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Global ocean methane emissions dominated
by shallow coastal waters
Thomas Weber 1*, Nicola A. Wiseman 1,2 & Annette Kock 3

Oceanic emissions represent a highly uncertain term in the natural atmospheric methane

(CH4) budget, due to the sparse sampling of dissolved CH4 in the marine environment. Here

we overcome this limitation by training machine-learning models to map the surface dis-

tribution of methane disequilibrium (∆CH4). Our approach yields a global diffusive CH4 flux

of 2–6TgCH4yr
−1 from the ocean to the atmosphere, after propagating uncertainties in ∆CH4

and gas transfer velocity. Combined with constraints on bubble-driven ebullitive fluxes, we

place total oceanic CH4 emissions between 6–12TgCH4yr
−1, narrowing the range adopted by

recent atmospheric budgets (5–25TgCH4yr
−1) by a factor of three. The global flux is

dominated by shallow near-shore environments, where CH4 released from the seafloor can

escape to the atmosphere before oxidation. In the open ocean, our models reveal a significant

relationship between ∆CH4 and primary production that is consistent with hypothesized

pathways of in situ methane production during organic matter cycling.

https://doi.org/10.1038/s41467-019-12541-7 OPEN

1Department of Earth and Environmental Science, University of Rochester, Rochester, NY 14627, USA. 2Department of Earth System Science, University of

California, Irvine, CA 92697, USA. 3GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany.
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M
ethane (CH4) is a potent greenhouse gas with a 100-
year global warming potential that is ~23 times that of
carbon dioxide1. Its atmospheric mixing ratio has

increased more than two-fold since the preindustrial, contribut-
ing ~20% of the radiative climate forcing for all greenhouse
gases2. Future anthropogenic impacts on the atmospheric CH4

budget are not restricted to direct emissions (e.g. during agri-
culture and energy production), but will also include climate-
driven perturbation of the natural CH4 cycle3. This motivates
recent efforts to place strong baseline constraints on natural CH4

sources and understand their environmental sensitivity4.
The global ocean is a highly uncertain term in the atmospheric

CH4 budget, emitting 5–25 Tg of CH4 per year (hereafter Tg yr−1)
or 1–13% of all natural emissions4. The dominant source of this
methane is traditionally thought to be the sea floor, where it is
produced biologically in anoxic sediments5 or released from
geological reservoirs at hydrocarbon seeps6 and degrading
methane hydrate deposits7. Methane is emitted to the atmosphere
by two processes: diffusive gas transfer and ebullition (i.e. bub-
bling) across the air–sea interface8. Ebullitive emissions are only
significant in regions that combine very shallow water columns
with aggressive rates of CH4 bubbling through the seafloor9.
Elsewhere, efficient dissolution of CH4 from rising bubbles pro-
duces supersaturated waters that drive a diffusive flux to the
atmosphere10, although this pathway is limited by rapid oxidation
of dissolved CH4 during its transport through the water col-
umn11. More recently, novel methanogenesis pathways have been
identified that may produce CH4 in situ in the surface ocean
mixed layer, providing a more direct conduit to atmosphere12–14.

Globally, both diffusive and ebullitive CH4 emissions remain
uncertain due to sparse data constraints and the crude extra-
polation methods used to upscale their rates4, limiting our
understanding of the ocean’s leverage over atmospheric CH4. In
this study, we provide a new robust estimate for the global dif-
fusive flux and combine it with upper and lower bounds on
ebullition rates, thus narrowing the uncertainty range for the total
oceanic methane source.

Results
Global distribution of methane disequilibrium. Diffusive
air–sea gas fluxes can be estimated from their ocean–atmosphere
disequilibrium (denoted ∆) using gas transfer theory15. Previous
attempts to constrain marine diffusive CH4 emissions have
extrapolated from limited cruise track data, estimating a global
flux between 0.2 and 18 Tg yr−1 to the atmosphere16–19. We
improved upon this approach using machine-learning models to
map methane disequilibrium (∆CH4) at the global scale, before
computing the air–sea flux.

Our work is underpinned by a large compilation of shipboard
CH4 concentration measurements collected between 1980 and
201620,21, which we combined with atmospheric pCH4 from a
global monitoring network to determine ∆CH4 (see the
“Methods” section). Data from the surface mixed layer was then
assembled into a monthly climatology at 0.25° horizontal
resolution (Fig. 1a, see the “Methods” section). This ∆CH4

climatology shows that open ocean waters (>2000 m deep) are
most weakly supersaturated (0.02–0.2 nM, IQ range), reaching
undersaturation in some polar regions (Fig. 1a, b). Surface
supersaturation increases sharply towards coastlines, typically
ranging between 0.08 and 0.7 nM across continental slopes
(200–2000 m), 0.1–2 nM on the outer shelf (50–200 m), and
0.7–20 nM in near-shore environments (0–50 m). In these very
shallow waters, ∆CH4 can occasionally reach many hundreds of
nM (~5% above 100 nM, maximum of ~1500 nM). Our
climatology contains 8725 gridded data points that are well

distributed between marine environments, with ~65% coming
from the open ocean and ~10% each from the slope, outer shelf
and near-shore regions (Fig. 1b). Normalizing by their areas, this
means that data density increases towards coastal waters that are
critical regions of elevated flux (Fig. 1b)22.

Our database is still too sparse for traditional gap-filling
approaches applied to oceanographic data (e.g. ref. 23), especially
given the sharp spatial gradients in ∆CH4. We therefore
employed two different machine-learning methods that have
previously been applied to map sparse marine data24–26: artificial
neural networks (ANN) and random regression forests (RRF).
These methods build nonlinear statistical models for ∆CH4 based
on its relationship to physical and biogeochemical predictor
variables, whose distributions are well known and are plausibly
linked to ∆CH4 (see the “Methods” section), allowing global
extrapolation of ∆CH4 in the mixed layer (Fig. 2a, b). Both ANN
and RRF models are trained using randomly selected subsets of
the data, and are designed to maximize the prediction of residual
validation data while minimizing overfitting (Supplementary
Fig. 1). Repeating the training process generates a large ensemble
of maps that are used for error propagation (see the “Methods”
section).

The machine-learning methods accurately capture the
observed magnitude, variance, and spatial patterns of ∆CH4 both
regionally (Supplementary Figs. 2 and 3) and globally (Fig. 2c;
R2= 0.7–0.8 for log-transformed data, see the “Methods”
section). They dramatically outperform traditional linear regres-
sion (R2= 0–0.15) and multiple linear regression (R2= 0.2)
models developed from the same predictor variables, according to
multiple metrics of model skill (Fig. 2c).

Diffusive ocean–atmosphere methane flux. Having mapped
∆CH4 across the global ocean, we computed the diffusive sea–air
CH4 flux at daily resolution using a wind-dependent gas transfer
velocity (k) and accounting for sea ice cover, which acts as a
barrier to gas exchange27 (see the “Methods” section). A Monte
Carlo method was used to propagate uncertainties in ∆CH4, gas
transfer velocity, and ice coverage into our calculation (see the
“Methods” section), generating an ensemble of 200,000 different
flux estimates (100,000 each for ANN and RRF methods).

The spatial pattern of air–sea flux predicted by these model
ensembles is qualitatively similar to the ∆CH4 distribution, with
highest fluxes in shallow shelf regions that often exceed rates of
10 mmol m−2 yr−1 (Fig. 3, Supplementary Table 1). Only in outer
shelf environments of the Arctic Ocean is there a strong
mismatch between the magnitude of ∆CH4 and flux, due to ice
coverage over most of the year. The open ocean is mostly a weak
source of CH4 (generally 0–0.5 mmol m−2 yr−1), with the
exception of the Southern Ocean, which takes up ~0.04 mmol
m−2 yr−1 on average south of 45°S. The North Atlantic Ocean
polewards of 45°N is either a weak sink (ANN method) or weak
source (RRF method) of CH4, marking the only region where the
two mapping methods systematically disagree (Figs. 2 and 3),
likely due to data scarcity (Fig. 1).

Integrating the fluxes regionally across near-shore, shelf, slope,
and open ocean regions reveals a highly disproportionate
contribution of shallow waters to oceanic methane emissions
(Fig. 4a). The near-shore environment contributes the largest but
most uncertain diffusive flux of the four, despite accounting for
only ~3% of the ocean area. Emissions in these environments sum
to 2.1 ± 1.6 and 2.0 ± 1.45 Tg yr−1 (mean ± s.d.) according to the
ANN and RRF methods, respectively, with a likely range (defined
here as 10–90th percentile range) between 0.8 and 3.8 Tg yr−1

when ensembles from both mapping methods are combined
(Fig. 3a). The open ocean is the second largest emitter (likely
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range 0.6–1.4 Tg yr−1) because its vast area (~85% of ocean)
compensates for low flux rates (Fig. 3a), followed by outer shelf
(likely range 0.3–1.0 Tg yr−1) and continental slope (likely range
0.2–0.6 Tg yr−1) environments. Integrated globally, we find an
ocean–atmosphere CH4 flux of 4.3 ± 2.2 or 3.9 ± 1.8 Tg yr−1

(mean ± s.d.) in the ANN and RRF ensembles, respectively, with
a likely range between 2.2 and 6.3 Tg yr−1 combining all
estimates (Fig. 4b).

Sensitivity tests revealed that the global flux is relatively
insensitive to increasing the model grid resolution, the choice of
biological predictor variables, and the propagation of potential
measurement errors (Supplementary Figs. 1 and 4)28. We found
that the largest contributor to the range of flux estimates is
uncertainty in the ∆CH4 distribution introduced by our mapping
methods, although uncertainty in the gas transfer velocity also
makes a significant contribution (Supplementary Figs. 5 and 6).

Our new global estimate of 2.2–6.3 Tg yr−1 is larger than previous
estimates based on basin-scale cruises (0.2–3 Tg yr−1)16–18, which
may have undersampled strongly supersaturated coastal waters, but
significantly smaller than estimated from a compilation of shelf data

(11–18 Tg yr−1)19, which likely extrapolated high ∆CH4 too
broadly18. In the Arctic Ocean—a region where methane emissions
are highly sensitive to future climate warming29—we find annual
diffusive CH4 emissions of ~0.5 Tg yr−1 (Supplementary Table 1).
This is substantially lower than a previous estimate from the East
Siberian Arctic Shelf30 (3.3 Tg yr−1), despite the fact that our
statistical mapping methods skillfully reproduce the ∆CH4 distribu-
tion in this region (Supplementary Fig. 3). This implies that total
Arctic CH4 emissions have previously been overestimated, con-
sistent with more recent oceanic and atmospheric observations in
this region31–33.

Ebullitive and total oceanic methane emissions. Direct con-
straints on methane ebullition across the air–sea interface are
extremely rare34, meaning that our statistical mapping methods
cannot be applied to scale-up this process. Instead, we attempt to
place upper and lower bounds on the global ebullitive emission
rate by combining previous estimates of ebullition at the seafloor
with bubble model calculations to predict the transfer efficiency
of CH4 from the seafloor to the atmosphere.

∆CH
4
 (nM)

n = 5789

N = 0.019

n = 1014

N = 0.048

n = 847

N = 0.062

n = 1075

N = 0.11

ba

0 60 120 180 240 300 360

Longitude

–90

–60

–30

0

30

60

90

L
a
ti
tu

d
e

–1  

–0.1

0.1 

1   

10  

∆
C

H
4
 (

n
M

)

–1 –0.1 0 0.1 1 10 100 1000

Open ocean

(>2000 m)

Slope

(200 –2000 m)

Outer shelf

(50 –200 m)

Near-shore

(0 –50 m)

Fig. 1 Global ∆CH4 climatology. a Annual-mean ∆CH4, computed after binning all data into 0.25 × 0.25 monthly climatology. Data points are drawn larger

than the grid cells for clarity. b Probability distributions of observed ∆CH4, grouped into four bathymetric regions (see also Supplementary Fig. 2). Boxes

span the interquartile range, with black line at median. Black diamonds are mean values, and whiskers span the 5–95th percentiles. Number of datapoints

(n) and data density per 109m2 (N) after binning are listed

0.
25

0.
5

0.
75

1

0.1 0.2
0.3

0.4
0.5

0.6

0.7

0.8

0.9

0.95

0.99
0.25

0.50

0.75

1.0

1.25

Standard deviation (norm.)

0

ANN models

RRF models

Linear regression

MLR model

C
orrelation

R
M

S
E

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 (

n
o
rm

.)

c

Longitude

–90

–60

–30

0

30

60

90

L
a
ti
tu

d
e

∆CH
4
 (nM) ∆CH

4
 (nM)

Longitude

–90

–60

–30

0

30

60

90

L
a
ti
tu

d
e

0.25 0.50 0.75 REF 1.25

0 60 120 180 240 300 360

–1 –0.1 0.1 1 10

0 60 120 180 240 300 360

–1 –0.1 0.1 1 10

ba

Fig. 2 Machine-learning mapping of ∆CH4. a Annual mean ∆CH4 averaged across an ensemble of 100,000 individual maps generated by the artificial

neural network (ANN) method. b Same as a but from random regression forest (RRF) method. c Taylor diagram summarizing the fit of a subset of 100

randomly selected ANN and RRF models to observed ∆CH4, after transformation (see the “Methods” section). Correlation coefficient (R) is shown on the

outer angular axis, centered root-mean-squared difference is given by radial distance from REF point, and standard deviation (s.d.) normalized by observed

s.d. is the radial distance from the origin (points on the 1.0 line have the same s.d. as observations). ANN and RRF dramatically outperform linear regression

and multiple linear regression models by all three metrics

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12541-7 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:4584 | https://doi.org/10.1038/s41467-019-12541-7 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Extrapolation of rate measurements from active seafloor seeps
across areas of likely seepage suggests that global CH4 ebullition
from continental shelf sediments (0–200 m) likely falls between
18 and 48 Tg yr−1 9,35, with a most likely rate of ~35 Tg yr−1 8,36.
Due to its rapid diffusion from bubbles, the fraction of this CH4

that reaches the atmosphere is governed by the release depth and
size-dependent rise velocity of bubbles, and is estimated here
using a numerical bubble model that has been validated against
observations10 (see the “Methods” section). Recent observations
from high-resolution imaging37 show that the vast majority of
bubbles escaping seafloor sediments (~99% by volume) are
between 2 and 8 mm in diameter (Supplementary Fig. 7). Even
the largest of these bubbles lose > 99% of their initial CH4 when
rising through a 100 m water column (Fig. 5a), suggesting that
seeps beyond the continental shelf7 transfer negligible CH4 to the
atmosphere and can be omitted from our global estimate, which
is further supported by recent isotopic constraints38.

Integrated across a representative bubble size spectrum with a
volume-weighted mean diameter of ~4 mm (Supplementary
Fig. 7)37, CH4 transfer to the atmosphere decreases rapidly as a
function of release depth, even in water columns tens of meters
deep (Fig. 5a). The distribution of seeps across the continental
shelf is therefore an important determinant of ebullitive
emissions, but remains poorly constrained9. Based on a compila-
tion of shelf seep locations35, we consider two limiting scenarios
(see the “Methods” section): one in which seeps are uniformly
distributed between 0 and 200 m and another in which seeps are
confined to waters shallower than 100 m, in which 11% and 17%
of the ebullitive CH4 flux is transferred to the atmosphere,
respectively (see the “Methods” section).

Applying a transfer efficiency range of 11–17% to seafloor
ebullition rates of 35 or 18–48 Tg yr−1, we estimate global
ebullitive emissions of 4–6 or 2–8 Tg yr−1 respectively, which
overlap a previous estimate of 0.5–12 Tg yr−1 based on simpler
bubble transfer assumptions39,40. Combined with our probability
distributions for diffusive fluxes (Fig. 4b), this implies that the
global ocean likely emits 7–11 or 6–12 Tg yr−1 of CH4 to the
atmosphere (10–90th percentile range, Fig. 5b, see the “Methods”
section), depending on the degree of uncertainty in seafloor
ebullition rates. Even the broader estimate of 6–12 Tg yr−1

constrains oceanic emissions towards the lower end of the range
incorporated in previous atmospheric budgets (5–25 Tg yr−1) 4.
The previous range incorporates assumptions and extrapolations
that have not been updated in many years41, and can be replaced
by our new robust estimate in future appraisals. In part, this will
help close the gap between bottom-up estimates of natural CH4

emissions, and the lower rates implied by top-down atmospheric
constraints4.

Discussion
While our machine-learning models cannot directly constrain the
origins of CH4 in the surface ocean, the large-scale distribution of
∆CH4 they infer may provide useful insights into production
mechanisms. We employed a correlation analysis (see the
“Methods” section) to determine which of our set of physical and
biogeochemical predictor variables most closely approximates the
ensemble-mean distribution of ΔCH4 mapped by our machine
learning models (Supplementary Table 2 and Fig. 6).

In coastal ocean regions (<2000 m) where ΔCH4 spans orders
of magnitude, log10(ΔCH4) correlates strongly with seafloor depth
(zsf, R2= 0.37), whereas other predictor variables can explain at
most ~10% of its spatial variance (Supplementary Table 2). The
correlation is further strengthened against log10(zsf) (R2= 0.55),
indicating that the first-order pattern identified by our machine-
learning models is a decline in ΔCH4 away from coastlines fol-
lowing a power-law relationship: ΔCH4= 67zsf−0.7. A similar
relationship can be derived directly from the raw dataset used to
train our models (Fig. 6b), and the same qualitative pattern is
apparent in observations across the shelf at individual locations22.
The strong dependence of ΔCH4 on depth reflects the important
role of the seafloor as a CH4 source to the surface ocean in coastal
regions, supplied by rising gas bubbles that dissolve within meters
of the seafloor (Fig. 5a), or by diffusion from anoxic sediments
followed by transport to the surface. In the latter case, bathymetry
controls both the rain rate of organic carbon that fuels anaerobic
metabolism in sediments8, and the mixing timescale between
bottom waters and the surface. The lack of strong relationships
with other predictor variables suggests that the environmental
controls of seafloor CH4 sources are complex and vary sig-
nificantly between regions.

Beyond the continental slope (>2000 m), the more subtle open-
ocean gradients in ∆CH4 no longer resemble bathymetry (R2=
2 × 10−5), and the almost ubiquitous CH4 supersaturation implies
in situ production in the water column rather than transfer from
the sediments8. Without such a source, rapid CH4 oxidation in
the marine environment should leave surface waters under-
saturated, driving ingassing from the atmosphere. We only find
this condition in the Southern Ocean (Fig. 2), where extensive
upwelling supplies CH4-depleted deep water to the surface, and in
the central Arctic Ocean, where ice cover mostly prevents air–sea
exchange (Supplementary Fig. 4). The predictor variable that
most closely approximates ensemble-mean ∆CH4 in the open
ocean is net primary production (NPP), as determined from a
carbon-based satellite algorithm42. The two are positively corre-
lated and NPP explains ~30% of the variance in ∆CH4, and ~95%
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of its large-scale latitudinal pattern, which is highest in the tropics
and lowest in polar oceans, with subtropical and subpolar regions
falling between (Fig. 6c). A similar although somewhat weaker
correlation to NPP emerges from our raw ∆CH4 database
(Fig. 6d), demonstrating that this relationship is not generated
artificially during the mapping procedure.

Methane production has been reported during growth of
coccolithophores13 and other ubiquitous members of the prym-
nesiophyte class of marine phytoplankton43, which may con-
tribute in part to the correlation we find between ∆CH4 and NPP.
However, a number of alternative pathways have been proposed
for methanogenesis in surface ocean waters, which could give rise
to the relationship indirectly. CH4 may be released from sinking
organic aggregates that harbor anoxic microzones suitable for
methanogensis44, but this should result in a stronger relationship
of ∆CH4 to particulate organic carbon (POC) flux than to NPP,
which is not borne out in our analysis (R2= 0.14, Supplementary
Table 2). Similarly, CH4 may be produced in the anoxic digestive
tracts of zooplankton and egested to the watercolumn at poten-
tially significant rates14. Because zooplankton biomass and pro-
ductivity scales with NPP45, this mechanism is broadly consistent
with the surface distribution of ∆CH4.

In addition, two aerobic pathways have been identified for
methanogenesis during the microbial cycling of dissolved organic
matter (DOM) compounds, which are ultimately a product of
phytoplankton growth (i.e. NPP). First, microbial transforma-
tions of dimethylsulfide (DMS) are thought to yield CH4 (ref. 46),
but we find only a weak correlation between DMS and ∆CH4

(Supplementary Table 2), suggesting this is not an important
pathway at the global scale. Second, CH4 is produced by the
degradation of methylphosphonate12 (MPn)—an important
constituent of the surface DOM inventory47—especially under
phosphate (PO4) limited conditions. We find that a multiple
linear regression model combining a positive relationship to NPP
and a negative relationship to [PO4] explains surface ∆CH4 sig-
nificantly better than NPP alone (∆CH4= 5 × 10−3 NPP–0.1
[PO4]–0.03, R2= 0.35). This relationship is consistent with
timeseries evidence for coincident variations in ∆CH4 and [PO4]
in the North Pacific Ocean while NPP remained constant48, and
supports an important role for MPn cycling as a CH4 source.

Ultimately, a combination of pathways may control the open
ocean surface ∆CH4 distribution and contribute to its correlation
with NPP. Methanogenesis by phytoplankton and in zooplankton
guts may dominate in productive ocean regions, with MPn
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becoming the dominant pathway in oligotrophic regions, where
PO4 stress acts as the driving variable by selecting for phospho-
nate decomposing metabolisms49. Additionally, we cannot defi-
nitively conclude that the NPP vs. CH4 relationship arises
mechanistically from methanogenesis, and not from spatial var-
iations in CH4 oxidation or the physical CH4 supply, which may
also be correlated with NPP.

This work has narrowed the uncertainty range of total
oceanic CH4 emissions to 6–12 Tg yr−1, providing a robust
baseline to assess anthropogenic perturbations against, and
contributing towards an improved accounting of the natural
atmospheric methane budget. The majority of the remaining
uncertainty in our estimate is attributed to shallow near-shore
environments, where ∆CH4 and diffusive emissions vary most
among our model ensembles (Fig. 4a), and where relatively
unconstrained ebullitive fluxes are concentrated (Fig. 5a). To
further refine our estimate, future observational efforts should
focus on these shallow environments and sample with the
resolution to capture sharp coastal gradients in ∆CH4 (ref. 22),
while employing new imaging technologies37 to further con-
strain bubble dynamics and ebullition. Understanding and
resolving interlaboratory discrepancies in [CH4] measure-
ments28 should also be prioritized, so that consistent data may
be synthesized across multiple sources.

By contrast, open ocean CH4 emissions are relatively well
constrained (Fig. 4a) and are driven by ∆CH4 variations that
appear systematically linked to organic matter cycling (Fig. 6).
Our work supports previous hypotheses for CH4 release during
phytoplankton growth, zooplankton egestion, and MPn degra-
dation, and we encourage future work to distinguish and quantify
the contributions of these process. The global relationship
between ∆CH4 and NPP reported here also potentially provides a
simple approach to represent open ocean emissions in coupled
ocean–atmosphere models, and tentatively predict future per-
turbations in this source as ocean warming and stratification
impact marine productivity50.

Methods
CH4 concentration database. We compiled a large database of CH4 concentration
measurements from the ocean mixed layer, to form the basis of a ∆CH4 clima-
tology that was used train machine-learning models. The majority of [CH4] data
were taken from the MarinE MethanE and NiTrous Oxide (MEMENTO) Database,
which has compiled published trace gas measurements from research cruises dating
back to 1970 (ref. 20,21). The full dataset and references for individual data con-
tributions can be found at https://memento.geomar.de. We downloaded the version
of MEMENTO available as of June 2018, and retained only data that was collected
within the mixed layer depth, as determined by interpolation from the MIMOC
global mixed layer climatology51. We rejected data points that were not accom-
panied by temperature data, which is required to compute CH4 solubility. Data
points with missing salinity data were accepted, due to its weaker effect on
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solubility, and salinity was filled by interpolating from the MIMOC salinity cli-
matology51. We also rejected data collected outside the time interval 1980–2016,
when atmospheric pCH4 could not be determined (see below).

We combined this subset of the MEMENTO database with other recent
published [CH4] measurements from the surface ocean to expand data coverage in
critical regions, mostly polar oceans and marginal seas30,32,52–57. Again, data
collected below the climatological mixed layer was rejected, and missing salinity
data was filled from MIMOC. Only the data from ref. 30 was accepted without
accompanying temperature data, which was filled by interpolation from MIMOC.
This data has previously been used to infer very large CH4 emissions from Arctic
shelves and was included in our database to test this inference.

Mixed layer ∆CH4 climatology. Each mixed layer [CH4] measurement in our
database was converted to CH4 disequilibrium (∆CH4) using:

ΔCH4 ¼ CH4½ � � SCH4
pmoist
CH4

ð1Þ

In Eq. (1), SCH4
is the solubility of methane computed from temperature and

salinity at each data point58, and pmoist
CH4

is the partial pressure of CH4 in moist air.

pmoist
CH4

was determined by first interpolating dry-air pCH4
to the location of each

ocean data point from atmospheric measurements taken in the same year and
month, using ordinary kriging. Atmospheric data was taken from the NOAA
Global Monitoring Division archive, which has collected flask samples from a
global network of monitoring stations since 1980 (https://www.esrl.noaa.gov/gmd/
ccgg/). Dry pCH4

was then converted to pmoist
CH4

following ref. 59.

Finally, our complete ∆CH4 database of ~120,000 observations was compiled
into a monthly climatology. For each month, all data collected during that month
(regardless of year) was binned onto a 0.25° × 0.25° latitude/longitude grid, and the
average value for each grid cell was calculated. This step was necessary to minimize
the impact of a few high-resolution cruise tracks, which contribute orders of
magnitude more datapoints than others. We note that by combining data from the
years 1985–2016 into a single monthly climatology, we have made the implicit
assumption that ∆CH4 remains relatively constant over time, even as atmospheric
pCH4

has increased by ~10% from ~1650 to ~1850 ppb. This assumption is

supported by observations from open ocean waters in the Atlantic18,60 and
Pacific17 oceans, where ∆CH4, and therefore air–sea flux, remained constant over
interannual to decadal timescales while [CH4] increased in track with pCH4

: It is

consistent with the view that ∆CH4 is controlled by internal sources and sinks of
CH4 that maintain a disequilibrium between the ocean and atmosphere, regardless
of the atmospheric mixing ratio8,18.

Machine-learning mapping. Our monthly ∆CH4 climatology was used to train an
ensemble of ANN and RRF models to generate continuous, mapped climatologies.
These are both machine-learning methods that exploit pattern similarities between
∆CH4 and other physical, chemical, and biological properties (termed predictor
variables) whose climatological distributions are well known, to generate skillful
predictive models for ∆CH4. Employing the two independent mapping methods
and taking an ensemble approach allows us to propagate uncertainties introduced
by the mapping process into our flux estimates.

Predictor data used in our models include: seafloor depth taken from the
ETOPO2 high-resolution bathymetry (https://rda.ucar.edu/datasets/ds759.3/,
available at 0.033° resolution); surface temperature and salinity from the MIMOC
climatology (0.5° resolution)51; a net primary production (NPP) climatology
constructed from data collected between 2002 and 2016 by a carbon-based remote-
sensing algorithm (http://www.science.oregonstate.edu/ocean.productivity/, 0.25°
resolution); POC export flux at the base of the euphotic zone, estimated by
combining our NPP climatology with the export ratio algorithm of ref. 61

phosphate ([PO4]) in the surface ocean, taken from the World Ocean Atlas 2013
(WOA13) climatology23 (0.25° resolution); oxygen ([O2]) in shallow subsurface
waters (50 m below mixed layer, or at seafloor depth if seafloor is within 50 m of
mixed layer) from the WOA13 climatology; sediment gas hydrate inventory, taken
from the global model of ref. 62 (1° resolution). All predictor data were interpolated
from their original grids to the same 0.25° × 0.25° as the ∆CH4 climatology. We
note that while we have chosen the most up-to-date global data products for use in
our work, each is likely subject to its own uncertainties, and some have been
subjected to their own gap-filling procedures.

Each ANN and RRF ensemble member was trained using a random subset of
70% of the dataset, leaving 30% of the data for validation. Before training, ∆CH4

was transformed using an inverse hyperbolic sine (IHS) transform, which is similar
to a log transform except it is defined at negative ∆CH4. Because ∆CH4 spans more
than four orders of magnitude, this transform prevents a few data points with very
high ∆CH4 from dominating the training process. While the transformation is not
necessary for the RRF method, it was undertaken for operational consistency
between our two approaches.

Our ANN model structure is similar to that used in ref. 25, with a single hidden
layer of 20 neurons (sigmoid response functions), fully connected to a single-node
output layer (linear response function), and is trained using a Bayesian
regularization method. The individual regression trees comprising our RRF
ensemble are structured with a maximum of 100 decision splits and trained using a
standard CART algorithm. The complexity of these models is chosen to maximize

predictive skill while minimizing overfitting. More complex models (i.e. more
neurons in the ANN or more decision splits in RRF trees) achieves a better fit to
the full dataset, because the majority of that data is used in training the model.
However, when the fit to validation data does not improve in tandem, it suggests
the model is overfitting the training data, rather than improving its predictive
power. We therefore experimented with different levels of complexity
(Supplementary Fig. 1a, b), and chose the level at which the fit to validation data
began to plateau.

An ensemble of 100,000 ANN and RRF models was trained for error
propagation (see below). All ensemble members were able to reproduce the IHS-
transformed validation data with R > 0.75, and closely matched the variance of the
data (Fig. 2c) and its probability distribution in different environments
(Supplementary Fig. 2). After training, each ensemble member was used to
generate a 0.25° × 0.25° monthly mapped ∆CH4 climatology by applying the model
to gridded climatologies of the predictor data.

Diffusive CH4 fluxes and error propagation. To estimate diffusive CH4 fluxes
(Fdiff) across the air–sea interface, we applied a standard gas transfer model to our
∆CH4 climatologies:

Fdiff ¼ 1� εiceficeð ÞkΔCH4 ð2Þ

Here, fice is the fractional sea ice cover of a grid cell, εice is the efficiency with
which ice cover blocks gas exchange (1 means no exchange through ice), and k is
the gas transfer velocity. A number of different empirical algorithms have been
proposed relating k to wind speed at 10 m above the air–sea interface, and diverge
by >20% at characteristic ocean wind speeds between 5 and 10 m s−1 (ref. 63).
Additionally, a number of wind speed and ice coverage climatologies have been
assembled from different methodologies, which all agree in their large-scale
patterns but can differ at smaller scales.

To propagate these sources of uncertainty into our flux calculation, we used a
Monte Carlo procedure in which each ∆CH4 climatology was combined in Eq. (2)
with random selections between five different wind climatologies, three different sea
ice climatologies, and four different empirical algorithms for k (refS. 15,64–66). We
note that the most recent and perhaps best constrained of these algorithms15 yields k
values close to the average of all four. Daily wind climatologies were obtained from
the cross-calibrated multi-platform (CCMP) product67 (http://www.remss.com/
measurements/ccmp/) that combines satellite and buoy data with model predictions,
the QuickScat product (http://www.remss.com/missions/qscat/) from satellite
scatterometry, the WindSat product (http://www.remss.com/missions/windsat/)
from satellite radiometry, the ECMWF ERA-Interim product from model reanalysis
(https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim) and
the NCEP product (https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.
html) from model reanalysis. Monthly sea ice climatologies were obtained from the
ECMWF ERA-Interim and NCEP reanalysis products (links above), and the
HadISST product that combines in situ and satellite observations (https://catalogue.
ceda.ac.uk/uuid/facafa2ae494597166217a9121a62d3c).

Flux calculations were conducted at daily resolution to limit the impact of
temporal smoothing of windspeeds, given that the relationship between k and
windspeed is nonlinear. Windspeed and fice climatologies were first interpolated to
our 0.25° × 0.25° grid, and then monthly ∆CH4 and fice were interpolated to each
day of the year before applying Eq. (2). While most estimates of air–sea gas
exchange assume that ice coverage completely blocks gas exchange (εice= 1), we
allow gas transfer across sea ice to occur up to 10% as fast as in ice-free water, based
on radon measurements in Arctic Ocean27. Each Monte Carlo iteration therefore
randomly selected from the range 0.9 < εice < 1 for application in Eq. (2).

Sensitivity tests. To inform our selection of grid resolution, we applied the full
procedure outlined above using grids ranging from 2° to 0.125° in resolution
(Supplementary Fig. 1). In each case, ∆CH4 data were binned into a climatology at
the specified resolution, predictor variables were interpolated to the specified
resolution, and an ensemble of 200 ∆CH4 and flux estimates were generated (100
each from ANN and RRF). The total global flux decreased as the grid resolution
was improved, because coarser grids spread high coastal ∆CH4 values over larger
areas. This trend plateaued between 0.5° and 0.25° resolution, so we selected a 0.25°
grid (~25 × 25 km near equator) for our full model ensemble, to balance accuracy
and computational efficiency.

To test whether selecting different biological predictor variables would impact
our results, we conducted a sensitivity test in which NPP was replaced by the high-
resolution MODIS chlorophyll-a (Chl) climatology (https://oceancolor.gsfc.nasa.
gov/, 4 km resolution) and a new suite of 200 flux estimates was generated. The
global fluxes predicted by this ensemble were not significantly different from those
using NPP as the biological predictor variable. Furthermore, improving the grid
resolution beyond 0.25° again had no impact on the global flux, suggesting this
plateau is not dependent on predictor resolution.

We tested whether potential errors in our [CH4] database would greatly impact
our results, because recent work has revealed interlaboratory discrepancies in
[CH4] measurements28. Prior to generating our ∆CH4 climatology and applying
our mapping methods, a synthetic database was generated by randomly selecting a
[CH4] value for each datapoint in the range (1− R.E.)[CH4]obs to (1+ R.E.)
[CH4]obs, where [CH4]obs is the reported value. Measurements from individual
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laboratories can diverge up to 25% from the interlaboratory mean in strongly
supersaturated waters and up to 50% in weakly supersaturated waters28. We
therefore conducted tests with R.E.= 0.25 and R.E.= 0.5, and generated an
ensemble of 200 flux estimates in each case (Supplementary Fig. 4). We find that
propagating potential measurement errors does not change the ensemble-mean
global diffusive flux (~4 Tg yr−1 in each case), but expands the likely range to
1.8–6.4 or 1.5–6.9 Tg yr−1 (R.E.= 0.25, 0.5 respectively).

Finally, we attempted to compare the degree of uncertainty introduced to our
flux calculations by the ∆CH4 distribution and by gas transfer velocity
(Supplementary Fig. 6). First, each permutation of windspeed climatologies, fice
climatologies, and algorithms for k (60 permutations) was used to calculate (1−
εicefice)k, and each was applied to the same ∆CH4 climatology (average from our
full ensemble). Second, the same (1− εicefice)k climatology (average across the 60
permutations) was applied to 60 different ∆CH4 maps generated by the ANN and
RRF methods. The variance across these two ensembles can be used to compare the
uncertainty introduced by gas transfer velocity (first ensemble) versus ∆CH4

(second ensemble).

Ebullitive and total CH4 fluxes. We attempted to place broad bounds on ebullitive
CH4 emissions from the ocean. The globally integrated ebullitive flux to the
atmosphere (ΣFeb) can be estimated from:

ΣFeb ¼ εtrΣFsf ð3Þ

In Eq. (3), ΣFsf is the globally integrated ebullitive flux from the seafloor to the
water column, εtr denotes the transfer efficiency of the CH4 through the water column
and to the atmosphere, and εtr represents the flux-weighted global average of εtr. We
take two previous literature values of ΣFsf : the most likely flux of 35 Tg yr−1 from
ref. 36 and the full range of 18–48 Tg yr−1 based on a compilation of seepage rates by
ref. 9. We note that these ΣFsf estimates apply only to shelf regions between 0 and 200
m, but because εtr approaches 0 in waters beyond the shelf10,38, this is sufficient to
estimate ΣFeb (flux to atmosphere).

We estimated εtr using output from a model of rising gas bubbles, which
simulates the diffusive loss of CH4 to predict the fraction that reaches the surface as
a function of bubble size and release depth10. Because environmental conditions
have a relatively small impact on CH4 transfer in this model, we use model output
generated previously under idealized conditions that is recommended for
application in most marine environments10. First, we integrated this output across
a characteristic volume-weighted bubble size distribution to determine εtr as a
function of release depth (Fig. 5a). This size distribution is generated by combining
the individual distributions from four seep sites observed recently using high-
resolution imaging37. While we note that these observations are from deeper seeps
than the shelf seeps we are interested in, the bubble sizes reported are consistent
with older, less well-resolved observations from shelf seeps and shallow lake9,68.

To determine εtr we must know the depth distribution of the seafloor ebullitive
flux (ΣFsf). While relatively few individual seep locations have been charted, these
are widely distributed across continental shelves at depths between 0 and 200 m
(ref. 35). However, some of the world’s most active seep sites are situated in waters
shallower than 100 m (e.g. Santa Monica Channel, ~60 m; Norwegian North Sea,
60–80 m). Based on these observations, we use two limiting scenarios to bracket εtr .
First, to derive a lower limit, we assume that ΣFsf is uniformly distributed between
0 and 200 m, and average the depth-dependent εtr across this interval, weighted by
the ocean area with each depth, yielding εtr = 11%. To derive an upper limit, we
assume that ΣFsf is confined to regions between 0 and 100 m depth, and repeat the
calculation to yield εtr = 17%. This range of εtr (11–17%) was combined with the
two estimates of ΣFsf (35 and 18–48 Tg yr−1) in Eq. (3) to specify likely ranges for
ΣFeb, and we assumed uniform probability within these ranges. Finally, total
oceanic CH4 emissions were estimated by combining these uniform probability
distributions for ΣFeb with the probability distributions derived previously for
diffusive fluxes (Fig. 5b).

Analysis of ∆CH4 distribution. To evaluate which physical or biogeochemical
properties drive the global distribution of methane disequilibrium in our machine-
learning models, we correlated annual-mean mapped ∆CH4 (averaged across all
200,000 climatologies, Supplementary Fig. 8) against each predictor variable in
turn. A climatology of DMS69 was also correlated against ∆CH4 to test hypothe-
sized production during DMS cycling46. This analysis was conducted separately for
coastal oceans (<2000 m depth) and the open ocean (>2000 m depth), given that
different drivers are likely dominant in these environments8.

To compare the large-scale open-ocean patterns of NPP and ∆CH4 across
latitude, both variables were averaged across polar, subpolar, subtropical, and
tropical regions. In the Southern, Atlantic, and Pacific and Arctic Oceans, these
regions were defined as in ref. 70, and the Indian Ocean was split into tropics and
subtropics along 15°S (Supplementary Fig. 8).

Data availability
All datasets used in this work are described in the Methods section, and links are

provided to the online repositories where they can be obtained. Gridded climatologies of

methane disequilibrium and air-sea methane fluxes generated by this study are available

at https://figshare.com/articles/ocean_ch4_nc/9034451.

Code availability
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