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We discuss self-gravitating global O(3) monopole solutions associated with the spontaneous breaking of
O(3) down to a global O(2) in an extended Gauss-Bonnet theory of gravity in (3þ 1) dimensions, in the
presence of a nontrivial scalar field Φ that couples to the Gauss-Bonnet higher curvature combination with
a coupling parameter α. We obtain a range of values for α < 0 (in our notation and conventions), which are
such that a global (Israel type) matching is possible of the space-time exterior to the monopole core δwith a
de Sitter interior, guaranteeing the positivity of the Arnowitt-Deser-Misner (ADM) mass of the monopole,
which, together with a positive core radius δ > 0, are both dynamically determined as a result of this
matching. It should be stressed that in the general relativity (GR) limit, where α → 0, and Φ → constant,
such a matching yields a negative ADM monopole mass, which might be related to the stability issues the
[Barriola-Vilenkin (BV)] global monopole of GR faces. Thus, our global monopole solution, which shares
many features with the BV monopole, such as an asymptotic-space-time deficit angle, of potential
phenomenological/cosmological interest, but has, par contrast, a positive ADMmass, has a chance of being
a stable configuration, although a detailed stability analysis is pending.
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I. INTRODUCTION AND MOTIVATION:
THE (SELF-GRAVITATING) O(3)
GLOBAL MONOPOLE SOLUTION

Global monopoles have been suggested for the first time
by Barriola and Vilenkin [1] (BV) and are self-gravitating
singular objects, which are static solutions to the gravita-
tional and scalar equations of motion of a field theoretical
system of a triplet of real scalar fields χa, a ¼ 1; 2; 3,
transforming in the fundamental representation of an O(3)
global group, embedded in an Einstein [general relativity
(GR)] curved space-time. The fields have a symmetry
breaking potential which breaks spontaneously, through an
appropriate vacuum expectation value (VEV) of the triplet,
η ¼ constant ≠ 0, the O(3) group down to a global O(2).
The Lagrangian of the BV model is

L ¼ ð−gÞ1=2
�
R −

1

2
∂μχ

a
∂
μχa −

λ

4
ðχaχa − η2Þ2

�
; ð1:1Þ

where gμν is the (3þ 1)-dimensional metric tensor, g is its
determinant and R is the Ricci scalar for gμν.

1

As a result of the Goldstone theorem, these global
monopoles have massless Goldstone fields associated with
them. The energy densities of the latter scale with the radial
distance r from the monopole core as 1=r2, which lead to a
linear divergence of the monopole total energy density.
In [1], only estimates of the total monopole mass have
been given by considering the solution in the exterior of
the monopole core. Estimating the core size to be of order
δ ∼ λ−1=2η−1, one obtains a heuristic global monopole
particle mass estimate of order Mcore ∼ δ3λη4 ¼ λ−1η.
The presence of nontrivial curvature in the portion of
space-time exterior to the monopole core implies that the
above estimates should be rethought within the context of
the gravitational equations stemming from the Lagrangian
(1.1). However, since the gravitational effects are expected
to be weak, given that phenomenologically, in order for the
global monopoles to have a chance of being detected, they
should have survived inflation, and thus the associated O(3)
symmetry breaking should occur at scales much lower than
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1Our conventions and definitions throughout this work are
ð−;þ;þ;þÞ for the signature of the metric, the Riemann tensor is
defined as Rλ

μνσ ¼ ∂νΓλ
μσ þ Γρ

μσΓλ
ρν − ðν ↔ σÞ, and the Ricci

tensor and scalar are given by Rνα ¼ Rλ
νλα and R ¼ gμνRμν,

respectively.
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the inflationary scale, thus η ≪ MP, with MP the Planck
mass, BV argued that the flat space-time estimates for the
core mass might still be valid, as an order of magnitude
estimate. Nonetheless, as we shall explain below, their
naive analysis does not work, given that the backreaction
effects of the monopole onto the space-time are significant,
and affect its stability.
Indeed, outside the monopole core, BV used approxi-

mate asymptotic analysis of the equations of motion for the
scalar fields χa, a ¼ 1; 2; 3, and the Einstein equations,

Gμν ≡ Rμν −
1

2
gμνR ¼ 8πGNT

χ
μν ð1:2Þ

with Gμν the Einstein tensor, and Tχ
μν the matter stress

tensor derived from the Lagrangian (1.1). The scalar field
configuration for a global monopole is [1]

χa ¼ ηhðrÞ x
a

r
; a ¼ 1; 2; 3; ð1:3Þ

where xa are spatial Cartesian coordinates, r ¼ ffiffiffiffiffiffiffiffiffi
xaxa

p
is

the radial distance, and hðrÞ → 1 for r ≫ δ. So at such large
distances, the amplitude squared of the scalar field triplet
approaches the square of the vacuum expectation value
η, χaχa → η2.
As a result of the symmetry breaking, the space-time, for

r ≫ δ, differs from the standard Schwarzschild metric
corresponding to a massive object with massMcore (assum-
ing that all of the mass of the monopole is concentrated in
the core’s interior):

ds2 ¼ −
�
1 − 8πGNη

2 −
2GNMcore

r

�
dt2

þ dr2

1 − 8πGNη
2 þ 2GNMcore

r

þ r2ðdθ2 þ sin2θdϕ2Þ; r ≫ δ; ð1:4Þ
where GN is the (3þ 1)-dimensional Newton constant and
ðr; θ;ϕÞ are spherical polar coordinates. As a result of the
symmetry-breaking η VEV, the space-time is not asymp-
totically (r → ∞) flat, but differs from Minkowski by the
presence of a conical deficit solid angle ΔΩ ¼ 8πGNη

2.
The Schwarzschild metric is obtained in the unbroken
phase (η → 0). The space-time (1.4) becomes a Minkowski
space-time with

ds2 ¼ −dt02 þ dr02 þ ð1 − 8πGNη
2Þr02ðdθ2 þ sin2θdϕ2Þ;

r ≫ δ; ð1:5Þ

where in arriving at (1.5) we have rescaled the time
t → ð1 − 8πGN η2Þ−1=2t0, and radial coordinate r, r →
ð1 − 8πGNη

2Þ1=2r0. We stress that the space-time (1.5) is
not flat, since the scalar curvature behaves as

R ∝
16πGNη

2

r2
; r → ∞: ð1:6Þ

The presence of such a monopole-induced deficit solid
angle can have important physical consequences for scat-
tering processes in such space-times: the scattering ampli-
tude in the forward direction is very large [2] in angular
regions of the order of the deficit angle (or equivalently the
squared ratio of the monopole mass to the Planck mass).
Thus, one may have interesting methods [2] for looking for
global monopoles in, e.g., the early Universe, where the
scattering of cosmic-microwave-background photons off
them can lead to Einstein rings of strong intensities that
could constitute characteristic patterns.
However, the work of [1] has sparked a still ongoing

debate regarding the stability of the configuration [3].
Contributing formally to this debate, supporting arguments
in favor of instability of the solution of the global
monopole, is the detailed analysis of the gravitational
backreaction effects of such defects onto the space-time,
performed in [4]. In that work, the backreaction has been
determined by requiring a matching of the solutions of the
nonlinear coupled system of gravitational and matter
equations at the core radius, by replacing the interior to
the core radius space-time by a de Sitter one, with positive
cosmological constant. The singularity at r → 0 is regu-
larized, and the core size is determined dynamically rather
than heuristically from flat space arguments as was done
in [1]. The results of [4] amounts to a core radius,

rc ¼ 2λ−1=2η−1; ð1:7Þ

for the self-gravitating solution, which is found by match-
ing an exterior Schwarzschild-like metric,

ds2 ¼ −
�
1 − 8πGNη

2 −
2GNM

r

�
dt2

þ
�
1 − 8πGNη

2 −
2GNM

r

�
−1
dr2 þ r2dΩ2;

to an interior local de Sitter metric,

ds2 ¼ −ð1 −H2r2Þdt2 þ ð1 −H2r2Þ−1dr2 þ r2dΩ2;

whereM denotes the monopole mass andH2 ¼ 8πGN λη4

12
the

de Sitter parameter. The motivation to use such a matching
comes from the observation that at the origin (r → 0) the
Higgs potential for the scalars leads to a cosmological
constant ∝ η4, since any “matter” scalar fields go to zero.
Thus, one does not have any other structures in the interior
of the core, except perhaps a cosmological constant, which
could be a vacuum effect. Unfortunately, however, such a
matching yields a negative mass for the monopole,
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M ∼ −6πλ−1=2η < 0; ð1:8Þ

which may be viewed as supporting the instability of the
BV global monopole.
In [4] such a negative mass has been interpreted as a

consequence of the repulsive nature of gravity induced
by the vacuum energy H2 provided by the global monop-
ole. A classification of the space-times arising from a self-
gravitating global monopole solution of the type considered
in [1,4], i.e. in field theories with only the triplet of the
Higgs-type scalar fields and the Ricci scalar curvature, has
been given in [5], where it was argued that, upon requiring
regularity at the center of the monopole, but otherwise
independently of the shape of the Higgs potential, the
metric can contain at most one horizon. In such a case with
a single horizon, the global space-time structure is that of a
de Sitter space-time.
However, if a black hole or other geometric singularity is

present as r → 0, like in the string-inspired model of [6],
in which the self-gravitating BV model (1.1) is embedded
in the framework of the effective action originating from
the bosonic strings, involving antisymmetric tensor and
electromagnetic fields, which induce a Reissner-Nordstrom
geometry in the interior of the core of the initial BV
configuration, then the space-time for small r (r → 0) is
different. As shown in [6], then, the argument leading to
negative mass would not hold, and one can obtain a positive
mass global monopole in such extended string-inspired
gravity theories.
The presence of electromagnetic fields in this string-

inspired model, though, elevates the global monopoles to
magnetic monopoles, as it induces a singularlike magnetic
field B ∼ 1=r2, of the type encountered in the standard case
of a magnetic monopole [7,8]. It should be stressed for
completeness that in the model of [6], it is the equation of
motion of the dilaton that connects the antisymmetric Kalb-
Ramond (KR) parts of the effective action to the electro-
magnetic sector. The KR tensor in (3þ 1) dimensions is
dual to a massless axionlike particle. In this case, the
magnetic charge is proportional to the axion “charge,”
which is a constant ζ that characterizes the ζ=r asymptotic
(r → ∞) behavior of the axion field.
After the above discussion, a natural question arises

whether one can find global monopoles à la BVin extended
gravity models, in which the de Sitter regularization of [4]
leads to positive mass, as in the model of [6], but here
within the gravitational sector only, without elevating the
global monopole to a magnetic one. This question will
be answered in the affirmative in this article, where we
shall show that a global-monopole solution of the form
of [1], embedded in the higher curvature gravitational
theory of [9], which we call from now on extended
Gauss-Bonnet (eGB), can undergo the de Sitter regulari-
zation of the singularity as in [4], maintaining a positive
finite mass. This would imply that, contrary to the standard

BV global monopoles of [1], such global monopoles might
be stable, behaving as ordinary “particle” excitations. We
stress here, though, that the positivity of the mass of the
regularized configuration does not constitute a proof of
stability. Such a task will not be the topic of the current
discussion.
The structure of the article is the following: in Sec. II we

review the basic features of the eGB gravitational theory,
whilst in III we discuss the analytic parts of the global
monopole solution embedded in eGB theory, in the
asymptotic regions near the origin (r ¼ 0), the core region
(r ∼ δ) and at infinity (r → ∞). We study the de Sitter
regularization of the r → 0 singularity, and the resulting
positivity of the associated mass. In Sec. IV we give the
numerical solution interpolating between the aforemen-
tioned asymptotic regions of space, and we compare with
our analytic treatment, which completes the discussion on
the existence of such solutions to the eGB theory.
Conclusions and outlook are given in V.

II. EXTENDED GAUSS-BONNET GRAVITY

In this section we review the eGB gravitational theory, as
presented in [9], which will be our framework for the
derivation of global monopoles. The theory has the
advantage of containing a scalar field degree of freedom,
which is conformally coupled. This yields a purely gravi-
tational field equation, which may act as a constraint on the
equations of motion, thus allowing for closed-form local
solutions to be found. In general, the complexity of scalar-
tensor theories seldom allows for exact analytical local
solutions. However, by imposing additional symmetries in
the underlying gravitational action, exact solutions may be
derived, which is exactly the case here. The action of the
theory reads

SeGB ¼
Z

d4x
ffiffiffiffiffijgjp

16πGN
½R − βe2ΦðRþ 6ð∇ΦÞ2Þ

− 2λe4Φ − αðΦG − 4Gμν∇μΦ∇νΦ

− 4□Φð∇ΦÞ2 − 2ð∇ΦÞ4Þ�; ð2:1Þ

where G ¼ RαβμνRαβμν − 4RμνRμν þ R2 is the Gauss-
Bonnet term. It should be noted that, in the limit of
vanishing coupling constants α and λ, one obtains the
usual Einstein gravity with a conformally coupled scalar
field [10,11]. In a sense, the idea of a conformally coupled
scalar field in extended gravitational theories is certainly
not new. The advantage of the action under consideration is
that it allows for hairy black hole solutions with the scalar
field being everywhere regular but the origin. It should also
be stressed that the main form of the theory was previously
derived by Lu and Pang in their pioneering paper [12],
where they considered the singular dimensional limit of
the D-dimensional Lovelock action. This establishes a
beautiful connection of the compactified D-dimensional
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Lovelock gravity to the most general scalar-tensor gravity
with a conformally coupled scalar field [13].
Variation of the action (2.1) with respect to the metric

yields the following equations of motion:

ðEμνÞ∶ Gμν ¼ −αHμν þ βe2ΦAμν − λe4Φgμν; ð2:2Þ

where

Hμν ¼ 2Gμνð∇ΦÞ2 þ 4Pμανβð∇αΦ∇βΦ −∇α∇βΦÞ
þ 4ð∇αΦ∇μΦ −∇α∇μΦÞð∇αΦ∇νΦ −∇α∇νΦÞ
þ 4ð∇μΦ∇νΦ −∇μ∇νΦÞ□Φþ gμνð2ð□ΦÞ2
− ð∇ΦÞ4 þ 2∇α∇βΦð2∇αΦ∇βΦ −∇α∇βΦÞÞ;

ð2:3Þ

and

Aμν ¼ Gμν þ 2∇μΦ∇νΦ− 2∇μ∇νΦþ gμνð2□Φþ ð∇ΦÞ2Þ
ð2:4Þ

withPαβγδ ¼ − 1
4
ϵαβμνRμνκλϵκλγδ denoting the double dual of

the Riemann tensor and ϵαβγδ the Levi-Civita tensor with

the usual convention of ϵ0123 ¼
ffiffiffiffiffijgjp

. On the other hand,
variation of the action (2.1) with respect to the scalar field
Φ yields the equation

βR̃þ α

2
G̃þ 4λ ¼ 0; ð2:5Þ

where R̃ and G̃ are the Ricci scalar and the Gauss-Bonnet
term computed on the transformed metric g̃μν ¼ e2Φgμν. By
virtue now of the scalar field being conformally coupled,
one may deduce that the combination of the equations of
motion −2gμν

δSeGB
δgμν

þ δSeGB
δΦ ¼ 0 yields the condition

Rþ α

2
G ¼ 0; ð2:6Þ

which establishes a helpful geometric constraint for the
derivation of local solutions. In particular, due to (2.6), one
may set a spherically symmetric homogeneous metric
ansatz of the form

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2 ð2:7Þ

and verify the metric component solution of [9] given as

fðrÞ ¼ 1þ r2

2α

"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4α

�
2GNM
r3

þ C
r4

�s #
; ð2:8Þ

where C is an integration constant to be verified by the
equations of motion, whileM is the Arnowitt-Deser-Misner

(ADM) mass of the space-time. Following on this result,
the scalar field solution for this metric may be derived by
the combination of the gravitational equations Et

t − Er
r ¼ 0

[cf. (2.2)], which allows for the following nontrivial scalar
field profiles to be found:

ΦðrÞ ¼ ln

�
c1

rþ c2

�
ð2:9Þ

ΦðrÞ ¼ ln

0
B@

ffiffiffiffiffiffi
−2α
β

q
r

sech

�
c3 �

Z
r dr0

r0
ffiffiffiffiffiffiffiffiffiffi
fðr0Þp �1CA: ð2:10Þ

The integration constants for the metric and the scalar
profiles are to be determined by the rest of the equations at
hand. Interestingly, each of the scalar field profiles imposes
a different integration constant on the metric component
and a different value of the λ parameter. In particular, for the
first case of (2.9), one finds that C ¼ 2α, c1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2α=β

p
and c2 ¼ 0, while λ ¼ β2

4α. For the second case of (2.10), one

finds that C ¼ 0with λ ¼ 3β2

4α , while c3 is left undetermined.
Moreover, both solutions imply that the coupling constants
α and β need to satisfy αβ < 0. An overview of the action
(2.1) shows that if β < 0, then the canonical kinetic term of
the scalar field has the wrong effective sign, which implies
a scalar field of phantom nature. To this end, we constrain
ourselves to β > 0 and α < 0, as was the case in the
analysis of the corresponding black hole solutions per-
formed in [14].

III. GLOBAL MONOPOLES
WITH POSITIVE MASS IN EXTENDED

GAUSS-BONNET GRAVITY

Having paid our dues to the review of the gravitational
theory and its corresponding local solutions, we may now
move on to the main topic of our work, which is the
derivation of global monopole space-times. In particular,
we will show that the negative α parameter appearing in the
action may stabilize the global monopole space-time,
which in GR has the known pathology of yielding negative
mass [1,4]. To extract monopole space-times, we consider
the addition of a Higgs triplet matter content χa, a ¼ 1; 2; 3,
and its corresponding Higgs potential VðχÞ ¼ ξ

4
ðχaχa −

η2Þ2 on the gravitational theory,

S ¼ SeGB þ
Z

d4x
ffiffiffiffiffi
jgj

p
×
�
−
1

2
ð∂μχaÞð∂μχaÞ −

ξ

4
ðχaχa − η2Þ2

�
; ð3:1Þ

which in the unbroken sector satisfies an internal O(3)
symmetry. The corresponding gravitational equations of
motion are trivially modified with the addition of the
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Higgs stress-energy tensor Tχ
μν ¼∇μχ

a∇νχ
a − 1

2
gμνð∇χÞ2 −

gμνVðχÞ, i.e.

Gμν ¼ −αHμν þ βe2ΦAμν − λe4Φgμν þ 8πGNT
χ
μν ð3:2Þ

while the Higgs equation of motion is simply

□χa ¼ ξχaðχbχb − η2Þ a; b ¼ 1; 2; 3: ð3:3Þ

On the other hand, the previous geometric condition of
(2.6) will also contain the Higgs matter content and reads

Rþ α

2
Gþ 8πGNTχ ¼ 0; ð3:4Þ

where Tχ ¼ gμνTχ
μν. In order for the action to contain a

global monopole solution, one uses the familiar ansatz for
the Higgs field of [cf. (1.3), Sec. I]:

χa ¼ ηhðrÞ x
a

r
; xaxa ¼ r2 ð3:5Þ

with hðrÞ → 1 as r → ∞. Note that this constraint also
implies that ∂μhðrÞ → 0 as r → ∞. Under (3.5), one may
write the components of the Higgs triplet as

x1 ¼ r cosϕ sin θ; x2 ¼ r sinϕ sin θ; x3 ¼ r cos θ

ð3:6Þ
and the stress-energy tensor may be expressed as a tensor
dependent solely on the hðrÞ function, while the equation
of motion for the Higgs triplet is reduced to a single
differential equation of hðrÞ. In particular, keeping the
homogeneous spherically symmetric ansatz of (2.7), we
may find that (3.3) is reduced to�
h00 þ 2h0

r

�
f þ h0f0 − ξη2h3 þ

�
ξη2 −

2

r2

�
h ¼ 0; ð3:7Þ

where the prime denotes derivative with respect to r. In the
presence of the Higgs sector, the equations of motion are
to be solved asymptotically in the regions of large r and
r → 0. We will first focus on the asymptotic region, where
we may set hðrÞ → 1. We note that this approximation
satisfies the Higgs equation of motion only up to Oðr−1Þ.
We note at this stage that, upon setting hðrÞ ¼ 1þOðr−1Þ
in (3.7), for asymptotically large r → ∞, this equation does
not yield any information on the function fðrÞ to this order
in 1=r. To obtain the asymptotic solution for fðrÞ, r → ∞,
we plug the approximation of a constant Higgs, hðrÞ ≈ 1,
into the condition of (3.4), and find that

fðrÞ ¼ 1þ r2

2α

"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4α

�
2GNM
r3

þ C
r4

þ η28πGN

r2

�s #

ð3:8Þ

which implies that the monopole contribution yields a solid
deficit angle on the underlying space-time, which is a
familiar result from the global monopole solution of GR
of [1], reviewed in Sec. I. Indeed, it is easily verified from
the solution of (3.8) that

fðrÞ ∼ 1 − η28πGN −
2GNM

r
þOðr−2Þ; r → ∞: ð3:9Þ

The reader is reminded of the nontrivial scalar curvature
(1.6) of orderOðr−2Þ, of an asymptotic (r → ∞) space-time
with a deficit, of the form (3.9), which is a characteristic
feature of such constructions, characterized by a broken
symmetry [1]. It should be noted that in the unbroken phase
where η ¼ 0, we recover the original local solution of
the theory. However, the choice of the scalar profile will
play a crucial role in stabilizing the monopole space-time.
We note that, since the scalar profile equation is derived
from Et

t − Er
r [cf. (2.2)] and the Higgs sector contribution

vanishes in this combination for the asymptotic value of
hðrÞ → 1, the scalar field solutions will be the same as (2.9)
and (2.10). We shall choose the scalar field profile (2.9),
since this is the only one that can stabilize the monopole
space-time, as we will later comment on the results. We
note that this solution again yields the following values for
the corresponding integration constants:

C ¼ 2α; c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2α=β

p
; c2 ¼ 0 ð3:10Þ

while the λ parameter is fixed at

λ ¼ β2

4α
; ð3:11Þ

in order to have a smooth limit to the black hole solution
with η → 0.
Moving on to the small r limit, we are focusing on the

interior of the monopole. In this region, it is natural to
consider that the Higgs field vanishes, while the scalar field
Φ approaches some constant value. This implies that we
need to set that

hðrÞ → 0; ΦðrÞ → Φ0; for r → 0 ð3:12Þ

while keeping the fixed value of λ ¼ β2

4α. For this case, the
metric component resembles a de Sitter core for the interior
space-time, i.e.

fðrÞ ¼ 1þ r2

2α

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ αξη48πGN

3

r !
ð3:13Þ

as can be verified from (3.4). We note that this solution
constrains the possible values of the α parameter to

α ≥
−3

ξη48πGN
: ð3:14Þ
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This range of values yields that (3.13) indeed describes
a de Sitter core, since the term in the parentheses is posi-
tive definite, while α < 0. This is the first verification that
we correctly chose α < 0 for our gravitational action.

However, this configuration does not exactly solve the
equations of motion. One needs also to fix the value of the
dilaton in the near origin regime. In order for the equations
of motion to be satisfied in this configuration, we find that

Φ0 ¼
1

2
ln

2
643
β
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 3η4κ2ξjαj

p
β

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2η4κ2ξjαj þ β2ð9 − 3η4κ2ξjαjÞ − 4β2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 3η4κ2ξjαj

p
þ 3β2

q
β2

3
75; ð3:15Þ

which can be verified that it is a well-defined value, i.e.
Φ0 ∈ R, as long as (3.14) holds. Note that β is a free
(positive) parameter and cannot be constrained in the near
origin regime. In order to obtain a more complete treatment,
a numerical analysis of the equations of motion needs to be
implemented, which is discussed in Sec. IV. We remark,
though, that, as becomes evident from our analytic treat-
ment in this work and matching using Israel conditions at
the monopole core and asymptotically for large r → ∞, the
existence of a numerical curve for a solution joining these
two regimes smoothly is expected, as we indeed verify
explicitly in Sec. IV.
Since the metric components of (3.8) and (3.13) describe

the same space-time in different patches of the manifold,
they need to be matched at an intermediate radius in order
to obtain a complete picture of the space-time. This will
yield us the possible values of the ADM mass of the
monopole.
In order to perform the matching, we follow the Israel

conditions, where we match the interior metric component
of (3.13) to the exterior of (3.8), while equating their first
normal derivatives on the intermediate radial value to avoid
discontinuities on the metric tensor. In particular, we are
considering a global metric of the form

ds2G ¼ −FðrÞdt2 þ dr2

FðrÞ þ r2dΩ2: ð3:16Þ

FðrÞ is a distribution function defined as

FðrÞ ¼ F1ðrÞΘðδ − rÞ þ F2ðrÞΘðr − δÞ; ð3:17Þ

where F1ðrÞ ¼ 1þ r2
2α

	
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ αξη48πGN

3

q 

, F2ðrÞ ¼ 1þ

r2
2α

h
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4αð2GNM

r3 þ 2α
r4 þ η28πGN

r2 Þ
q i

, and ΘðrÞ denotes

the Heaviside function, while δ is the intermediate radial
value where the matching is assumed to be performed.
Then, the Israel conditions simply read

F1ðrÞjr¼δ ¼ F2ðrÞjr¼δ;
d
dr

F1ðrÞ
���
r¼δ

¼ d
dr

F2ðrÞ
���
r¼δ

:

ð3:18Þ

Solving the above system with respect to δ and the ADM
mass, we find four solutions, only one of which yields
positive values for both quantities. In particular,

δ ¼
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − 2αξ

p
ξη2κ

s
;

M ¼
ffiffiffi
2

p
η

3GN

	
−2κ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − 2αξ

p 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ
κ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − 2αξ

p
ξ

s
;

ð3:19Þ

where κ2 ¼ 8πGN. Note that the ADM mass is positive if
the α parameter is constrained from above as α < − 3κ2

2ξ ,
which yields the effective range of

−3
ξη4κ2

≤ α < −
3κ2

2ξ
: ð3:20Þ

The existence of an upper limit of negative α was to be
expected from the global monopole results of GR [4].
Indeed, if α was allowed to reach α → 0, the ADM mass of
the monopole would yield

Mα→0 ¼ −
16πη

3
ffiffiffi
ξ

p ; ð3:21Þ

that is, the familiar result of the negative mass of the global
monopole we know from GR [4].2 It should be noted here
that, having chosen the second scalar profile, the result of
the matching is exactly the same as GR and in this case, the
parameter α plays no role in the derivation of the monopole
mass. This is because we are effectively matching the
square root of the interior and the exterior metric and it is
the term 2α=r4 in the exterior metric which drives the
stabilization of the monopole. For the scalar field profile of
(2.10), this term is absent. Our main result, therefore, is that
in the presence of the nontrivial extended Gauss-Bonnet

2We note at this stage that, in this respect, the four-dimensional
Gauss-Bonnet-gravity-Φ model of [12] corresponds to positive
α > 0, and hence such a model does not include global
monopoles with positive ADM mass.
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term, the repulsive gravitational nature of the global
monopole is remedied.

IV. NUMERICAL SOLUTION

A numerical analysis of the standard global BV monop-
ole regularized with a de Sitter space-time in its core has
been performed in [4], using the Runge-Kutta routine. In
our case, as we shall see, the presence of the dilaton and its
rapidly changing form (compared to the other fields in the
problem (metric and Higgs)) complicates the situation, and
forces us to use other methods to construct the numerical
solution.
In what follows we discuss first the validity of the metric

function asymptotic solutions, Eqs. (3.8) and (3.13), and
the continuation of the Higgs hðrÞ and metric fðrÞ
functions in the region close to the monopole core
(r ¼ δ). In particular, in the spirit of [4], we will present
the numerical method followed, which leads to the curves
shown in Figs. 1 and 2. On assuming a more general metric
than (3.16), of the form

ds2 ¼ −GðrÞdt2 þ dr2

fðrÞ þ r2dΩ2; ð4:1Þ

we solve the resulting Einstein equation Er
r with respect to

G0ðrÞ=GðrÞ. We do not present the explicit expressions
here, due to their algebraically awkward form, which in any
case is not very illuminating. It is important to stress,
however, that the ansatz (4.1) is indispensable, since we
have no guarantee that the metric is homogeneous in the
nonasymptotic regions. To obtain the numerical solution,
we first eliminate GðrÞ from Eqs. (3.4) and (3.7).
Subsequently, we solve these equations along with equa-
tion Et

t with respect to h00ðrÞ, f0ðrÞ, and Φ00ðrÞ. Thus, we

have three differential equations to be numerically solved
simultaneously.
This problem seems to be stiff, i.e. certain numerical

methods for solving the aforementioned equations are
numerically unstable, unless the step size is taken to be
extremely small. We remind the reader that an ordinary
differential equation problem is stiff if the solution being
sought is varying slowly, but there are nearby solutions
that vary rapidly, so the numerical method must take
small steps to obtain satisfactory results. This is exactly
the case with the scalar field ΦðrÞ in our problem.
Therefore, we solve the differential problem exploiting
the “StiffnessSwitching” method of Mathematica, which
uses a pair of extrapolation methods as the default. To be
more precise, the stiff solver uses the Linearly Implicit
Euler method, while the nonstiff solver uses the Explicit
Modified Midpoint method. To avoid infinite expressions,
we consider initial conditions for r ¼ ϵ ≈Oð10−5Þ:

fðϵÞ ≈ 1; hðϵÞ ≈ 0.5 · ϵ; h0ðϵÞ ≈ 0.5;

ΦðϵÞ ≈ 4.47; and Φ0ðϵÞ ≈ 0.001: ð4:2Þ

This particular choice of initial conditions was a challeng-
ing problem, which will be discussed later on. Also, we fix
the values of the parameters of our model to the set:

η ¼ 0.01; ξ ¼ 104; α ¼ −1.6 × 10−4

and β ¼ 8 × 10−9: ð4:3Þ

Moreover, we should recall that, in order for the correct
asymptotic solutions to be obtained, one must have (3.11),
with Φ0 fixed by Eq. (3.15). We work in units κ ¼ 1. For
the chosen set of parameters (4.3), the initial value of
the scalar field reads Φ0 ¼ 0. Note that the above set of

Numerical calculation
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r )

Higgs function h(r)

FIG. 1. Numerical calculation of the Higgs function for η ¼
0.01, ξ ¼ 104, α ¼ −1.6 × 10−4, β ¼ 8 × 10−9, λ ¼ −10−13, and
κ ¼ 1. The three vertical lines denote the thickness of the
core shell.

Numerical calculation

Theoretical calculation

0 2 4 6 8 10 12 14

0.99990

0.99992

0.99994

0.99996

0.99998

1.00000

r

f(
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FIG. 2. Numerical (solid line) and theoretical (dashed line)
calculations of the metric function for η ¼ 0.01, ξ ¼ 104,
α ¼ −1.6 × 10−4, β ¼ 8 × 10−9, λ ¼ −10−13, and κ ¼ 1. The
three vertical lines denote the thickness of the core shell.
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parameters satisfies the inequality (3.20), and hence, we
work with a structure with positive ADM mass.
Before proceeding further, it is crucial to discuss the

above choices of the values of the parameters and the initial
conditions. We chose

ffiffiffi
ξ

p
η ¼ 1 and a value for α close to its

upper limit αmax ¼ −1.5 × 10−4 in order to compare our
results with those of the numerical analysis of the BV
model in [4]. For instance, for the chosen set of parameters,
the radius of the monopole core in our model is δ ≈ 2.47,
while in BV model reads δBV ¼ 2. Also, we chose the
initial conditions of the Higgs function to be similar to
those presented in [4], in order to obtain hðr → ∞Þ → 1.
The most challenging aspect of our analysis is the choice of
ΦðϵÞ. In order for the metric function to have a plateau
fðr → ∞Þ → 1 − η2 ¼ 0.9999, we fix ΦðϵÞ ≈ 4.47. We
note at this point that, if we had chosen ΦðϵÞ ≈Φ0 ¼ 0,
then the metric function would have asymptotically reached
the value 0.99994, which is not the correct boundary
condition of our solution. Hence, we conclude that, close
to the origin, the value of the scalar field surged from 0 to
approximately 4.47, which means that the scalar field acts
like a step function near r ¼ 0. Additionally, on account of
our theoretical analysis in Sec. III, we expect that the scalar
field is approximately constant inside the monopole core of
radius δ ¼ 2.47 up to r ≃OðϵÞ. This is exactly the case,
since we need to fix Φ0ðϵÞ ¼ 0.001 in order for a standard
form of the Higgs function [4] and a reasonable form of the
metric function to be obtained.
Around the monopole core, the numerical problem

becomes extremely difficult to handle, because the
derivative of the scalar field around the core, Φ0ðr ≃ δÞ,
is rapidly changing. This implies that either more advanced
numerical methods are required or an interpolation method
to match the interior with the exterior solutions should be
implemented. We chose the second method, where a
numerical analysis has been applied in regions r ∈ ðϵ; δ −
0.1Þ and r ∈ ðδþ 0.1;∞Þ, while the intermediate region
of ðδ − 0.1; δþ 0.1Þ has been dealt with using an inter-
polation function. Considering the numerical solution
in the exterior region (r > δþ 0.1), we imposed the
initial conditions: fðδþ 0.1Þ ≈ 0.83, f0ðδþ 0.1Þ ≈ 0.12,
Φðδþ 0.1Þ ≈ 4.35, Φ0ðδþ 0.1Þ ¼−0.39, and Fðδþ 0.1Þ≈
0.999935.
In Fig. 1, we depict the numerical solution for the Higgs

function, the form of which is typical for global monopole
models such as [4]. In Fig. 2, we compare the numerically
calculated metric function with the theoretical one, after the
Israel matching (3.17). These solutions are identical in the
asymptotic regions, as it was expected, and they differ by
up to 10−5 in the area around the monopole core. In Fig. 3
we present the numerical solution of the scalar field
compared with the theoretical solution (2.9), which is valid
in the exterior region (r > δ). Interestingly, even close to
the monopole core for r > δ, the numerical solution of the
scalar field, for reasonable initial conditions, is identical to

the theoretical one. In all three figures we use three vertical
lines denoting the thickness of the core region, which
correspond to r ¼ δ − 0.1, r ¼ δ, and r ¼ δþ 0.1,
respectively.
This completes our discussion on the numerical solution

of the global monopole in the eGB model.

V. CONCLUSIONS AND OUTLOOK:
POTENTIAL PHENOMENOLOGY

In this work, we have examined the existence of self-
gravitating global monopole solutions of the type discussed
in [1], but in the framework of the so-called extended
Gauss-Bonnet (eGB) gravitational theory (2.1), involving
among other terms, the coupling of a scalar field Φ to the
Gauss-Bonnet higher-curvature combination, with a cou-
pling constant α. As a consequence of this coupling, the
embedding (3.1) of the Higgs-triplet-χ sector to the eGB
theory (2.1), implies the possibility of regularizing the
singularity region r → 0 at the center of the monopole with
a de Sitter type space-time, up to the position of the core δ,
which is then matched to an exterior to the monopole core
space-time (3.17), which for r → ∞ asymptotes [cf. (3.9)]
to a Minkowski space-time with a conical deficit given by
η28πGN. One may then define a global metric (3.16) to
cover the entire space-time, including the interior of the
monopole.
The existence of a conical deficit, as in the case of the

(unstable) monopole of [1], would imply similar phenom-
enology as for the standard global monopole, discussed in
Sec. I, albeit in our case the monopole has a positive mass,
and thus it is likely to be stable. The positivity of the ADM

Numerical calculation

Theoretical calculation
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FIG. 3. Numerical (solid line) and theoretical (dashed line)
calculations of the scalar field in the interior and exterior to the
core regions of the global monopole in the eGB model, for the set
of parameters given in Fig. 2. The dilaton is approximately a step
function near the origin. The three vertical lines denote the
thickness of the core shell. The dashed line corresponds to the
analytic scalar field solution of (2.9), also valid for the exterior
region r > δþ 0.1 of the monopole case.
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mass of the monopole is due to appropriate restrictions of
the coupling constant α, (3.20), which when satisfied,
guarantee the dynamical (through the appropriate Israel
matching conditions) determination of a positive core
radius δ and a positive ADM mass of the global monopole,
(3.19). One verifies easily that in the limit α → 0, one
obtains the standard negative-monopole mass result of [4],
(3.20), for the monopole mass of [1].
Some remarks are in order here, regarding the cosmol-

ogy, as well as galactic phenomenology of such objects.
Actually, as already remarked in Sec. I, the phenomenology
is rather generic to any object that leads to an asymptotic
space-time with a conical deficit. The global monopole
discussed in this work, within the context of eGB gravity, is
a local self-gravitating configuration involving scalar “hair”
due to the nonconstant dilaton. The cosmology of the eGB
model of [9] per se is a topic by itself, which we would not
like to enter here (for some preliminary discussion on such
a topic in the absence of a deficit see [9,13]). Nonetheless,
if the theory turns out to be physical and to contain such
stable configurations, they could indeed play a role as
cosmological dark matter candidates, since they are char-
acterized by a positive ADMmass, provided, of course, that
they exist in sufficiently large populations in the early

Universe, and have masses in appropriate windows below
the inflationary scale to avoid dilution by inflation, but also
not to overclose the Universe. Irrespectively, though, of
their potential cosmological importance, if localized pop-
ulations of global monopoles exist in some regions of the
early universe, then scattering of CMB photons on them
will lead, as already mentioned, to Einstein rings [2]. This
is due to the fact that the scattering of electrically neutral
massless particles on such space-times is described by
amplitudes that exhibit resonant behavior when the for-
ward-scattering and deficit angles coincide, leading to
ringlike structures where the cross sections are very large
(formally divergent, appropriately regularized as we dis-
cuss below), a phenomenon termed “singular lensing” in
the last last listing of Ref. [2].
Specifically, as discussed in the last listing of Ref. [2],

for the physically interesting case of small deficits
(η28πGN ≪ 1, as expected in theories of phenomenological
interest where the symmetry breaking mass scale η is much
smaller than the Planck scale) scattering of massless
electrically neutral particles (such as CMB photons) of a
global monopole background, will result in a differential
cross section:

dσ
dΩ

¼θ≥−πζ̃ 1

8ω2

sin2πζ̃

ðcos πζ̃ − cos θÞ3
�
1 −

πð1 − b2Þ
4b

ðcos πζ̃ − cos θÞ
sin πζ̃

�
2

¼ 1

64ω2

sin2πζ̃

ðsinðΔ
2
Þ sinðΔ

2
þ jπζ̃jÞÞ3

�
1 −

πð1 − b2Þ
2b

ðsinðΔ
2
Þ sinðΔ

2
þ jπζ̃jÞÞ

sin πζ̃

�2
; ð5:1Þ

where we used the convenient notation of the last listing of
Ref. [2], with ω the energy of the incident particle/wave, θ
the scattering angle, b2 ¼ 1 − η28πGN related to the
conical deficit angle 2ζ̃≡ 1 − b2 ¼ 8πη2GN, and in the
second line of (5.1), we have expressed the result in terms
of the (non-negative) parameter Δ≡ θ − jπζ̃j ≥ 0, using
cos πζ̃ − cos θ ¼ 2ðsinðΔ

2
Þ sinðΔ

2
þ jπζ̃jÞÞ. This allows for

an easier visualization of the physical effects of the limit
θ → jπζ̃j ≠ 0, i.e. when 0 < Δ ≪ jπζ̃j. Indeed, the leading
behavior of the differential cross section (5.1), as θ →
jπζ̃j ≠ 0 (0 < Δ ≪ jπζ̃j), is

dσ
dΩ

≃
θ→jπζ̃j≠0 sin2πζ̃

8ω2ðcos πζ̃ − cos θÞ3

≃
0<Δ≪jπζ̃j 1

64ω2j sin πζ̃jsin3ðΔ
2
Þ ; ð5:2Þ

which diverges for Δ → 0, giving rise to the aforemen-
tioned lensing phenomenon (formation of Einstein ringlike
structures) [2]. The phenomenon is independent of the spin

of the scattered particle, and hence it applies equally well to
photons. It goes without saying that, in practice, this
divergence will be regulated by the experimental/observa-
tional angular resolution θres, which imposes a natural
cutoff Δ ≥ θres in the above expressions. This would imply
that the maximum value of the differential cross section
attained will be dσ

dΩ jmax ¼ dσðΔ¼θresÞ
dΩ .3 We also remark that in

the region of scattering angles πζ̃ ≪ Δ (for πζ̃ ≪ 1), we
obtain from (5.1) a suppressed differential cross section,

dσ
dΩ

≃
jπζ̃j≪Δ;jπζ̃j≪1 ðπζ̃Þ2

64ω2sin6ðΔ
2
Þ
�
1þ sin2

�
Δ
2

��
2

; ð5:3Þ

where we employed the approximation πð1 − b2Þ=2b≃
−πζ̃ > 0, for jπζ̃j ≪ 1.
In principle, therefore, by measuring the size of the

ringlike region implied by (5.2), we can determine the

3In fact, as discussed in the last listing of Ref. [2], θres acts as a
regulator of the singular scattering amplitude and the total cross
section computed using the optical theorem.
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parameter b, or, equivalently, the deficit angle in the
asymptotic space-time metric (1.5), and, therefore, the
symmetry breaking scale η. The lensing phenomenon is
generic to such asymptotic space-times with a deficit and
is independent of the underlying microscopic geometry
which asymptotes to (1.5). Hence, it is not particular to the
global monopole. In the standard BV monopole [1] the
deficit would be proportional to the mass of the monopole,
and thus measuring η would determine this mass.
However, in the eGB case, the (positive) monopole
ADM mass (3.19) is a function not only of η but also
of the GB parameter α and the scalar self-interaction
coupling ξ, hence by measuring the η alone through the
singular lensing phenomenon is not sufficient to infer
information on the global monopole mass. One needs to
determine also these other two parameters α, ξ independ-
ently. A combination of these parameters enter also the
monopole “core” δ (3.19) (where the matching of the de
Sitter interior to the exterior space-time has been per-
formed). Ordinary gravitational lensing of photons by
such compact objects (associated with scattering angles
outside the singular lensing regime), which in general
depends on both the mass M and the core size δ of the
global monopoles, will provide additional constraints on
the three parameters η, α and ξ of the eGB theory of the
global monopole. The fact that the eGB theory also admits
black hole solutions [9], and in general exhibits a rich
phenomenology [13], which allows us to constrain inde-
pendently the GB parameter α, features that are expected
to be valid also in the presence of a deficit angle (albeit
with nonasymptotically flat solution [cf. (1.6)], implies
that one has at their disposal sufficient phenomenological
and observational tools to constrain observationally/
experimentally all three parameters η, ξ and α. In this
way we can place constraints not only on the mass and
core radius of such (stable) eGB global monopoles, but
also on their local abundance (e.g., within our galaxy). We
remark that, in view of the local character of the solution,
the eGB global monopoles, if stable, could play the role of
“galactic dark matter” candidates, even if they turn out not
to be the dominant cosmological dark matter. We hope
therefore the current work will simulate such searches in
the future.
The positivity of the ADMmass of the global monopole

is perhaps an encouraging factor towards its stability.
Nonetheless, in the present article we do not want to make
strong claims until a detailed stability analysis on the
solution is performed, along the corresponding studies in
black hole physics [15]. It is only when such a stability
analysis is complete that we can enter with a definite
answer the debate on the stability of the global monopole
in eGB gravity. To verify that our configuration is stable, a
detailed time-dependent perturbation analysis on the
metric configurations needs to be implemented, which,
as we have already mentioned, is out of the scope of this

paper, and constitutes a task for a future work. We do
note at this stage that gravitational wave analysis on a
global monopole space-time, required for the stability
study, is a highly nontrivial subject and it would be a
stand-alone work in this case due to the effect of the solid
deficit angle on the boundary conditions of the evolution
of the perturbations. Indeed, the presence of a deficit
angle will probably imply, in view of the aforementioned
singular lensing phenomenon (5.2), which would also
characterize gravitational wave scattering off global
monopoles, that linear stability studies as in the standard
string-inspired GB black hole of [15] are not sufficient to
demonstrate stability, and hence one would require the
machinery of the full numerical relativity, which is out of
the scope of this work.4 The main subject of the paper
was to show that regularized global monopoles with
positive mass exist in the eGB gravity, which, as we have
hopefully communicated to the reader, was itself not a
trivial issue, given that it is a result which is absent in
GR, and, in addition, remedies a main pathology of the
global monopole in GR [1,4]. Another issue we would
like to look at is whether there is the possibility of
inducing a magnetic monopole from the global monopole
solution, following an analysis inspired by the work
of [6]. Perhaps, one way to do this is to allow for a
Maxwell term in the action (3.1), with an appropriate
form factor − 1

4
fðΦÞFμνFμν, such that for constant scalar

field Φ ¼ Φ0, this factor goes to 1, fðΦ → Φ0Þ ¼ 1, so
that one recovers the standard electromagnetic inter-
actions in the presence of gravity. It would be interesting
to see whether, under appropriate selection of the
function fðΦÞ, one may obtain magnetic field configu-
rations of magnetic monopole type, as in [6]. Such an
analysis is postponed for a future work.
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