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ABSTRACT

A growing number of young white dwarfs (WDs) with metal-enriched atmospheres are ac-

companied by excess infrared (IR) emission, indicating that they are encircled by a compact

dusty disc of solid debris. Such ‘WD debris discs’ are thought to originate from the tidal

disruption of asteroids or other minor bodies. However, the precise mechanism responsible for

transporting matter from the disruption radius to the WD surface remains unclear, especially

in systems with the highest inferred metal accretion rates ṀZ ∼ 108–1010 g s−1, which cannot

be explained by Poynting–Robertson (PR) drag alone. Here we present global time-dependent

calculations of the coupled evolution of the gaseous and solid components of WD debris

discs. Solids transported inwards (initially due to PR drag) sublimate at tens of WD radii,

producing a source of gas that both accretes on to the WD surface and viscously spreads

outwards in radius, where it overlaps with the solid disc. Our calculations show that if the

aerodynamic coupling between the solids and gaseous discs is sufficiently strong (and/or the

gas viscosity sufficiently weak), then gas builds up near the sublimation radius faster than it

can viscously spread away. Since the rate of drag-induced solid accretion increases with gas

density, this results in a runaway accretion process, as predicted by Rafikov, during which the

WD accretion rate reaches values orders of magnitude higher than can be achieved by PR drag

alone, consistent with the highest measured values of ṀZ . We explore the evolution of WD

debris discs across a wide range of physical conditions and describe the stages of the runaway

process in detail. We also calculate the predicted distribution of observed accretion rates ṀZ ,

finding reasonable agreement with the current sample. We use our disc evolution model to

show that the steady-state assumption commonly adopted to calculate WD metal accretion

rates is inaccurate when the metal settling time in the WD atmosphere is long compared

to the viscous time-scale; a long metal settling phase following a runaway accretion event

may explain some metal-polluted WDs with no current IR excess. Although the conditions

necessary for runaway accretion are at best marginally satisfied given the minimal level of

aerodynamic drag between circular gaseous and solid discs, the presence of other stronger

forms of solid–gas coupling – such as would result if the gaseous disc is only mildly eccentric

– substantially increase the likelihood of runaway accretion.

Key words: accretion, accretion discs – protoplanetary discs – white dwarfs.

1 IN T RO D U C T I O N

A significant fraction, ∼10 per cent, of white dwarfs (WDs) with

metal-enriched atmospheres (DAZ and DBZ types) and cooling

ages �0.5 Gyr are accompanied by excess infrared (IR) emis-

sion (Zuckerman & Becklin 1987; Graham et al. 1990; Kilic et al.
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(RRR); kbochkar@astro.princeton.edu (KVB)
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2005; Kilic & Redfield 2007; von Hippel et al. 2007; Farihi, Jura &

Zuckerman 2009; Debes et al. 2011a,b). This emission is well mod-

elled as WD radiation reprocessed by an optically thick, geomet-

rically thin disc of refractory material (Jura 2003; Jura, Farihi &

Zuckerman 2007a). Modelling of the IR spectral energy distribu-

tion (SED) shows that the inner edge of the disc resides at Rin ∼
several tens of WD radii R⋆, close to where the equilibrium tem-

perature T ∼ 1500 K is sufficiently high to sublimate silicate dust

grains. The outer edge of the disc is also well constrained by the

SED at longer wavelengths, with its radius Rout � R⊙ ≈ 100R⋆

typically found to exceed Rin by a factor of several (e.g. Jura et al.

2007b, 2009a; Debes et al. 2011b).
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No evidence is found for disc flaring from the SEDs of most

systems (cf. Jura et al. 2007a), consistent with the disc material be-

ing concentrated in a thin, optically thick layer similar to the rings

of Saturn (Cuzzi et al. 2010) (although there are a few examples

of discs, including GD 56 and GD 362, where warps or flaring

are needed to fit their SEDs; Jura et al. 2007a,b). Low-resolution

spectroscopy with the Infrared Spectrograph on the Spitzer Space

Telescope reveals an emission feature at 10 µm, indicating the pres-

ence of small, micron-sized silicate dust particles (Jura, Farihi &

Zuckerman 2009b). Though small dust is clearly present in some

discs, the detailed distribution of particle sizes is not well con-

strained. In this work we assume that most of the solid mass in

the disc is concentrated in macroscopic particles with characteristic

size ∼ cm, as is consistent with observations (Graham et al. 1990)

and with theoretical estimates of the disc lifetime (see equation 59).

Several WDs with dusty discs also possess gaseous discs (Melis

et al. 2010), as inferred by the detection of double-peaked emis-

sion lines of Ca II and Fe II (Gänsicke et al. 2006, 2008; Gänsicke,

Marsh & Southworth 2007). These features clearly indicate a Ke-

plerian disc composed primarily of gaseous, high-Z elements (no

H emission lines have yet been detected) which is radially coin-

cident with the dusty disc (Melis et al. 2010). Although most DZ

WDs display no detectable emission lines, gaseous discs could in

principle be more common because the disc line emission is easily

overwhelmed by continuum emission from the WD photosphere.

Jura (2003) proposed that compact discs of metals around WDs

are produced by the tidal disruption of asteroids or other minor

bodies. A plausible source of such rocky bodies are objects placed

on to low periastron orbits by gravitational perturbations from giant

planets which have survived the asymptotic giant branch (AGB)

phase of the WD progenitor (Duncan & Lissauer 1998; Debes &

Sigurdsson 2002). Discs formed this way are often termed ‘debris

discs’ since they result from the destruction of larger bodies, despite

the fact that many of their properties (e.g. typical distance from the

star and optical depth) are very different from conventional debris

discs around young main-sequence stars (Wyatt 2008) as well as

the much larger (tens of au) debris discs around very young, hot

(T � 105 K) WDs (Chu et al. 2011). A tidal disruption origin nat-

urally explains why the outer radii of observed discs Rout � 1 R⊙
are similar to the Roche radius RR ∼ (M⋆/ρd)1/3 ∼ R⊙ of a self-

gravitating object of typical density ρd ∼ a few g cm−3, where M⋆ ≈
0.6 M⊙ is the WD mass.

Asteroid-fed discs are also a promising explanation for the met-

als in the atmospheres of DZ WDs (Jura 2003), which otherwise

are rapidly depleted by gravitational settling on a time-scale much

shorter than the WD age (e.g. Paquette et al. 1986). One can es-

timate the (appropriately time-averaged) metal accretion rate ṀZ

in individual WD systems by combining the observed photospheric

metal abundances with theoretical estimates of the mass in the outer

convective zone of the WD and the settling times of heavy elements

(e.g. Koester & Wilken 2006; Koester 2009). Values estimated in

this way fall within the relatively wide range ṀZ ∼ 106–1011 g s−1

(Farihi et al. 2009, 2010a).

Several additional lines of evidence now support the asteroid

disruption model for WD debris discs and metal pollution. First,

both gaseous and dusty discs are found exclusively around metal-

rich WDs: from the statistics of systems observed with Spitzer,

Farihi et al. (2009) estimate that ∼20 per cent of DAZ WDs host

compact debris discs, yet no evidence is found for discs around

WDs without metal pollution (e.g. Hansen, Kulkarni & Wiktorowicz

2006; Mullally et al. 2007). Farihi et al. (2010a) also found a strong

positive correlation between the presence of a compact debris disc

and the metal accretion rate ṀZ . The mass in the outer convective

zone of many WDs is similar to that of an asteroid of several hundred

km size, similar to Ceres or Vesta, while the relative abundances

of several elements heavier than He are indeed similar to those

in Solar system bodies formed interior to the ice line, such as the

Earth, Moon and asteroids (Jura 2006; Zuckerman et al. 2007, 2010;

Klein et al. 2010). Finally, the chief alternative theory for WD metal

pollution, accretion from the interstellar medium, is now challenged

by a variety of observations (e.g. Koester & Wilken 2006; Kilic &

Redfield 2007; Jura et al. 2009a; Farihi et al. 2010a).

Despite growing evidence in support of the asteroid tidal dis-

ruption model, it remains unclear precisely what mechanisms are

responsible for transporting metals from the disrupted ring of solids

(with characteristic radius of several tens of R⋆) to the WD surface at

the observed rates. The goal of this paper is to address this question

with fully self-consistent global numerical models of the coupled

evolution of the solid and gaseous components of WD debris discs.

1.1 Summary of previous work

We begin by summarizing previous theoretical work on accretion in

WD debris discs. As mentioned above, the inner edge of the solid

disc Rin is located near the sublimation radius Rs (Rafikov 2011a):

Rin ≃ Rs ≡
R⋆

2

(

T⋆

Ts

)2

≈ 0.2 R⊙
(

R⋆

0.01 R⊙

) (

T⋆

104 K

)2 (

Ts

1500 K

)−2

,
(1)

where Ts is the sublimation temperature of silicate grains (we

assume here that particle’s emissivities for starlight and for its

own thermal radiation are the same). Adopting a typical value for

the WD radius R⋆ ≈ 0.01 R⊙ (Ehrenreich et al. 2011) one finds

Rs ≈ 0.2 R⊙, consistent with observations (Jura et al. 2007b,

2009b).

It is worth noting that fitting the SEDs in some WD systems re-

quires an unphysically high sublimation temperature Ts (e.g. Jura

et al. 2007a; Brinkworth et al. 2009; Dufour et al. 2010; Melis

et al. 2010). This suggests that other physics, such as a high particle

albedo or conduction in the gas phase (Jura et al. 2007b), may play

an important role, thereby calling the validity of equation (1) into

question. These complications do not, however, affect the conclu-

sions of this work since hereafter we scale all relevant distances to

Rin without specifying what physics sets its value.

The sublimation of solid particles produces a source of metallic

gas at r ≈ Rs. Viscosity redistributes gas from this location, pro-

ducing an extended disc that transports mass from Rs to the stellar

surface R⋆. If one assumes that the disc is turbulent, with an effec-

tive viscosity characterized by the conventional α-parametrization

ν = αc2
s /�K (Shakura & Sunyaev 1973), then the viscous time at

the sublimation radius is given by

tν ∼
R2

s

ν
≈ 2 × 103 yr

(

α

10−3

Tg

5000 K

)−1 (

μ

28mp

)

×
(

M⋆

0.6 M⊙
Rs

0.2 R⊙

)1/2

, (2)

where cs = (kTg/μ)1/2 is the gas sound speed; Tg is the gas temper-

ature, normalized to a value characteristic of the range ≈(3–7) ×
103 K set by the balance between photoionization heating and metal

line cooling (Melis et al. 2010); μ is mean molecular weight, nor-

malized to a value 28mp characteristic of pure Si; �K = (GM⋆/r3)1/2
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Runaway accretion in white dwarf debris discs 507

is the Keplerian angular velocity; and α is normalized to a value

10−3 somewhat lower than that expected to result from magne-

tohydrodynamical (MHD) turbulence in fully ionized discs (e.g.

Davis, Stone & Pessah 2010), an assumption we discuss further in

Section 6.

Equation (2) shows that the viscous time-scale is relatively short

compared to other time-scales of relevance, such as the total disc

lifetime, which is typically estimated to be �104.5–106.5 yr (Girven

et al. 2012). In most cases the accretion rate on to the stellar surface

ṀZ is thus ultimately controlled by the rate at which solids reach

Rs, not by the maximum rate of gas accretion set by viscosity.

A key theoretical question is thus how solids are transported to

the sublimation radius at rates consistent with the range of values

ṀZ ∼ 106–1010 g s−1 inferred from observations.

One mechanism of solid disc evolution is angular momentum

transport due to the interaction between disc particles (e.g. physical

collisions), in full analogy with the rings of Saturn. However, as we

show in Appendix A (see also Farihi, Zuckerman & Becklin 2008),

for realistic assumptions about the size distribution and mass of

the debris disc, the time-scale of this process is generally too long,

resulting in a negligible accretion rate ṀZ .

Another more promising mechanism to drive solids inwards is

Poynting–Robertson (PR) drag. Rafikov (2011a, hereafter R11a)

demonstrated that PR drag produces accretion rates up to ṀZ ∼
ṀPR,in � 0.03L⋆/c

2 ∼ 108 g s−1, where ṀPR,in is the maximum

PR accretion rate for an optically thick disc of solids (as defined by

equation 43 below) and L⋆ is the WD luminosity (see equation 22).

Bochkarev & Rafikov (2011, hereafter BR11) followed this work by

computing global models of the disc evolution under the action of

the PR drag. By considering a variety of initial conditions, including

both optically thin and optically thick debris discs, they showed that

the results of R11a hold quite generally.

Fig. 1 shows the measured distribution of WD metal accretion

rates ṀZ from the samples of Farihi et al. (2009, 2010b). We normal-

Figure 1. Distribution dNy/d(log y) of WD metal accretion rates y ≡
ṀZ/ṀPR,in from the samples of Farihi et al. (2009, 2010b), shown sep-

arately for the total population (sample size N = 62; black line) and just

those systems with detected IR excess (sample size N = 20; red line). We

normalize the accretion rate ṀZ to the value ṀPR,in predicted due to op-

tically thick PR drag (equation 43), assuming that R⋆ ≃ 109 cm and using

the measured effective temperature of the WD in each system. Note that

each distribution has been separately normalized to unity. In Section 5, we

show that the current ‘observed’ accretion rates in systems with y � 1 and

without an IR excess likely overestimate the current real accretion rate (but

underestimate the peak accretion rate achieved earlier in their evolution; see

Fig. 14).

ize ṀZ to ṀPR,in calculated using equation (22), to be introduced

later in Section 3, assuming Rin ≃ Rs (equation 1) and using the mea-

sured effective temperature of each WD in the sample. Fig. 1 shows

that a significant fraction of those WD systems with an IR excess

(indicative of ongoing metal accretion) have ṀZ ∼ ṀPR,in consis-

tent with the characteristic accretion rate due to PR drag (BR11;

R11a). On the other hand, PR drag alone is insufficient to explain

the highest observed rates ṀZ ∼ 109−1011 g s−1 ≫ ṀPR,in found

in the tail of the distribution in Fig. 1.

Rafikov (2011b, hereafter R11b) recently proposed a model for

the coupled evolution of the solid and gaseous components of WD

accretion discs which can in principle explain even these highest

accretion rates. The key idea is that a fraction of the gas created at

the sublimation radius viscously spreads outwards in order to carry

away the angular momentum of the accreting gas (Pringle 1981).

The solid and gaseous discs thus overlap at radii �Rs, providing a

natural explanation for their observed radial coincidence (e.g. Melis

et al. 2010). Drag forces between the solid and gaseous discs in this

region, resulting from their different rotation rates, act to enhance

the rate at which solids lose angular momentum and accrete over the

rate provided by PR drag alone. This scenario results in a feedback

process, and potential ‘runaway’, because the enhanced rate of solid

sublimation increases the accumulation of gas near the sublimation

radius, which in turn enhances the strength of drag and rate of

solid accretion. Using a local model applied to the evolution of the

optically thick disc of solids near its inner radius, R11b showed that

during such a runaway ṀZ can exceed by orders of magnitude the

accretion rate ṀPR,in set by PR drag alone.

R11b has shown that the full range of accretion rates in Fig. 1

can in principle be reconciled with the asteroid debris disc model.

However, the R11b model is limited by several simplifying as-

sumptions, including its entirely local (‘one zone’) nature. A more

detailed, global model of the gaseous and solid disc evolution is

necessary to verify and generalize these conclusions.

1.2 This paper

In this paper we present one-dimensional calculations of the coupled

evolution of the solid and gaseous components of WD debris discs.

Our goal is to test the runaway accretion model of R11b and to

begin to address observational tests, such as the expected fraction

of metal-bearing WDs with and without observable debris discs and

the predicted distribution of accretion rates to compare with data,

such as that shown in Fig. 1.

This paper is organized as follows. In Section 2 we overview the

model, describing in Section 2.1 our baseline description of the aero-

dynamic coupling between gaseous and solid discs. In Section 3,

we present the equations governing the evolution of the coupled gas

and solid discs, including an estimate of characteristic values of the

dimensionless parameters of the model (Section 3.4). In Section 4,

we present our numerical calculations and describe our results. In

Section 5, we present applications of our results. These include a

comparison between the true accretion rate and that approximated

using the commonly adopted assumption of steady-state accretion

(Section 5.1); and predictions for the accretion rate distribution from

an ensemble of debris disc systems (Section 5.2). In Section 6, we

discuss our results, including a critical assessment of whether the

necessary conditions for runaway are achieved in WD debris discs.

We also discuss several extensions of our standard model, including

the effects of an eccentric gaseous disc (Section 6.1) and the WD

C© 2012 The Authors, MNRAS 423, 505–528
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508 B. D. Metzger, R. R. Rafikov and K. V. Bochkarev

magnetic field (Section 6.2). In Section 7, we provide a summary

of our results.

Appendices of this paper contain a number of important auxiliary

results, including an evaluation of the role of collisional viscosity in

driving the accretion of solids (Appendix A); calculation of the vis-

cous evolution of a disc with a power-law viscosity and mass sources

(Appendix B); an analytical derivation of the runaway condition in

a simplified but fully global model of disc evolution (Appendix C);

and a calculation of the aerodynamic coupling between a solid disc

and an eccentric gaseous disc (Appendix D). Our results in Ap-

pendix B may find useful applications in studies of accretion discs

beyond the scope of this work.

2 SU M M A RY O F T H E M O D E L

We now overview the basic model, which is illustrated schematically

in Fig. 2. Initially a solid debris disc forms at radii r � RR ∼ R⊙ ∼
1011 cm from the tidal disruption of a rocky body. We characterize

the solid debris disc by its surface density �d and optical depth

τd ≡
�d

�0

, �0 ≡
4

3
ρda, (3)

where �0 is the fiducial surface density at which τd = 1, and

ρd ∼ a few g cm−3 and a are the bulk density and characteristic

size, respectively, of disc particles. The initial distribution of solids

τ d(r) depends on the details of the tidal disruption process and

on the properties (e.g. mass, composition and tensile strength) and

incident orbit of the disrupted body (e.g. Debes, Walsh & Stark

Figure 2. Schematic diagram of the model for WD debris discs described

in this paper. An asteroid or other minor body is disrupted by tidal forces

inside the Roche radius RR ∼ R⊙, forming a solid debris disc with surface

density distribution �d(r) = �0τ d(r) (dashed line), where τ d is the vertical

optical depth (equation 3) as a function of radius r. PR drag transports solids

to the sublimation radius Rs ∼ 0.2 R⊙ (equation 1), where a gaseous disc

forms. Turbulent viscosity redistributes the gas surface density �g ∝ τ g

into a steady-state power-law distribution with a break in the slope (see

equation B17) at the sublimation radius (dot–dashed line). The gas and solid

discs overlap at radii �Rs, resulting in azimuthal aerodynamic drag between

the discs which acts to enhance the rate of solid accretion. Our calculations

in Section 4 show that drag is most effective at the innermost radius r ∼ rthick

where the solid disc becomes optically thick (τ d �1). The interaction at this

location starts the process which ultimately leads to ‘runaway’ accretion of

the entire solid disc.

2012). In this work we neglect the important issue of the how the

disc forms and circularizes in the first place, which is justified since

the time-scale for this process ∼1–100 yr is typically shorter than

the other time-scales of relevance (e.g. the viscous time-scale or

disc lifetime). However, in Section 6.1 we discuss the effects of

eccentricity on the strength of the coupling between solids and gas,

which could in principle be relevant to the early phases of disc

evolution.

Solids accrete inwards, initially due entirely to PR drag, creating

gas at the sublimation radius Rin = Rs ≈ 2 × 1010 cm (equation 1).

The temperature of the gas Tg ∼ 3–7 × 103 K is higher than that of

the solids (Td < Ts ∼ 1500 K) due to differences in their heating

and cooling processes (Melis et al. 2010). The aspect ratio of the

gaseous disc hg/r ∼ 10−3 is typically small, but the disc scale-height

hg ∼ 107 cm is still much larger than that of the particulate disc,

which (with the possible exception of small dust particles) appears

to be well settled into the midplane.

Due to angular momentum transport by turbulent viscosity, the

gaseous disc accretes both inwards to the WD surface R⋆ ∼ 109 cm

and spreads outwards to radii �Rin, where it overlaps with the solid

disc. If the rate of solid accretion evolves slowly compared to the

viscous time, then the gas surface density (proportional to optical

depth τ g) develops a power-law radial distribution, with a break in

the power-law index at the sublimation radius (see Appendix B).

Drag on the solids due to interaction with the gaseous disc enhances

the rate of solid accretion.

Note that in this work we do not consider the possibility of gas

production due to particle collisions, as suggested by Jura (2008)

and Farihi et al. (2009), since, as we demonstrate in Section 6.4, this

mechanism cannot maintain the continuous production of metallic

gas on a sufficiently long time-scale.

We now discuss one physical mechanism for coupling the dy-

namics of the solid and gaseous discs: aerodynamic drag. As shown

later in Section 4, aerodynamic drag is most effective at the inner-

most radius r ≈ rthick where the solid disc becomes optically thick

(τ d � 1).

2.1 Aerodynamic coupling

The angular velocity of the gaseous disc �g is slightly lower than the

Keplerian rate �K = (GM⋆/r
3)1/2 at which the solid particles orbit

due to the radial pressure gradient in the gaseous disc, �g − �K ≈
(2�Krρg)−1∂Pg/∂r , where Pg and ρg are the midplane gas pressure

and density, respectively.1 This results in an azimuthal velocity

difference given by

vϕ,rel = −ηcs

cs

�r
≈

−200 cm s−1

(

28mp

μ

)(

Tg

5000 K

)(

M⋆

0.6 M⊙
Rin

0.2 R⊙

)1/2

,

(4)

where (assuming cs independent of radius)

η =
1

2

(

3

2
−

∂ ln �g

∂ ln r

)

(5)

is a dimensionless parameter set by the radial pressure distribution.

Here, �g ≃ 2hgρg and hg ≃ cs/� are the surface density and vertical

scale-height of the gas disc, respectively.

1 In places hereafter where the distinction between �g and �K is not impor-

tant, we simply refer to the angular rotation rate � = �K ≃ �g.
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Runaway accretion in white dwarf debris discs 509

Note that although the total surface density of solids �d can

exceed that of the gas �g in regions where the two radially overlap,

this does not imply that the solids dominate the dynamics of the gas

nor eliminate its relative velocity. This is because most of the solid

mass is likely locked up in macroscopic particles (with sizes ∼ cm;

see Graham et al. 1990 and Section 6), which are well settled into

the disc midplane, similar to the rings of Saturn. In addition, the

gas extends to a much greater vertical height and is not loaded with

solids, allowing it rotate at a sub-Keplerian speed due to pressure

support. Thus, despite their radial overlap the gas and solid debris

are well separated in the vertical direction (see Fig. 2) and there

is no tight coupling between them in the sense that the stopping

time of the solid particles is much longer than the local orbital

period.

The only population of particles that could plausibly be well

mixed with the gas are micron-sized silicate particles. However,

observationally these represent only a small fraction of the total

mass and surface density of the disc: typical values for the total

mass are of the order of ∼1018 g (Jura et al. 2009b), resulting in

a surface density near the sublimation radius of �10−4 g cm−2.

This is much less than the gas surface density near the sublimation

radius, even when the accretion rate equals the maximum value

achievable by PR drag (e.g. �g ∼ 10−2 g cm−2 for ṀZ ∼ 108 g s−1;

see equation 7).

The importance of shear between the solid particles and gaseous

disc was first recognized in the context of protoplanetary discs

(Whipple 1972) and is now widely believed to result in a vari-

ety of important effects, such as the inward migration of solids

(Weidenschilling 1977), excitation of turbulence near the disc mid-

plane (e.g. Cuzzi, Dobrovolskis & Champney 1993) and streaming

instabilities in the disc of solids (Youdin & Goodman 2005; Jo-

hansen et al. 2007).

2.1.1 Optically thick discs (τ d � 1)

One of the most important (and also most uncertain) issues is the

strength of the coupling between the gaseous and solid discs. When

the optical depth of the solid disc is high (τ d ≫ 1), its geometry

may be idealized as that of a solid plate with a zero-slip boundary

condition at its surface. In reality, of course, the disc is not a per-

fectly smooth plate; its surface may, for instance, contain structures

similar to those observed in the rings of Saturn, such as wakes,

vertical particle motions, particle ‘pileups’ and other highly inho-

mogeneous small-scale surface density features (Cuzzi et al. 2010).

These complications introduce significant uncertainty when calcu-

lating the drag force acting on the debris disc.

Even if the idealization of a smooth plate is adopted, one must

determine whether the gaseous layer above the plate is laminar or

turbulent. A similar issue was first addressed by Goldreich & Ward

(1973), who showed that if the gaseous disc remains laminar, then

the velocity shear between the two discs is restricted to within the

Ekman layer of vertical thickness

zE ∼
( νm

�

)1/2

≈ hg

(

μ

σ�g

)1/2

, (6)

where νm ≈ λcs/3 is the molecular shear viscosity in the disc

(not to be confused with the turbulent viscosity ν), λ = μ/ρgσ

is the molecular mean free path and σ is the molecular cross-

section. The gas surface density near the sublimation radius can

be estimated using the expression ṀZ = 3πν�g appropriate for

steady-state accretion (e.g. Frank, King & Raine 2002; see also

equation B17),

�g(r = Rin) ≃
ṀZtν

3πR2
s

≈ 3 × 10−3 g cm−2

(

ṀZ

108 g s−1

)

( α

10−3

)−1

×
(

Rs

0.2 R⊙

)−3/2

, (7)

where we have assumed Rin ≈ Rs and have substituted equation (2)

for tν = R2
s /ν, adopting fiducial parameters of μ = 28mp, Tg =

5000 K and M⋆ = 0.6 M⊙.

For σ ≈ 10−15 cm−2, α = 10−3 and the typical range of measured

WD accretion rates ṀZ ∼ 108–1010 g s−1, equation (6) shows that

the Ekman layer thickness zE ∼ 103–105 cm is generally much

smaller than the disc scale-height of hg ∼ 107 cm. For the same

parameters, the Reynolds number of the Ekman layer is estimated

to be

ReE =
vϕ,relzE

νm

≈
hg

r

(

σ�g

μ

)1/2

∼ 0.1−1. (8)

Under terrestrial conditions, both numerical calculations (Coleman,

Ferziger & Spalart 1990) and experiments (Faller 1963) find that

ReE � 102 is necessary for the Ekman layer to become turbulent.

At first glance it thus appears that the gas layer above the debris

disc is laminar.

In astrophysical discs, however, the Ekman layer may be suscep-

tible to Kelvin–Helmholtz (KH) instabilities (Goldreich & Ward

1973). If one assumes momentarily that fluid in the shear layer is

incompressible (vϕ,rel ≪ cs), then the Richardson number of the

Ekman layer is given by

RiE = −gz

∂ ln ρ/∂z

(∂vϕ/∂z)2
∼

(

gzzE

csvϕ,rel

)2

≈
(

�r

cs

μ

σ�g

)2

, (9)

where gz ≃ GM⋆zE/r3 is the vertical gravitational accelera-

tion near the midplane and we have made the approximations

∂ ln ρ/∂z ∼ gz/c
2
s and ∂vϕ/∂z ∼ vϕ,rel/zE. Again adopting the

fiducial parameters and range of accretion rates given above, one

finds RiE ∼ 10−2−10−6, indicating that the flow is grossly KH

unstable and must be turbulent.2

If the flow over the disc surface is turbulent, then the force per

unit surface area is given by (Goldreich & Ward 1973)

fa(τd � 1) = −Re−1
⋆ ρgvϕ,rel|vϕ,rel|, (10)

where Re−1
⋆ is a proportionality constant. Estimates of the value

of Re⋆ in the case of a smooth solid plate vary significantly in the

literature, ranging from Re⋆ ≈ 20 (Dobrovolskis, Dacles-Mariani &

Cuzzi 1999) to Re⋆ ≈ 500 (Goldreich & Ward 1973). Even given this

uncertainty, the smooth plate model probably underestimates the

true drag, since the surface of a particulate disc is not continuous. As

we describe below, in some cases the gas–solid interaction may be

better described as that due to a combination of individual particles,

in which case the effective value of Re⋆ may be much smaller.

2.1.2 Optically thin discs (τ d � 1)

In the opposite limit of an extremely optically thin disc (τd ≪ 1),

debris particles interact with the gas individually. The speed of

2 A similar conclusion does not apply under terrestrial conditions because

RiE ∝ g2
z and the gravitational acceleration on Earth is �104 times higher

than gz in WD debris discs.
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510 B. D. Metzger, R. R. Rafikov and K. V. Bochkarev

gas relative to solids in this case is just vϕ,rel (equation 4),

since the particles do not disturb the mean gas flow appreciably.

The drag force per unit surface area for optically thin discs is

then

fa(τd ≪ 1) =
�d

(4π/3)ρda3
FD = τd

FD

πa2
, (11)

where FD is the drag force on an individual particle of size a.

The magnitude of FD depends on two key parameters (Whipple

1972; Weidenschilling 1977): (1) the ratio of particle size a to the

molecular mean-free path λ,

a

λ
=

�g�a

2μcs

∼ 5

(

ṀZ

108 g s−1

)

( α

10−3

)−1 ( a

cm

)

, (12)

and (2) the particle Reynolds number

Rep =
2avϕ,rel

νm

∼
cs

�r

a

λ
∼ 10−2

(

ṀZ

108 g s−1

)

( α

10−3

)−1 ( a

cm

)

,

(13)

where in equation (12) we have substituted equation (7) for �g, and

in our numerical estimates we again adopt characteristic values for

the relevant parameters at r ∼ Rs.

Equation (13) shows that Rep � 1 is satisfied for α = 10−3 and

the range of accretion rates ṀZ ∼ 108–1010 g cm−3 provided that

the typical particle size obeys a � 1–100 cm. Assuming that this

condition is indeed satisfied (consistent with observations; Graham

et al. 1990; see also Section 6), then the interaction of gas with

individual particles is in the laminar regime. The drag force in this

case, in the Stokes (a � λ) and Epstein (a � λ) regimes, respectively,

is given by the expression

FD =

⎧

⎨

⎩

6πaρgνmvϕ,rel, a � λ (Stokes),

(4π/3)ρga
2csvϕ,rel, a � λ (Epstein).

(14)

These two limits are readily combined into a single formula

FD = −
12πa2

Rep

ρgvϕ,rel|vϕ,rel| × min

(

1,
2

3

a

λ

)

, (15)

which substituted into equation (11) gives the force per area

fa(τd ≪ 1) = −
12

Rep

τdρgvϕ,rel|vϕ,rel| × min

(

1,
2

3

a

λ

)

. (16)

2.1.3 Connecting the optically thin and optically thick regimes

A comparison of our expressions for the drag force in the optically

thick (equation 10) and optically thin (equation 16) regimes shows

that they do not match smoothly at τd ∼ 1, since in general one

expects Re−1
⋆ ≪ 1 ≪ 12/Rep, while Rep ∝ a/λ varies indepen-

dently. This mismatch is not unexpected, since the transition regime

τd ∼ 1 is precisely where the smooth-plate approximation breaks

down. In reality, there is an intermediate range of optical depths,

between τ d ∼ 1 and some lower value τ d ≡ τ d,ind ≪ 1, between

which the solid–gas coupling is not well described as either drag

on a continuous entity, nor as the sum of incoherent forces on indi-

vidual particles. The relative velocity between the gas and particle

disc in this regime also lies somewhere between zero (the no-slip

boundary condition realized in the case of a smooth plate) and vϕ,rel

(equation 4).

Figure 3. Different regimes of aerodynamic drag between the gaseous and

particulate discs as a function of the optical depth of solids τd. The drag law

used in this work (solid line; equation 16) underestimates the drag force f a

in the optically thin limit τd � 1 as compared to the realistic drag law shown

by the dashed line, although its qualitative behaviour is captured. The true

coupling between gas and solids is poorly understood at intermediate values

of the optical depth τd,ind � τd � 1, at which collective effects influence

aerodynamic drag. See text for details.

In this work we do not model this poorly understood inter-

mediate regime of gas–particle interaction in detail. Instead we

adopt the following simple formula for the drag force, which

interpolates smoothly between optically thick and optically thin

limits:

fa = −
1 − e−τd

Re⋆

ρgvϕ,rel|vϕ,rel| (17)

= η|η|Aa�g

(

1 − e−τd
)

, (18)

where

Aa = Re−1
⋆

c3
s

�r2
. (19)

Although equation (17) reduces to equation (10) when τd � 1, it

considerably underestimates the drag force for τd ≪ 1 as compared

to equation (16). This point is illustrated in Fig. 3, in which we

compare our approximation of the drag force in equation (17) to a

schematic representation of the more realistic drag behaviour, which

properly reduces to equations (10) and (16) in the optically thick

(τd � 1) and thin (τd � τd,ind) limits, respectively. Although there

are modest differences between these expressions at small values of

τd, equation (17) nevertheless does reproduce the qualitative scaling

fa ∝ τd in the optically thin regime, which is the most important

property for the purposes of our current work. As we describe in

Section 4, this distinction between ‘weak’ (τ d � 1) and ‘strong’

(τ d � 1) coupling has an important role in the build-up to runaway

in the accretion disc evolution.

Although our numerical calculations focus on aerodynamic cou-

pling of the above form, in principle other forms of drag may be

present, such as enhanced drag due to an eccentric gas disc (Sec-

tion 6.1). To the extent that the drag force remains proportional to

the local gas mass, an expression of the form in equation (18) may

be applicable to these cases as well, provided that an appropriate

alternative expression is substituted for equation (19).
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Runaway accretion in white dwarf debris discs 511

3 C O U P L E D E VO L U T I O N O F T H E

PA RT I C U L AT E A N D G A S E O U S D I S C S

In this section we present the equations governing the solid and

gaseous discs, including their angular momentum exchange due to

aerodynamic drag and mass exchange due to sublimation.

3.1 Solid disc

The evolution of the solid disc obeys the continuity equation

∂�d

∂t
−

1

2πr

∂Ṁ

∂r
= Sd, (20)

where Ṁ is the mass flux through the solid disc and the function Sd

accounts for sources or sinks of solid mass, such as dust sublimation

or gas condensation.

The mass flux consists of several components

Ṁ = ṀPR + Ṁa + Ṁd, (21)

which include the mass flux due to PR drag (R11a)

ṀPR = ζ
L⋆

c2

(

1 − e−τd/ζ
)

, (22)

where (Friedjung 1985)

ζ (r) =
4

3π

R⋆

r
(23)

is the incidence angle of the stellar radiation with respect to the flat

disc midplane. Note that ṀPR depends on the optical depth τd/ζ to

stellar light arriving at grazing incidence angle ζ ≪ 1.

A second contribution to the mass flux results from aerodynamic

drag by the gas disc (R11b):

Ṁa =
4πrfa

�
=

4πη|η|rAa�g

�

(

1 − e−τd
)

, (24)

where we have substituted equation (17) for f a from Section 2.1.

The factor Aa in equation (24) depends on the specific form of

aerodynamic drag. In general, we assume that this function scales

as a power law with radius

Aa = Ain

(

r

Rin

)κ

, (25)

where κ is a constant that depends on the drag law. If cs is constant

with radius, our fiducial drag law given in equation (17) implies

κ = −1/2, a value we therefore adopt throughout the remainder of

this paper.

From equation (24) one can define the sublimation time ts as

the time-scale on which the characteristic gaseous mass near the

sublimation radius πR2
in�g is replenished by accretion due to aero-

dynamic drag (in the optically thick regime τ d ≫ 1) alone:

ts ≡
πR2

in�g

Ṁa(r = Rin, τd ≫ 1)
=

�inRin

4Ain

, (26)

where �in ≡ �(Rin) and in evaluating Ṁa (equation 24) we have

set η = 1. Note that this time-scale is independent of �g.

The final contribution to the mass flux Ṁd in equation (21) ac-

counts for the possible condensation of gas. This process necessarily

exchanges angular momentum between the gas and solid discs, thus

driving additional solid accretion. In this paper we neglect conden-

sation by setting Sd = Ṁd = 0 (see Section 6.3). However, once an

expression for Sd is given, the resulting expression for Ṁd is easily

calculable.

3.2 Gaseous disc

The gaseous disc also evolves according to the continuity equation

(Lin & Papaloizou 1996)

∂�g

∂t
−

1

r

∂

∂r

[

3r1/2 ∂

∂r

(

�gνr1/2
)

−
2�g�

�

]

= Sg, (27)

where ν is again the turbulent viscosity and

�g� = η|η|Aa�gr
(

1 − e−τd
)

(28)

is the torque per unit area on the gaseous disc due to the back-

reaction from the aerodynamic drag force f a (equation 17) acting

on the solid disc. In Appendix C, we explore a global model with

back-reaction neglected (� = 0) and demonstrate that the main

evolutionary features are still preserved even in this simplified set-

up.

The function Sg represents sources and sinks of gaseous mass.

The most important source of gas is that due to sublimation, which

we assume is sharply localized at r = Rin and is proportional to the

rate of solid accretion Ṁ:

Sg =
Ṁ(r = Rin)

2πRin

δ(r − Rin), (29)

where δ(z) is the Dirac delta function.

We assume that the gas temperature and sound speed are indepen-

dent of radius, in which case the turbulent viscosity may be written

as

ν(r) = αcshg = α(r)
c2

s

�in

(

r

Rin

)3/2

, (30)

where in general we allow the dimensionless α-parameter to vary

with radius, denoting αin ≡ α(r = Rin).

3.3 Dimensionless equations

We now bring the equations from the previous two sections into

dimensionless form. We first introduce several new definitions:

t̃ ≡
t

tν
, x ≡

r

Rin

, τg ≡
�g

�0

, ζin ≡
4

3π

R⋆

Rin

, (31)

sg ≡
Sgtν

�0

, ṀPR,in ≡
L⋆

c2
ζin, α̃(x) ≡

α(x)

αin

, (32)

ṁ ≡
Ṁts

πR2
in�0

, ṁd ≡
Ṁdts

πR2
in�0

, (33)

noting in particular that we express time in units of the viscous time

tν at Rin (equation 2) and radius in units of the location of the inner

edge of the solid disc Rin ≃ Rs (equation 1).

We also introduce two key parameters: the feedback parameter

F ≡
tν

ts
=

4AinRin

αinc2
s

, (34)

and the PR parameter

bPR ≡
ṀPR,ints

πR2
in�0

. (35)

As we will show in Section 4, the feedback parameter has an im-

portant qualitative effect on the evolution of WD debris discs, in

particular by controlling whether and when runaway accretion oc-

curs. The physical interpretation of the PR parameter is less clear,

but roughly speaking it represents the ratio of the time-scale for

disc replenishment due to the gas drag-assisted accretion of solids

C© 2012 The Authors, MNRAS 423, 505–528
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512 B. D. Metzger, R. R. Rafikov and K. V. Bochkarev

ts (equation 26) to the time-scale on which the gas disc can be re-

plenished by PR drag alone, given a marginally optically thick disc

(mass ≈ πR2
in�0) concentrated near the sublimation radius. Note

that (1) bPR depends on �0 (equation 3) and is thus sensitive to the

particle size a, and (2) from equations (33) and (35) it follows that

Ṁ = ṀPR,inṁ/bPR.

Given these definitions, we now recast the evolutionary equations

from Sections 3.1 and 3.2 in dimensionless form. First, the evolution

of the solid disc (equation 20) can be written as

∂τd

∂t̃
−
F

2

1

x

∂ṁd

∂x
= 0, (36)

where the various contributions to the mass flux of solids are now

ṁd = ṁa + ṁPR, (37)

ṁa = η|η|τgx
(5/2)+κ

(

1 − e−τd
)

, (38)

ṁPR = bPRx−1
(

1 − e−τdx/ζin
)

, (39)

with

η =
1

2

(

3

2
−

∂ ln τg

∂ ln x

)

. (40)

The evolution of the gaseous disc (equation 27) can now be

written as

∂τg

∂t̃
−

1

x

∂

∂x

[

3x1/2 ∂

∂x

(

τgα̃x2
)

−
F

2
ṁa

]

= sg, (41)

with the sublimation source term (equation 29)

sg =
F

2
ṁd(x = 1)δ(x − 1). (42)

The above expressions represent a system of two equations (36)

and (41) for two unknown functions τd and τg and x and t̃ , with

three independent parameters – F , bPR and ζ in – and two functions

of x that must be independently supplied – α̃(x) and A(x) (or κ).

3.4 Characteristic values of key parameters

We now estimate characteristic values of the key parameters in our

model, which are useful for scaling our solutions in Section 4 to

arbitrary physical situations.

First, we estimate the characteristic accretion rate set by PR drag

under optically thick conditions (equation 32)

ṀPR,in =
L⋆

c2
ζin ≈ 7 × 107 g s−1

(

R⋆

0.01 R⊙
T⋆

104 K

Ts

1500 K

)2

,

(43)

where ζin = 4R⋆/3πRin (equation 31), L⋆ = 4πR2
⋆σsbT

4
⋆ and we

have again assumed Rin = Rs.

Using our fiducial model for aerodynamic drag given in equa-

tion (19), the feedback parameter (equation 34) can be written as

F =
4

Re⋆αin

cs

�inRin

≈ 7Re−1
⋆

( αin

10−3

)−1
(

Tg

5000 K

)1/2 (

M⋆

0.6 M⊙

)−1/2

×
(

R⋆

0.2 R⊙

)1/2

. (44)

Depending on the uncertain value of Re⋆ ∼ 1−100 (see discussion

in Section 2.1.1), equation (44) shows that strong feedback F � 1

requires a rather low value of the viscosity αin � 10−2–10−4 at the

sublimation radius. We will discuss the value of F in actual debris

disc systems further in Section 6.

Finally, we estimate characteristic values of the PR parameter

bPR (equation 35):

bPR =
4

π
F

−1 σsb(GM⋆)1/2

c2ρd

R3
⋆

R
5/2
in

T 4
⋆

αc2
s a

≈ 3 × 10−3
F

−1
( αin

10−3

)−1 ( a

cm

)−1
(

Rin

0.2 R⊙

)−5/2

×
(

T⋆

104 K

)4 (

R⋆

0.01 R⊙

)3 (

M⋆

0.6 M⊙

)1/2

×
(

μ

28mp

) (

ρd

2.5 g cm−3

)−1

, (45)

where we have used the definitions for ṀPR,in (equation 32), �0

(equation 3), F (equation 34) and Rs (equation 1). Note that the

above estimate is independent of the specific model for aerody-

namic drag, except implicitly through the value of F . Although

bPR ∝ R3
inT

4
⋆ appears to depend sensitively on the WD effective

temperature and the inner radius of the solid disc, if the latter co-

incides with the sublimation radius Rin ≈ Rs ∝ R⋆T
2
⋆ (equation 1)

then the dependence becomes less sensitive, bPR ∝ R1/2
⋆ T −1

⋆ .

Equation (45) shows that for typical ranges in the values of the

most uncertain parameters a ∼ 0.1−10 cm and αin ∼ 10−4−10−3

under conditions of positive feedback F > 1, one finds rela-

tively small characteristic values bPR ∼ 10−4−1. Note that a low

value of bPR increases Ṁ/ṀPR,in for a given ṁ (see the text after

equation 35).

4 N U M E R I C A L C A L C U L AT I O N S

In this section we present our numerical calculations of WD debris

disc evolution.

4.1 Technical preliminaries

We evolve the gas surface density τ g (equation 41) using the 2N-

RK3 scheme described in Brandenburg (2003). The solid surface

density τ d (equation 36) is evolved as described in BR11. The gas

and solid evolution are coupled at each timestep by the aerody-

namic torque ∝ṁa (equation 38) and the point source of gas due to

sublimation ∝ sg (equation 42). We adopt a logarithmic radial grid

that extends from a location near the WD surface (x = 0.2) out to

a radius that at all times safely exceeds the outer edge of the solid

distribution (x = 20). In most cases the number of radial grid cells

is taken to be 100; we have verified that our results are independent

of resolution by repeating select additional calculations with higher

resolution.

The initial gas density is set equal to zero at all radii, τ g(x, t = 0) =
0, while different initial distributions (e.g. ‘Gaussian ring’ and ‘top-

hat’) are adopted for the dust surface density, as described below.

The inner boundary condition on τ g is set to enforce a constant mass

accretion rate ∝�gν across the ghost zones using the value in the

first active zone, while τ g is interpolated across the outer boundary.

We confirm that our results are insensitive to the precise boundary

conditions adopted. We have also verified that the code conserves

total mass and angular momentum by checking that any decreases

in their values with time are compensated by their fluxes across the

inner grid cell (see Metzger, Piro & Quataert 2009).
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Runaway accretion in white dwarf debris discs 513

4.2 Fiducial dimensional model

In what follows, we present our results both in dimensionless form

and, for purposes of clarity, in dimensional units assuming fiducial

parameters for the properties of the WD and debris disc. In our

fiducial model we assume a WD with mass M⋆ = 0.6 M⊙, radius

R⋆ = 0.01 R⊙ and surface temperature T⋆ = 104 K, such that the

sublimation radius is Rs ≃ 0.2 R⊙ and the maximum accretion rate

due to PR drag is ṀPR,in ≃ 108 g s−1 (equation 43). For purposes

of calculating the disc surface density (equation 3) we assume a

typical particle density ρd = 2.5 g cm−3 and size a = 1 cm. Finally,

in calculating the viscous time-scale (equation 2) we assume the

dimensionless viscosity to be αin = 10−3.

4.3 Optically thin ring

We begin by considering the evolution of a thin ring of solid debris

with an initial radial profile of the form

τd(x, t = 0) = τd,0 exp

[

−
(x − x0)2

(�x)2

]

, (46)

where x0 > 1 and �x specify the ring centre and its radial thickness,

respectively. Although the distribution of solid debris following

the tidal disruption of an asteroid may not be well described by a

Gaussian ring, we focus initially on this simple distribution because

it allows us to explore the dependence of the disc evolution on the

characteristic optical depth and location of the solid material. In

physical units, the total mass in the initial disc is given by

Mtot =
∫ ∞

Rin

2πr�ddr ≈ π(x0Rin)2(�x/x0)�0τd,0

≈ 1021 g τd,0

(

�x

x0

)

( a

cm

) ( x0

5

)2

, (47)

where we have used the definition �0 = (4/3)ρda (equation 3)

and have assumed characteristic values for Rs = 0.2 R⊙ and

ρd = 2.5 g cm−3.

Fig. 4 shows our calculation of the evolution of an optically thin

ring with τ d,0 = 10−3, x0 = 5 and �x = 0.5, corresponding to

Mtot = 1017 g for a = 1 cm. Note that in this example the solid

disc is optically thin both in the vertical direction (τ d ≪ 1) and

horizontally to the incident stellar radiation, for which the condition

τ ‖ ≡ τ d/ζ ≪ 1 is instead relevant (see equation 22 and surrounding

discussion). We adopt typical values for the parameters bPR = 10−2

(equation 45), ζ in = 0.04 (equation 23) and F = 10 (equation 44),

the last allowing for the possibility of strong gas–solid feedback.

Solid and dashed lines show the radial distribution of τ d and τ g,

respectively, at several times t = 0, 3, 10, and 30 (in units of the

viscous time tν at x = 1) with different colours. Fig. 5 shows the

gas accretion rate at the inner boundary ṀZ ≡ Ṁ(x = 0) in units

of the optically thick PR rate ṀPR,in (equation 32).

Figs 4 and 5 illustrate that the evolution of τ d is very similar to

the case without gas drag, as explored previously by BR11. BR11

show that when the disc is optically thin with τ d/ζ < 1 at all radii (as

satisfied in this case), the dust at radius x accretes on a characteristic

time-scale set by PR drag

tacc,thin ≈
πr2�d

ṀPR(τd/ζ ≪ 1)
=

πr2�0

ṀPR,inζ−1
in

=
ζinx

2

bPRF
tν, (48)

where ṀPR(τd/ζ ≪ 1) ≃ L⋆τd/c
2 = ṀPR,inτdζ

−1
in is the accretion

rate due to PR drag in the optically thin limit (equation 22) and

we have used the definitions in equations (23), (34) and (35) for

the dimensionless parameters ζ in,F and bPR respectively. Note that

Figure 4. Evolution of the surface density profiles of solids (τ d; solid lines)

and gas (τ g; dotted lines), assuming an initially optically thin ring of solids

(τ d,0 = 10−3) concentrated at x0 = 5 (equation 46). Snapshots are shown at

several times t = 0 (blue), t = 3 (red), t = 10 (green) and t = 30 (purple)

in units of the viscous time tν at the sublimation radius x = 1 (vertical

dashed line). The calculation assumes typical values for the parameters

bPR = 10−2, ζ in = 0.04 and F = 10. Note that the evolution of τ d is

very similar to the case without gas drag studied by BR11, even though

the level of feedback is high (F ≫ 1). At times when the sublimation rate

evolves slowly, the evolution of τ g is well described by the broken power

law, as predicted by the analytic steady-state solution to the viscous diffusion

equation in the presence of a point source of gas at x = 1 (see Appendix

B). In plotting dimensional units we have adopted a fiducial WD debris disc

model (Section 4.2).

Figure 5. Gas accretion rate on to the WD surface ṀZ ≡ Ṁ(x = 0)

in units of ṀPR,in (equation 32) as a function of time for the calculation

shown in Fig. 4. The accretion rate peaks on a time-scale of tpeak ≈ 10 tν
that is well approximated by the analytic estimate in equation (48). In

plotting dimensional units we have adopted a fiducial WD debris disc model

(Section 4.2).

although we scale tacc,thin to the viscous time in equation (48) to

compare most easily with our numerical results, we emphasize that

the accretion time in the optically thin case depends solely on the

rate of PR drag when tacc,thin � tν .

As time advances, the solid ring thus drifts inwards and broadens,

the latter simply because the accretion time-scale tacc,thin decreases

∝ x2, consistent with the evolution of τ d in Fig. 4. Substituting the

relevant parameters, equation (48) predicts that most of the solids

reach x = 1 on a time-scale of tacc,thin(x = x0) ≈ 10 tν which is set

by the initial peak of the dust distribution x ≈ x0 = 5. This estimate

agrees well with the time-scale that the gas accretion peaks in our
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514 B. D. Metzger, R. R. Rafikov and K. V. Bochkarev

solution (Fig. 5), as is expected because the gas accretion rate at the

origin faithfully tracks the rate of solid sublimation when the latter

varies on time-scales greater than the viscous time tν .

We conclude that gas coupling does not significantly affect the

evolution of optically thin debris discs. We have confirmed this by

running an otherwise identical calculation with the gas coupling

turned off, i.e. artificially setting the term Ṁa = 0. We find a

negligible difference between the solutions with and without gas

drag, even though ‘feedback’ is nominally strong (F ≫ 1).

Fig. 4 also shows the evolution of the gas surface density τ g.

At times when the rates of gas sublimation and accretion evolve

relatively slowly, the density profile is well described by a broken

power-law distribution τ g ∝ x−n (for x < 1) and τ g ∝ x−(n +1/2) (x >

1) for n = 3/2. As shown in Appendix B, this profile is consistent

with steady-state analytic solutions of the diffusion equation (equa-

tion 27 with � = 0) given a viscosity of the form ν ∝ rn (n = 3/2 for

an isothermal α-disc model assumed here) and a constant source of

mass at x = 1 (see equation B17). Solid–gas coupling thus also has

little impact on the gas distribution in optically thin debris discs.

4.4 Optically thick ring

Although gas drag has no significant effect on the evolution of opti-

cally thin discs, it can be substantially more important for optically

thick discs. Fig. 6 shows our calculation of the disc evolution in the

case of an initially optically thick ring of dust (τ d,0 = 10), again

calculated for characteristic parameters bPR = 10−2, ζ in = 0.04,

x0 = 5 and �x = 0.5, but now for only marginally strong feed-

back F = 2. The top panel shows the full calculation including gas

drag in the same format as Fig. 4, while for comparison the bot-

tom panel shows for the same calculation with the drag artificially

turned off. Fig. 7 shows the gas accretion rate on to the WD surface

ṀZ ≡ Ṁg(x = 0) as a function of time for both cases.

First note from Fig. 6 that, in cases both with and without gas

drag, the disc develops an extremely sharp profile near its outer

edge. This sharp cut-off results from the exponential saturation of

the accretion rates both due to PR drag ṀPR ∝ 1 − exp[−τd/ζ ]

(equation 22) and due to aerodynamic drag Ṁa ∝ 1 − exp[−τd]

(equation 24), which are significantly more effective per unit mass

in optically thin regions of the disc. Since the outer edge of the

initial solid distribution is necessarily optically thin, this results in

a pile-up of material at the location where the outer edge becomes

moderately optically thick (BR11).

Figs 6 and 7 also illustrate the dramatic effect that gas drag has

on the disc evolution. Again, in the cases both with and without

drag, the distribution of solids initially develops an optically thin

‘tail’ (τ d ≪ 1) at radii between the sublimation point x = 1 and

the innermost location where the disc first becomes optically thick

x = xthick � x0.

Without gas drag (Fig. 6b) the tail supplies an accretion rate

from the optically thick disc to the sublimation radius which is

approximately constant in time and radius. As shown in BR11, its

value ṀPR(x ≈ xthick; τd � 1) ≈ ṀPR,in/x0 is set by the rate due to

PR drag from the inner edge of the optically thick ring. The time-

scale for the entire ring of dust to accrete through the tail is thus

given by

tacc,thick ≃
Mtot

ṀPR,in/x0

≈
x3

0τd,0(�x/x0)

bPRF
tν (no gas drag), (49)

where Mtot is the total disc mass from equation (47) and we have

used the definition of bPR from equation (35). Substituting the rel-

evant parameters for the above calculation (x0 = 5, bPR = 10−2,

Figure 6. Similar to Fig. 4, but now calculated for an optically thick ring of

dust with τ d,0 = 10, x0 = 5 and �x = 0.5. Snapshots are shown at several

times with different colours, in units of the viscous time at x = 1. The

calculation is performed for parameters bPR = 10−2, ζ in = 0.04 and F = 2.

Panel (a) shows the calculation including aerodynamic drag between the gas

and solids Ṁa , while panel (b) shows the same calculation but with the drag

artificially turned off.

τ d,0 = 10 and �x = 0.5) one finds a long accretion time-scale of

tthick ≈ 104 tν and a relatively low accretion rate of ṀZ ≈ 0.2ṀPR,in,

both consistent with the results of the ‘without gas drag’ case shown

in the top panel of Fig. 7.

With gas drag, however, the evolution of ṀZ is dramatically

altered (top panel). Instead of the accretion rate remaining approx-

imately constant in time, Fig. 7 shows that ṀZ initially increases

exponentially on a time-scale of t ≈ 103tν (a ‘build-up’ stage), be-

fore ‘running away’ at a super-exponential rate. During this process,

the entire solid disc is consumed on a time-scale which is a factor

of ∼10 times shorter than in the case without gas drag, with the

accretion rate during the final runaway reaching a peak value of

∼103 times higher than the PR rate. As discussed in Section 1.1,

such a runaway process was predicted by R11b, who showed that

if feedback is strong (F � 1; tν � ts) then the surface density of

gas builds up near the sublimation radius x � 1 due to drag-induced

accretion faster than it can be reduced by viscous diffusion. Because

the drag-induced accretion rate Ṁa is itself proportional to the gas

surface density (equation 24), the build-up of mass at radii x � 1

results in a runaway.
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Runaway accretion in white dwarf debris discs 515

Figure 7. Top panel: gas accretion rate on to the WD surface ṀZ in units

of ṀPR,in as a function of time for the calculation shown in Fig. 6. Note

that aerodynamic drag, starting at the inner edge of the optically thick part

of the disc and moving inwards with time, causes an exponential ‘build-up’

and eventual ‘runaway’ in the accretion rate on a time-scale of t ≈ 103tν .

Bottom panel: fraction of the accreted mass for the calculation shown in

the top panel. Note that most of the total mass is accreted during the final

runaway phase. In plotting dimensional units we have adopted a fiducial

WD debris disc model (Section 4.2).

Our results confirm that a runaway occurs, but the details of

the process differ somewhat from those predicted by R11b. The

simplified ‘one-zone’ model of R11b assumed that the solid disc at

radii x � 1 is at all times optically thick. When τ d ≫ 1, the rate of

gas drag accretion Ṁa ∝ 1−exp(−τd) (equation 24) saturates at the

maximum value, such that runaway grows on the sublimation time-

scale of ≈ts = tν/F (equation 26). In our calculation, however,

Fig. 7 shows that the runaway is delayed until a time-scale of t ≡
trun ∼ 103tν which is much longer than ts. As we now discuss, this

delay occurs because the solids at radii x � 1 are initially part of

the optically thin tail created by PR drag, which couples relatively

weakly to the gas.

Although gas drag is weak just outside the sublimation radius

where τ d ≪ 1, the gas distribution extends to radii x ≫ 1 due

to viscous spreading (see equation 51), where it overlaps with the

optically thick solid disc. Fig. 6 shows that the drag force between

this gas tail and solids at the inner edge of the optically thick disc

x ≈ xthick creates an ‘enhancement’ in the solid profile with τ d ∼ 1.

The ‘build-up’ stage occurs as this enhancement moves inwards

with time. Finally, once the enhancement reaches the sublimation

radius, the condition τ d(r ∼ Rs) ≈ 1 is satisfied and the full runaway

occurs in much the same way as predicted by R11b, albeit after a

much longer delay time trun ≫ ts.

The delay until runaway trun can be estimated as the time required

for the mass associated with τ d ≈ 1 to propagate from x ≈ xthick �

x0 to x = 1 at the rate set by gas drag accretion Ṁa :

trun ≃
πx2

thick�0

Ṁa(x ≈ xthick; τd ≈ 1)
≈

x3
thick

bPRF
2
tν, (50)

where we have used the definitions of Ain, F and bPR from equa-

tions (25), (34) and (35), respectively. We calculate Ṁa(x ≈ xthick)

(equation 24) using the analytic expression for the gas surface den-

sity

�g(r) =
Ṁd(x = 1)tν

3πr2
(51)

derived in Appendix B (equation B17) assuming ν ∝ rn for n = 1

(equation 30) and approximating the sublimation rate by its initial

PR-driven value Ṁd(x = 1) ≃ ṀPR,in/x0. We also adopt η = 7/4

appropriate for τ g ∝ r−2 (equation 5).

In order to verify that the above explanation is self-consistent,

one must check that the accretion rate due to aerodynamic drag

indeed exceeds that due to PR drag at the inner edge of the optically

thick disc. Their ratio is given by

Ṁa

ṀPR

∣

∣

∣

∣

x≈xthick ;τd≈1

≈
49

48
F , (52)

where we have again assumed η = 7/4 and made use of equations

(24), (25) and (34) for Ṁa , Ain and F , respectively. Equation (52)

confirms that aerodynamic drag is at least comparable to PR drag for

F > 1, thus demonstrating that the conditions necessary to ‘trigger’

a runaway are satisfied rather generically (see also Appendix C).

Also note that the fact that trun rapidly increases with xthick confirms

our implicit assumption that the runaway time-scale is dominated

by the earliest times when xthick is largest.

For parameters relevant to the above calculation (bPR = 10−2,

F = 2 and x0 = 5), equation (50) predicts a runaway time-scale of

trun ∼ 103tν , consistent with the results shown in Fig. 6 to within a

factor of ≈2.

The bottom panel of Fig. 7 shows the fraction of accreted mass as

a function of time for the same calculation. Note that only ∼10 per

cent of the total disc mass is accreted during the build-up stage,

with the majority instead consumed during the final runaway. The

maximum accretion rate achieved during runaway can be estimated

by assuming that the entire solid disc mass Mtot (equation 47) is

consumed on the viscous time tν (equation 2):

Ṁmax ≈
Mtot

tvisc

≈
τd,0x

2
0 (�x/x0)

bPRF
ṀPR,in. (53)

Unlike in cases without gas feedback, for which the accretion rate is

limited to the maximum rate set by PR drag ṀPR,in, note that Ṁmax

is proportional to the total disc mass Mtot ∝ τ d,0 and hence can

substantially exceed ṀPR,in. Also note, however, that equation (53)

applies only to systems well above the runaway threshold (F ≫ 1;

see below), for which trun ≪ tacc,thick (without gas coupling; equa-

tion 49), such that most of the total mass is indeed accreted during

the final runaway.

Fig. 8 shows ṀZ(t), calculated for several models using the

same parameters as in Figs 6 and 7 (x0 = 5, bPR = 0.01 and τ d,0 =
10) but for different values of the feedback parameter F . Note

that runaway occurs only for F � 1, remarkably similar to the

threshold predicted by R11b. Also note that the delay time-scale to

runaway scales trun ∝ F
−2, consistent with the analytic prediction

in equation (50). The rise time of the accretion rate from zero to

the PR value during the initial build-up phase also varies with the

parameters bPR and F , as determined instead in this case by the

optically thin accretion time tacc,thin ∝ F
−1b−1

PR (equation 48).
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516 B. D. Metzger, R. R. Rafikov and K. V. Bochkarev

Figure 8. Gas accretion rate on to the WD surface ṀZ ≡ Ṁ(x = 0) (in

units of ṀPR,in) as a function of time, calculated for several solutions with

the same parameters as in Figs 6 and 7 (x0 = 5, bPR = 0.01 and τ d,0 = 10)

but for different values of the feedback parameter F = 0.5 (blue), 1 (red),

1.5 (green) and 2 (orange). Note that the condition F � 1 describes well

the threshold for a runaway, while the delay time until runaway scales as

trun ∝ F−2 (equation 50). In plotting dimensional units, we have adopted a

fiducial WD debris disc model (Section 4.2).

Figure 9. Same as Fig. 8, but calculated for bPR = 10−3. Note that again

the threshold condition for runaway is well described as F � 1, but that

the delay time until runaway trun ∝ b−1
PR occurs later (at fixed F ) due to the

lower value of bPR (equation 50).

Figs 9 and 10 show similar results, but now calculated assuming

lower values for the PR parameter bPR = 10−3 and 10−4, respec-

tively. In both cases, we again find that F � 1 is a good estimate of

the threshold for runaway, and we confirm that trun ∝ b−1
PRF

−2, as

predicted by equation (50).

A final important feature of our results is the sensitive dependence

of the runaway time-scale on the innermost radius where the disc

becomes optically thick trun ∝ x3
thick (equation 50). Fig. 11 shows

our results for ṀZ(t) from a series of calculations identical to

those shown in Fig. 8, except calculated for an initial Gaussian ring

centred at a smaller radius x0 = 2 ≈ xthick. The evolution of ṀZ

is qualitatively similar to that shown in Fig. 8 for a ring centred at

x0 = 5, except that the runaway time occurs an order of magnitude

sooner, consistent with the ratio ≈(2/5)3 predicted by equation (50).

Fig. 6(a) also shows that when gas drag is important, the radial

profile of �g does not follow a single power law for r > Rin, as

it does without gas drag, see Figs 4 and 6(b). Instead, �g decays

slower with r at distances where there is an overlap between gas and

the optically thick segment of the disc of solids. This is understood

Figure 10. Same as Figs 8 and 9, but calculated for bPR = 10−4.

Figure 11. Same as Fig. 8 but calculated for an initial Gaussian ring with a

smaller central radius x0 = 2. Note that again the runaway threshold occurs

at F ≈ 1, but that the delay time until runaway trun ∝ x3
0 at fixed F occurs

much earlier (equation 50).

to be a direct consequence of the back-reaction of the aerodynamic

drag on the gaseous disc, i.e. the non-trivial � in equation (27).

4.5 Optically thick top-hat

Our calculations have thus far focused on the idealized case of a

Gaussian ring for the initial dust radial profile (equation 46). How-

ever, the same qualitative results, including the runaway process,

are of general applicability. To illustrate this point, in Figs 12 and

13 we show the gas/dust evolution and gas accretion rate for a cal-

culation which assumes that the initial distribution of solids instead

has a ‘top-hat’ profile, characterized by a constant value of τ d =
1 from x = 2 to 6. We again assume characteristic values for the

parameters F = 2, bPR = 10−2 and ζ in = 0.04. Though still highly

idealized, a top-hat distribution of solids spread over a factor of a

few in radii is probably a more accurate description of the initial

distribution of solids following the tidal disruption of a minor body.

Fig. 12 shows that the disc evolves in a qualitatively similar

fashion to the Gaussian ring shown in Figs 6 and 7. In particular, an

optically thin tail develops initially, which later increases due to gas

drag, before a runaway occurs at t = trun ≈ 200 tν once solids with

τ d ≈ 1 reach the sublimation radius. The time-scale until runaway

can again be reasonably well estimated using the analytic estimate

in equation (50), provided that one replaces the inner radius of the

optically thick ring xthick with the inner radius x = 2 of the initial

optically thick top-hat distribution.
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Runaway accretion in white dwarf debris discs 517

Figure 12. Similar to Figs 6, but now calculated assuming a flat ‘top-hat’

profile between x = 2 and 6 for the initial distribution of optically thick dust.

The dust (solid lines) and gas (dotted lines) density profiles are shown at

several times t = 0 (blue), t = 3 (red), t = 10 (green), t = 100 (purple) and

t = 230 (orange), in units of the viscous time at x = 1. The calculation is

performed for parameters bPR = 10−2, ζ in = 0.04 and F = 2.

Figure 13. Gas accretion rate on to the WD surface ṀZ for the top-hat

calculation shown in Fig. 12. Note that the accretion evolution is similar to

the case of a Gaussian ring with a similar characteristic inner radius (see the

F = 2 case in Fig. 11).

We conclude that the runaway accretion of solids due to gas

drag is an inevitable fate for optically thick discs in the presence

of strong feedback F � 1. With everything else fixed, the time-

scale for runaway depends on the minimum radius of the optically

thick material xthick (equation 50), while the maximum accretion

rate depends on the mass of the solid disc (equation 53).

5 A P P L I C AT I O N S A N D O B S E RVAT I O NA L

TESTS

In this section we present applications of our calculations and ob-

servational implications of the runaway accretion model.

5.1 True versus ‘measured’ accretion rate

Because the time-scale required for heavy elements to diffuse below

the outer convective zone of the WD is much shorter than the WD

age, metals observed at the surface indicate recent pollution by an

external source, such as accretion from a gaseous disc. Under the

joint action of accretion and gravitational settling, the total mass of

metals in the convective zone MZi
with charge Zi evolves according

to (e.g. Koester & Wilken 2006)

dMZi

dt
= ṀZi

−
MZi

tset,i

, (54)

where ṀZi
= ṀZXZi

, XZi
is the mass fraction of metal Zi in the

accreting gas, and tset,i is the settling (or diffusion) time of element

Zi, which depends on the temperature and composition of the WD

(e.g. Paquette et al. 1986). A typical WD of mass MWD = 0.6 M⊙,

for instance, requires ∼2 × 108 yr and 6 × 108 yr to cool to a

temperature of T ≃ 1.5 × 104 K and T ≃ 1.0 × 104 K, respectively

(Bergeron, Saumon & Wesemael 1995). In a H-rich atmosphere

(DAZ WDs), over this time interval the settling times of most ob-

served elements increase from tset,i ∼ days to ∼103 years. For a

He-rich atmosphere (DBZ WD), in contrast, the convective zone is

much larger, resulting in a much longer settling time tset,i ≈ 105.5–

106 yr, which depends less sensitively on temperature (Paquette

et al. 1986).

Gas is fed from the sublimation radius to the WD surface on

the viscous time tν (equation 2). If tset,i ≪ tν , then the atmospheric

composition reaches a steady state dMZi
/dt = 0, in which the mass

in the convective zone is approximately given by MZi
≈ ṀZi

tset,i .

Since the surface composition MZi
is measured via spectral line

diagnostics and theoretical models of the total mass in the WD con-

vective zone, and tset,i is also calculable from the known properties

of the WD, then the total instantaneous gas accretion rate in this

limit is well estimated by the expression (e.g. Koester & Wilken

2006; Farihi et al. 2009)

ṀZ ≃
MZi

XZi
tset,i

≡ ṀZ,obs (tset,i ≪ tν). (55)

Equation (55) provides a reliable estimate of ṀZ in the case of hot

DAZ WDs (which easily satisfy tset,i ≪ tν), but it can be grossly

inaccurate in the opposite limit that tset,i � tν , as may apply to DBZ

or cool DAZ WDs.

Fig. 14 illustrates this point in the context of our models by

showing a comparison of the actual gas accretion rate ṀZ from

our fiducial solution from Fig. 6 to the ‘measured’ value ṀZ,obs

one obtains by naively applying equation (55), the latter shown for

different assumptions about the ratio tset,i/tν = 10, 102 and 103. We

Figure 14. Actual gas accretion rate ṀZ from our fiducial solution shown in

Figs 6(a) and 7 (solid line) compared to the ‘measured’ accretion rate Ṁobs,Z

calculated using the steady-state approximation (equation 55), shown for

different assumptions about the value of tdiff = 10 tν (blue dotted line),

102 tν (red dashed line) and 103tν (green dot–dashed line), where tν is the

accretion time-scale at the sublimation radius. See text for details.
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518 B. D. Metzger, R. R. Rafikov and K. V. Bochkarev

calculate MZ(t) by integrating equation (54) directly, assuming that

XZ,i = 1 and using ṀZ,i derived from our calculations shown in

Fig. 7.

In the case that tset,i � 10tν , Fig. 14 shows that ‘measured’ ac-

cretion rate ṀZ,obs indeed accurately reflects the true instantaneous

accretion rate. On the other hand, when tset,i ≫ 10tν , ṀZ and ṀZ,obs

may differ substantially. In particular, prior to the time when ṀZ

peaks, ṀZ,obs underestimates the true accretion rate by a factor of up

to ∼10. Since this epoch corresponds to when the solid disc is still

present, our results suggest that one should exercise caution when

interpreting the accretion rates in those systems with an observed

IR excess when tset,i ≫ tν . On the other hand, at times after ṀZ

peaks, ṀZ,obs instead overestimates the true accretion rate. This dis-

crepancy is one explanation for those systems shown in Fig. 1 with

high measured accretion rates ṀZ,obs, yet no IR excess indicating

the current presence of a solid disc.

One concrete application of the results in Fig. 14 is to cool DBZ

WDs with large tset,i, for which one predicts that ṀZ,obs underesti-

mates the true current accretion rate ṀZ for systems with detected

near-IR excesses (indicating a current solid disc), whereas ṀZ,obs

instead overestimates ṀZ in DBZ WD systems without solid discs.

Note also that since the ratio of the inferred accretion rates of dif-

ferent elements is subject to similar uncertainties, one should also

exercise caution when using similar methods to infer the precise

composition of the accreted bodies in systems for which tset,i �

tν (cf. Xu & Jura 2012). Previous works have attempted to gen-

eralize estimates of ṀZ to cases when tset,i > tν (or to constrain

the entire accretion history of the event), by adopting simplified

assumptions about the time evolution of the accretion rate (e.g. Jura

et al. 2009a), e.g. Ṁ ∝ exp[−t/tacc], where tacc is the accretion time-

scale. However, given the complicated accretion evolution in cases

when feedback is effective, we again urge caution when adopting

such simplified models.

We conclude with one final point regarding what inferences can

be drawn about the past accretion history of a WD using the cur-

rently ‘measured’ accretion rate ṀZi ,obs ≡ XZi
ṀZ,obs given by

equation (55). Equation (54) can be trivially integrated to give the

mass of metals with charge Zi in the WD atmosphere as a function

of time, provided that the evolution of the true accretion rate ṀZi
(t)

is known:

MZi
(t) =

∫ t

0

ṀZi
(t ′)e−(t−t ′)/tset,i dt ′, (56)

where we have assumed that MZi
= 0 at time t = 0. If we define

ṀZi ,max(< t) to be the maximum value reached by the true accretion

rate ṀZi
in the past, then one estimates that

MZi
(t) < ṀZi ,max(< t)

∫ t

0

e−(t−t ′)/tset,i dt ′

= ṀZi ,max(< t)tset,i

(

1 − e−t/tset,i
)

,
(57)

such that for any t one has

ṀZi ,obs(t) =
MZi

(t)

tset,i

< ṀZi ,max(< t). (58)

Thus, the currently ‘measured’ value of ṀZi ,obs always provides a

lower limit on the maximum ṀZi
achieved in the past. Conversely,

for any given ‘measured’ value of ṀZi ,obs, one can deduce that

during some epoch in the past the true mass accretion rate ṀZi
was

at least as high as ṀZi ,obs.

5.2 Accretion rate distribution

Given a complete model for the evolution of WD debris discs, one

can begin to address observational questions, such as the probabil-

ity of detecting a WD debris disc system when the accretion rate

has some particular value. Figs 15–17 show several such examples

of the normalized distribution dNy/d(log y) of observed accretion

rates y = ṀZ/ṀPR,in. Each distribution is created using a single

disc evolution calculation from Section 4, under the highly ideal-

ized assumptions that (1) all WD debris discs are identical to the

model from which each distribution was created and (2) the system

is equally likely to be detected at any moment during active gas

Figure 15. Probability distribution dNy/d(log y) for detecting a WD debris

disc when the accretion rate is y = ṀZ/ṀPR,in, calculated for two solutions

without runaway accretion. A blue line shows the distribution calculated for

the optically thin disc with τ d,0 = 10−3 from Figs 4 and 5. A black line

shows the distribution calculated for the optically thick disc (τ d,0 = 10) with

a feedback parameter F = 0.5 too low for runaway accretion. In both cases,

the accretion rate peaks below the characteristic value set by PR drag, which

is insufficient to explain the highest measured WD accretion rates shown in

Fig. 1. In plotting dimensional units, we have adopted a fiducial WD debris

disc model (Section 4.2).

Figure 16. Probability distribution dNy/d(log y) for detecting a WD debris

disc when the accretion rate is y = ṀZ/ṀPR,in, calculated for the evolution

of the optically thick Gaussian ring (τ d,0 = 10, x0 = 5 and �x = 0.5) with

runaway accretion (F = 2) shown in Figs 6 and 7. Note that the runaway

process results in a wider distribution, extending to much higher accretion

rates than in the otherwise identical calculation without runaway accretion

(F = 0.5) shown in Fig. 15. Note that the dimensional units shown on the

top axis apply only to the theoretical curves (assuming our fiducial WD

debris disc model in Section 4.2).
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Runaway accretion in white dwarf debris discs 519

Figure 17. Same as Fig. 16, but calculated using the Gaussian ring centred

at the smaller central radius x0 = 2 (Fig. 11).

accretion. Although neither of these assumptions is likely valid,

these distributions nevertheless inform what kinds of debris disc

systems could contribute to the observed distribution of accretion

rates shown in Fig. 1.

Fig. 15 shows the distribution calculated for two cases without

runaway accretion: the optically thin (τ d,0 = 10−3) Gaussian ring

shown in Figs 4 and 5 (blue line), and the optically thick (τ d,0 = 10)

Gaussian ring without strong feedback (F = 0.5) shown in Figs 6

and 7 (black line). In both cases, the distribution is fairly narrowly

concentrated about the characteristic accretion rate set by PR drag

acting alone. Accretion rates ṀZ � ṀPR,in at the low end of the

measured values in Fig. 1 are thus consistent with those resulting

from a superposition of such systems, as may result e.g. from a

range in the masses or orbital parameters of disrupted asteroids.

However, disc evolution without runaway accretion cannot explain

the highest observed accretion rates ṀZ ∼ 10−100ṀPR,in.

Figs 16–18 show the accretion rate distribution (solid black line)

for several disc evolutions with runaway accretion. In these cases

we further divide the distribution between those times when the

solid disc is still present (solid red line) and those times after it has

completely sublimated (solid blue line). Also plotted for comparison

with a dashed red line is the normalized distribution of measured

WD metal accretion rates shown in Fig. 1 from the sample of Farihi

et al. (2009, 2010b), including only systems with an IR excess. Note

that our results correspond to the true accretion rate ṀZ , while

the observational sample uses the ‘measured’ rates ṀZ,obs (see

Figure 18. Same as Fig. 16 but calculated using the solution for the ‘top-hat’

initial density profile (Figs 12 and 13).

Section 5.1). Thus, one should exercise caution when comparing

them.

Fig. 16 shows the fiducial case of an optically thick Gaussian disc

(τ d,0 = 10, x0 = 5; F = 2; bPR = 10−2), as shown in Figs 6(a) and

7. The probability distribution in this case still peaks at a relatively

low accretion rate of ṀZ ∼ 0.1–1ṀPR,in set by the characteristic

range in accretion rate during the ‘build-up’ to runaway. How-

ever, the final stages in the runaway process produce a substantial

‘tail’ in the distribution extending to much higher accretion rates

ṀZ ∼ 10–100ṀPR,in.

Although small number statistics and potential selection effects

introduce many uncertainties, note the overall qualitative similar-

ity between the shapes of the theoretical and observed accretion

rate distributions. A somewhat better agreement with the observed

distribution is obtained for discs formed with more compact inner

radii, as shown in Figs 17 and 18 for the cases of a Gaussian ring

centred at x0 = 2 (Fig. 7) and the top-hat distribution with τ d = 1

from x = 2 to 5 (Fig. 13), respectively. The top-hat distribution in

particular illustrates the broad accretion rate distribution produced

by even an ensemble of identical systems in the (most physically

realistic) case of a radially extended disc that undergoes runaway

accretion.

Figs 16–18 also illustrate that the probability of detecting ac-

tively accreting systems when the solid disc is still present (solid

red line) is much greater than after the solid disc has entirely sub-

limated (solid blue line). We caution, however, against attaching

much significance to a direct comparison between our predictions

for the fraction of actively accreting systems without solid discs and

the fraction of metal-rich WDs with no detected IR excess, given

potential selection effects and other ways that IR emission could

be difficult to detect even in systems with discs (see Fig. 15 and

Section 6).

6 D I SCUSSI ON

Our results demonstrate that runaway accretion is a ubiquitous fea-

ture in the evolution of WD debris discs with strong gas–solid

coupling and/or weak gas viscosity. We find that the condition

F ≡ tν/ts � 1 for the runaway predicted by R11b using local

calculations is a surprisingly accurate diagnostic of the runaway

threshold.

In Appendix C, we present and analyse a simple global analytical

model of the coupled evolution of the two discs which makes two

simplifying assumptions: (a) that the back-reaction of aerodynamic

drag on the gaseous disc can be neglected and (b) that the disc of

solids is always optically thick at Rin. Even though this model is

fully global and far more realistic compared to the calculations done

in R11b, we are still able to derive from it analytically the runaway

condition (equation C8), which is essentially analogous to F � 1.

This additionally reaffirms the robustness of the runaway threshold

found in R11b and this work.

Is F > 1 physically realizable in WD debris disc systems? If

one adopts our standard model for the aerodynamic drag between

solid and gaseous discs described in Section 2.1, then satisfying

this condition F � 1 requires gas viscosity αin � 10−2–10−4 near

the inner edge of the disc (see equation 44 and surrounding dis-

cussion). At first glance this condition appears unlikely to be sat-

isfied because the gas temperature is sufficiently high Tg ≫ 103 K

that thermal ionization should be efficient, whereas observations

of fully ionized accretion discs (King, Pringle & Livio 2007) and

numerical simulations of the magneto-rotational instability (MRI)

C© 2012 The Authors, MNRAS 423, 505–528
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520 B. D. Metzger, R. R. Rafikov and K. V. Bochkarev

in ideal MHD (e.g. Fromang & Papaloizou 2007; Davis et al. 2010)

typically suggest higher values of α ∼ 0.01–0.1.

Note, however, that gas and solids overlap at the radii �Rs in our

model and Spitzer observations reveal that micron-sized dust grains

are present in many systems (Jura et al. 2009b). The presence of

small dust in the disc can significantly lower the ionization fraction

below the nominal equilibrium value because small grains are very

efficient at absorbing charge. Even though the observationally in-

ferred mass of micron-sized Si grains (�1018 g; Jura et al. 2009b)

is much less than that of a sizeable asteroid thought to give rise to

a solid disc, small grains may still dominate the total surface area

of particles. A lower free charge density increases the resistivity of

the gas, which in turn reduces the effective turbulent viscosity by

suppressing the MRI due to non-ideal MHD effects (e.g. Fleming,

Stone & Hawley 2000). The relevant value of αin in our model could

thus be much lower than would be expected in a fully ionized disc,

thus making strong feedback F ≫ 1 much more likely.

In addition to lowering the viscosity, the runaway condition

F ≫ 1 could also be satisfied if the interaction between gas and

solids is stronger than is assumed in our baseline model in Sec-

tion 2.1. Below we describe two such additional mechanisms for the

solid–gas coupling: enhanced aerodynamic drag due to an eccentric

gaseous disc (Section 6.1) and ‘inductive coupling’ by a magnetic

field threading the disc (Section 6.2). Accounting for these addi-

tional possibilities, it appears quite possible that the conditions for

runaway accretion are actually achieved in nature.

Our model provides useful predictions for the properties of

gaseous discs fed by sublimation which may be verified by obser-

vations. In particular, equation (7) suggests a characteristic estimate

of the gas surface density at Rin for ṀZ ∼ ṀPR. The value of �g at

this location can easily be higher than 10−2 g cm−2 if ṀZ exceeds

ṀPR, as should be the case during runaway (but note that it is the

true rate ṀZ that sets �g, see Section 5.1 for details). We also point

out that viscous evolution in our model naturally results in the pro-

file of �g(r), which is shallower for r < Rin than for r > Rin, see

equation (B17) and Fig. 2. This implies that the gas mass inside the

cavity of the disc of solids is lower than one would naively assume,

which might help explain the observed lack of line emission from

this region of the gaseous disc (Melis et al. 2010).

The lifetime of discs that undergo runaway accretion is set pre-

dominantly by the delay time-scale until runaway trun given in

equation (50). Substituting the values of tν (equation 2) and bPR

(equation 35) into this expression, one finds that

tlife ∼ trun ≃ 5 × 105
F

−1
(xthick

2

)3 ( a

cm

)

yr, (F > 1), (59)

where we have adopted characteristic values for the gas temperature

Tg = 5 × 103 K, solid particle density ρd = 2.5 g cm−3 and mean

molecular weight μ = 28mp. We normalize the inner edge of the

optically thick disc to a characteristic value of xthick ≈ 2, which best

reproduces the observed WD accretion rate distribution (Fig. 17).

Note that tlife is independent3 of the (uncertain) strength of the disc

viscosity αin and the precise form of the drag force between the

solids and gas (except implicitly through the value of F ).

The lifetimes of the WD debris disc are poorly constrained by

observations, but one can set a rough upper limit of tlife � 105–

106 yr (Kilic et al. 2008; Farihi et al. 2009; Girven et al. 2012).

Equation (59) shows that this constraint translates into an upper

3 As shown in Fig. 3, our drag law underestimates aerodynamic coupling in

the optically thin case. In reality, coupling is stronger and this may lower

the disc lifetime to some extent.

limit on the characteristic particle size a � (0.2–2)F cm. For

F > 1 (as required for runaway to occur in the first place), one

thus requires particles with a typical size a � several cm, consis-

tent with (relatively weak) existing observational constraints (e.g.

Graham et al. 1990; Jura et al. 2007b).

An important outstanding question is why some WDs with high

inferred accretion rates have no detected IR excess. Our calcula-

tions in Section 5.2 predict that the total fraction of actively accret-

ing systems without solid discs should be relatively small, typically

�20 per cent. As discussed in Section 5.1, one possible explanation

in the case of systems with long metal diffusion times tset,i ≫ tν
(as characterize WDs with cool temperatures and/or He-enriched

atmospheres) is the discrepancy between the true instantaneous

WD accretion rate and the value inferred using atmospheric abun-

dances and the steady-state approximation. Fig. 14 shows that for

tset,i � 102–103tν , the accretion rate inferred using the steady-state

model can remain at a high level for a time-scale comparable to

or longer than the disc lifetime itself even after the solid disc has

completely sublimated.

Another possible explanation for high-ṀZ systems without an IR

excess is that a solid disc is in fact present but cannot be detected,

for instance because of a poor viewing angle and/or because the disc

is concentrated in a narrow ring of width �r ≈ 0.01–1 R⊙ (Farihi

et al. 2010b). Our calculations in Figs 6 and 12 confirm that this

is a viable possibility by showing that optically thick discs largely

maintain their original width, until the end of the disc lifetime when

the runaway process is nearly complete.

We conclude by addressing several extensions to our standard

model and outstanding issues to be explored further in future work.

6.1 Effects of non-circular gas motion

Our calculation of aerodynamic drag in Section 2.1 explicitly as-

sumed that both the solid and gaseous materials move on purely

circular orbits, in which case the difference in azimuthal velocity

between the discs vφ,rel is due solely to the pressure support in the

gaseous disc (equation 4). Since this velocity difference is relatively

small (compared to, say, the orbital velocity), then the resultant

aerodynamic coupling between the discs is not very strong. For this

reason, runaway accretion may require special circumstances, such

as a low viscosity in the gaseous disc.

At the same time, however, the Ca II emission lines from some

WD systems are observed to have asymmetric shapes (Gänsicke

et al. 2006, 2007). These have been interpreted as due to non-

circular motions in the gaseous disc, with Gänsicke et al. (2006) for

instance fitting the Ca II line profiles from WD SDSS 1228+1040 as

arising from a disc with eccentricity e ≈ 0.02. If this interpretation

is correct, then the assumption of purely circular gas motion is not

justified in at least some WD systems.

If the gas disc is eccentric (even if the origin of the eccentricity

is unknown) then one must re-evaluate the drag force calculation

from Section 2.1 to account for non-circular motions. In Appendix

D, we carry out such a calculation, in particular demonstrating that

in the small-e limit (e → 0) the orbit-averaged azimuthal force can

be written by analogy with equation (18) as 〈fa(r)〉ϕ = Ae�g(r),

see equation (D10), where now the coupling constant is

Ae =
e2

8Re⋆

r2�3

cs

. (60)
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Runaway accretion in white dwarf debris discs 521

The ratio of Ae to the coupling constant Aa defined by equation (19)

is

Ae

Aa

=
e2

8

(

�r

cs

)4

. (61)

As a result, even a small eccentricity of the gaseous streamlines

e � (cs/�r)2 (which is about 10−6 at the inner disc edge) is suffi-

cient for non-circular gas motions to dominate over the azimuthal

velocity difference resulting due to gas pressure support for pur-

poses of coupling the gaseous and solid discs.

Using equations (34) and (60) we can estimate the feedback

parameter for coupling due to the non-circular gas motions:

Fe =
4Ae,inRin

αinc2
s

=
e2

2αinRe⋆

(

�r

cs

)3

≈ 30

(

αin

10−3

Re⋆

102

)−1
( e

10−4

)2
(

r

0.2 R⊙

)−3/2

, (62)

where we have again adopted fiducial values for μ = 28mp, Tg =
5000 K and M⋆ = 0.6 M⊙.

This expression shows that non-circular gas motions are ex-

tremely efficient at driving the runaway evolution of the debris

discs, with even slightly eccentric (e ∼ 10−4) gas motions resulting

in very strong feedback. In fact, this coupling may be too effec-

tive in the sense that F ≫ 1 implies a very short time-scale of

∼ts = F
−1tν on which the particulate disc evolves due to cou-

pling during the runaway. The duration of the build-up phase trun

is also lowered for F ≫ 1, see equation (59). Measurements of

line asymmetries in WD gaseous discs typically imply e ≫ 10−4

if one interprets asymmetry as due to eccentric gas motions (e.g.

e ≈ 0.02 for SDSS 1228+1040: Gänsicke et al. 2006; and e ≈ 0.2–

0.4 for SDSS 0845+0855: Gänsicke et al. 2007). In the latter case,

the inferred eccentricity would be so high as to result in relative ve-

locity between the gas and particle discs of approximately hundreds

of km s−1. How such a highly supersonic velocity difference could

be maintained in practice is not clear, unless the orbits of the solid

particles are extremely closely aligned with the eccentric trajectory

of the gas, which appears unlikely because of dissipative collisions

between particles (see Section 6.4). It is furthermore unclear how

the particle disc could avoid being destroyed by the enormous aero-

dynamic drag in this system, or by sputtering of the particle surfaces

by the gas.

These considerations lead us to believe that the line asymme-

tries observed in the spectra of gaseous WD discs result not from

actual non-circular gas motions, but rather as the result of a non-

axisymmetric surface brightness over the face of the disc. Non-

axisymmetric brightness patterns, resulting e.g. due to spiral waves

or other instabilities which produce an azimuthally varying surface

density distribution or line excitation conditions, could explain the

observed line asymmetries without invoking highly non-circular

gas motions. Hartmann et al. (2011) demonstrate that this is indeed

possible.

To summarize, we conclude that the actual deviations of gas mo-

tions from purely circular in WD discs are probably not as dramatic

as have been inferred based on eccentric disc models, and most

likely correspond to e � 10−4. Equation (62) nevertheless shows

that even weakly non-circular gas motions could easily result in

drag sufficient to produce runaway disc evolution, thus supporting

the general picture outlined in R11b. Additional work is clearly

required to identify what mechanisms are capable of driving such

non-circular gas motions.

6.2 White dwarf magnetic field

We have thus far neglected the possible effects of the WD magnetic

field on the disc evolution. If the WD field is sufficiently strong, it

may, for instance, disrupt the gaseous disc above the WD surface,

channelling matter on to the surface along the magnetic poles, as in

magnetic cataclysmic variables.

Assuming that at large radii the WD magnetic field is dipolar

B(r) = B⋆(r/R⋆)−3 with a surface field strength B⋆, then the magne-

tosphere and disc stresses balance at the Alfvén radius RA given by

(e.g. Ghosh & Lamb 1978)

RA ≃
(

3B2
⋆ R

6
⋆

2Ṁ
√

GM⋆

)2/7

≃ 1.2 R⊙
(

B⋆

kG

)4/7 (

Ṁ

108 g s−1

)−2/7

×
(

R⋆

10−2 R⊙

)12/7 (

M⋆

0.6 M⊙

)−1/7

. (63)

Equation (63) shows that for typical accretion rates in WD debris

discs ṀZ ∼ 106–1010 g s−1, fields as small as ∼0.1–1 kG are suffi-

cient to affect the flow near the sublimation radius Rin ∼ 0.2 R⊙.

The surface magnetic field strengths of isolated WDs inferred

from Zeeman (spectro-)polarimetry show a wide range of values,

from ‘high field’ WDs with �104 G (Wickramasinghe & Ferrario

2000), to only upper limits of �1–100 kG in most other systems

(e.g. Schmidt & Smith 1995; Gänsicke et al. 2007). Overall, the

distribution of field strengths appears to be well characterized by a

power-law distribution dN/dB ∝ Bα with index α ≃ −1.5 for B >

100 kG (Fabrika & Valyavin 1999). However, the peak and average

of the distribution both occur at lower fields than can be measured

and hence are not well constrained. Although few DZ WDs have

measured magnetic fields, note that at least a few systems, G165-7

and G77-50, have strong surface fields B⋆ ∼ 650 kG (Dufour et al.

2006) and ∼120 kG (Farihi et al. 2011), respectively.

It thus seems possible that the WD magnetic fields could affect

a significant fraction of debris discs.4 If a dynamically important

magnetic field threads the gaseous or solid disc, this may complicate

the picture of disc evolution presented in this paper. If R⋆ � RA �

Rs, then matter interior to the Alfvén radius is channelled directly

on to the WD surface, creating an inner ‘hole’ in the gaseous disc.

If RA � Rs, then matter may be placed on to field lines as soon

as it sublimates at r ≈ Rs. Since viscous spreading is no longer

required to carry away the angular momentum of the accreted gas

(which is instead extracted by magnetic torques and used to spin-up

the WD), then the picture of overlapping gas and solid discs, and

the resulting model of runaway accretion developed in this paper,

might no longer remain valid. An important caveat, however, is if

small dust particles in the disc suppress the ionization fraction of the

gas, as discussed earlier in this section. In this case, the magnetic

field may not couple efficiently to the gaseous disc, negating the

influence of even a strong field. A more detailed model of the

coupled evolution of small dust, gas–field coupling and the MRI in

the sublimation layer will be required to address the flow structure

in this region and the resulting influence on the accretion evolution.

4 Caveats include that (1) current measurements constrain the total surface

field, of which the dipole may only be a minor component; (2) the magnetic

field could be systematically lower in actively accreting systems if, for

instance, the field is ‘buried’ by diamagnetic screening (e.g. Cumming,

Zweibel & Bildsten 2001).
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522 B. D. Metzger, R. R. Rafikov and K. V. Bochkarev

If the WD magnetic field is sufficiently strong to disrupt the

gaseous disc, then it may also affect the rate of solid accretion via

‘inductive’ coupling (Drell, Foley & Ruderman 1965; Gurevich,

Krylov & Fedorov 1978). Because the WD rotates at a different

(typically much lower) angular velocity than the accretion disc, this

differential rotation produces an electric field in the frame of the

rotating particles of the order of E ≃ −(vφ/c) × B, where vφ is

the velocity at which the magnetic field sweeps through particles.

If the WD magnetosphere is loaded with dense enough plasma

supplying abundant free charges then this electric field not only

polarizes debris particles but also induces a DC current through

them. This current in turn couples to the magnetic field, resulting in

the azimuthal drag force on the solid particles. The strength of this

inductive coupling depends on the conductivity of particles and is

rather uncertain. We leave a more detailed analysis of this coupling

mechanism to future work.

6.3 Problem of condensation

The spatial coincidence of gaseous and particulate debris discs

around WDs poses an interesting problem.5 Quite generally, one

expects that the debris particles and gas will have the same chem-

ical composition, since the latter originates from the former (by

evaporation in our model, or by sputtering as in Jura 2008). It is

then not clear how two separate phases of the same material – solid

and gaseous – can exist simultaneously in stable phase equilibrium.

Indeed, the temperature of the solid particles is necessarily be-

low the sublimation temperature Ts, while the surrounding gas is

likely to be hotter than Ts (Melis et al. 2010). Atoms of gas should

stick upon colliding with the surface of debris particles, resulting

in condensation with a probability equal to the accommodation co-

efficient αacc < 1. The rate of condensation from the gas phase per

unit area of the solid surface is ∼αaccρgcs ∼ αacc��g (assuming

a solid debris disc with τd ∼ 1), such that the gas disc should be

depleted on a time-scale of ∼�−1α−1
acc. Even if αacc is as small as

∼10−2 (its value is typically higher; see Leitch-Devlin & Williams

1985), then the entire gaseous disc should still condense within

several hundred orbital time-scales. The latent heat released during

this process may somewhat slow down the rate of condensation, but

ultimately cannot prevent it.

Observations showing that the gaseous and solid components

overlap in WD debris discs (Brinkworth et al. 2009; Melis et al.

2010) demonstrate that this simple logic is somehow flawed. How-

ever, at the moment we do not have a satisfactory explanation for

this puzzle of condensation.

6.4 Production of metallic gas by particle collisions

Our work assumes that all metallic gas in the disc results from the

sublimation of solids at the inner edge of the particulate disc (in

Section 3.1 we allowed for the possibility of gas condensation at

larger radii as described in Section 6.3, but we did not explore this

possibility in detail). However, previous authors (Jura 2008; Farihi

et al. 2009) have suggested that gas can also be produced by high-

velocity collisions between solid particles within the debris disc.

These authors argue that, due to the large orbital speed of approx-

imately hundreds of km s−1, even moderately non-circular particle

motions (corresponding to orbital eccentricities as low as ∼10−2)

result in particle collisions with sufficiently high velocity of several

5 We are grateful to Bruce Draine for directing our attention to this issue.

km s−1 to effectively sputter, or even vaporize, solids into metallic

gas. This process of gas creation was envisioned to operate continu-

ously throughout the entire solid disc, thereby naturally explaining

the observed radial coincidence6 between solid and gaseous discs

(Melis et al. 2010).

We believe that this mechanism is unlikely to be an important

source of gas production, even on time-scales short compared to the

disc lifetime. Observations indicate (Jura 2003; Jura et al. 2007a)

that WD debris discs are typically optically thick, i.e. τd � 1. It is

well known (Goldreich & Tremaine 1978; Farihi et al. 2008) that

under such circumstances the characteristic time-scale between the

pairwise particle collisions is comparable to the local orbital period,

which is less than an hour in the present context. If particles are

indeed continuously being converted to gas via binary collisions,

then the whole disc of solid debris should be converted into gas

within just a handful of collision time-scales, i.e. approximately a

day. This is in contradiction with the fact that the near-IR excesses

observed around many WDs are persistent for at least decade-long

time-scales.

Even if gas production via collisions is highly inefficient, such

that only a small fraction of the solid mass is converted into gas

in every collision (as would be necessary to extend the lifetime

of the solid disc), then collisions are still incapable of providing a

steady source of gas. This is because high relative velocities between

particles are quickly damped (again, on a time-scale of several

orbits) due to the inelastic nature of particle collisions (Goldreich

& Tremaine 1978). As a result, the solid disc rapidly settles into a

dynamically cold configuration, similar to the rings of Saturn (for

which the particle velocity dispersion is only ∼0.01–0.1 cm s−1;

Cuzzi et al. 2010), thereby eliminating the possibility of additional

destructive high-velocity particle collisions.

Despite these objections, collisional gas production is likely to

be important during and immediately following the tidal disruption

of the asteroid-like body by the WD, which could last for several

orbital time-scales of the incoming body, i.e. approximately tens to

hundreds of years. During this stage, collisions may occur between

large solid objects at relative speeds of many km s−1, resulting in a

large fraction of the total solid mass being converted into gas. Some

of this gas will re-condense on to the surfaces of surviving particles,

with the rest accreting on to the WD on the (relatively short) viscous

time-scale (see equation 2).

To summarize, the arguments presented above strongly argue

against the possibility that sustained, long-term (comparable to the

disc lifetime of ∼105–106 yr) gas production in WD debris discs

results from inelastic solid particle collisions.

7 SU M M A RY

The growing number of ‘debris discs’ detected around WDs pro-

vides a unique opportunity to study the physics of the interaction

between solid and gas discs in a way complementary to the study

of normal debris discs around pre-main-sequence stars. As a likely

repository for minor bodies originating from the outer stellar sys-

tem, these discs also provide an indirect probe of the dynamics of

planetary systems around evolved stars. As such, they also indirectly

inform our knowledge of the fraction of the intermediate-mass stars

harbouring planets.

6 In our model, this overlap is naturally achieved as a result of viscous

spreading of the gaseous disc (see Section 2).
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Table 1. Summary of the key properties of different regimes of accretion

in WD debris discs.a

Accretion regime Disc lifetime Peak ṀZ

(tν × b−1
PRF

−1)b (ṀPR,in)

Optically thin (τ d ≪ ζ ) x2
0 × ζin ζ−1

in τd

Optically thick (τ d ≫ 1)

Weak feedback (F < 1) x2
0�x × τd x−1

0

Strong feedback (F > 1) x3
0 × F−1 x0�x × τdb

−1
PRF

−1

aExpressions are given in terms of (1) characteristic radius x0 and radial

thickness �x � x0 of the initial solid disc, in units of the inner edge of

the disc Rin ≈ Rs ∼ 0.2 R⊙ (equation 1); (2) viscous time tν at the inner

disc edge (typically ∼103 yr, depending on viscosity αin, equation 2); (3)

characteristic accretion rate ṀPR,in due to optically thick PR drag (typi-

cally ∼108 g s−1, equation 43); (4) dimensionless parameters introduced in

Section 3.3, including the feedback parameter F (equations 34 and 44),

PR parameters bPR (typically ∼10−4−1, equations 31 and 45), and the in-

cidence angle of WD radiation ζ in (typically ∼0.02, equation 31). b We

express time in the useful combination tνb
−1
PRF

−1, which takes on the nu-

merical value ∼6 × 104(a/cm) yr for typical parameters (independent of the

strength of the viscosity or the mechanism coupling solids and gas), where

a is the characteristic particle size.

One of the biggest mysteries regarding known WD debris disc

systems is the wide range of metal accretion rates, in particular

those extending to much higher values than can be explained by PR

drag alone (see Fig. 1). In this paper, we have begun to address this

and other issues using global calculations of the coupled evolution

of gaseous and solid components of WD debris discs. Table 1 sum-

marizes the key properties of different regimes of accretion in WD

debris discs. Our primary results are summarized as follows.

(i) The observed coexistence of gas and dust in WD debris discs

(Melis et al. 2010) naturally results from viscous spreading of gas

created at the sublimation radius.

(ii) Drag between the gaseous and solid discs leads to an en-

hanced accretion rate over that set by PR drag alone. Our results

in Section 4 show that the disc evolution in the presence of strong

aerodynamic drag is dramatically altered from cases without drag

(see Figs 6–13). We confirm the mode of ‘runaway’ accretion pre-

dicted by R11b when the rate of drag-induced accretion exceeds the

rate at which viscosity spreads gas away. The threshold for runaway

is well described by the condition F ≡ tν/ts � 1 (equation 34) for

a variety of different configurations of solids (see also Appendix

C).

(iii) The runaway process is characterized by two stages (Fig. 7):

(1) an initial ‘build-up’ phase, during which an optically thick dis-

turbance with τ d ∼ 1 moves inwards from the inner edge of the

optically thick disc; (2) a ‘runaway’ phase characterized by super-

exponential increase in the accretion rate, once τ d ∼ 1 is satisfied

near the sublimation radius.

(iv) The predicted distribution of measured accretion rates given

an ensemble of optically thick WD debris discs undergoing evo-

lution leading to runaway is broadly consistent with the shape

of the current observational sample (Figs 16–18). Most observed

systems are predicted to have accretion rates in the range of

ṀZ ∼ (0.1−1)ṀPR,in, but a smaller tail of the distribution compris-

ing ∼10–20 per cent of systems should extend to higher accretion

rates.

(v) Satisfying the runaway condition F > 1 in WD debris discs

requires a low value for the disc viscosity αin � 10−3–10−4 and/or

strong solid–gas coupling (equation 44). A low viscosity could

result if the MRI is suppressed due to low ionization caused by the

presence of small dust grains.

(vi) The runaway condition F > 1 could also be satisfied even

for higher viscosity if the strength of the solid–gas coupling is

stronger than our baseline model for aerodynamic drag presented

in Section 2.1. In Section 6.1 and Appendix D we show that even

a mildly eccentric gaseous disc e � 10−4 results in a stronger

drag force than our baseline model. These results also suggest that

the observed asymmetries in WD emission lines are unlikely to

result from highly eccentric discs, but instead may result from non-

axisymmetric disturbances in the disc surface brightness (e.g. spiral

wave patterns).

(vii) The disc lifetime in the runaway accretion model is set by the

delay time-scale during the ‘build-up’ phase tlife ≈ trun (equation 50).

Reconciling this lifetime with the observational upper limits on the

disc lifetime tlife < 105–106 yr places an upper limit a � several cm

on the characteristic particle size (equation 59).

(viii) The steady-state assumption commonly adopted to calcu-

late WD metal accretion rates (equation 55) may be inaccurate when

the settling time of metals in the WD convective zone tset,i ≫ 10tν ,

resulting in some cases in an overestimate or underestimate of the

true instantaneous accretion rate by an order of magnitude or more

(Fig. 14). This is a possible explanation for even heavily metal-

rich WDs with no current IR excess in cases for which the metal

diffusion time is comparable to the disc lifetime.
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A P P E N D I X A : M A S S AC C R E T I O N

D U E TO C O L L I S I O NA L V I S C O S I T Y

Here we evaluate the role of ‘internal’ sources of viscosity within

the particulate disc, similar to those thought to characterize the

evolution of the rings of Saturn, on the rate of solid accretion in

WD debris discs. Angular momentum transport in a dense ring

is caused by three effects (Wisdom & Tremaine 1988; Takeda &

Ida 2001): (1) translational transport due to the particle motions;

(2) collisional transport; and (3) transport due to the gravitational

torques, which are important only when self-gravity is important.

According to Daisaka, Tanaka & Ida (2001), the efficiency of

gravitational transport is determined by two parameters: (1) the

optical depth of the particulate disc τd (equation 3) and (2) the ratio

of the mutual Hill radius rh ≡ r(2mp/3M⋆)1/3 to twice the particle

radius a:

r∗
h ≡

rh

2a
=

(

π

9

ρ

M⋆

)1/3

r

≈ 0.1

(

ρd

2.5 g cm−3

0.6 M⊙
M⋆

)1/3 (

r

0.2 R⊙

)

, (A1)

where mp = (4π/3)ρda
3, ρd and r are the particle mass, density and

distance from the WD, respectively. Note that r∗
h is independent of

the particle mass.

Equation (A1) shows that r∗
h � 0.5 is typically satisfied for the

range of radii r � R⊙ relevant to WD debris discs. In this regime,

gravitational transport can be neglected provided that (Daisaka et al.

2001)

τd � τsg ≈
0.08
(

r∗
h

)3
≈ 60

(

M⋆

0.6 M⊙
2.5 g cm−3

ρd

) (

0.2 R⊙
r

)3

.

(A2)

If gravitational transport is negligible then internal transport is

instead dominated by the collisional viscosity ν ≈ a2�τd (Daisaka

et al. 2001), where � = (GM⋆/r3)1/2. The resulting mass flux can

be estimated as

ṀZ = 3πν�d = 3mpτ
2
d �

≈ 60g s−1

(

mp

1 g

)

( τd

60

)2
(

M⋆

0.6 M⊙

)1/2 (

r

0.2 R⊙

)−3/2

.

(A3)

Equation (A3) shows that in order to explain typical values

ṀZ ∼ 108 g s−1 of the accretion rates on to metal-rich WDs, then

for7 τd ∼ 60 one requires a typical particle mass mp ∼ 107 g, corre-

sponding to an object of size a � 1 m. Obviously, particles of size

7 For τd � 1, as characterize e.g. Saturn’s rings, one would need �10 m

particles to achieve the same value of ṀZ .
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a ∼ 1 m in a disc with optical depth τ d ∼ 60 cannot reside in a mono-

layer configuration; rather, the vertical thickness of the disc must be

∼100 m, thus requiring a total solid mass ∼(4π/3)ρdar2τd ≈ 1025 g

(assuming characteristic disc size r = 0.2 R⊙). This mass is similar

to that of a single 2000-km basaltic asteroid, which is significantly

higher than the total mass of high-Z elements typically inferred to

pollute metal-rich WDs (Farihi et al. 2010a).

Explaining the highest inferred values of ṀZ ∼ 1010–1011 g s−1

requires even larger disc particles (∼10 m) and, hence, even more

massive discs. In principle, the ring viscosity is enhanced if τd is

sufficiently high that equation (A2) is violated; when self-gravity

becomes important, the viscosity instead becomes ν ∝ τ 3
d (Daisaka

et al. 2001). However, the required disc mass in this case approaches

that of a terrestrial size body, an unlikely explanation for all WDs

with high ṀZ . We conclude that viscosity due to internal stresses

within the particulate ring is unlikely to play an important role in

the majority of metal-rich WDs. A similar conclusion was reached

by Farihi et al. (2008), who also estimated accretion times based on

an analogy with planetary rings, finding that typically they greatly

exceed the WD cooling time-scale.

A P P E N D I X B : E VO L U T I O N O F AC C R E T I O N

DISCS W ITH MASS SOURCES/SINKS:

A NA LY T I C A L S O L U T I O N S

Here we analyse equation (27) to derive some general results for

the viscous evolution of an accretion disc with sources or sinks of

mass and power-law dependence of viscosity on radius

ν = ν0r
n, (B1)

but without sources or sinks of the angular momentum, i.e. � = 0

in equation (27). Other analytic work on the evolution of accretion

discs in the presence of mass sources/sinks (for the case of n = 1)

can be found in Ruden (2004).

The initial condition for the disc evolution is

�g(r, t = 0) = �g,0(r). (B2)

Power-law viscosity is realized in the conventional model of

α-viscosity (Shakura & Sunyaev 1973) provided that the gas tem-

perature Tg has a power-law dependence on radius:

ν(r) =
αc2

s

�
= α

kBTg(r)r3/2

μ
√

GM⋆

. (B3)

In particular, if Tg(r) = constant, then n = 3/2. If Tg(r) ∝ r−1/2, as

expected for optically thin gas in equilibrium with stellar heating,

then n = 1.

Following Tanaka (2011) and introducing new time-like and spa-

tial coordinates T (not to be confused with temperature) and w,

T ≡ 3ν0t, w(r) ≡
2

2 − n
r1−n/2, (B4)

and looking for a solution in the form

�g(r, t) = r−n−1/4σg(w, T ), (B5)

equation (27) can be transformed to

∂σg

∂T
=

∂2σg

∂w2
+

1

w

∂σg

∂w
−

l2

w2
σg + �(w, T ), l =

1

2(2 − n)
,

�(w, T ) ≡ [r(w)]n+1/4 Sg(r(w), T )

3ν0

. (B6)

We now introduce Hankel transforms F̃ =
{

σ̃g(k, T ), �̃(k, T ), �̃g,0(k)
}

for each of the functions

F̃ =
{

σg, �, �g,0

}

according to

F̃ (k, T ) =
∫ ∞

0

F (w, T )Jl(kw)wdw,

F (w, T ) =
∫ ∞

0

F̃ (k, T )Jl(kw)kdk. (B7)

Plugging these relations into (B6), one arrives at the following

simple differential equation for σ̃g(k, T ):

∂σ̃g(k, T )

∂T
+ k2σ̃g(k, T ) = �̃(k, T ), (B8)

with the initial condition

σ̃g(k, T = 0) = �̃g,0(k). (B9)

Solving this equation and performing inverse Hankel transform

on σ̃g, we obtain

�g(r, t) = r−n−1/4

∫ ∞

0

[

�̃g,0(k) +
∫ T

0

�̃(k, T ′)ek2T ′
dT ′

]

× e−k2T Jl(kw(r))kdk.
(B10)

We can further simplify this solution by plugging in the expressions

for �̃g,0 and �̃ from equation (B7), rearranging the order of inte-

gration and using integral 6.633(2) from Gradshteyn et al. (2007).

This gives us

�g(r, t) =
∫ ∞

0

(

r(w′)

r

)n+1/4
[

�g,0(w′)G(w(r), w′, T )

+
∫ T

0

Sg(w′, T ′)

3ν0

G(w(r), w′, T − T ′)dT ′

]

w′dw′,

(B11)

where

G(w, w′, z) ≡
1

2z
exp

(

−
w2 + w′2

4z

)

Il

(

ww′

2z

)

, (B12)

and T(t) and w(r) are given by equation (B4).

B1 Singular mass source

For our current set-up (sublimation at a single radius) it is useful

to consider the situation when the injection of mass happens over a

small radial span of the disc at r = Rin, so that one can write

Sg(r, t) = St (t)δ(r − Rin), St (t) =
Ṁ(r = Rin, t)

2πRin

, (B13)

see equation (29). For simplicity, we will assume that initially the

disc does not contain any mass, i.e. �g,0 = 0. Abandoning this as-

sumption would amount to including the first term in equation (B11)

into the consideration.

Plugging equation (B13) into equation (B11) and introducing

w0 ≡ w(Rin), one finds

�g(r, t) =
2

2 − n

R5/4
in r−n−1/4

3ν0

∫ T

0

St (T
′)G(w(r), w0, T − T ′)dT ′.

(B14)

One can obtain a simple solution for �g(r, t) at late times T ≫ w2
0

under the assumption that St(T) varies slowly. In this case we can

take St(T) to be approximately constant and take it out of the integral

in equation (B14). Then one gets

�g(r, t) =
2St

2 − n

R5/4
in r−n−1/4

3ν0

∫ T

0

G(w(r), w0, z)dz

≈
StR

5/4
in r−n−1/4

3(2 − n)ν0

∫ ∞

0

dz

z
exp

(

−
w2 + w2

0

4z

)

Il

(

ww0

2z

)

.

(B15)
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526 B. D. Metzger, R. R. Rafikov and K. V. Bochkarev

Taking the last integral with the aid of relation
∫ ∞

0

du

u
e−λuIν(u) =

1

ν

(

λ +
√

λ2 − 1
)−ν

, (B16)

one finds that

�g(r, t) =
2St

3ν0

R3/2
in

rn+1/2
, r > Rin,

=
2St

3ν0

Rin

rn
, r < Rin. (B17)

With this expression for the surface density, one can easily deter-

mine the mass accretion rate through the disc:

Ṁ(r) = 6πr1/2 ∂

∂r

(

ν�r1/2
)

= 0, r > Rin, (B18)

while for r < Rin one finds Ṁ(r) = 2πStRin. Thus, all of the mass

injected at Rin goes towards the central mass at late times.

A P P E N D I X C : C O U P L E D E VO L U T I O N IN

T H E A B S E N C E O F M O M E N T U M FE E D BAC K

O N T H E G A S E O U S D I S C

The goal of this appendix is to gain analytical insight into the

coupled evolution of gaseous and solid WD discs, which are linked

by mass exchange due to the evaporation of solids, as expressed by

the source term in equation (29).

Here we account for the effect of gas drag on the evolution of the

surface density of solids (as we do in Section 4), but we neglect the

back-reaction of the drag force on the gas disc evolution, assuming

that its effect is small compared to that of the viscous stresses.

With this simplification the evolution of the gas disc can be studied

using the results of Appendix B, provided that the viscosity obeys

the power-law ansatz (equation B1). Fig. C1 shows a comparison

between the mass accretion rate ṀZ computed with and without

the back-reaction of the aerodynamic drag on the gaseous disc. The

similar qualitative evolution in both cases justifies our assumption

that the back-reaction force on the gas disc can be neglected to first

order.

Another important assumption we make here is that the surface

density of solids at Rin is sufficiently high that τd(Rin, t) � 1 is

satisfied at all times. This approximation is likely to be valid only

during the late stages of the disc evolution, as illustrated in Figs 6(a)

Figure C1. Comparison of the evolution of the gas accretion rate ṀZ(t) in

two cases for otherwise fully identical simulations: when the back-reaction

of the aerodynamic drag on the gas disc is not included (dotted line) and

when it is fully accounted for (solid line). Note that only small quantitative

differences distinguish the behaviour of ṀZ(t) in the two cases.

and 12. Thus, the model we present below does not capture the

early, ‘build-up’ phase of the gaseous disc evolution, but it should

work well at late times, during the runaway phase. This important

simplification makes it possible to treat the evolution of the gas

disc analytically, separate from the calculation of the solid disc

evolution.

Using equations (21)–(24), (26) and (B13) one obtains the fol-

lowing expression for the intensity of the mass source feeding the

gaseous disc:

St (t) =
ṀPR,in

2πRin

+
η|η|

2

Rin

ts
�g(Rin, t), (C1)

where we have assumed that r = Rin and that τd(Rin, t) � 1.

This expression, coupled with the solution in equation (B14),

provides a closed set of equations for the evolution of �g(r, t) which

can be computed numerically. Note that a knowledge of �d(r, t) is

not required to calculate �g(r, t) as long as τd(Rin, t) � 1. This is

because the mass flux of solid debris at Rin saturates at the value

independent of τd(Rin, t) when the disc of solids is optically thick.

To demonstrate the conditions under which runaway behaviour

becomes possible, we concentrate on evaluating the time evolution

of �g at Rin only. By substituting equation (C1) into equation (B14),

setting r = Rin, and casting all variables into dimensionless form

with the aid of equations (31)–(35), one obtains the following inte-

gral equation for the evolution of the gas optical depth at the inner

edge of the disc τg,in(t) ≡ τg(Rin, t):

τg,in(t̃) = F
2 − n

4

∫ t̃

0

[

η|η|τg,in(t̃ ′) + bPR

]

× G̃

(

3(2 − n)2

4
(t̃ − t̃ ′)

)

dt̃ ′, (C2)

where

G̃(z) ≡
1

2z
exp

(

−
1

2z

)

Il

(

1

2z

)

. (C3)

Note that tν = R2−n
in /ν0 for the power-law viscosity (B1).

Our numerical results presented in Section 4 demonstrate that

there are two possibilities for the gas disc evolution: either (1) �g

saturates at essentially a constant level on time-scales long com-

pared to tν or (2) it grows with time in a runaway fashion. In both

cases, the behaviour of �g is determined primarily by the most re-

cent history of the disc and is largely insensitive to conditions in

the distant past. This allows us to extend the lower limit of inte-

gration in equation (C2) to −∞ for t̃ ≫ 1. This results (upon an

obvious change of variables) in the following equation describing

the late-time behaviour of �g:

τg,in(t̃) = F
2 − n

4

∫ ∞

0

[

η|η|τg,in(t̃ − z) + bPR

]

× G̃

(

3(2 − n)2

4
z

)

dz. (C4)

In the case of orderly behaviour, τ g,in saturates at the constant

level, such that the expression in brackets in equation (C4) can be

taken out of the integral. Using the fact that
∫ ∞

0
G̃(z)dz = 1/(2l) =

(2 − n), one then finds that τ g,in saturates at the value

τg,in ≈
F

3

bPR

1 − (F/3)η|η|
. (C5)

This result and the whole picture of the orderly disc evolution are

applicable only if

F <
3

η|η|
. (C6)
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Runaway accretion in white dwarf debris discs 527

In the opposite case of runaway behaviour, the first term in brack-

ets in equation (C4) rapidly comes to dominate over the second one.

In this case, the equation then has an exponentially growing solution

τg,in(t̃) ∝ eμt̃ , with a constant μ > 0 which satisfies the transcen-

dental equation

1 = Fη|η|
2 − n

4

∫ ∞

0

e−μzG̃

(

3(2 − n)2

4
z

)

dz. (C7)

It is easy to check that this equation has a positive solution (and the

system evolves in a runaway fashion) only if

F >
3

η|η|
, (C8)

which is the condition opposite to that in equation (C6). In particular,

if we assume n = 3/2, which according to equation (B3) corresponds

to Tg(r) = constant profile in the gas disc, then equations (40) and

(B17) imply that η = 7/4, such that F > 48/49 ≈ 1 is needed for

the disc to evolve in a runaway fashion.

The upshot of this calculation is that, even in this simple model

of the coupled disc evolution, runaway behaviour becomes possible

only when the feedback parameter F exceeds some critical value

close to unity, given by equation (C8). We emphasize that despite the

simplifications made in this section, the model presented is still fully

global, as opposed to the treatment of R11b. Nevertheless, our result

in equation (C8) is in agreement with the runaway conditionF � 1

derived entirely from local considerations by R11b. And as we

demonstrate in Section 4, the general result given by equation (C8)

remains valid even for the more complicated global models of the

system, e.g. in which the back-reaction of the aerodynamic drag

on the gas disc is self-consistently included and the possibility that

τg(Rin) � 1 is allowed.

A P P E N D I X D : SO L I D – G A S C O U P L I N G

IN ECCENTRIC D ISCS

We assume for simplicity that the streamlines in the gaseous disc

are confocal ellipses (with foci coinciding with the WD position)

with eccentricity e being the same for all streamlines, and with

apsidal lines pointing in the same direction (see Fig. D1). There is

no reason to believe that this geometric model captures all details

of non-circular gas motion in real circum-WD discs – we adopt it

here just to facilitate our calculations. Despite its simplicity, this

r(p,  )φ

w(p,  )φ

φ

p

w(p,0)

Figure D1. Schematic representation of the gas flow in an eccentric disc

used to compute the aerodynamic drag between the solid and eccentric

gaseous discs. See text for details.

model is sufficient to illustrate the importance of even moderately

non-circular gas motions.

We characterize each gas streamline by its periastron distance

p = a(1 − e), where a is the semimajor axis of a corresponding

streamline. Due to the non-circular shape of the streamlines, the

surface density of gas varies as it travels along a given streamline.

We characterize this variation by assuming that surface density is a

function of p and ϕ – the polar angle of the radius vector r at a given

point on a streamline with respect to the apsidal line (see Fig. D1).

The dependence of �g on p characterizes the radial profile of the

surface density.

We denote w(p, ϕ) as the (small) distance between the two neigh-

bouring streamlines (width of the flux tube confined by these stream-

lines) separated by the (small) distance w(p, 0) along the apsidal

line. Clearly,

w(p, ϕ)

w(p, 0)
= |∇p(r, ϕ)|−1 =

1 + e
(

1 + 2e cos ϕ + e2
)1/2

, (D1)

where we have used the equation for elliptical orbit in polar coor-

dinates

p = r
1 + e cos ϕ

1 + e
. (D2)

The gas surface density at periastron �g(p, 0) is related to

the density �g(p, ϕ) at a different location along the same

streamline via the continuity equation �g(p, ϕ)v(p, ϕ)w(p, ϕ) =
�g(p, 0)v(p, 0)w(p, 0), where

v(p, ϕ) =
�(p)p

1 − e

(

1 + 2e cos ϕ + e2

1 − e2

)1/2

(D3)

is the Keplerian velocity along the streamline (we neglect the mod-

ification of the gas rotation profile by pressure support). Here,

�(p) is the value of � corresponding to the semimajor axis

a = p/(1 − e). Using equations (D1) and (D3) we obtain

�g(p, ϕ) = �g(p, 0)
(1 + e)2

1 + 2e cos ϕ + e2
. (D4)

Now, let us consider a ring of particulate debris with radius r. An

elliptic streamline passing through a point (r, ϕ) on this ring has a

periastron distance p(r, ϕ) given by equation (D2). The azimuthal

velocity of gas passing through (r, ϕ) is given by

vϕ,g(r, ϕ) =
(

GM⋆(1 − e)

p(r, ϕ)

)1/2
1 + e cos ϕ
√

1 − e2

=
(

GM⋆

r

)1/2

(1 + e cos ϕ)1/2 , (D5)

where we have again neglected pressure support in the gas disc. The

relative azimuthal velocity between the gas and particles at point

(r, ϕ) is then given by

vϕ,rel =
(

GM⋆

r

)1/2
[

1 − (1 + e cos ϕ)1/2
]

, (D6)

i.e. the gas rotates faster (slower) than particles at ϕ = 0 (ϕ = π).

The midplane gas density along the ring is given by ρ(p, ϕ) =
�g(p, ϕ)�(r)/cs(r), where we have assumed for simplicity that cs

is independent of ϕ. According to equation (10), the azimuthal drag

force acting per unit area of the dense particle disc is then given by

fa(r, ϕ) = −Re−1
⋆

GM⋆�(r)

rcs(r)

×�g(p(r, ϕ), ϕ)
[

1 − (1 + e cos ϕ)1/2
]2

. (D7)
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528 B. D. Metzger, R. R. Rafikov and K. V. Bochkarev

We now compute the orbit-averaged azimuthal force acting on

the particle ring by averaging f a(r, ϕ) over ϕ. To do this, we will

assume that �g(p, 0) = �g,0(p/p0)−θ , relate �g to �g(p, 0) via

equation (D4) and use expression (D2) to describe the dependence

p(r, ϕ). As a result, one finds that

〈fa(r)〉ϕ = −Re−1
⋆

GM⋆�(r)�g,0

rcs(r)

(p0

r

)θ

I (e, θ ), (D8)

I (e, θ ) =
(1 + e)2+θ

2π

×
∫ 2π

0

[

1 − (1 + e cos ϕ)1/2
]2

(1 + e cos ϕ)θ
(

1 + 2e cos ϕ + e2
) . (D9)

We now explore the small-e limit of our results. When e → 0,

one can easily show that I(e, θ ) → e2/8 independent of θ , such that

the orbit-averaged azimuthal force can be written as

〈fa(r)〉ϕ = −
e2

8Re⋆

GM⋆�(r)

rcs(r)
�g(r). (D10)

We use this result in Section 6.1 to demonstrate the enhancement

of aerodynamic drag as the result of non-circular motions in the

gaseous disc.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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