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Abstract—Multiview structure recovery from a collection of
images requires the recovery of the positions and orientations
of the cameras relative to a global coordinate system. Our
approach recovers camera motion as a sequence of two global
optimizations. First, pairwise Essential Matrices are used to re-
cover the global rotations by applying robust optimization using
either spectral or semidefinite programming relaxations. Then,
we directly employ feature correspondences across images to
recover the global translation vectors using a linear algorithm
based on a novel decomposition of the Essential Matrix. Our
method is efficient and, as demonstrated in our experiments,
achieves highly accurate results on collections of real images
for which ground truth measurements are available.
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I. INTRODUCTION

Given a collection of images, recovering the exterior

orientation parameters (i.e., the location and orientation) of

the cameras that capture the images is an important step

toward 3D shape recovery. This, multiview Structure from

Motion (SfM) problem [1], [2], is a fundamental and well

studied problem in computer vision. Recent decades have

seen persistent progress in both problem formulation and the

development of suitable algorithms for SfM. This progress,

along with the advancement of computational power, has led

to systems that are now capable of reconstructing large scale

scenes from hundreds of thousands of images (e.g., [3], [4],

[5], [6], see review in [7]).

This paper addresses the problem of finding the exterior

camera parameters of n cameras given a collection of point

correspondences. SfM systems typically use point corre-

spondences to recover epipolar constraints between pairs of

images. The camera motion parameters are over-constrained

by these epipolar constraints. A consistent recovery of the

exterior camera parameters from a partial set of noisy epipo-

lar constraints is a challenging and well-studied problem.

Until recently, practical SfM systems have approached the

problem of motion estimation in large, multiview settings

using a sequential, greedy strategy that scans the image set

in paths that produce a spanning tree [3], [5], [6]. Several

recent studies cast the problem in a global optimization

framework that accounts simultaneously for all cameras [8],

[4], [9], [10], [11], [12], [13], [14], [15]. In this paper we

propose an approach that solves for all motion parameters

simultaneously in a framework which is both efficient and

accurate.

We follow a common pipeline of SfM methods [8], [10].

Given n input images, we use standard software to recover

point correspondences and Essential Matrices (relating some

of the image pairs). Our method then proceeds by recov-

ering the orientations of the corresponding n cameras and

subsequently the n camera locations. For the recovery of

camera orientation we use an objective similar to the one

proposed by [10] and propose two new methods to solve

this problem using (i) eigenvector decomposition and (ii)

semidefinite programming (SDP). Subsequently, we intro-

duce a new way to solve for camera locations by casting

the problem as a homogeneous linear system of equations.

To this end we introduce a novel expression for the Essential

Matrix in terms of the global motion parameters and derive

a method to recover the camera locations directly from

point correspondences. Our method is very efficient: camera

parameters are recovered by applying the MATLAB ’eigs’

command on two 3n ⇥ 3n matrices. Our method achieves

accurate estimates of the motion parameters, overcoming

errors in the initial estimates of pairwise Essential Matrices.

We demonstrate our method in experiments with standard

collections of real images.

II. BACKGROUND

We begin with a brief summary of the relevant concepts

in multiview geometry. A thorough treatment of this subject

can be found in [2]. Let I1, I2, ..., In denote a collection of

images of a stationary scene, and let ti 2 R
3 and Ri 2

SO(3) (1  i  n) respectively denote the focal points

and orientations of the n cameras in some global coordinate

frame. Let fi denote the focal length of the i’th camera.

To produce the i’th image a scene point P = (X,Y, Z)T

is transformed to Pi = RT
i (P � ti) and projected to pi =

(xi, yi, fi) in Ii with pi = (fi/Zi)Pi, where Zi is the depth

coordinate of Pi.

For a pair of images Ii and Ij (1  i, j  n) we define

Rij = RT
i Rj and tij = RT

i (tj � ti). It can readily be



verified that Pj = RT
ij(Pi�tij). Therefore, Rij and tij are

the rotation and translation that relate the coordinate frame

of image j with that of image i. Clearly, Rji = RT
ij and

tji = �RT
ijtij .

By a standard construction, the Essential Matrix Eij is

defined as Eij = [tij ]⇥Rij , where [tij ]⇥ denotes the skew-

symmetric matrix corresponding to the cross product with

tij . This construction ensures that for every point P 2 R
3

its projections onto Ii and Ij , denoted pi and pj , satisfy the

epipolar constraints

pT
i Eijpj = 0. (1)

A proper Essential Matrix Eij can be decomposed into a

rotation Rij and a translation tij . This provides two possible

rotations and a scale (and sign) ambiguity for the translation,

which are determined by the chirality constraint.

III. ESTIMATING CAMERA ORIENTATION

Our formulation is based on recent estimation methods

shown in the context of 3D structure determination of macro-

molecules in cryo-electron microscopy (EM) images [16],

[17]. That work has assumed that pairwise rotations are

known for every image pair. We focus on the SfM case

where many of the pairwise rotations are missing. Our

objective function is similar to that in [10], with our objec-

tive function allowing to additionally derive a tighter SDP

relaxation. See Section III-A for discussion and comparison

with [10].

Other works that take a global approach for recovery of

camera rotation include using a reference plane (e.g. [11])

or quaternions [8], [12], which were shown in [10] to be

inferior to Frobenious-based techniques. Hartley [18] uses

a non-linear L1 minimization for rotation estimation, see

discussion in Section VI-B.

We estimate camera orientation for a set of n images

I1, ..., In. Suppose we are given estimates of some of the
�

n
2

�

Essential Matrices, Êij . (Below we use the hat accent

to denote measurements inferred from the input images.) We

factorize each Essential Matrix and obtain a unique pairwise

rotation denoted R̂ij . We can further use [19] to detect

motion degeneracies, in which case Êij is ignored. Our aim

is to recover camera orientation in each of the n images,

R1, ..., Rn, based on the pairwise rotations R̂ij .

A. Spectral Decomposition

Suppose all R̂ij are known. Then, following [10], we can

cast this problem as an over-constrained optimization:

min
{R1,...Rn}

n
X

i,j=1

kRT
i Rj � R̂ijk2F , (2)

where k.kF denotes the Frobenius norm of a matrix. We

further require each matrix Ri (1  i  n) to be a rotation,

obtaining seven constraints for each of the rotations – six

orthonormality constraints of the form RT
i Ri = I and one

for the determinant, det(Ri) = 1 (to distinguish it from

reflections).

We solve the optimization problem (2) using the follow-

ing observation. Let G be a 3n ⇥ 3n symmetric matrix

constructed by concatenating the pairwise rotation matrices,

namely,

G =

0

B

B

@

I R12 ... R1n

R21 I ... R2n

... ...
Rn1 Rn2 ... I

1

C

C

A

. (3)

Let R be a 3 ⇥ 3n matrix constructed by concatenating

rotations relative to a universal coordinate system R =
⇥

R1 R2 ... Rn

⇤

. Then,

Claim 1. G has rank 3 and its three eigenvectors of nonzero

eigenvalues are given by the columns of RT .

Proof By definition Rij = RT
i Rj , and so G = RTR with

rank 3. Since RRT = nI , GRT = RTRRT = nRT , and

hence the three columns of RT form the eignevectors of G
with the same eigenvalue, n. ⇤

Usually, in SfM problems some of the pairwise rotations

are missing. We then modify G to contain zero blocks for

the missing rotations. Let di denote the number of available

rotations Rij in the i’th block row of G, and let D be the

3n⇥ 3n diagonal matrix constructed as

D =

0

B

B

@

d1I 0 ... 0
0 d2I ... 0
...
0 0 ... dnI

1

C

C

A

. (4)

It can be readily verified that GRT = DRT , and so the

columns of RT form three eigenvectors of D�1G with

eigenvalue 1.

More generally, the construction of G and D can be

modified to incorporate weights 0  wij  1 that reflect

our confidence in the available pairwise rotations Rij .

In practice, however, the relative rotations R̂ij that are

extracted from the estimated Essential Matrices may deviate

from the ground truth underlying Rij . This is both because

of mismatched corresponding points and errors in their

estimated location. Similarly to G, we define Ĝ as the

3n ⇥ 3n matrix containing the observed pairwise rotations

R̂ij .

Claim 2. An approximate solution to (2), under relaxed

orthonormality and determinant constraints, is determined

by the three leading eigenvectors of the 3n⇥ 3n matrix Ĝ.

Details and a proof are provided in the appendix. Note

that, in general, the noisy input reduces the spectral gap

between the top three eigenvalues of Ĝ and the rest of its

eigenvalues.

To extract the rotation estimates, we denote by M the 3n⇥
3 matrix containing the eigenvectors as in Claim 2. M com-

prises n submatrices of size 3⇥ 3, M = [M1;M2; ...;Mn].



Figure 1. Comparison of our spectral method (in red) to [10]’s (blue). The
figure shows angular recovery error as a function of fraction of outliers.
Of the pairwise rotations 15% are true rotations perturbed by Gaussian
noise of 20DB, corresponding to a mean angular error of 5�, and the rest
of the input rotations are either missing or drawn uniformly from SO(3),
simulating outliers.

Each Mi is an estimate for the rotation of the i’th camera.

Due to the relaxation, each Mi is not guaranteed to satisfy

MT
i Mi = I . Therefore, we find the nearest rotation (in

the Frobenius norm sense) by applying the singular value

decomposition Mi = UiΣiV
T
i and setting R̂T

i = UiV
T
i [20].

We further enforce det(R̂i) = 1 by negating if needed.

Note that this solution is determined up to a global rotation,

corresponding to a change in orientation of the global

coordinate system.

Additionally, observe the particular structure of G. Note

that G has the form of a block adjacency matrix for the

graph G = (V, E) constructed by placing an edge (i, j) 2 E
for every available Essential Matrix Eij ; G includes a 3⇥3
block of rotation for every entry 1 in the adjacency matrix

and a zero block for every entry of zero. The matrix D�1G,

therefore, is tightly related to the graph Laplacian of G.

Consequently, it can be shown that all the eigenvalues of

D�1G are in the range [�1, 1]. In practice, however, the rank

of the estimate matrix Ĝ may exceed 3, and the spectral gap

between the three leading eigenvectors and the rest of the

eigenvectors is often smaller than 1. Numerical experiments

conducted in [16] in the case that Ĝ is full and theoretical

analysis based on random matrix theory demonstrate the

robustness of this approach in the context of reconstruction

of macromolecules from cryo-EM readings. Our experiments

below show similar behavior in typical SfM problems in

which Ĝ is sparse.

Comparison to [10] : Our objective function (2) is equal

to [10]’s, who minimized
Pn

i,j=1 kRj � RiR̂ijk2F , and the

two solution methods differ in the normalizations applied to

account for the missing pairwise rotations. Moreover, our

formulation further allows for casting the problem in an

SDP framework (section III-B). The following simulation

demonstrates that our spectral method is more robust to

errors in the estimation of the Essential Matrices. We sam-

pled N = 100 rotation matrices representing true camera

orientations. We next perturbed 15% of the N(N � 1)/2
pairwise rotations with Gaussian noise with SNR of 20DB

and projected the noisy matrices to SO(3). (Similar results

were obtained with other fractions of perturbed rotations

and SNR values.) The rest of the pairwise rotations was

either considered missing or drawn uniformly from SO(3)
(simulating outliers). Figure 1 shows the angular recovery

error obtained with our spectral method compared to [10]’s,

as a function of the fraction of outliers. It can be seen that

our spectral method consistently achieved more accurate

estimation of orientation, particularly as the number of

outliers increases. We note that in our real experiment

with the Notre-Dame sequence (Section VI) the fraction of

missing pairwise rotations was 72%.

B. Estimation with SDP

The formulation above, which leads to a solution by spec-

tral decomposition, can be used also to derive a semidefinite

programming (SDP) relaxation. Our minimization (2) can be

cast as a maximization of

max
{R1,...Rn}

n
X

i,j=1

trace
⇣

R̂T
ijR

T
i Rj

⌘

, (5)

since assuming Ri 2 SO(3), kRT
i Rjk2F = kR̂ijk2F =

trace(I) = 3. Using our notation above this equation can

be written as

max
G

trace
⇣

ĜTG
⌘

, (6)

where the unknown matrix G should be decomposable to

RTR. To allow such a decomposition G is required to be

positive semidefinite and to have 3 ⇥ 3 identity matrices

along its diagonal. In addition, G should have rank 3

and the determinant of each 3 ⇥ 3 block of G should

be 1. The problem is analogous to the problem of matrix

completion [21], as we seek to complete a rank 3 matrix

G from noisy observations Ĝ, with the additional constraint

that G is positive semidefinite and composed of rotation

matrices.

To obtain a semidefinite program we drop the rank and

determinant requirements and solve

maxG trace
⇣

ĜTG
⌘

,

s.t. G ⌫ 0 8k
Gii = I 1  i  n,

(7)

where Gii denotes the i’th 3⇥3 block along the diagonal of

G. Once the optimal G is found we use SVD to recover the

set of n rotation matrices as we did in the previous section.



Notice that the SDP relaxation can be made slightly

tighter. If G is indeed rank 3, and since its block diagonal is

paved with identity matrices, then every 3⇥3 block Gij must

be either a rotation or reflection, i.e., Gij 2 O(3). To discern

between these two possibilities we would like to require

det(Gij) = 1; these are, however, non-linear constraints that

cannot be incorporated into the SDP formulation. Instead,

we replace the determinant constraints by equivalent linear

inequality constraints. To that end we have the following

claim:

Claim 3. There exists a finite set of rotations

A1, A2, . . . , Al 2 SO(3) such that Gij 2 SO(3) iff

trace (AkGij) � �1 for all k = 1, . . . , l.

The proof, which proceeds by constructing an ✏-net over

O(3), is provided in the appendix. As a consequence, adding

the linear inequalities trace (AkGij) � �1 tightens the

SDP relaxation. The number of linear inequalities might be

relatively large in practice, and therefore could be randomly

sparsified. Constructing the optimal (i.e., minimal) design

A1, . . . , Al is beyond the scope of this paper.

Unlike the spectral decomposition in Section III-A, the

SDP approach enables introducing constraints which drive a

tighter convex relaxation of the optimization problem; thus,

explicitly promoting a solution which is less sensitive to

noise and mismatches. In practice, this becomes significant

for large-scale SfM problems, in which noise, inaccuracies

and outliers are prominent. In our experiments on the small

benchmark sets (see Section VI-A), no significant improve-

ment over the spectral methods was observed.

IV. ESTIMATING CAMERA LOCATION

Once camera orientations R̂1, ..., R̂n are recovered we

turn to recovering the camera location parameters, t1, ..., tn.

We do this using an efficient linear approach.

Previous approaches for estimating camera locations typ-

ically exploit the pairwise translations derived from the

Essential Matrices (1) to construct a system of equations in

the unknown translation parameters, and often also in the un-

known depth coordinates. Such methods commonly involve

a large excessive number of unknowns either involving 3D

point positions for all feature points or additional pairwise

scaling factors. Solving such systems can be computationally

demanding and sensitive to errors.

For example, Govindu [12] uses the pairwise translations

tij to estimate the camera location using tij = �ijR
T
i (ti �

tj) where �ij are unknown scale factors separate for each

pair of images. He then shows that eliminating these scaling

factors lead to unstable results, and so he estimates them us-

ing an iterative reweighting approach. Crandall et al. [4] uses

an MRF to solve simultaneously for camera locations and

structure, but relies on prior geotag locations and assumes

2D translations. Kahl & Hartley [13] and subsequently

also [8], [10] define a nonlinear, quasiconvex system of

equations in the translations and point locations and use

SOCP to solve the system under the l1 norm. Rother [11]

proposes a linear system for solving simultaneously for both

camera and 3D point locations. This adds a large number

of unknowns to the equations. For example, for the large

collection described in Section VI-B, the method in [11]

will have 120K unknowns.

Below we propose an alternative approach to solving

for the translation parameters. Our approach is based on

a simple but effective change of coordinates, which leads

to a linear system with a large number of linear equations

– an equation for every pair of corresponding points – in

a minimal number of unknowns, the sought translations

t1, ..., tn.

Claim 4. The Essential Matrix can be expressed in terms

of the location and orientation of each camera:

Eij = RT
i (Ti � Tj)Rj , (8)

where 1  i, j  n, and Ti = [ti]⇥, Tj = [tj ]⇥. This

expression generalizes over the usual decomposition of the

Essential Matrix; if we express the Essential Matrix in the

coordinate frame of the i’th image then ti = 0 and Ri = I ,

and we are left with Eij = [tij ]⇥Rij .

Proof We derive an expression for the Essential Matrix

in terms of a global coordinate system. The construction

is similar to the usual derivation of the Essential Matrix.

Let P denote a point in R
3. Let Pi = RT

i (P � ti) and

pi = (xi, yi, fi) denote its projection onto the image Ii
(1  i  n). For a pair of images Ii and Ij we eliminate P

to obtain:

RjPj �RiPi = ti � tj . (9)

Taking the cross product with ti � tj and the inner product

with RiPi we obtain

PT
i R

T
i ((ti � tj)⇥RjPj) = 0, (10)

and, due to the homogeneity of this equation, we can replace

the points with their projections

pT
i R

T
i ((ti � tj)⇥Rjpj) = 0. (11)

This defines the epipolar relations between Ii and Ij . Con-

sequently,

Eij = RT
i (Ti � Tj)Rj .

⇤

The advantage of this representation of the Essential

matrix (8) is that it includes only the location and orientation

of each camera; pairwise information (Rij , tij) is no longer

required. Let p
(1)
i . . . p

(Mij)
i and p

(1)
j . . . p

(Mij)
j be Mij cor-

responding image points from images Ii and Ij respectively.

Then, the expression in (8) defines a homogenous epipolar



line equation for every pair of corresponding points p
(m)
i

and p
(m)
j , m = 1 . . .Mij :

p
(m)T

i RT
i (Ti � Tj)Rjp

(m)
j = 0. (12)

This equation is linear in the translation parameters.

This epipolar equation system (12) can further be written

as follows. Note that the left hand side defines a triple

product between the rotated points Rip
(m)
i , Rjp

(m)
j and

the translation ti � tj . A triple product is invariant to

permutation (up to a change of sign if the permutation is

non-cyclic). Consequently, (12) can be written as

(ti � tj)
T (Rip

(m)
i ⇥Rjp

(m)
j ) = 0. (13)

Therefore, every point pair contributes a linear equation

in six unknowns (three for ti and three for tj). As such, the

location of each camera is linearly constrained by each of

its feature correspondences. Weighting w
(m)
ij can be easily

incorporated to reflect the certainty of each such equation.

Clearly, ti = (1, 0, 0), ti = (0, 1, 0) and ti = (0, 0, 1)
for all (1, 0, 0) i, are three trivial solutions of this linear

system. Therefore, the sought solution is the optimal solution

orthogonal to this trivial subspace. This allows recovering

the camera locations up to a global translation and a single

global scaling factor; these are inherent to the problem and

cannot be resolved without external measurements.

Unlike alternative linear methods [12], [11], our linear

system is compact: the only unknowns are the camera loca-

tions. Thus, employing linear methods for its solution allows

for an extremely efficient implementation. Moreover, despite

the obvious drawbacks of using an L2 approach, its highly

over-constrained formulation plays a main role in promoting

its robustness, as is demonstrated in our experiments. Further

robustness can be achieved, e.g., by minimizing the L1

norm, e.g, by applying iterative reweighted least squares.

This however is left for future research

V. IMPLEMENTATION

Given a collection of images I1, ..., In, we follow the

common SfM pipeline and apply the following procedure.

• Obtain matches and pairwise rotations: Apply a

feature detector and seek pairs of corresponding points

across images (we used SIFT [22] implementation

from [6]), then compute Essential Matrices using the

RANSAC protocol. We factor R̂ij from the Essential

Matrices and define R̂ij as missing if insufficiently

many inliers are found.

• Rotation estimation: Use the pairwise rotations R̂ij to

form the matrix Ĝ and to compute the set of global rota-

tions R̂1, ..., R̂n using either the spectral decomposition

(Section III-A) or the SDP method (Section III-B). This

step is based on the computation of the leading three

eigenvectors of the sparse 3n⇥3n matrix D̂�1Ĝ, where

n is the number of images.

Table I
CAMERA MATRIX RECOVERY ERRORS FOR THE FOUNTAIN-P11 AND

HERZ-JESU-P25 SEQUENCES.

Location Viewpoint Rotation
Fountain-P11 (meters) (degrees) (Frobenius)

Our method (GT cal.) 0.0048 0.024 0.0007

Our method (Exif) 0.0270 0.420 0.0111

Bundler [6] 0.0072 0.112 0.0044

VisualSFM [24] 0.0099 0.116 0.0046

Sinha et al. [9] 0.1317 – –

Martinec [10] (on R25) 0.0153 – –

Location Viewpoint Rotation
Herz-Jesu-P25 (meters) (degrees) (Frobenius)

Our method (GT cal.) 0.0078 0.045 0.0012

Our method (Exif) 0.0520 0.348 0.0092

Bundler [6] 0.0308 0.110 0.0041

VisualSFM [24] 0.0233 0.104 0.0040

Sinha et al. [9] 0.2538 – –

Martinec [10] (on R25) 0.0845 – –

• Translation recovery: Use the corresponding pairs of

points and the recovered rotations to form the linear

equations and to solve for the global translation vectors

t1, ..., tn (Section IV). Although this step involves

an equation for every pair of corresponding points,

the set of equations is very sparse containing only 6

unknowns in every equation. Furthermore, as there are

3n unknowns, the linear system is solved by finding the

four eigenvectors with lowest eigenvalue of a 3n⇥ 3n
matrix.

• Bundle adjustment and dense 3D recovery: We used

the SBA code by [23] for the smaller sets and PBA [24]

for the larger sets. We apply dense reconstruction of the

scene, e.g., using [25].

VI. EXPERIMENTS

We tested our method on several real image sequences.

We first show results on two benchmark (though small)

collections of images for which ground truth rotations and

translations are provided [26]. We also tested our method

on a common large-scale image set downloaded from the

internet (images of the Notre-Dame Cathedral available

from [27]). In both experiments, we applied the pipeline

from Section V.

A. Benchmark Sets

We show results on benchmark images from [26]. The

image collections, called Fountain-P11 and Herz-Jezu-P25,

include 11 and 25 images respectively. The images are

corrected for radial distortion. For internal calibration we

used either calibration parameters supplied as ground truth

or (rough) focal lengths extracted from the Exif tags of the

raw images.

We further test the stability of our method by repeating

each experiment 10 times as the selection of point matches

depend on a random protocol (RANSAC). In all runs we

were able to recover the camera positions and orientations



Figure 2. Four of 11 images of the Fountain-p11 sequence (left) and three snapshots of the reconstruction obtained with our method (right).

Figure 3. Four of 25 images of the Herz-Jesu-p25 sequence (left) and three snapshots of the reconstruction obtained with our method (right).

Figure 4. From left to right: three of 420 images of the Notre-Dame sequence, camera locations (in blue) against a sparse reconstruction, and two
snapshots of the 3D reconstruction obtained with our method.

accurately and to obtain rich 3D reconstructions of the

scenes. Figures 2-3 show several of the input images along

with snapshots from the reconstructions we obtained using

our method. Table I shows the errors in rotation and camera

locations (averaged over the images in each sequence) of

our recovery with respect to the supplied ground truth

rotations and locations. For the two sequences, with ground

truth calibration and after bundle adjustment, our algorithm

achieved a very accurate estimation with an average error

of only 4.8mm and 7.8mm in camera location and 0.024�

and 0.045� in viewpoint orientation. Further comparisons to

other recent methods are shown in Table I. We note that

Martinec’s algorithm [10] was tested in [26] on slightly

different sequences of the same scenes, the Fountain-R25

and Herz-Jesu-R23. (Unfortunately, the ground truth values

for those exact sequences were not made available to us by

the authors.)

Our efficient linear setting allows estimating the rotations

and translations for these datasets (steps 3 and 4 in our

pipeline, Section V) between 0.1 to 0.2 seconds on a regular

desktop computer (4 core 3GHz).

B. Large-Scale Image Collection

We next applied our method to the common image set

of the Notre-Dame Cathedral available from the Photo

Tourism dataset [27]. In the first test we used the focal

lengths and radial distortion corrections produced in [6]. We

follow other large-scale SfM methods and prune images with

noisy or poor point matches. We prune images efficiently

by discarding images corresponding to nodes with small

degree in the image graph G. Similarly to other global SfM

methods, when the image graph is not connected (or very

weakly connected), our method is applied separately to each

of the connected components (stitching them is beyond the

scope of this paper).

After computing the pairwise Essential Matrices we kept

the subset of 420 images (out of 715) with degree 10 or

more (results were similar to other choices of the minimal

degree). Our method succeeded in estimating the cam-

era parameters accurately, achieving low reprojection error

(RMSE of 0.83 pixels) and similar rotations to the Bundler

software package [6] (differed by 0.7� in viewpoint angle).

Unfortunately, [6] does not provide a metric reconstruc-

tion and so camera locations could not be compared. The

achieved reconstruction can be seen in Figure 4 and in the

supplementary material.

Estimating the camera rotations and locations took only

46 seconds with our non-optimized MATLAB code, with

additional 73 seconds for the BA. We compare our running

time to VisualSFM [24], which is a highly optimized GPU

implementation of the Photo Tourism [27]’s sequential algo-

rithm. On a parallel GPU architecture, VisualSFM took 788



seconds on the same desktop PC. (This time includes also

the computation of the pairwise Essential matrices, but does

not include feature extraction and matching). Our method

achieves results that are comparable to state-of-the-art on

this sequence in substantially less time.

We repeated the Notre-Dame image set experiment, with

218 images for which Exif tags are available. We assume

the focal lengths obtained with the Exif tags are sufficiently

accurate for internal calibration, and used only these focal

lengths with no further information. Our method estimates

the camera rotations and locations correctly, with RMSE

of 0.80 pixels, and viewpoint angle different from [6]’s by

0.85�.

We additionally compared our rotation estimation on

the Notre Dame to the L1 optimization of Hartley et

al. [18]. Our L2 objective function achieves comparable

results to [18] (geodesic error of 0.66� compared to 0.82�

reported in [18]) in substantially less time on a similar laptop

platform (less than one second with our method compared

to 36 seconds in [18]).

In conclusion, as these experiments demonstrate, our

method provides an accurate and efficient means to recover

the camera location and orientation in challenging multiview

sequences. The method is very fast, with the actual estima-

tion done by a MATLAB ’eigs’ command on two 3n⇥ 3n
matrices.

VII. CONCLUSION

We presented a method for recovering the position and

orientation of n cameras given a collection of images.

The method is based on finding an optimal fit of the

camera rotations to the pairwise rotations deduced from the

geometry of point matches, and then, given the estimated

rotations, finding the set of translations that is consistent with

all the available point correspondences. We show that the

camera rotations can be recovered either by spectral or SDP

relaxations, and the camera translations can be recovered

by a linear least squares. Our experiments demonstrate that

our method can achieve fast and highly accurate recovery of

the camera locations and orientations. The method is very

efficient, yielding equation systems whose size depends only

on the number of input images. We demonstrate the effec-

tiveness of our method by experimenting with calibrated as

well as internet photo collections. Our method assumes that

the input images form a fairly connected graph and that the

calibration parameters are given. For many common image

sets the latter assumption implies only that focal lengths

need to be known. Our current implementation can further

be improved by incorporating prior knowledge into the

estimation process and by constructing algorithms to stitch

estimates obtained for different connected components.

APPENDIX

Claim. An approximate solution to (2), under relaxed or-

thonormality and determinant constraints, is determined by

the three leading eigenvectors of the 3n⇥ 3n matrix Ĝ.

Proof As shown in Section III-B, assuming Ri 2 SO(3),
equation (2) can be written as (5). Denote by ri T1 , ri T2 , and

ri T3 the three rows of Ri. Then, (5) can be written as

max
{R1,...Rn}

n
X

i,j=1

⇣

ri T1 R̂ijr
j
1 + ri T2 R̂ijr

j
2 + ri T3 R̂ijr

j
3

⌘

,

(14)

subject to the orthonormality of the rows of each Ri and the

determinant constraint for the triplet of rows. We rewrite this

expression in matrix form. Let Ĝ be a 3n ⇥ 3n symmetric

matrix constructed by concatenating the pairwise rotation

matrices, namely,

Ĝ =

0

B

B

@

I R̂12 ... R̂1n

R̂21 I ... R̂2n

... ...

R̂n1 R̂n2 ... I

1

C

C

A

. (15)

Then, the above optimization can be expressed as

max
{m1,m2,m3}

mT
1 Ĝm1 +mT

2 Ĝm2 +mT
3 Ĝm3, (16)

where ml 2 R
3n, (l = 1, 2, 3) is obtained by a concatenation

of n ril vectors, i.e., ml = [r1l ; r
2
l ; ...; r

n
l ]. The orthonormal-

ity and determinant constraints now apply to triplets of the

entries of ml.

To make this optimization tractable we relax it by requir-

ing only the (full) vectors ml to be orthonormal (reducing

the number of constraints from 7n to just 6). The obtained

maximization problem is related to the classical problem

maxm mT Ĝm subject to kmk2 = n whose solution is given

by the eigenvector of Ĝ of largest eigenvalue. We therefore

expect the solution to (16) to consist of the three leading

eigenvectors of Ĝ.⇤

Claim 5. There exists a finite set of rotations

A1, A2, . . . , Al 2 SO(3) such that Gij 2 SO(3) iff

trace (AkGij) � �1 for all k = 1, . . . , l.

Proof In one direction: suppose O 2 SO(3) then

trace (O) � �1. Indeed, any rotation has one eigenvalue

equal to 1 (the corresponding eigenvector is the rotation

axis), and the magnitude of all its eigenvalues are less than or

equal to 1 (since it is an isometry); in particular, the rotation

with the minimum trace is diag[�1,�1, 1]. Clearly, AkO is

also in SO(3) and as a result trace (AkO) � �1. In the

other direction: first, recall that SO(3) is compact. There-

fore, for every ✏ > 0 there exists an ✏-net, i.e., a cover design

consisting of n = n(✏) rotations A1, A2, . . . , An 2 SO(3)
with the property that for every A 2 SO(3) there exists an

element Ak of the design such that kA�AkkF < ✏. Suppose



trace (AkO) � �1 for all k = 1, . . . , n, and assume to

the contrary that O /2 SO(3). Then A = �OT 2 SO(3),
and there exists Ak for which kA � AkkF < ✏. From

AkO = (Ak � A)O + AO = (Ak � A)O � I, it follows

that trace (AkO) = trace ((Ak �A)O) � 3. The Cauchy-

Schwarz inequality, the design property kA � AkkF < ✏,

and the orthogonality of O (kOkF =
p
3) altogether give

trace ((Ak �A)O)  kAk �AkF kOkF <
p
3✏. Therefore,

trace (AkO) <
p
3✏ � 3. Choosing ✏ = 2/

p
3 yields

trace (AkO) < �1, a contradiction. ⇤
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