lines
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We consider thin film flows driven by surface tension and gravity. Within the framework of the lubrication
approximation, we study the contact line motion using global models where either precursor film or slip are
allowed. We show that completely wetting films can be simulated under both conditions without requiring
direct tracking of the contact line interface. We perform a comparative study of standard and positivity
preserving numerical methods for these problems in one space dimension, with the ultimate goal of choosing
the best method applicable to two-dimensional problems. We find a considerable computational advantage of
the precursor film model over the slipping models.
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[. INTRODUCTION the contact line paradoil,2]; this phenomenon manifests
itself in the lubrication equation, Ed1), in that advancing

The coating of a solid surface by a thin liquid film and, in front solutions do not exist fon=3 [12].
particular the dynamics of the contact line, is a problem of In the general context of partially wetting fluids, the con-
interest from both practical and theoretical points of viewtact line problem is typically addressed by either relaxing
[1-3]. This problem is usually approached within the frame-no-slip boundary condition, or by accounting for the effects
work of lubrication approximation, where the velocity field of the long range intermolecular van der Waals for¢dis-
is depth-averaged over the thickness of the film. This apjoining pressure The former approach leads to introducing a
proach reduces Navier-Stokes equations to a more tractabieew term in the diffusivityD (h), while the latter adds an-
single fourth order PDE which governs the time evolution ofother nonlinear second order term, both effectively modify-
the film thickness(x,y,t). In the context of fluid spreading ing the fluid behavior in the vicinity of the contact line. In
on a horizontal substrate this equation, suitably scaled, ithe case of completely wetting fluids, experimental evidence
given by(e.g.,[4,5]) [13,14] motivates the inclusion of a microscopic precursor
film in front of the apparent contact line, thus removing the
singularity. This approach is consistent with a van der Waals
model in the case of a favorable disjoining press(see,
e.g.,[2,15).
The fourth order term results from the capillary effects, while  In this work we concentrate on the case of completely
the lower order terms model the gravitational forcggs a  wetting fluids. We propose to formulate a “global” model
constant defined by the scalingee Sec. V)l Additional  which considers the contact line as part of a system that
terms arising from thermal effects, centrifugal forces, etc.jncludes both the wet and dry parts of the surface. The goal
might be included. If one assumes usual no-slip boundarys to have a method that captures changes in topology such as
conditions at the substrate, the nonlinear diffusion is giverfilm rupture and merger without explicitly tracking the inter-
by D(h)=h", with n=3. Equations of the type of Eq1)  face. In this sense, the models are in the same spirit as recent
are also important in other fields for different valuesrof ~Cahn-Hilliard models introduced to capture topological tran-
Some examples are the evolution of a thin neck in a Helesitions in fluids[16,17. This direction of research requires
Shaw cell[6], the diffusion of dopants in semiconductors direct solution of Eq(1). The main subject of this paper is to
[7,8], Cahn-Hillard models with degenerate mobilifg], ~ explore computational methods to achieve this goal.
population dynamic$10], and problems in plasticitj11]. In developing these methods, we first concentrate on the

A major hindrance in the development of the theory forsimpler equation which includes only capillary effects, so
the problem of fluid spreading is the incomplete knowledgethat G=0 in Eq. (1), and consider the simple power law
of the physics at the contact line, where liquid, gas, and solidnodelD (h) =h"
phase meet. A moving contact line coupled with a no-slip
boundary condition leads to a multivalued fluid velocity at @_ _V.[h"VV2h 5
the contact line. As a consequence, the viscous dissipation at 'L 1 2
rate as well as the stresses divergdas0. This constitutes

oh
— +V-[D(MVV?h]-gV-[D(h)°Vh]=0. ()

This fourth-order diffusion equation is degenerate, since the
diffusivity vanishes a®i—0. It is of interest to consider this
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constant. So, the behavior of the diffusivity for smahllis =1/2f|Vh|dx, associated with the surface tension energy in

modified fromD~h® to D~hS. Typically, s=1 (singular  the lubrication limit, satisfies

slip), ands= 2 (constant slip have been used8—23. The

second motivation for analyzing E€R) with n# 3 is that for deldi= _f D(h)|V2h|2 dx. @)

n=1,2 source type self-similar solutions exist, allowing for

S:Jrﬁ;:t comparison of the computational and theoretical reAnoth’(’a( Lyapunov fungtiqn, often referred to as an “en-
The equations of the type of E§2) do not satisfy the tropy,” is JG(h)dx, satisfying

maximum principle(see, e.g.[24]); as a result positive ini-

tial data might lead to a solution which changes sign. How- df G(h)dx

ever, one remarkable consequence of the nonlinear structure T

of Eq. (2) is that it does permit non-negative solutions from

the non-negative initial data. Still, even for the prOblemSwhereG”(h):1/D(h) The name entropy is motivated by
where positivity of the solution is guaranteed analytically forthe Hele-Shaw geolmetryD(h)=h for which G(h)

a continuous model, computations might still lead to prema-:hlogh Such entropies and energies have been used to

ture or false singularitiesh=0). A nonpositive numerical study the physics of viscous topology transitions in Hele-

sol_u_tipn,_even 'f it occurs at a sing_le mesh point, introduce haw flowg 29,30, as well as many mathematical properties
artificial instability and inaccuracy into the system. Standard ¢\ o\ solutié)ns, of the PDE, Eq2) (see[24] and refer-
finite-difference schemes do not necessarily preserve positiv. '

) - oY . . X ences therein
ity of the solution, in particular if the computations are not Note thatG(h)~h2~" for D(h)=h", and the entropy is a
well resolved. Recently, several schemes have been devq{—e '

o . gative power oh for sufficiently largen. Using this fact,
ope_d_ to address t.h's iss{85—27. In this work, we use 'ghe one can show that in the planar cdsee space dimension
positivity preserving method presented [i85], which is

.positive initial conditions always yield a positive solution

baﬁe? opt;c]he ke%/hldcfa of Lyapu.novtrt]:hs&palt;or;. W(Tf emp;”lBl,SZ for sufficiently largen. A practical importance of this
cally testthis method by comparing the results 1o Sel-Simiiaiz, + i that one can construct nonnegative zero contact angle

solutions (where applicablk and to the computational re- solutions of the PDE for relatively small valuesroby using

sults obtained using standard finite-difference discretization o : e 7L o
In Sec. Il we explain the mathematical tools to be imple-a modified version of the diffusivigb(h), lifting of the

. . . initial condition, and passing to the limit. This fact has been
mented. in the numer!ca! C.Ode.' whose main features are IC’r%'roved for the planar ca$83,34. This procedure, known as
sented in Sec. lll. This finite difference code solves the Onefegularization involves repl1acing nonnegativee ’g drop-

mmmwmwmmmmmmmeNEQ-ﬁmwmmmymmmmmemmwmd

In Sec. IV we use the self-similar solution of the spreading ashapeh(x 0)+b (b is small and does not represent a physi-

a constant volume “drop” as a benchmark for the code, an . . o -
perform a parametric study of convergenceifier1 and 2, ﬁi:jpdrﬁf%:sﬁz; and replacing the diffusivity by the mod

using either standard or special discretizations of the diffu-

=—Jﬁv%vdx @

sivity D(h). In the case of physical relevance=3, we D(h)h*
employ both the precursor film and the slipping models, and D(hy= ——, (5)
analyze the spreading of a small drop, where the effects of eD(h)+h*

gravity can be ignored. After performing convergence study, _

we address the problem of the radial drop spreading for longvheree =¢(b) is also small. Note thab(h)—D(h) ase
times and look for the asymptotic behavior of the solution—0, and alsd (h)—h?* ash—0 (for n<4), which guar-
(Sec. V). The addition of gravitational forces is considered inantees positivity of the regularized solution. In the case of
Sec. VI, where we study the effects of gravity on the radialplanar symmetry, in order to guarantee a zero contact angle
drop spreading. Section VIl is devoted to the summary an@olution in the limit b—0, b=¢2 for 2<n<3 and b
conclusions of the work. =25 for 0<n<?2. Here, we take

b=2%3 )
II. GLOBAL MODELS AND POSITIVITY

OF THE SOLUTION whenevermegularizationis used.

This paper compares the behavior of new and standard

A growing body of mathematical resear(dee the review numerical methods for simulating classical problems involv-
article [24] and references thergimddresses the questions ing moving contact lines. All of the methods we consider are
related to the lack of the maximum principle of the solutionsfinite difference schemes; however, the schemes have a par-
of Eqg. (2). In particular, the theory of “weak” nonnegative allel setting as finite element methofz5,26. Our compu-
solutions provides a rigorous context for solutions of &).  tational domain 8=x=<L is divided intoN cells of sizeAx;
with moving contact line$28]. (0<i=<N). We focus on problems in planar or radially sym-

The dynamics of solutions of the lubrication equation, Egq.metric geometry, reducing the computation to one spatial
(2), can be understood in the context of several knowrdimension. In this way, we can accurately test the perfor-
Lyapunov functions. The Lyapunov function&(h) mance of the different models and schemes under mesh re-
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finement. We use centered finite differences to approximate dh,

the spatial derivatives in Eq2). For the planar case, the a¢ Thi=0, (12)
remaining part of the spatial discretization is the particular

choice of numerical diffusiviyD; ..., midway between the \yheref; depends on the five neighboring grid points as

grid pointsx; andx; ;. The most obvious choice is
2

1 fi= mNi+m > 13
Dy 17=5[D(h) +D(hy )], @ 2y e 13

and the prefactora,, arelinear functions of the diffusivities
Di+12. Di+1» contains the nonlinearity of the equation and
is given by an appropriate interpolation@{h). Though the
€de was developed for nonuniform grids; , for simplic-
tMty, here we make computations only for a constant mesh
size Ax. To enforce the boundary condition, we require two

host cells on the leftiE —1,—2) and right (=N+1,

+2).

The scheme conserves a discrete form of the volume

used in[32,35-37 which we call the standard schem&s).

In fact, this naive interpolation may result in a numerical
solution that becomes negative at some finite time even wh
the PDE is sufficiently degenerate to guarantee positivi
[25].

Recently [24,25,38, a positivity preserving scheme
(PPS) has been proposed to avoid possible negative valu
of h for n=2. This scheme results in a discrete form of the
entropy dissipation, Eq4), thereby producing a positive so-

lution of the PDE, Eq(2). For the planar case, the discrete N N
diffusivity is }‘6 (zwxi)ahmxi:_}‘6 (2mx)h! 1A, (19
1= 1=
hi+1_hi ; ; -
———, hi #hy, where the superscript stands for the time*=t""1+At”,
Dit1p=1 Gi+170i ® andAt” is the vth (variable time step. Volume conservation
D(hy), hir1=hi, at the boundary results from a no-flux condition thede,
o =D(h)dc/ox=0. In addition, we also assuméh/dx=0
whereg(h) is given by there. In the discretizationg is centered between grid
points, thus¢p=0 in the middle of each first fictitious cell.
g(h)= f ﬂ 9) The coupled system of ODE'’s, E(L2) is discretized in
D(h) time using the standard method

This scheme produces a numerical solution that remains h?*1—h?

positive if the initial data is positive provided=2. For —V+0fi”1+(l—0)fi”zo (0<i=<N), (15
moving contact line solutions wham<2 (as in the case of At

singular slipping; see Sec. VAR2one can combine the
regularizationmethod above with the entropy dissipating nu

merical scheme to produce a modified scheme that incorpo-""" b _ . .
ratesregularization lifting, and a discretization of the regu- PliCit O(At")] andé#=1/2 the Crank-Nicholson scherfien-

larized diffusivity of the form given by Eq(8). For more  PliCit O(Atv_)z]' Equgtlon(15)vs+ple0|f|e§ a system ofonlin-
details and mathematical proofs about the regularizatiof@" @lgebraic equations foh{"~, which is solved using
[32,34 and this scheme see Ref&5] and[38]. Newton-Kantorovich method. The solution at tirhe"* is
calculated by requiring that the local error is less than a
given tolerancéwe use 10° throughout this work
The time evolution from a given initial conditioh;(0)
We have developed a numerical code to solve @gfor ~ (0<i<N) is performed withg= 1/2 and variable time steps,
planar and radial symmetry. Assuming such a geometry, Ed¢he size of which is limited by two requirements) that the
(2) becomes solution is strictly positive everywhere in the domain, and
(b) that an accuracy condition is satisfied. The requirement
(a) is enforced when the Newton iteration has converged: if
=0, (10 the converged solution is negative anywhere in the domain,
the time step is reduced, and the calculation is repeated. The
condition (b) is enforced by estimating the local relative er-
ror e of the solutionh/**. A Taylor expansion arount”
leads to

_where 0<0<1. Here,#=0 gives the forward Euler scheme
(g_explicit, O(At")], 6=1 the backward Euler schenjen-

Ill. OUTLINE OF THE NUMERICAL METHOD

ho
g ax

" Jdc
X D(h)&

where the curvature is given by

d
X

,oh

c=x ¢ —
X

: 11

(At")? d?h!
=T ae’ (16)
|

e.
and «=0,1 stands for planar or radial symmetry, respec- '

tively. The second term of Eq10) is discretized by using a
centered finite difference scheme, so that we get so that
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AN Aty—lhiv+1+mvhiv—1_(Aty—1+Atu)hiv sinceC’(0)=0 by symmetry. This third order equation has
e~ ) boundary conditions:
Attt (At"" 1+ AtY)hY
a7 H'(0)=0, H(1)=H’'(1)=0. (23

If E=max@E) (0<i=<N) is less than a given upper bound As mentioned in the Introduction, Eq22) can only be
E™ (typically, E"=102-103), the solutionh’*' ob-  solved forn<3. The casen=3, relevant to physical drops,
tained with the time stept” is accepted; otherwisé\t” is  is discussed in Sec. V.

reduced and a new calculation laf** is performed. This is

done as many times as necessary in order tcEgeE™. If B. Comparison of numerical and self-similar results

the application of the condition&) and (b) leads to ex-
tremely smallAt”, the simulation stops and is deemed un-
successful. As we illustrate belogee Sec. IV B this can
happen on coarse grids with certain choices of discretizatio
of the diffusivity.

Here we solve numerically the PDE, E¢L0), as ex-
plained in Sec. Ill and compare the results with the similarity
solutions. We study in detail the computational performance
Bf different interpolation schemes for the diffusivitg§ and
PPS). Regularizationis added forn<2 (see Sec. )l For

) ) simplicity, we take the planar drop spreading=f0) con-
IV. TEST PROBLEM: "DROP” SPREADING figuration as a test problem for=1 and 2.

Before considering the full physical problem of a spread- !N our computational simulations of E¢LO), we use the
ing drop, we perform some numerical tests on a simplefnitial condition as given by the self-similar shap(7).
problem with known exact solutions. In both the planar and"hus, including the “lifting” b, we have
radial geometries, Eq10) with D(h)=h" has a self-similar e
source-type solution fon<3 [39-41. We use this fact as a h(x,0)= H()/Hotb,  0=x=1,
benchmark to test performance of the numerical method de- b, x>1,
scribed above. We also note that the careful analysis of the .
(unphysical casesn=1,2 will prove very useful in under- whereH,=H(0). We compare the numerical values of the

standing better the performance of the slipping models intro—somtion at th? centedo(t), z_md the ra_diusq(t) (apparent
duced later in Sec. V. contact ling with the theoretically predicted values

(24)

X¢(t)=ho(t) "1=(1+q"%t)°. 2
A. Self-similar solution it o) ( ay 29

For any constant volum¥, there exists a unique exact N order to compare the different schemes explained
solution of Eq.(10) with compact support, zero contact above, we calculate the evolution up to a given timasing

angle, and the following self-similar structure: a boundedAt” (<At for a given sequence of uniform
grids. In all the calculationsAt,,,x has been chosen small
h(x,t)=AtPH(7), (18 enough so that the dominant source of error is due to the

. L _ spatial discretization.
where n=x/x; is the similarity variable,

1. The case g1

Forn=1, the ODE, Eq(22) admits the analytical solu-
is the front positionA is a constant determined by the vol- tjon

umeV, andq=A"*. The exponent$=1/(4+ (a+1)n) and

B=(45—1)/n are fixed by dimensional analysis using vol- H=Ho(1- 7% (26)
ume conservation. This similarity solution is called “source-

type” because it starts as&function with volumeV, analo- ~ With 6=1/5, Ho=1/120, 1 =8H/15 for =0, and5=1/6,
gous to the Gaussian heat kernel for the heat equatiofio=1/192,1=mH/3 for a=1.

x¢(t)=qt° (19

Plugging this ansatz into Eq10) shows thaH satisfies the Figure 1 gives the numerical results for longer times, as
similarity ODE well as a comparison with the self-similar solution. The dif-
ference betweeh(x,t)/hy(t) andH(7) is very small(less
ByH—67°H'+ 7~ %(»*H"C")' =0, (200 than 0.005 for the time range shown in Fig, thus confirm-

i ) o _ . ing the ability of our computational method to very closely
whereC=7"“(»*H")’, and the primes indicate derivative renroduce the expected self-similar evolution.

with respect toy. VolumeV andq are related by We now show that the standard sche®& has limited
X utility since the numerical solutions may become negative on
V= jo (2mx)*h(x,t)dx=q*", (21)  insufficiently fine grids. Figure 2 shows the profiles tat

=0.02 (At,,=10"%) of a sequence of calculations with sev-
eral Ax’s. We useSS to interpolate the diffusivityD;, 1/,
[see Eq.(7)] and b=10"2. Note that the profile has not
changed its shapself-similarity), and it is still well fitted by
C'=6pH™", (22 Eq. (26) with appropriate values df, andx; . The values of

Wherel=f(1)(27r77)“H(77)d77 is a shape factor. Equation
(20) may be integrated once, leading to
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1 . . . . 0.84 . . .
A--ASS (b=107)

08 n=1 a) . /- -5 SS+Reg. (b=10)
06 o—¢ PPS+Reg. (b=1o‘:)

: 7 =—-+ PPS+Reg. (b=107)

h — t=0, 0.01,..., 0.20 & > PPS+Reg. (b=10_4)
04 0.82 | *—% PPS+Reg. (b=10")
® Exact value

0.2

0 1 1 1 = hu

0 0.25 0.5 0.75 1 x 125 1.5 1.75 2
2 T T T
0.80
b)
15 % —-— Numerics ]
X, hy — x={1+1201)"*
1 — h=(1+1204"* 1 ors ! . . . ‘
h 0 0.02 0.04 0.06 0.08 0.1
2 Ax

05 0 0.05 0.1 0.15 0.2 0.25 FIG. 3. Thicknes$ of the planar drop fon=1 (t=0.02) as a

t ) ) :
function of Ax with several values ob, under different schemes.

FIG. 1. Self-similarity of the numerical time evolution for For b=10"3, SS leads to negative results for the film thickness
=1 anda=0 (Ax=0.01,b=10"%), underPPS with regulariza-  (not shown.
tion. (a) Thickness profilen(x,t) (the arrow shows the direction of
time increasg (b) x;(t), ho(t) compared with the analytical solu-
tions given by Eq(25), whereq is obtained from Eq(21) with V
=8/15.

=102 (down triangles modifies the behavior for smallx,
bringing the results closer to the exact value. However, we
have found that forb=10"3, the regularization is not
o _ enough to avoid negativity of the solution.

ho versusAx are plotted in Fig. Jup triangles. It can be PPS removes this problem. Figure 3 shows the results
seen that fob=10"2, the solution does not tend to the exact using PPS plus regularizationfor b=10"2—10"5. Within
value hy(t) =hy=0.78289(black dot in Fig. 3. Computa- this scheme, the solutions converge to the exact solution as
tions for smallet, such as 103, produce negative values of Ax—0 for sufficiently smallb’s. Figure 4 shows the results
hin the front region for the same range &k’s and, there- as b—0 for several Ax’s. The solution is practically
fore, are not valid solutions. One way to try to avoid suchp-independent provided<10"4. We note that without
negative values is to decread¢”, but this procedure leads regularization these calculations cannot be performed since
to At"—0. Another possibility is to reducAx even more, negative values afi do appear using onlPPS (positivity is

but this is computationally too expensive, and so other opnot guaranteed fon<2).

tions must be explored, such eegularization[see Eq.(5)]. It turns out that the solution fan=1 can be safely com-

It is seen in Fig. 3 that the addition ogégularizationfor b puted only by usingPPS plus regularization and thatSS

does not work properly in this range @feasonably small
1 = T

0-820 T T T T
t=0 A—A Ax = 0.05
0.8 == ---- Ax=0.1 i 0.815 | E—HAx=0.025 A
——- Ax=0.05 >—o Ax=0.0125
—-— Ax=0.025 0.810 [ O—©Ax=0.00625 ]
............ Ax = 0.0125 ) @ Exact solution
06 - —— Ax=0.00625 1 0.805 & A ]
—— Exact solution
h 1
h, o.800 | i
04 - -6 7
t=002 (At =107) 0795 | i . i 4
02 L | 0.790 | ]
0.785 —C 9
0 : ; : : ’ i 0.780 1 = = 7 = )
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 10 10 10 10 10 10
X b
FIG. 2. Planar drop profile fon=1 andb=102 at t=0.02 FIG. 4. Thicknes#, of the planar drop fon=1 (t=0.02) as a
(At<109), usingSS and differentAx’s. function of b, usingPPS plus regularization
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0.84 0.820 ; ; |
» d O— B Ax = 0.025
G—OPPS (b=107) 0.815 >— Ax =0.0125 ]
083 - I —FPPS (b=107) A—2A Ax = 0.00625
oSS (b=107) 0.810 [ V—YAx=0003125
= -- 2SS (b=107) G—oO Ax = 0.0015625
0.82 - @ Exact (ODE) 0.805 | @ Exact (ODE)
h, o081 | h,  0.800
0.795
0.80 |
0.790 T
0.79 0.785
°-7§0T~@ 078 10° 10° 107 10° 10° 10° 10° 10°
b

FIG. 6. Thicknesd, of the planar drop fon=2 (t=0.1) as a

FIG. 5. Thicknes$, of the planar drop fon=2 (t=0.1) as a function ofb, using PPS.

function of Ax with several values o, underPPS and SS.

quirement om\x is a severe restriction on the simulations for
n=2 either withSS or PPS, and will be helpful in under-
standing poor computational performance of one of the slip
models introduced in the next section for ttpdysica) case
n=3.

Ax. Similar result was reported in Rd38], where the case
n=1/2 was exploredsee alsd 26,27 for alternative meth-
ods.

2. The case g2

The casen=2 is distinguished by the fact that it is not V. PHYSICAL PROBLEM: SPREADING OF A DROPLET
possible to obtain an analytical solution. Consequently, we
numerically solve the ODE22) using a shooting method.
Due to the singularity ofC’ when applying the boundary
conditionH(1)=0 [see Eqs(22) and(23)], we perform the
calculations for decreasingly small valuestbf1), and ex-
plore the limitH(1)—0. The computations show conver-
gence of the solution in this limit, yielding the self-similar
profile H(#), as well as the coefficient for E(R5), in which
the exponent=1/6. We note that varying: (consequently,
the geometry of the floyy does not modify the shape of
H(7) [see Eq.(22)], but it affects the value ofl, (conse-
quently,q). Similarly to the casen=1, the numerical solu-
tion of the PDE, Eq(10), successfully reproduces the self
similar solution(we skip details for brevity In what follows
we concentrate on comparing the performances®fand
PPS.

Figure 5 shows that for a giveh the results of both
schemes approach each otherdas—0. SS fails to give a
positive solution in the casb=10"2 with Ax=0.1 (At”
—0). Note that due to the nonzelp the numerical results

do not agree exactly with the solution of EQ2) [ho(t)  \yith small but nonzerd are relevant for the dynamics of
=hy=0.78483 as Ax—0, even though the difference de- spreading drops, and also shown that such solutions are lin-
creases for smalldr’s. early stable to perturbations in the bulk. Other authors have
In Fig. 6 we showh, as a function ob for severalAx’s  argued that the contact line controls the rate of spreading
using PPS (SS gives very similar resulis We immediately  (especially in partial wetting[22,44] so that a constitutive
observe that the convergence is lacking in the rang&o$ law is required at the contact line and a quasistatic solution
for which the casen=1 converged, consistent with the re- of the PDE results in the bulk. In fact, these two points of
sults reported in Ref.38]. One needs to take much smaller view are consistent for the bulk dynamics of the spreading
Ax’s in order to reach convergence; from Fig. 6 we observadrop problem. To show this, we first present a simple
that for Ax smaller than a certain upper threshold asymptotic argument showing that for very small valueb, of
(=3%x103), the convergencis reached a®—0. This re- the similarity solutions satisfying Eq27) are closely ap-

The problems presented in the previous section allowed
for detailed testing of the performance of our computational
methods. Next, we use these methods to simulate a spreading
droplet (h=3); we analyze the early time evolution for the
planar drop &=0) and the long time evolution for the radi-
ally symmetric drop &=1).

In the bulk of the drop, the leading order dynamics is
governed by Eq(2) with n=3, corresponding to the no-slip
boundary condition on the solid surface. There has been
much discussion in the literature on the connection between
theory, experiment, and the role of ER) in the bulk
[22,42—-48. The existence of similarity solutions to E)
was first considered i5], where it was discovered that for
n=3 no solutions exist satisfying the boundary condition
H(1)=0. This result was later proved rigorously[i89]. In
[42] it was suggested that similarity solutions satisfying the
boundary condition
H'(0)=0, H(1l)=b,

H'(1)=0, (27)
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Precursor Film Model

1
Ql
I v
.

Precursor film

! -

I e
-

Slipping Model

Artificial b->0

—

FIG. 7. Sketch of the fluid profile near the contact line, and of
the parabolic velocity,(z) in the bulk for(a) the precursor film
model andb) the slipping models. Note that i) v,(z) is not zero
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FIG. 8. Thicknessh, of the planar drop fon=3 (t=2) as a
function of Ax with several values of the film thickness(precur-
sor film mode), underPPS and SS.

A. Early time planar evolution

In order to circumvent the contact line paradox, we em-
ploy two different approachesa) the precursor film model,
and (b) the slipping models. We will see that the computa-

tional performance strongly depends on the choice of the

at the substratéslipping), and also that the artificial “lifting”b
model.

must tend to zero.

proximated by the spherical cap solution. This is confirmed 1. Precursor film model

by numerical simulations of the full PDE. The main differ-  This model assumes the presence of a true precursor film
ence between the spherical dapiasistatizsolutions and the ahead of the moving contact line, as it has been detected in
similarity solution occurs in the vicinity of the contact line. the experiment$2,46]. In this case, the fluid film of thick-

This is a result of different contact line dynamics which Nessb defined before as a numerical artifact has now a physi-

could lead to different spreading laws.

We now consider the behavior of solutions to Efj0)
with Eq. (27) in the smallb limit. The reader can check that
asb—0, the solution hagdy—c. Thus there is a natural

rescaling of the similarity ODE in this limit. Lefl=H/H,
so that the similarity ODE, Eq(22), transforms into the
problem

~ N\
'H//_l__
7

1 9 ~

whena=1. For large values ofl, the solution can be ex-
panded in powers oH3 as H=2%(1— 7% +0O(H,3). The
leading order shape is the spherical cap, a steady state so
tion of the original PDE.

Next, we compare numerical simulations of the full PDE
with the similarity solution theory. In Sec. V A we analyze

cal meaningsee Fig. 7a)].

The drop profilegclosely resembling a spherical 9are
similar to the casen=1. Figure 8 shows the convergence
properties withPPS and SS. Smallerb’s yield greater val-
ues of hg; this is because the viscous dissipation rate in-
creases for decreasiriy Both schemes approach the same
valueﬁo(b) for a givenb, and they demand x=<b for con-
vergence, consistent with the computations using a slip
model[23]. Additional computations using ever small&k
show that typically an order of magnitude smallek is
needed for convergence whéi is used, compared tBPS.

It is also interesting to note that, even for lar§&, we do
not encounter the problem of loss of positivity; both schemes
can be safely used to compute a positive solutionnfer3.

We note that, sincé accounts for a real precursor film,
ltre requiremenx<b may be very severe if one intends to
describe a very thick drop, but it is not so demanding for thin
ones. For instance, for a precursor film of thicknégs
=10 A, we should have=10"° for a thick drop of height

the problem for early times. The computations are performed mm. Instead, for much smaller drogsr thin films) of

with severalAx’s, and stopped at=2 (At;,=10"%). Long

time evolution is presented in Sec. V B. For simplicity, in all
simulations we begin with the initial condition given by Egs.
(24) and(26). Note that this is not a similarity profile for the

height 1 um and the same precursor fillh=10"2 would
be appropriate.

2. Slipping models

droplet equation; we wish to observe the natural dynamics Instead of a precursor model we now consider relaxing

from a generic initial drop shape.

the no-slip boundary condition 38,20—22

011208-7
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FIG. 9. Thicknesd, of the planar drop fon=3 (t=2) as a
function of Ax with several values of the artificial parameter
(singular slipping models=1), using PPS plus regularization
andA;=10"2.

X

Jv
v=Ah)—— (z=0), (29

wherev, is the velocity component parallel to the substrate,
zis the normal direction to the plane(h)=A43h? S is the
slipping length, ands (<3), A are positive constants. We
considers=2 (constant slipping lengti\) and s=1 (A
~1/h, singular slipping. This boundary condition leads to a
modified diffusivity D(h) in Eq. (2), namely,

PHYSICAL REVIEW E63 011208

Note thatD(h)—h? for h=>AY(®"9 je. far from the con-
tact line. Also,D¢(h)— Ash® ash—0, so that moving front
solutions are allowed wheneve 3.

Now, we compare the behavior of the numerical solution
usings=1 ands=2. In view of the previous test problems
(Secs. IVB 1 and IV B 2 both cases are computed using
PPS. This involves usind4(h) instead ofD(h) in Egs.(5)
and (9), resulting in the following expression fag(h) (s
=1 requiresregularization:

[IN(1+A,/h)—A,/h]/A2,  s=2,

= 31
—In(1+A;/h?)/2A;—¢/3h%, s=1. S

g(h)

Recall that this method also incorporates a lifting by a small
amountb, that is interpreted as a numerical artifact, not a
physical precursor.

Figure 9 shows the central thickness, versusAx for
s=1 with A;=10 2. For smallb, this thickness becomes
b-independent, in agreement witfi8]. The figure also
shows thatAx required for convergence does not depend on
b, provided thab=A; (see also Fig. )1 We note that com-
putations with smalleA 1, and fully converged il and Ax
show thathg increases ad ; decreases. This is because there
is more viscous dissipation for small&r;, as is the case for
smallerb in the precursor film model.

Figure 10 shows the case=2 with A,=10"2. We im-
mediately observe that the results fbr show strong
b-dependence in this range ak’s, even for very smalb’s;
this is in contrast to s=1 case. Moreover, the
Ax-convergence gets worse labecomes smallerdh, /dAx
increases ab—0). A comparison between the behavior of
both slipping models as a function bfis shown in Fig. 11
for Ax=0.05 andA;=A,=10 2. For thisAx the solution

D.(h)=h3+ A_.hS. 30 converges fos=l 1, but it does nqt converge fer=2, simi-
s ) s (30 IarIy ton=1 (F|g_ 4) andn=2 (Flg. 6)
0.9 0.80
D\;;ﬂ\‘]
08 0.70  O—Os=1{(Ax= 0.05)\g\ i
O—0s =2 (Ax = 0.05)
h, h,
0.7 F 0.60 ?
O———(
0 107 107 %807 10° 10° 10" 10° 10°

FIG. 10. Thicknes#, of the planar drop fon=3 (t=2) as a
function of Ax with several values of the artificial parameter
(constant slipping length mode§=2), and A,=10"2. PPS is
used.

b

FIG. 11. Thicknes#, of the planar drop fon=3 (t=2) as a
function of the artificial thickness, for the slipping models with
s=1 ands=2 (A;=A,=10"%). PPS is used andegularization
is added fors=1.
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The difference in the computational performance of the 5
s=1 ands=2 cases can be understood as follows. Under the 4
slipping models, the diffusivity is given by E0), and it is
required that the term ;h® is the dominant one as—0.

Since we have artificial thicknedsat the front, it immedi-  x,

ately follows that we must requite®< A ;bS. This condition 2
gives
b2< Al y S= 1,
(32)
b<A2 y S= 2

and then, the requirement fer=2 is much more severe than 3 |
for s=1. This is whys=2 needs very small values bfto
becomeb-independent. X
To summarize, we conclude that a slipping model with
s=2 (constant slipping lengtih) is not viable from the nu-
merical point of view, since it requires very smalk andb
for convergence; furthermore, smallerequires smalleAx. 1
Instead, the case=1 seems quite appropriate, since rela-
th(_er h'g.h v.alues of bottb andAx ylelq accurate results. FIG. 12. Front positiorx¢(t) for the radial drop spreadingn(
This Q|st|nct|9n should be of interest since both models ar&. 3 ,=1) under the action of surface tension forces usiag
used n the literature. Related resu_lts were repo_rte[dZBj, precursor film model, an¢b) singular slipping modelg=1). The
where it was s_hown that computations on relatively coarsge x;=t%!! approximates the asymptotic behavior, as explained in
grids without slip could lead to very similar results to thosene text.

obtained by well-resolved computations that assume slip.
responding model. Also, the curvlg(t) (not reported here
B. Long time radial evolution for brevity) consistently tend to a power law with exponent
Here we present numerical results for the long time evo-’Bz ~0.22 - .
Note that both the precursor film model and the slipping

lution (t)f :Ee rald't"?ll @:'t:h)thdrop spreadllcqg fondzﬂ?. We | models affect a region of size, say, close to the front, thus
compute the solution wi € precursorfim and the singu arintroducing a new characteristic length in the problem. This
slipping model é=1). Also, since theAx-convergence

characteristic length is given Hyfor the precursor film and
study was performed above, here we present results only f%ry JA, for singular slipping. For the time range shown in

rTIl:ig. 12 we observe a departure from the self-similar behavior

(smal) At but we use a variable time stept”, whose N P o )
value is limited by the requirements of accuracy and positiv{ﬁirs/d; ba_rtuﬁalilr?ot aﬁg?g'orr'%l g?gggta;fgsaézom;??: is
ity, as explained at the end of Sec. lll. P 9 '

The scaling laws obtained in Sec. IV A suggest that Weshifted towards longer times as is decreased. We conjec-

should expect that(t) obeys the power law with exponent %rﬁ t?at th(:’. departure OCCL_'rtshdue tto the mt(_:reasec:]_ra;]ng of
6=1/10[see Eq.(19)]. However, since we must introduce ° o(f) as time progresses; thus, at some time, which de-

some modelprecursor film or slippingto account for the pends on/, introduction of t.he cha.lracteristiclle.ngth in the
singularity at the front fon=3, another condition is added model affects the asymptotibong time self-similar solu-

to the problem. This breaks self-similarity, and so we shoulcpon' From our nur_nerical results, we find that .this departure
not expect an exact self similar solution. Our numerics nov\;tarts’/whenho(t) 's about an order of magnitude greater
become a diagnostic to explore deviation from self—than/' . . .
similarity. We note that a study of the effects of several. The number of time steps’needed to reach a final time
slipping models on the drop dynamics has been reported if is a measure of the computational efficiency of each model.
Ref.[22]. Since the description was done by using a quasi¥Ve find that for the required accuracf7=10"%), the
steady approach under partially wetting conditions, their renumber of Newton iterations is always small<{3), inde-
sults are only qualitatively similar to ours. pendently of the scheme for the interpolation of the diffusiv-
Figures 12a) and 12b) show x(t) calculated with the ity or the contact line model. Figure 13 showsversusb?
initial condition given by Eqs(24) and (26), using the pre- for the precursor film model, and versig for the singular
cursor and singular slipping models, respectively. The nuslipping model. Clearly, the precursor model is much more
merical results can be asymptotically fitted by a power law gfficient than the singular slipping model, since for srait
except for the casels=102 for the precursor model, and requires almost an order of magnitude less time steps. In
A;=10"* for the singular slipping modelartificial b  order to understand why a smaller average time stap)
=10"2A,; see Sec. V A 2 We note that the same exponent =1/, is required by the slipping model, we performed ad-
6=0.11 is a best fit for power laws for both models. Theditional simulations for different combinations &f; andb.
prefactorq (close to unity depends orb andA; in the cor- ~ We found that, whilg At) does not strongly depend any,
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10° | must be a transition between these two asymptotic regimes.
b In this section we address this issue by solving directly the
— governing PDE21).

We start the calculations with a drop profile defined by
Egs. (24) and (26). The scalex. andh; are given by the
respective dimensional initial radius and thickness. Conse-
quently, the dimensional drop volume is given B
b | =(7r/6)hcx§, which is the only controllable parameter in a

R laboratory experiment. Thus, we determingconsequently,
N, t,) from Eq.(33), for a given volume, afi.;=6V./(7x2),
and choosex, by varying G through the definitiong
=(x./a)?.

Let us first recall the simpler problem of the drop spread-
ing without surface tension but with gravity, i.e., EQ)
without the fourth order term an®(h)=h3. It is known
= = = 2 [47,48 that this second order degenerate PDE admits a self-

b, A, similar solution, called Barenblatt solution. In our dimen-
sionless variables, it reads as

FIG. 13. Number of time steps performed in the simulations of
Fig. 12 to reachi=10° as a function of the respective parameter of

O—->0 Slipping (s=1)
G—¢1 Precursor

. . 13
it does decrease for smallbr So, it is because of the small- h(x,t)=

3/8
T
the model b? for the precursor film model, anti; for the singular X;=0.8%.. (g) (G1)¥8=0.704 .. .(Gt)Y8 (39
slipping mode).
=

ness ofb in the slipping model that a very smallAt) is Xt
required for a given accuracy.

In our simulations we observed that the accuracy condi- If gravity is the only driving force, this solution gives the
tion (see Sec. Il is the main limiting factor ofAt”. Note = asymptotic flow for any given initial condition. When sur-
that(At) can even be of the order of unifgee Fig. 13 due  face tension is also taken into account, the relation between

(35

to the fact that the solution is almost self-similar. the (global) gravitational and capillary forces is given by the
Bond number, X;/x.)2. Forx;>a one expects that Barenb-
VI. GRAVITATIONAL FORCES latt’s solution be asymptotically approached. However, even

) ) ) for largex; surface tension effects may still be relevant in the
After formulating reliable computational methods for the neighborhood of the contact line. In thissymptoti¢ gravity
problems where capillarity is the only driving force, we now gominated regime one does not expect modification of the
consider the gravitational force. Within the framework of exponents=1/8 due to the presence of localized contact
lubrication approximation, the gravity effects are modeled bytorces, becausé is a direct consequence of volume conser-
the second order term included in Ed), wherex, h, andt  yation (a global condition Instead, changes in the prefactor

are scaled by, hc, and of Eq. (34) as well as in the thickness profile, E85) could
4 be expected. Experiments that show this type of effects have
t :ﬂ (33) been reported elsewhefr49].
Y Figure 14 shows the numerical resultiashed linesfor

X using the precursor film model with=1 in Eq. (1), and
respectively, wherg: is the viscosity andy the surface ten-  usingPPS for the fourth order term. For smal(<10~%) it
sion. Consequently, the Bond number is given By is possible to obtain an asymptotic behavior with exponent
=(x./a)?, wherea=/y/pg is the capillary lengthg the = 5=1/8, as in Barenblatt’s solutiof60]. However, the pre-
gravity andp the density. factor of the asymptotic line for the numerical results is quite

The gravitational term in Eq1) is discretized using stan- close to unity(the linex;=t8is shown for comparisonso
dard centered finite differences. We have verified that variit is larger than the one of Barenblatt’s solution. Note also
ous conservative discretizations of this terms have compahat the transition to the gravity dominated regime depends
rable performance and efficiency. When using a slippingstrongly onb. The smalletb, the longer it takes to reach the
model instead of the precursor film approach, the replaceasymptotic power law behavior.

menth®—h3+ Ah® must be done i (h) in Eq. (1), and the A comparison with experiments is also shown in Fig. 14.
corresponding discretization is done in a similar way as deThe open and filled symbols correspond to thendimen-
scribed for the precursor film model. siona) experimental data reported in Ref&3] and [51],

In the preceding section we addressed the problem of eespectively, for different volume¥.. Note that time is in
radially spreading drop without gravity, governed by capil-units oft., Eq. (33), with x,=a (G=1). Figure 14 shows
lary forces. However, it is known that for late times, thethat a good agreement for small volume drop¥. (
gravitational effects become dominant. Consequently, therec2 mn?) can be obtained fob=10"%, and that smaller
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jlg L T T bk T 4 EARE DR ELIL B | l‘ ™ T “ i 1 *
12 | O0V=0.51 — — b=102 / , 2
WLov=152 _ _p_q0° / ]
9L oV=1032 __  p=10"* / / i
gl AV=3152 __ b=10" / ] 0.8
7L <V=6536 —_ p=10"° / |

VV=144.3 J/
6 | .

® V=0.35 /
5 mv=135 // X=0.7014 1" 1 B 0.6
l *V=4.03 L/ (Barenb. sol.) | £

X; A V=5.80 , =

v V=379 8 =

Sr ] 0.4
............ t=0
o1 — t=1,10.,10°
2 1 ——1
-
02 - - (1_112)1/3
o Experiment (x=9.9)

Pttt I R RV EETTTY R Y R EETAY BT | . 0 I I ! .
10° 10" 10° 10° 10* 10° 10° 10" 10° 10° 10" 10" 0 0.2 0.4 0.6 0.8 1
t N=X/%
FIG. 14. Front positiork;(t) for the radial drop spreadingn( FIG. 16. Profile evolution of a radially spreading drop with both

=3, a=1) under the action of both surface tension and gravitysurface tension and gravitational forces present. The arrow shows
forces forG=1, usingprecursor film modelThe broken lines show the direction of time increase. In the simulations we used the pre-
numerical results, the open and filled symbols are the experimentaiursor film model withb=10"% on a grid sizeAx=0.01 (the pro-
data from Refs[43] and[51], respectively, where the drop volumes files are almost insensitive to variation aix). The symbols are
are in mni. The line with the prefactor 0.79 is the best fit to the experimental data from Ref43].
early times evolution dominated by surface tension.

Figure 15 shows the results for the singular slipping
b’s are required for largev [50]. Sinceb=h,/h., hy be-  model(dashed lines The power law behavior characterized
ing the dimensional thickness of the actual precursor filmpy §=1/8 is observed only for very smaN; (<10 %) and,
this suggests that in the experiments it musthie-800 A consequently, for very small artificidl. Also, A ;<108 is
for a typical volume of 10 mrh Also, it appears that the required for a good agreement with the experimental data.
experimental data for large volume drops tend to approaciror smallerA ;, a smaller average time step is required; e.g.,
the gravitational asymptotic line for very long times, in a (At) for A;=10" % is approximately 8 times smaller than for
similar fashion to that of the numerical curves. We note thatA , =102, Thus, a numerical calculation with the singular

the dimensional drop volum¥,;, only specifies the scale for sjipping model is much less efficient than with the precursor

the numerical results, so that the dimensionless computgim model.

tional results shown in Figs. 14 and 15 are volume- The increasing effects of gravity as the drop spreads out

independent. Thus, the data from a given experinie@fa  can also be put in evidence by looking at the change of shape

givenV,) fall on a certain range of; andt, in units ofX.  of the thickness profile. In Fig. 16 we plot profiles

andt;, respectively. h(x,t)/h(0t) vs. »=x/x;(t) using precursor film model
with b= 10"° at different times of the evolution. The flatten-

E F ove051 ‘_'_‘A“:w;‘”' T y ing of the central part of the drop is evident. A significant
W Lov=152 ___ A1=104 / ] difference between the Barenblatt's profile and the most ad-
9 | oVv=1032 _._. A1=10j / ’ 1 vanced profile is the slope at the front. The computed solu-
Loy A10T 1 tion is characterized by profiles which are smoothened by
6 L vv=1443 / i capillary effects close to the contact line, compared to Baren-
5 | ®V=0.35 / . w blatt's profile which has infinite slope there. This difference
B V=135 / x=0.7014 1 . . . . .
4l evo403 J (Barenb. sol.) is relat_ed with the different prefactqrs in the numerlc_al as-
X AV=5.80 / ymptotics and the Barenblatt's solution. The symbols in Fig.
3 YV=379 1 . 16 correspond to the experimental data reported in R&].
for x;=9.9 (Fig. 3.f in that paper The comparison is very
0.11 . .
s L i favorable, even though the numerical profilet atl0® has a
slightly largerx; (=10.1) compared to the experimental one.
Y Up to our knowledge, this is the first time that this tran-
o sition between the regimes dominated by surface tension and
1 ey sl sl sl sy sl il ki gravitational forces has been described by the direct solution
10 107 10° 10" 10° 10" 10" 10" 10" 107 10 of the corresponding PDEsee Ref.[43] for an ODE ap-

t proach. Concerning computational issues, we note that,

FIG. 15. Front positiorx(t) for the radial drop spreading as in analogously to Sec. V B, the precursor film model is compu-
Fig. 14, usingsingular slipping mode(s=1). tationally more efficient than the singular slipping model.

011208-11



JAVIER A. DIEZ, L. KONDIC, AND ANDREA BERTOZZI PHYSICAL REVIEW E63 011208

For instance, fob?=A,=10 % (/=10 %), the precursor While the singular slipping models¢1) is much less de-

model allows for(At)10 times larger than the one required Manding(Figs. 9 and 10 . o ,
by the slipping model. Again, this is due to the very small  The results for the asymptotic description of the radial
b’s that must be used in the slipping model. drop spreading show that both the precursor film model and

the singular slipping model are equally appropriate. How-
ever, the former is computationally more efficient, since it
allows for a much largefAt) for a similar characteristic

By means of a series of numerical simulations we havdength/~b?~A .
shown the importance of having a good numerical scheme to These two models show a similar behavior when gravity
calculate flows described by E), with the presence of is included in the radial drop spreading probléFigs. 14
advancing fronts. Even without the singularity at the contactand 15. Also in this case, the numerical solutions give the
line (n<3) and in planar symmetry, the study of the dropcorrect asymptotic power law behavior with exponeht
spreading problem with=1 andn=2 shows how sensitive =1/8, if / is sufficiently small. For relatively large volumes
is the numerical solution to the interpolation of the nonlinear(V,>1 mn?), the simulations of Eq(1) yield results in
diffusivity. good agreement with experimental data reported elsewhere

We obtain that the numerical solutions witk=1 are con-  [43,51], providedb=<10* in the precursor film model and
vergent only if the positivity preserving schem®BRS) plus  A;<10 8 in the singular slipping model. The simulations
regularizationare employedFigs. 3 and % and that a stan- also show the transition from the surface tension dominated
dard scheme &S) for the interpolation of the diffusivity regime to the gravity dominated regime. Another feature of
fails. Forn=2, 8§ and PPS become coincident for small the gravity effects is the flattening of the profilEig. 16),
Ax (Fig. 5. However, both schemes show that the computaand the finite slope at the front. The latter effect is related to
tion must be done with very smallx (<10 %), in order to  the different values of the prefactor in the power law for
obtain a converged solution as-0 (Fig. 6). We conjecture  x¢(t) of the asymptotic gravitational regime and of the
that it might be possible to find a relatidi{Ax) such that Barenblatt’s solution.
this limit exists, but that study is left for future work. Similar ~ In summary, since the efficiency is essential for success-
results are obtained in radial symmetry for=2, though ful modeling of two-dimensional problems, we conclude that
they are not reported here for brevity. We believe that thighe use of the precursor film model is highly advisable. The
lack of convergence fon=2 might be the cause of the low extension of our computational method to these problems is
performance of the calculations when using the slippingcurrently in progress.
model with constant slipping lengtis€ 2) in thin film flows
(n=3) (see Sec. VAR

For n=3, and using the precursor film model, bafty
andPPS seem appropriate to perform the calculation of the This work was supported by ONR Grant No. NO0O014-96-
drop spreading. The onlgbut important difference is that 1-0656. J.D. also acknowledges support from Consejo Na-
PPS converges faster, although it is less accurate th&n cional de Investigaciones Ciéfitas y Tenicas(CONICET-
for large Ax (Fig. 8). An essential point when using slipping Argenting, and Organization of American Stat68AS) for
models under these schemes is that the results should Ibés stay at Duke University. The additional support comes
insensitive to the “lifting” parameterb. The simulations from The Sloan FoundatiofA.B., L.K.), NSF Grants No.
show that the model with constant slipping lengg=@) DMR-9321792 and DMS95-04577, and NJIT Grant No.
requires extremely small values bfto achieve this goal, 421210(L.K.).

VIl. SUMMARY AND CONCLUSIONS
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