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Abstract. The common reflection surface (CRS) stack is an alternative method of producing a zero-offset stacked section

with a higher signal-to-noise ratio (SNR) than the conventional normal moveout (NMO)/dip moveout (DMO) stack

method. Since, however, it is difficult to determine global optimal parameters for the CRS stack method by the

conventional three-step search method, especially for complex structures and low-fold data, we investigate the ability

of simulated annealing (SA) to optimise our estimation of these parameters. We show a detailed but practical procedure for

the application of SA to the CRS stack method. We applied the CRS stack method with SA to numerically modelled

seismic reflection data, and to multichannel marine seismic data over complicated geological structures around the Median

Tectonic Line (MTL) in Japan. We used the results of the conventional three-step search algorithm as the initial model for

the SA search and showed that with this approach SA can estimate CRS parameters accurately within a reasonable number

of calculations. The CRS stack method with this approach provided a clearer seismic profile with a higher SNR than either a

conventional NMO stack method or a conventional CRS stack method.
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Introduction

Stacking of common midpoint gathers (CMPs) from multifold

seismic reflection data to provide a zero-offset (ZO) section has

traditionally been used to image subsurface structures. The

conventional normal moveout (NMO) stack uses a stacking

operator that is a hyperbolic function for each CMP gather,

assuming a horizontally layered earth. On the other hand, the

common reflection surface (CRS) stack method (Müller, 1999;

Jäger et al., 2001; Mann, 2002) is categorised as one of the

multi-parameter stacking techniques (e.g. multifocusing,

Gelchinsky, 1989, Gelchinsky et al., 1999; polystack, Thore

et al., 1994). It has been reported that the CRS stack method

provides higher signal-to-noise ratios (SNR) than conventional

NMO/DMO stacking for low-quality data acquired, for example,

in sedimentary environments during hydrocarbon exploration

(Trappe et al., 2001; Bergler et al., 2002) or in deep seismic

crustal imaging (Menyoli et al., 2004; Yoon et al., 2009). The

differences between the CRS stack method and conventional

NMO stack method are: (i) the CRS stack does not explicitly

require a macrovelocity model; and (ii) fold numbers in the

CRS stack method can become higher than in the NMO stack

method. The CRS stacking parameters are derived fully

automatically from the prestack seismic data volume. These

CRS parameters can be used to estimate subsurface interval

velocities (Duveneck, 2004) and to enhance, interpolate, and

extrapolate trace data (Baykulov and Gajewski, 2009).

Just as a conventional NMO stack requires accurate stacking

velocities, CRS analysis requires reliable estimation of the CRS

parameters. A 2D CRS stacking operator is defined by three

parameters at each ZO point (CMP and time) of the ZO section:

the emergence angles of reflected waves, a, and two radii of

eigenwaves, RN, RNIP (Hubral, 1983). These three CRS

parameters are determined by a parameter-search algorithm,

using semblance of the traces. The algorithm searches for the

CRS parameters that produce the most coherent CRS stacked

section from the prestack seismic data volume. This is a 3D

optimisation problem. However, solving 3D optimisation

problems for all the ZO points is highly time-consuming.

Therefore, in general, a three-step search algorithm has been

adopted for this purpose. It contains three 1D optimisation steps

(e.g. Jäger et al., 2001) and searches for theCRSparameters in the

NMO stacked section, assuming that the conventional NMO

stacked section approximates a ZO section. Therefore,

optimal CRS parameters are obtained only if the NMO stacked

section is a good approximation of a ZO section, as is the case

for high-fold data. However, the accuracy of the CRS parameters

and the quality of the resultant CRS stacked section are

compromised if the NMO stacked section is inaccurate

because of, for example, complex structures or low fold.

Therefore, implementing a simultaneous 3D search must

be considered in order to apply the CRS stack method to

such data.
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The first proposed 3D optimisation is the so-called Flexible

Polyhedron search (Jäger et al., 2001). This method is applied

after a three-step search, and designs a polyhedron with four

vertices in the 3D parameter domain and sequentially compares

them to get to a point with higher coherence (Nelder and Mead,

1965). Müller (2003) modified this method by introducing the

Metropolis criterion of Simulated Annealing (SA) in order to

have the ability to escape from local solutions. Garabito et al.

(2001) first applied SA to search directly for the CRS parameters,

after simplifying them into two parameters by considering only

diffraction in the CRS stacking operator. Garabito et al. (2006,

2009) further applied SA to search directly for the three CRS

parameters. Note that Garabito et al. (2006) uses randomly

created initial models and therefore multiple trials should be

performed in order to get the highest coherence. Bonomi et al.

(2009) implemented conjugate-gradient optimisation especially

for the 3D CRS stack method.

The direct search for three CRS parameters using SA (e.g.

Garabito et al., 2006) is the most time-consuming option among

the simultaneous optimisations described above. However, the

advantages of SA over other simultaneous searching methods

are that: (i) it is still affordable if the amount of data is not very

large; (ii) it does not use gradient information; and (iii) it is

less dependent on the initial model than local-optimisation

methods such as the steepest-descent method (Sen and Stoffa,

1995). Since the function to be optimised for the CRS stack

method (coherence) is multimodal and its derivative information

is available only numerically, we can use the SA method to

acquire a global solution with less dependence on initial

parameters. Furthermore, if data are low-fold and the

computational cost is inexpensive, SA can be the best choice.

For this paper we have applied the CRS stack method to

delineate the Median Tectonic Line (MTL) of south-west Japan.

The MTL is the most significant fault in Japan, extending

~1000 km approximately NE–SW across Honshu, Shikoku,

and Kyushu Islands. The western segment of the MTL is an

active right-lateral strike-slip fault. Understanding the detailed

subsurface geological structure around the MTL becomes

important for earthquake hazard prevention. The seismic data

were acquired alonga linenormal to thecoastline.The surveyarea

is close to the coast in an area of heavy ship traffic, and we could

not tow a sufficiently long streamer cable. Consequently, the

data are low-fold, so we apply simultaneous 3D optimisation

using SA to the data.

Although simultaneous optimisation for the CRS stack

method has been investigated by several authors, it is hard to

find awell organised and readable article. In this paper, therefore,

we follow the simultaneous optimisation approach step by step,

using numerical data and field data.

Method

CRS stacking operator

For multifold seismic reflection data, the CRS stack method

produces a ZO section by using a stacking surface operator.

In the vicinity of a particular midpoint (x0), the stacking

operator for the ZO traveltime (t0) is described by the

following equation

t2ðxm; hÞ ¼ t0 þ
2sina

n0
ðxm � x0Þ

� �2

þ
2t0cos

2a

n0

ðxm � x0Þ
2

RN

þ
h2

RNIP

 ! ð1Þ

Here, v0 is surface velocity, xm is the midpoint around x0,

and h is the half offset. Equation 1 is the second-order

Taylor approximation of traveltime for a common reflection

point (CRP) trajectory in an arbitrary medium (Höcht et al.,

1999) and this traveltime is characterised by three parameters

(a, RN, RNIP) for the CRS stack. These parameters describe a

local reflector segment and can be explained by two hypothetical

experiments (Figure 1) as follows.

Let us consider the seismic response from a point reflector in

the subsurface (Figure 1a) by assuming that the observed

reflected waves originated from the point reflector. We define

a as the emergence angle of a reflection ray reaching a given

midpoint x0, and RNIP as the radius of the corresponding

wavefront, approximating it to be circular. We consider an

explosive reflector experiment (Figure 1b) in order to take into

account the shapeof the local reflector segment.Wehave the same

emergence angle and again define RN as the radius of the

wavefront. Therefore, RN is a parameter that describes the

curvature of the local reflector segment. A detailed discussion

of the CRS stacking operator is provided by Hubral (1983) and

Jäger et al. (2001).

From equation 1, the CRS stacking operator forms a surface

in the (xm, h) domain, thus the number of traces increases to

contribute to the subsurface imaging compared to a conventional

NMO stack. Furthermore, the CRS stack does not explicitly

require a macrovelocity model, but does need the surface

velocity v0. If we substitute xm= x0 in equation 1, we have

t2ðhÞ ¼ t20 þ
2t0cos

2a

n0

h2

RNIP

ð2Þ

which is a half-offset hyperbolic stacking operator and is

therefore identical to the NMO stacking operator with a

stacking velocity

V 2
stack ¼

2n0RNIP

t0cos2a
ð3Þ

Three-step search algorithm

The CRS stack method requires a search for appropriate CRS

parameters (a, RN, RNIP) for every ZO point. This search is based

on coherency analysis (Neidell andTaner, 1971).Different sets of

the CRS parameters are evaluated to find the combination that

gives the highest coherency of signals along the CRS stacking

(a) (b)
RNIP RN

Fig. 1. Schematic diagram showing eigenwaves and CRS parameters

(modified after Jäger et al., 2001). (a) Eigenwaves for a point source at

R. x0 is a ZO point and a indicates the emergence angle of the central ray at

x0. RNIP is the radius of curvature of the circle that approximates the

wavefront near x0. (b) Eigenwaves for an exploding reflector near R. xm is

in the vicinity of the ZO point x0, and a indicates the emergence angle of

the central ray at x0. RN is the radius of curvature of the circle that

approximates the wavefront near x0.
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surface in the prestack data volume. High coherence indicates

that the recorded reflection events are well approximated by the

CRS stacking operator. Coherence S is defined as

Sða;RNIP;RN ; x0; t0Þ ¼

PkðiÞþw=2
j¼ kðiÞ�w=2

PM
i¼ 1 f i; jðiÞ

� �2

M
PkðiÞþw=2

j¼ kðiÞ�w=2

PM
i¼ 1 f

2
i; jðiÞ

ð4Þ

where fi,j is the amplitude of the j-th time sample at the i-th

trace amongM traces that are used for the CRS stack, and k(i) is

the traveltime of the CRS stack operator for the i-th trace. The

summation of j is performed to provide a window around

the CRS parameters. The length of the window (w) should

approximate the wavelength of the seismic signal. Coherence

values range from 0 to 1, where 1 indicates the highest coherence.

The simultaneous search for the three CRS parameters

becomes a 3D optimisation problem. However, it is commonly

implemented as three separate cascaded processes of 1D

optimisation (three-step search algorithm): ‘automatic CMP

stack’, followed by ‘linear ZO stack’ and ‘hyperbolic ZO

stack’ (Jäger et al., 2001; Müller, 2009).

The automatic CMP stack is a conventional NMO stack

(equation 2) and searches for the stacking velocity (Vstack,

equation 3) giving the highest coherence S. The linear ZO

stack searches for the emergence angle (a) in the NMO

stacked section (approximating the ZO section) assuming

linear reflectors. For a linear reflector (RN=¥) the CRS

stacking operator in the ZO section (h= 0) can be written as

tðxmÞ ¼ t0 þ
2sina

n0
ðxm � x0Þ ð5Þ

The discretised values of a are tested to find the value

that gives the highest coherency in the NMO stacked section.

The values of Vstack and a obtained are then used to calculate

RNIP using equation 3. Finally, the hyperbolic ZO stack searches

for the radius of the normal wave (RN) with the given

emergence angle (a). The CRS stacking operator for the ZO

section (h= 0) is

t2ðxm; hÞ ¼ t0 þ
2 sin a

n0
ðxm � x0Þ

� �2

þ
2t0cos

2a

n0

ðxm � x0Þ
2

RN

ð6Þ

The emergence angle estimated from the linear ZO stack is

used in equation 6 to find the value of RN giving the highest

coherency in the NMO stacked section. The CRS parameters so

obtained are then used for CRS stacking (equation 1).

SA optimisation of CRS parameters

The cascaded three-step search algorithm is less time-consuming

than a 3D optimisation algorithm, but it requires a high-quality

initialNMOstacked section. The accuracy of theCRSparameters

and the quality of the CRS stacked sections derived using this

algorithm are reduced when the seismic data is low-fold or

complex structures exist that do not satisfy the assumption of a

horizontally layered earth. In such cases a 3D optimisation

algorithm is required to obtain clear subsurface images.

Because the function to be optimised (equation 4) is known to

be a multimodal function that has multiple local maxima (Jäger

et al., 2001), we tested the application of SA to optimise the CRS

parameters.

SA is an optimisation method based on probability theory

(Kirkpatrick et al., 1983) that borrows its basic concept from the

physical annealing process, in which a more stable crystal

structure with lower energy may be obtained when a material

is heated or reheated and slowly cooled from a high temperature.

This method has been useful in many geophysical applications

(e.g. Rothman, 1985; Sen and Stoffa, 1995; Velis and Ulrych,

1996).

SA can search for model parameters m that minimise an

arbitrarily defined ‘energy’ function E(m). For the CRS stack

method, the model parametersm are the CRS parameters (a, RN,

RNIP) and the energy function E(m) is defined as negative

coherence S (equation 4) as follows.

EðmÞ ¼ �Sðm; x0; t0Þ;

m ¼ ða;RNIP;RN Þ
ð7Þ

SA perturbs the present model parameters m0 using random

numbers and produces the nextmodel parametersm1. The energy

perturbation DE of this procedure is defined as

DE ¼ Eðm1Þ � Eðm0Þ ð8Þ

If DE� 0, the new model is always accepted. If DE > 0, the

new model is accepted with the probability, P, defined as

P ¼ exp �
DE

T

� �

ð9Þ

where T is temperature. This is known as the Metropolis

criterion, and introducing this rule makes it possible to escape

from a local minimum in E. A large value of T in equation 9

indicates a high possibility for transition towards a state with

higher energy. T is set to gradually decrease as iterations

proceed. At the limit as T ! 0, SA reduces to a simple local

optimisation. If T is lowered too fast, SA cannot search sufficient

model space and the model parameters are trapped into a local

solution. In our research, we use the following exponential

function for cooling (Sen and Stoffa, 1995):

T k ¼ T0expð�Ck1=DIM Þ ð10Þ

where DIM indicates the dimension of the model parameter, T0
is the initial temperature, and C is a constant parameter that

tunes the cooling rate. The Metropolis criterion makes possible

an escape from local minima, so the model parameter set

obtained using this function becomes the global solution

derived from the initial model. Therefore, it is important to

select an appropriate initial temperature T0 and cooling rate C.

If the initial temperature is too low or the cooling rate is too fast,

it is difficult to escape from local minima. On the other hand, if

the initial temperature is high and the cooling rate is low, a huge

number of iterations may be required to achieve convergence

of the energy. The appropriate values of T0 and C are dependent

on the shape of the energy function E(m), and it is common to

select them empirically (Sen and Stoffa, 1995).

The procedure of search for the CRS parameters is as follows.

We consider the k-th iterative search and perturb the CRS

parameters according to the following equation:

mk ¼ mk�1 þ biðmmax �mminÞ;

bi 2 ½�1; 1�
ð11Þ

wheremmax andmmin are the maximum and minimum values of

each CRS parameter. The random number bi is calculated from a

uniformly-distributed random number ui and temperature Ti as

follows:

bi ¼ sgnðui � 0:5ÞT i 1þ
1

T i

� �j2ui�1j

�1

" #

;

ui 2 ½�1; 1�

ð12Þ
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Equations 11 and 12 indicate that the step length for model

perturbation tends to decrease with temperature. This procedure

is known as Very Fast Simulated Annealing (VFSA; Ingber,

1989) and provides a faster energy convergence than

conventional SA. We designed our CRS stacking operator

using mk (equation 11), calculated the energy perturbation DE

from equation 8, and applied the acceptance rule of equation 9.

Application to numerical modelling

Numerical data

We numerically simulated the wavefield of a simple two-layer

model (Figure 2a) to create a test dataset. We calculated the

acoustic wavefield using a second-order finite difference

acoustic wave equation. We show the modelling parameters in

Table 1. The sources and receivers were located 1m below the

upper boundary of the model, which was the free surface. We

show the calculated true ZO section in Figure 2b. We prepared

seismic data comprising 401 CMPs at 5m intervals with a

maximum fold of 7. The numerical data were contaminated by

Gaussian noise after eliminating direct arrivals (Figure 3).

Three-step search algorithm

For the three-step search of our CRS analysis we used a window

length (w) of 0.05 s for coherence calculation (equation 4), and

automatic CMP stack searches for stacking velocity Vstack were

accomplished using equations 2 and 3. We searched for the

stacking velocity in 3m/s steps within a range from 50m/s

below to 250m/s above the given root-mean-square (RMS)

velocity of the model. The NMO stacked section (Figure 4) is

noisy because of the low fold of the CMP gathers (maximum

7-fold).

Both the linear ZO stack (equation 5) and the hyperbolic

ZO stack (equation 6) require the definition of an aperture in the

CMP direction (the ZO aperture) to calculate the stacking

operator. We used a ZO aperture of 100m for both the linear

and hyperbolic stacks of our dataset; that is, stacking was carried

out only for values of xm for which | xm� x0 |� 100 in equations 5

and 6.

We applied a linear ZO stack and searched for the emergence

angle a over a range from �30� to +30� with a 0.5-degree step
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Fig. 2. (a) Two-layered velocitymodel used for numericalmodelling in this

study. (b) True (computed) ZO section without noise.

Table 1. Modelling and data parameters for the numerical

modelling test.

Grid size 1m

Record length 1.1 s

Sampling rate 1ms

Source wavelet Ricker

Central frequency 45Hz

Number of CMPs 401

CMP interval 5m

Minimum/Maximum offset 0 m/600m

Maximum fold 7
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Fig. 3. Numerically modelled 7-fold CMP gather at CMP 200 (a) without

noise and (b) with Gaussian noise.

0

0.2

0.4

0.6

0.8

1.0

1 100 200 300 401

CMP

T
w

o
-w

a
y
 t
im

e
 (

s
)

Fig. 4. NMO stacked section of the modelled data, using automatic CMP

stacking.
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size, and used the values obtained for a and Vstack in equation 3

to estimate RNIP. We estimated RN by hyperbolic ZO stacking,

using a and equation 6. We then applied equation 1 using these

CRS parameters and the same ZO aperture (100m) as used for

the linear and hyperbolic stacks to produce a CRS stacked

section (Figure 5).

Because of its higher fold, the CRS stacked section contains

less white noise than the NMO stacked section (Figure 4).

However, discontinuities along the reflector in the CRS

stacked section shows that the CRS parameters obtained from

the three-step search did not achieve the best global solution.

For example, the transition from a near-horizontal structure to

dipping structure around CMP 300–400 is discontinuous

because we assumed a linear reflector for our estimation of the

emergence angle a. The high-frequency noise on other parts of

the reflector is caused by the inaccurate Vstack values determined

from automatic CMP stacking of low-fold data.

Search range of CRS parameters in SA optimisation

To apply the CRS stack method using SA, we must define a

search range for the CRS parameters (mmax and mmin in

equation 11). The search range we used for a was the same as

that used for the linear ZO stack (�30� to +30�), and RN ranged

from �¥ to +¥ and was transformed by the following equation

(Mann, 2002):

g ¼ arctan
RS

RN

� �

ð13Þ

where RS is an arbitrary value (100 in this case) and g lies in the

range from�90� to +90� for RN ranging from�¥ to +¥. For SA

optimisation, we searched for an optimal value of g defined by

equation 13 instead of RN. Finally, RNIP was related to the

emergence angle a and the conventional stacking velocity

(Vstack from equation 3). Therefore, we defined the search

range for RNIP by applying the search range of the stacking

velocity together with that of a, as described above. Multiple

reflections have lower stacking velocities than neighbouring

primary reflections; therefore these can be suppressed by

limiting the search range for stacking velocity. The search

range of RNIP was calculated as follows:

R
ðminÞ
NIP ¼

t0

2n0
minðcos2aÞ V

ðminÞ
stack

� �2

R
ðmaxÞ
NIP ¼

t0

2n0
maxðcos2aÞ V

ðmaxÞ
stack

� �2
ð14Þ

where the stacking velocity is constrained for each ZO point

(x0, t0).

The function to be optimised (equation 7) tends to decrease

as the number of traces M (number of fold) decreases; that is,

the coherence is higher when the number of fold is low (Mann,

2002). Depending on the combination of CRS parameters, the

number of fold can change in the SA process because the

algorithm seeks access to non-existent data outside the

recording time. Therefore, we added the following new

constraint on fold during the CRS parameter search. When the

CRS parameters, perturbed by a random number, produced a fold

number less than 80% of the initial fold, we discarded those

parameters and selected a new set.

Initial model in SA optimisation

We need an initial model to start applying SA. To investigate

the influence of the initial model on the SA search, we applied

SA optimisation at ZO point A in Figure 5 (CMP 77 and two-

way time = 0.802 s) using different initial models. In the SA

optimisation process here, we used the exponential temperature

function in equation 10, substituting DIM = 3, with (T0,

C) = (0.003, 0.50). We used 500 temperature values and

updated the CRS parameters twice for each temperature,

giving 1000 forward calculations (CRS stacking). We created

10 random initial models with the CRS parameters within the

search ranges described above. In Figure 6 we compare the

energy evolution from these different initial models during the

SA search. The dotted lines show the energy convergence

from each initial model, and the solid line shows the energy

convergence using an initial model determined from the three-

step search algorithm. Observe that the value of the energy at

the first iteration of the solid line (E=�0.028) corresponds to

the minimum value obtained by the conventional three-step

search algorithm. The SA method successfully reached a

lowest energy around E=�0.162 after 1000 iterations — this

value is lower than that found by the three-step search. This

demonstrates that SA can obtain better CRS parameters than

the three-step search algorithms.

However, one can see that three of random models were

trapped into local minima and never reached the global

minimum (Figure 6). This observation indicates that for

randomly created initial models, multiple trials are required

using different initial models to prevent being trapped into
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Fig. 5. CRS stacked section of the modelled data, using a conventional

three-step search for stacking parameters.
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Fig. 6. Energy convergence in the SA search for different initial models.

Dotted lines show the energy convergence from 10 randomly created initial

models. The solid line shows the energy convergence from an initial model

determined from the three-step search algorithm. The array indicates

E=�0.028 which is the value obtained after application of the three-step

search algorithm.
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local minima. This greatly increases computation time. The

result using the three-step search model as an initial model

showed rapid convergence to a global minimum (solid line in

Figure 6). This suggests that multiple trials might be avoided

by using the initial model from the three-step search, thus

increasing computational efficiency. Note that in this case the

SA result is slightly dependent on the three-step search. The

dependency can be reduced by using a wider search range for the

CRS parameters.

Temperature functions in SA optimisation

The influence of temperature functions and number of iterations

on the SA search are evaluated by applying SA to two ZO points;

ZO point A (CMP 77 and two-way time = 0.802 s) and B (CMP

122 and two-way time = 0.684 s) using three exponential

temperature functions (Figure 7a). The temperature functions

we used to test energy convergence during the SA search were

(T0, C) = (0.001, 0.75), (0.003, 0.50), and (0.020, 0.50). Larger

values of C give faster cooling rates.

The energy convergence plots for different temperature

functions at the ZO point A (Figure 7b) show that for two

temperature functions the energy converges towards a value

around �0.170. However, it is slower for the temperature

function with the highest initial temperature, (T0, C) = (0.020,

0.50). Furthermore, for the temperature function with the fastest

cooling rate, (T0,C) = (0.001, 0.75), the energy is trappedat a local

minimum around �0.14 after 300 iterations. Similarly, the

convergence plots at ZO point B (Figure 7c) show that, for

each temperature function, the energy converges towards a

value around �0.162. However, for the temperature function

with the highest initial temperature, (T0, C) = (0.020, 0.50),

convergence after 1000 iterations is incomplete.

Theenergyconvergenceat differentZOpoints showsdifferent

characteristics because the sequence of model parameters we

obtain during the SA search depends on the initial model and the

temperature function we use. If the initial model is close to the

global solution, energy convergence should be fast, a faster

cooling rate can be used, and computational cost will be

moderate, but if the initial model is very different from the

global solution, a slower cooling rate is required and

computational cost will become higher.

Result of the CRS stack by SA

The temperature functions and number of iterations required

for energy convergence should be different at different ZO

points. However, we have assumed that the temperature

function and the number of iterations determined by testing

the subset of data (the two ZO points described above) do

represent the optimal values for all ZO points. For our

application of SA to all ZO points, we used the temperature

function (T0, C) = (0.003, 0.50), which showed a relatively fast

energy convergence without being trapped in local minima for

both ZO points A and B. We applied SA to all ZO points using

this temperature function and250values of temperature, updating

the CRS parameters twice for each temperature to give 500

forward calculations. If information is available about the

spatial variation of the reliability of the initial model, different

temperature functions can be used to accommodate these

differences.

The continuity of the signals in the CRS stacked section

resulting from SA searching (Figure 8a) is greatly improved

in comparison to that from the three-step search (Figure 5), as

shown by the difference between coherence values achieved

by the two approaches (Figure 8b). The coherence at some ZO

points was up to 0.2 higher for the CRS stack by SA.

When we have true information about the subsurface

(velocities and the shape of reflector), the CRS parameters can

be analytically determined (e.g. Jäger, 1999).We have calculated

the true CRS parameters by this method, and compare them with

those from the initial three-step search model and the final SA

search model in Figure 9. One can clearly see that the three-step

search algorithm did not find the true model, and the SA search
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algorithm did determine the CRS parameters more accurately

(Figure 9).

Application to field data

Geological setting and seismic data

The Japanese Islands lie on a continental plate margin where

the Philippine Sea plate is obliquely subducting beneath the

Eurasian plate (Figure 10a). Our study area is in the Seto

Inland Sea, which lies between Honshu and Shikoku Islands

(Figure 10b). The area is characterised by an along-arc zonal

arrangement of several geologic belts (Figure 10a). The Median

Tectonic Line (MTL), which is the most significant geological

boundary fault in Japan, passes through the study area, trending

approximately parallel to the plate boundary. The western

segment of the MTL is an active right-lateral strike-slip fault

that separates low-pressure and high-temperature Ryoke

metamorphic rocks to its north from high-pressure and low-

temperature Sambagawa metamorphic rocks to its south

(Figure 10a).

Crustal structures related to the MTL have been investigated

by several authors using seismic reflection surveys (e.g. Ito

et al., 1996; Kawamura et al., 2003; Ito et al., 2009). Although

reflection profiles using conventional NMO stacking methods
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have identified a reflection that is believed to represent the MTL,

the low fold gives rise to profiles with low SNR. To show the

ability of the CRS stack method to provide reflection profiles

with higher SNR than can be produced by conventional NMO

stacking, we processed a 17-km-long multi-channel seismic

(MCS) dataset acquired across and perpendicular to the MTL

(Figure 10b). The acquisition parameters are summarised in

Table 2. Ship traffic in the area between the islands restricted

the length of the streamer we could tow, so the maximum fold

was 12.

Conventional NMO stack processing

The pre-processing for NMO stacking included: first-break

muting, bandpass filtering, amplitude recovery, and CMP

sorting (Figure 11). Velocity analysis was performed at 1 km

intervals. Following NMO correction with 30% stretch muting,

we applied t - p deconvolution to suppress multiple reflections,

and used the interpolated velocity structure (Vstack) to produce a

conventional NMO stacked section (Figure 12a). The section

shows sub-horizontally layered Neogene-Quaternary sediments

(Figure 12b) overlying a steeply dipping reflector observed

between CMPs 2200 and 2700 that represents the top of the

Sambagawametamorphic rocks. The irregularly shaped reflector

beneath the layered Neogene-Quaternary sequence marks the

top of the Ryoke granitic rocks. The MTL could be identified

with the active faults that cut Neogene-Quaternary sediments

above the Sambagawa metamorphic rocks and it is believed to

continue as the boundary between Ryoke metamorphic rocks

and Sambagawa metamorphic rocks at depth.

CRS stack processing

We applied the CRS stack to CMP gathers and used the three-

step search to obtain initial models for the SA search algorithm.

Table 2. Acquisition parameters for the field data.

Number of shots 683

Shot interval 25m

Number of receivers 48

Receiver interval 12.5m

Number of CMPs 2777

CMP interval 6.25m

Minimum/Maximum offset 75 m/662.5m

Maximum fold 12

Record length for processing 3 s

Sampling rate 1ms
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The search range for stacking velocity for the automatic CMP

stack was based on the velocity model from the conventional

velocity analysis used for the NMO stack. We designed a

linearly interpolated search range within� 200m/s of the

initial velocity model at 1.0 s two-way time and� 600m/s at

2.0 s two-way time. We applied linear ZO stacking to search for

optimumemergence anglesawithin the range�30� to +30�, with

a 0.5-degree step size. RNIP was estimated from equation 3, and

the search for RN was done by using hyperbolic ZO stacking.

For the ZO stacks and subsequent CRS stacking, we used a

ZO aperture that was linearly interpolated from 50 m at 0.1 s to

200m at 1.7 s. The CRS parameters obtained were then used to

produce the CRS stacked section according to equation 1. The

reflection events on the CRS stacked section produced by this

conventional three-step parameter search (Figure 12c) show

clear improvement over the NMO stacked section (Figure

12a); for example, the high-frequency noise has decreased in

Figure 12c.

For our application of SA, we used the search ranges for

a and g (equation 13) of �30� to +30� and �90� to +90�,

respectively. The search range for RNIP was constrained to be

within� 50m/s of the stacking velocity obtained from automatic

CMP stacking at 1.0 s two-way time and within� 300m/s at

2.5 s. These constraints correspond to 10% of the reference

velocity model.

We compared the energy convergence in the SA search at

ZO point B (Figure 12a; CMP 950, two-way time = 1.46 s) by

using 10 randomly created initial models and the initial model

obtained from three-step search (Figure 13). Here, we used the

temperature function (T0, C) = (0.003, 0.50) in equation 10,

substituting DIM = 3, using 500 values of temperature, and

updating the CRS parameters twice for each temperature,

giving 1000 forward calculations. All of the random models

showed slower convergence than the three-step search model,

as was the case for our application of SA to the numerical model

(Figure 6), so we chose to use the initial models from the three-

step search in the final processing effort.

We determined the temperature function and number of

iterations for SA by testing a subset of the data (as we did for

our numerical modelling experiment). We tested SA at ZO

points A (Figure 12a; a region of sub-horizontal layering at

CMP 950, two-way time = 0.944 s) and B (a region of dipping

structure; CMP 950, two-way time = 1.46 s). We applied the

same three temperature functions that were used in the

numerical modelling experiment and showed that convergence

after 1000 iterations for the function with a large initial

temperature was inferior to that for the other two functions

(Figure 14b and 14c). The energy of the fastest cooling rate
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was not trapped in a local minimum, as had happened in the

numerical modelling experiment. Using the temperature function

with the slowest cooling rate would allow us to search a wider

model space, which agrees with the result of the numerical

modelling experiment.

We applied SA to the pre-processed CMP data (CMP

900–1000) using the temperature function (T0, C) = (0.003,

0.50) and 250 values of temperature, updating the CRS

parameters twice for each temperature to give 500 forward

calculations. The coherence of the CRS stacked section

obtained by SA was higher than that of the initial model

(Figure 15a). Comparison of the CRS stacked section with

parameters found by SA search (Figure 15b) with that from

the three-step search (Figure 15c) clearly shows that the

former has better continuity, better resolves reflection

boundaries, and shows some differences in the shape of

reflection boundaries. The CRS stacked section with SA

(Figure 15b) does contain some high-frequency noise. This

could be because the search range for RNIP (calculated from

the NMO stacking velocity) did not cover the optimum

solution at some locations; this could be overcome by using a

wider search range for RNIP. However, this would also increase

the number of iterations required for energy convergence and

may also increase interference by multiple reflections.

We then applied the same temperature function and number

of iterations to the entire seismic data. To reduce computation

time, we applied the SA search method at 4ms intervals

(original data was sampled at 1ms) and interpolated between

SA results to simulate the original 1ms sample rate. Thereforewe

performed 3D optimisations 2 085 527 times (2777 CMPs

multiplied by 751 time samples). It took 30 h using an Intel

Core i7 (2.93GHZ) CPU with 8-threaded code. We believe this

is a quite reasonable computation time to obtain high SNR.

We then examined the NMO stacked section and the CRS

stacked section with SA between CMPs 2100 and 2400 and two-

way time from 1.1s to 1.7 s (Figure 16). These data show that the

presence of apparent conflicting dips, attributed to diffraction

events, causes suppression of the steeply dipping reflection

events in the CRS stacked section (compare Figure 16a and

16b) (Müller, 2009). The method proposed to correct for this is

to estimate the local solution of a in the linear ZO stack and then

re-apply the three-step search with fixed a. The conflicting dips

are then corrected by summing the global and local solutions of

the CRS stacked section (Mann, 2002; Müller, 2009). Note that

Müller (2009) searched for the local solution in a ZO section

produced by the path-summation technique. We corrected the

effect by applying a SA search using a fixed a for the local

solution to the linear ZO stack. Figure 16c shows theCRS stacked

section that represents the sum of the stack using global

optimisation by SA and the stack using local optimisation by

SA with fixed a, which is the first local minimum in the linear

ZO stack.

The final CRS stacked section after correcting for conflicting

dips (Figure 17) shows a clearer, better-resolved reflection

image than that from either the conventional NMO stack and

the CRS stack from three-step search. Thus CRS processing will

help us to understand the detailed subsurface geological structure

around the MTL and other faults.

Conclusions

We have shown an effective workflow for the estimation of

the optimal parameters for CRS stacking, using a simulated

annealing search scheme. SA searches using randomly created

initial models required multiple trials with different initial

models to prevent trapping in local minima. To overcome this

problem, we propose the use of initial models determined from a

three-step parameter search process, as we found that these

initial models gave rapid convergence to a global solution in
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the SA search step. This choice avoids multiple trials and

increases computational efficiency.

We applied the SA search method to field data acquired

across the MTL of south-western Japan. As our seismic data

showed apparent conflicting dips, we corrected for this by

applying local optimisation by SA search with fixed

emergence angles found in the three-step search. The result

provided considerable improvements in coherence and SNR

over conventionally processed seismic reflection profiles.

This CRS processing method will help us to understand the

detailed subsurface geological structure around the MTL and

other faults.
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