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GLOBAL OPTIMIZATION AND SIMULATED ANNEALING

Anton Dekkers) and Emile Aartsl-2)

Abstract .

In this paper we are concerned with global optimization, which can be defined as the
problem of finding points on a bounded subset of R* in which some real valued
function f assumes its optimal (i.e. maximal or minimal) value.

We present a stochastic approach which is based on the simulated annealing
algorithm. The approach closely follows the formulation of the simulated annealing
algorithm as originally given for discrete optimization problems. The mathematic
formulation is extended to continuous optimization problems and we prove asymp-
totic convergence to the set of global optima. Furthermore, we discuss an implemen-
tation of the algorithm and compare its performance with other well known algo-
rithms. The performance evaluation is carried out for a standard set of test functions
from the literature.

keywords: global optimization, continuous variables, simulated annealing.

1. INTRODUCTION

A global minimization problem can be formalized as a pair (S,f), where S c R" is a bounded set
on R" and f: S — R an n-dimensional real-valued function. The problem now is to find a point
X in € S such that f(xmin) is globally minimal on S. More specifically find an X in € S with

Vx s f(xmin) < f(x). (1.1)
Here we restrict ourselves to minimization. This can be done without loss of generallity, since a
global maximum can be found the same way by reversing the sign of f.

Global optimization problems arise in many practical appplication areas such as for instan-
ce economics and technical sciences. Despite its importance and the efforts invested sofar, the
situation with respect to algorithms for solving global minimization problems, is still unsatisfac-
tory. Only for relatively simple functions f, where f is differentiable and the zero points of the

derivative can be computed analytically, the situation is satisfactory.
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For the minimization of more complicated functions one usually resorts to numerical solution
methods. Many of these numerical methods cannot produce exact results, but merely approxi-
mate a global minimum by a local minimum that is 'close to' it, where 'close to' can be formali-
zed by the following definitions:

Definition 1.1: Fore > 0, B JC(fz) is the set of points close to a minimal point, i.e.

B@E®={xeS[3 :|x-x .ll<e} o (1.2)
min
Definition 1.2: For € > 0, B f(e) is the set of points with a value close to the minimal value, i.c.
Bf(e) ={xeS | axmin: |f(x) _f(xmin)| <g}). O (1.3)

Definition 1.3: For € > 0, a point x € S is near minimal if
X € B(g) (14)
where B(e)=B f(e) UB (e). O

Numerical global optimization methods can be divided into two classes: (i) deterministic and (ii)
stochastic methods. In stochastic methods, the minimization process depends partly on probabil-
istic events, whereas in deterministic methods no probabilistic information is used.

The disadvantage of deterministic methods is, that they find the global minimum only
after an exhaustive search over S and additional assumptions on f. The faster among these
methods have the additional disadvantage that even more assumptions must be made about f, or
that there is no guarantee for success (Rinnooy Kan & Timmer [1984]).

Stochastic methods, on the contrary, can be proved to find a global minimum with an
asymptotic convergence guarantee in probability, i.e. these methods are asymptotically success-
ful with probability 1. Furthermore, the computational results of the stochastic methods are, in
general, far better than those of the deterministic methods (Gomulka [1978a]). For this reason

we concentrate on stochastic methods.

An important problem in global minimization is to recognize a local minimum. To quantify this

problem we need the following definition:
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Definition 1.4: A region of attraction B . is defined as a subset of §, surrounding a local
loc

minimum Xjpc € S, containing no point with a lower function value than x loc’ i.e.
VxeB : f(xloc) <fx). o (1.5)
A loc
Clearly, applying a strict descending local search procedure to each point of B x will yield
loc
Xloc

Local minimality is no guarantee for global minimality. So a fundamental concern in
global minimization is to avoid getting stuck in a local minimum.

Up to now, there are two classes of methods known to overcome this difficulty in stochas-
tic minimization: the first class constitutes the so-called two-phases methods; the second class is
based on simulated annealing.

In two-phases methods, the search for a global minimum is divided into two steps: firstly,
a number of points is sampled (randomly) from S§; secondly, for each of these points a local
minimum is detected, i.e. for each point, the local minimum is determined of the region of
attraction to which the point belongs, and each of these local minima is considered as a candi-
date for a global minimum. Determination of a local minimum is done by a local search proce-
dure. Reviews of two-phases methods are given by Dixon & Szegé [1978] and Rinnooy Kan &
Timmer [1984]. Local search procedures are reviewed by Scales [1985]. As examples of two-
phase methods we mention:

—Pure Random Search (Rinnooy Kan & Timmer [1984,1987a]);

—Controlled Random Search (Price [1978]);

—Multistart (Rinnooy Kan & Timmer [1984,1987a));

—Clustering methods (Térm [1978], Rinnooy Kan & Timmer [1987a], De Biase & Frontini
[1978], Gomulka [1978b]);

—Multi Level Single Linkage (Rinnooy Kan & Timmer [1984,19872a,1987b]).

Methods based on simulated annealing apply a probabilistic mechanism that enables to
search procedures to escape from local minima. This approach is extensively discussed in the

remainder of this paper.
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This paper is organized as follows: In Sections 2 and 3 a simulated annealing method, which is
known from discrete minimization, is transformed into a global minimization method for real-
valued functions; Section 2 contains the mathematical model of the algorithm and the proof of
the asymptotic convergence to a global minimum; Section 3 describes a detailled implementa-
tion of the algorithm, which fits into the theoretical framework of Section 2. In Section 4 the
simulated annealing algorithm is compared to some well-known methods by using a set of test

functions from the literature. Section 5 concludes the paper with some inferences and remarks.

2. SIMULATED ANNEALING: THEORY

2.1 Origin of the Algorithm

Simulated annealing is a stochastic method to avoid getting stuck in local, non global, minima,
when searching for global minima. This is done by accepting, in addition to points correspon-
ding to a decrease in function value, points corresponding to an increase in function value. The
latter is done in a limited way by means of a stochastic acceptance criterion. In the course of the
minimization process, the probability of accepting deteriorations descends slowly towards zero.
These 'deteriorations’ make it possible to 'climb' out of local minima and explore S entirely.
Eventually, this procedure will lead to a (near) global minimum.

Simulated annealing originates from the analogy between the physical annealing process
and the problem of finding (near) minimal solutions for discrete minimization problemé. The
physical annealing process is known in condensed matter physics as a thermal process for
obtaining low energy states of a solid in a heat bath. As far back as 1953, Metropolis, Rosen-
bluth, Rosenbluth, Teller & Teller [1953] proposed a method for computing the equilibrium
distribution of a set of particles in a heat bath using a computer simulation method. In this
method, a given state with energy E ] is compared to a state that is obtained by moving one of
the particles of the state to another location by a small displacement. This new state, with
energy E,, is accepted if E,-E;= 0, i.e. if the move brings the system in a state of lower

energy. If E2 ~E ] 2 0, the new state is not rejected, buto exp( —(Ez —E 1)/k*T) where k is the
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Boltzmann constant and T the temperature of the heat bath. So a move to a state of higher
energy, a 'deterioration’, is accepted in a limited way. By repeating this process for a large
enough number of moves, Metropolis, Rosenbluth, Rosenbluth, Teller & Teller assumed that the
canonical distribution, known as the Boltzmann distribution, is approached at a given tempera-
ture.

The first authors that linked the simulated annealing of solids with combinatorial minimi-
zation were Kirkpatrick, Gelatt & Vecchi [1983]. They replaced the energy by a cost function,
and the states of a physical system by solutions of a combinatorial minimization problem. The
perturbation of the particles in the physical system then becomes equivalent to a trial in the
combinatorial minimization problem. The minimization is done by firstly 'melting' the solution
space at a high effective temperature, (temperature now simply being a control parameter), and
then lowering slowly the temperature until the system is 'frozen’ into a stable solution.

This algorithm, when applied to combinatorial minimization problems, can be proved to
converge to a global minimum with a guarantee in the probabilistic sense. It is generally applic-
able because no specific information about the cost function or solution space is needed a priori.
Furthermore it is easy to implement and has a good performance, altough some applications
may require large computational efforts. For an overview of the applications of the simulated
annealing algorithm to combinatorial optimization problems the reader is referred to Aarts &
Korst [1988] and Van Laarhoven & Aarts [1987].

Because of the success of the simulated annealing algorithm in combinatorial minimiza-
tion problems, we have been investigating its potential for solving continuous minimization

problems.

2.2 Simulated Annealing for Continuous Minimization

Application of simulated annealing to the minimization of a continuous valued function has
been addressed by a number of authors. The proposed approaches can be divided into the fol-
lowing two classes.

— In the first class, applications of the algorithm are described that follow closely the

original physical approach introduced by Kirkpatrick, Gelatt & Vecchi [1983]. For example
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Vanderbilt & Louie [1983] use a covariance matrix for controlling the transition probability.
This matrix should in some way reflect the topology of the search space and the acceptance
criterion. Khachaturyan [1986] presents a method that is closely related to a physical system as
described by Metropolis, Rosenbluth, Rosenbluth, Teller & Teller [1953]. Bohachevsky, Johnson
& Stein [1986] present a simple and easy to implement method in which the length of a genera-
tion step was a constant. Kushner [1987] describes an appropriate method for cost functions, for
which the values only can be sampled via a Monte Carlo method. If no sampling noise exists,
this method is a regular version of the simulated annealing algorithm.

— In the second class of approaches, the annealing process is described by Langevin
equations, and proven to converge to the set of global minima. A global minimum is then found
by solving stochastic differential equations. Aluffi-Pentini, Parisi & Zirilli [1985] propose to
compute global minima by following the paths of a system of stochastic differential equations.
They use a time-dependent function for the acceptance criterium which tends to zero in a suit-
able way. Their method finds a global minimum for all test functions that were used. The papers
of Geman & Hwang [1986] and Chiang, Hwang & Sheu [1987] consider the same concept. A
continuous path seeking a global minimum will in general be forced to 'climb hills', with a
standard n-dimensional Brownian motion, as well as follow down-hill gradients. The Brownian
motion is controlled by a time dependent factor, tending to zero as time goes to infinity. The
convergence proof given by Geman & Hwang is based on Langevin equations. They make use
of an inhomogeneous Markov chain and the probability distribution function they use is the
same as probability distribution function used in Theorem 2.2 (see below).

The simulated annealing algorithm, as descﬁbed in this paper, fits in neither of these two
classes. Our algorithm is a transformation of the simulated annealing method for discrete mini-
mization to one for continuous minimization. The definition and the convergence proof of the
algorithm are analogous to the ones given for the algorithm when applied to discrete optimiza-
tion problems, and are based on the equilibrium distribution of Markov chains (see Aarts &

Korst [1988] and Van Laarhoven & Aarts [1987]).
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2.3 The Mathematical Model of the Algorithm

We now present a mathematical model of the simulated annealing algorithm for continuous
optimization based on the ergodic theory of Markov chains.

Definition 2.1: X(k) is a random variable denoting the outcome of the k-th trial by simulated
annealing. The outcome of a trial is a point x € S and depends only on the outcome of the pre-
vious trial. A Markov chain in the simulated annealing algorithm then is a sequence of trials. o
Definition 2.2: gxy(c) is the generation probability distribution function, i.e. the probability
distribution function for generating a point y from point x at a fixed value of the control para-
meter c € RY. o

Definition 2.3: A xy(c) is the acceptance probability, i.e. the probability for accepting point y if
x is the current point in a Markov chain and y is generated as a possible new point. 0O
Definition 2.4: The transition probability of transforming x € S into a point y € Tc S is the
probability of generating and accepting a point in T if x ¢ T. Thus if x is the current point of the
Markov chain then the probability that an element out of T is the next point of the Markov chain

is

[ 1 p©)dy forxeT
yeT Xy
P(T |x;c) =1 (2.1)
[ p )y + (-] p_(c)dy) forxeT
L yeT Y yeS ¥
where
= . (2.2
Pry©) =2yy, - A0 (2.2)
and
P(T|x;c) =Pr{ X() e T | X(1-1) = x;c}. O (2.3)
Note that pxy(c) is no proper probability distribution function, for |
[ p.(c)dy=1. (24)
yeS Xy

Therefore hereafter p xy is called the quasi probability distribution function.
In this paper, the acceptance probability Axy(c) is chosen equal to the Metropolis criterion,
ie.

Axy(C) =min{ 1, exp( —(fy) — fx))/c) }. (2.5)
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2.4 Asymptotic Convergence of the Algorithm
In this section it will be shown that the procedure given above converges asymptotically to a
point x, where x € B f(e) (definition 1.2), i.e we prove that:

Veso: lim lin Pr{X(k) e B{e) | e} 21-¢ (2.6)

ex0 cl0 k-

for all starting points X(0).

The proof is based on the convergence proof of the simulated annealing algorithm when applied
to the discrete minimization problem (see Aarts & Korst [1988] and Van Laarhoven & Aarts
[1987]).

Essential to the convergence proof of the algorithm is the fact that under certain condi-
tions there exists a unique stationary probability distribution function of a homogeneous Markov
chain.

Definition 2.5: A probability distribution function r(x,c) is stationary if

Voes r(x,c):y i Sr(y,c)pyx(c)dy + r(x,c)(l—yg Sp MOV (2.7)
and | (y,c)dy = 1. o (2.8)
xeS

Definition 2.6: The probability to transform a point x € S into a pointy € T ¢ S in k trials is

[ 1 p®ay forxe T
yeT
POT| x50) = (2.9)
I p(k)(C)dy +(1- 11 p (C)dy)k forxeT
| yeT ¥ yeS X

where

Koy o [ oD (k1)
Pry (©) = zeI (Pxr  ©Pgy @z +py T - zi (P99

+(1= | p a2 p () (2.10)
zeS
ie. pgf)(c) is the quasi probability distribution function of transforming x into y in k trials and
hence pgf)(c) is equal to the summation of three terms:
(1) the first term is the quasi probability distribution function of transforming x into z in
(k—1) trials and from z to y in the next trial integrated over all z;

(ii) the second term is the quasi probability distribution function of transforming x into y in
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(k—1) trials and then reject the k—th trial;
(iii) the third term is the quasi probability distribution function of transforming x into y in
one trial after (k—1) rejected trials from x. 0
Lemma 2.1: For the Markov chain, given by definition 2.1, S is the only ergodic set and S has
no cyclically moving subsets (Doob [1953]), if

V. csVrcg mT)>03 I 8. (c)dy>0, (2.11)
(o]

yeT Xo
where m(T) is the Lebesgue measure of the set T (Weir [1973]).

Proof: For each X, € S we have

VTCS: m(T) <m(S) 3

1= PO |x 50 = POT|x ;o) + PRST|x o). (2.12)
Condition (2.11) assures that P(k)(.S\T |x o;c) > 0, and hence
. plk) )
onvTcS' P (T|x0, c)< 1. (2.13)

So § is the only consequent of X, and S is the only invariant set (Doob [1953]).

Now S has to bé decomposed into disjoint invariant sets and a transient set (Doob [1953]),
but $ is the only invariant set and the complement of S is empty and therefore S is the only
ergodic set.

Furthermore S cannot be divided into t disjunct sets T I""’Tt such that

oneTi: PT;, ; |xo;c) =1, 1<i<t, (2.14)
(where Tt +] is interpreted as TI) (Doob [1953]), because of (2.11). Hence S has no cyclically
moving subsets. This completes the proof of lemma 2.7. o
Theorem 2.1: (A continuous analogon of Feller’s theorem (Feller [1957], pp. 356-357))
The stationary probability distribution function of a homogeneous Markov chain as in definition
2.1 exists if S is the only ergodic set and has no cyclically moving subsets. Moreover this proba-
bility distribution function q is defined as

afrc)= Lim p)(, 0 (2.15)

and is uniquely determined by the following equations:

@) VxeS" q(x,c) > 0; (2.16)
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@ [ qtxepde=1; (2.17)
xe$

@) Voo st axe) = | aty.elpy (c)dy + qtxe)i- | p, (c)dy). (2.18)
xeS yequ pyx q yeSxy

Reformulation: If the above holds, then for an arbitrary initial probability distribution function

(u x)’ we obtain as k — oo;

® _ ) _ k
= yi Suypyx (©dy +u,(1 yi pry(c)dy) - q(x,0). (2.19)
Proof: Note that for all n > 0 we have
POS|x0 = [ pWeny+ - | p_@dy) =1, (2.20)
yeS %Y yeS xy
which implies that
J p,(c;,‘)(c)dy <1. (2.21)

yes

Since S is the only ergodic set and S has no cyclically moving subsets, 1im p)E;)(c) exists as an
oo

ordinary limit and is independent of x (Doob [1953]). Hence we obtain

f ayedy= [ 1impMydy = 1im | pPio)dy < 1. (2.22)
yeS YES n-eo xy n-= yeS xy

Furthermore, we have

(m+1) .y - (m) (m) _
Pry ©= I p7P@p,(0)dz +p, P ziSpyZ(C)dZ)

Xy 2eS X2
_ m . 22
+(1 zefspxz(cmz) Pry© (2.23)
Now, as m — « we obtain
o 1i0 (mt])
q(yc) ;::no Pyy (©
=lim § p(c)p. (0)dz + 1im p™c)(1= | p. (c)dz) + lim (1- | p. ()dz)™p.. (c)
Mmoo zeS X2 zy mwo XY zeS§ * Moo S ** Xy
= | qzop,,(e)z +qy.e)1 - | p, (c)dz) +0. (2.24)
2eS 24 zeS 7V
Note that | q(y,c)dy < 1.
yes
Next, define
ryc) = —40.6) (2.25)
I q(z,c)dz

zeS
then

(i) 1(y,c) > 0, because S is the only ergodic set; (2.26)
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I q(y,c)dy
@ [ ryody=25 -y (2.27)
yes [ q(z,c)dz
zeS§
a(v.e) [ ax,e)p, (e)dx + a(y,e)(1- | p (c)dx)
_ _xeS Y xeS
(iii) r(y,c) = =
[ q(z,c)dz [ q(z,c)dz
zeS zeS
= | rxop, ©dx + 1,01~ ] p (©)dx) (228)
xeS Xy xeS 7
Hence, at least one stationary probability distribution function exists.
Lemma 2.2: Let r(z,c) be any distribution satisfying Definition 2.5. Then we have
rze) = | rieep(eid + rizeyi- | p Zy(c)dx)k. (2.29)

xeS xeS
Proof: By induction.

For k=1 (2.29) holds. Now assume (2.29) is correct for k. Then multipling (2.29) by sz(c)

and integrating over z € § yields
k)

[ tzop..©dz= | | rxep®eyp. ©dx d
z€S ‘ sz ‘ zeSxeer Prz sz i
+ | wzop. ©(— [ p. (©dxkdz. (2.30)
zeS 2y xeS &

Next, using Definition 2.5 and (2.10) we obtain

1(y.c) — f(y’c)(l‘xi PrO

_ (k1) gy _ (k) k
-xi JEO Py O~y ("’“'zi Pye©)2) - (1—Zg PrO8) pxy(c)}dx

| (r(z, 1- | dx)1dz, 231
+ZES{r(z ©)P,, ) xespzx(c) )"}dz (2.31)

So, using (2.29) for k:

r(y.c)

_ (k+1) (1. _ _ k
—xi Joopy T E@dx —d zg Spyz<c>dz){r(y,c) r(y,c)1 xi Spyx(c)dx>}
+1(y,0)1— | p. (c)dx)
4 xeSpyx
= | txop+ Dicydx + riy,0)1- | p, (©)d)** . (2.32)
xeS Xy zeS Y

Thus (2.29) is correct for k+1. This completes the proof of Lemma 2.2. o

We now complete the proof of Theorem 2.1. As k - =, (2.29) transforms into
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limr(z,c) = lim[ J rxoptFerdx + r(ze)1- | pzy(c)dx)k

k=0 k-oo |xeS xeS
= | r(x,c)dx + 0 = q(z.c) | r(x,c)dx)= q(z.c). (2.33)
xeS xeS

Hence any distribution satisfying Definition 2.5 is equal to the probability distribution function
g- So q is unique. This completes the proof of Theorem 2.1. o

Theorem 2.2: Let pxy(c) be given by Definition 2.4 and let S be the only ergodic set not having
any cyclically moving subsets for the Markov chain induced by P(T|x;c) (Definition 2.4). Fur-
thermore, let the following conditions be satisfied:

(i) Yy es” 8xy(€) = 8 lC); (2.34)

(ii) g xy( ¢) is not depending on ¢ (and can therefore be written as g xy)‘ (2.35)

Then the stationary probability distribution function is given by:

exp(—~(f(x)-f,; )/¢c)

q(x,c) = min , (2.36)
] PO ) )
ye
where fmin is the minimal function value, i.e fmin = flx min) for all X nin (see (1.1)).

Proof: If q(x,c) satisfies (2.16), (2.17) and (2.18), it is the unique stationary probability distribu-

tion function (Theorem 2.1):

| exp(~(f()~f, ;) c)dx

@) Vxe 5 q(x,c} = xeS > 0; (2.37)
yiSCXP(—(f(y)—fmin)/c)dy
] exp(=(f(x)~f ;) /c)dx
@@ [ qixc)dx =5 =1 (2.38)
xeS [ exp(=(f(y)-f,,;,,)/c)dy
yesS )
(iii) Let N(c), S (x) and S+(x) be defined as follows:
N@©) = | exp(fy),,;,e)dy: \ (2.39)
yes '
S ={yeS|Ay<fx)}; (2.40)
ST ={yeS Ay >fx) ). (241)
Then
[ ay.0p,, (c)d
yesq y:C)py,(€)dy
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1 .
" ! g NTeY PO, )/e)gy i Lexp(—{f)-Ay))/e)}dy

s )N%c—) XD, )01, in  Lexp(—FOOSyc) dy
yeS' (x

- 1 _ 1 e
" § (& T Tl 0+ é ¢ N XY ,y;,)/0)8,, Y

=q(xc) | dy+ |, qv.0g,.dy (2.42)
= yeﬂx)g"y T est o0 Xy

and

o(1- | d
q(x.e)( yespxy(C) y)

=qx,c){1- | gxymin{l,exp(—(f(y)—f(x))/c)}dy— I + 8ymin{lexp(—(fy)-(x))c)}dy

yeS (x) yeSTx) ¥
=qxc)—qxe) | g dy
yeS~(x) *
- A )N%CXP(—(f(X)—fmm)/c)gxyrrﬁn[1,CXP(—(f(y)—f(X))/c)}dy
yeS™ (x
=qx0) —qxe) | g dy— [ q@olg,dy (243)

yeS~(x) ¥ T yeST(x)
Combining (2.42) and (2.43) yields

Y es® yi P08,y + q(x,cxl—yi PO = ax0) (244)

This completes the proof of Theorem 2.2. o
We now proof that the simulated annealing algorithm converges to a near minimal solu-
tion if the stationary probability ditribution fraction is given by (2.36).

Theorem 2.3:

Veso' Lim I qye)dy>1—¢ (245)
clo yij(s)

if the number of local minima is finite and f is uniformly continuous.

Proof: Since the number of local minima is finite we have:

38 ]>0: |f(xloc) o/ min| >&p (246)
3 V. |x,..—x . ||>¢&,, (247)
ez>0 Xin loc  “min 2
where fmin = f(xmin) for all X min (see (1.1)) and Xloc is a local, non global, minimum.
Now choose €, such that
0 <& < min{ {e, %62}. (2.48)

(If all minima are global then € should be chosen such that ch—: s fix) — fmin > €).
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Because f is uniformly continuous we have:

381>0Vx,yeS: | x—yl < 81 3 |fx) ~fy)| <3e (2.49)
Let & be chosen as follows:
0 = min{ %81,8 }. (2.50)
Then we have
vywx(s): ) =1, <1e (2.51)

where B x(8) is given by Definition 1.1.
Now take a point
X, € S\B x(8),
with (2.52)
f&x) - f,

min ~

(This is possible, because f is continuous.)

Then

)/c)

)/c)dy

exp(-(f(x)-f

lim q(x ,C) = 11m min

clo cl0 Iexp( (f(y) ~f

min
yG

exp(—€/c) 1
= lim =1lim

clo fexp( (fF()-f,; )/c)dy clo [ exp((e~(f(y)-f

yE min yeS min

. 1
lim
=clo | exp((e~(f(y)-f, . N/c)dy + | ((e~(f(y)-f,; ))/e)d
yeS\B_ () xp((&~(f(y)~f,;,))/c)dy yeBx(S)exp TN pin y
1 1
<lim <
o | exp((e~(f(¥)~f,;,))/c)dy lim J exp((e-%€)/c)dy
yeB, (8) cl0 yeB (3)

1
" lin exp(3e/c) m(B.(3))
clrgexpi c) m(B,

))/c)dy

- 0. (2.53)

So, with m(S) as before the Lebesgue measure of S,
) 3
E|c°>0 Vc<co‘ q(xo,c) < O} (2.54)
Hence

. £
VC <, Vxe ¢t (xo). q(x,c) < q(xo,c) < L (2.55)
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and
Vc<co VxeS_(xo): fx) fmm & (2.56)
where §7(x ) and S+(xo) as in (2.40) and (2.41).
Now forall ¢ < c, we have
1= [ qyody= | a@ody+ [, a.ody
yes yeS (xo) yeS (xo)
< [ qyedy + —S—dy < q(y,c)dy + & (2.57)
yeBAe) yeS (x ") yer(e

Note that Bf(e) = S_(xo) and that there is no local minimum in Bf(e) because of (2.47) and
(2.48).

Hence we have

lim [  q@eody>1-—¢, (2.58)
cl0 yeB (e)

which completes the proof of Theorem 2.3. o

In conclusion, we have shown in this section that the simulated annealing algorithm for conti-
nuous minimization, modeled as a Markov chain with the following transition probability
(Definition 2.4):

J Pry (c)dy forxe T
yeT

[ p_(c)dy+ -] p(©)dy) forxeT
| yeT T yeS XY

where

(0) =2y Axy(C)

and
P(T|x;c) =Pr{ X() e T | X(1-1) = x;c},
converges to the set of minimal points of a functionf: S — R.
Thus

lim lim Pr{ X(l)ij(s) |c}>1—¢ (2.59)
C»LO 100

if the following conditions are met:

(i) f:S — Ris uniform continuous;
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(ii) S is a bounded subset of R” and all the minima are interior points of S;
(i11) the number of minima is finite;
(iv) the acceptance criteion A xy(c) is ((2.5)):
A,y(€) = min {Lexp((fly)-fx))/c)};
(v) the generation probability distribution function gxy(c) induces:

one Vg M@ > 03 yef ng oy(c)dy >0 ((2.11));

£,,(0) = £,,(0) (2.34));
g xy(c) does not depend on ¢ ((2.35)).

Finally, we mention that these conditions are sufficient but not necessary.

3. SIMULATED ANNEALING: PRACTICE

3.1 Cooling schedule

The simulated annealing algorithm described in the previous section can be viewed as an infini-
te number of homogeneous Markov chains of infinite length. This is due to the two limits of

(259), i.e. limand 1 im. Clearly an implementation of the algorithm according to this prescrip-
koo c0

tion is impractible. In this section a more explicit and practicable approach is given, which is
similar to the approach given by Aarts & Van Laarhoven [1985] for discrete minimization. This
approach realizes a finite-time implementation of the simulated annealing algorithm by genera-
ting homogeneous Markov chains of finite length at a finite sequence of (descending) values of
the control parameter. To achieve this, a set of parameters must be specified that governs the
convergence of the algorithm. This set of parameters constitutes a so-called cooling schedule.
Definition 3.1: A cooling schedule specifies:

— An initial value of the control parameter Cos

— A decrement function for decreasing the value of the control parameter;

— A final value of the control parameter, i.e. a stop criterion;

— A finite length, L, of each Markov chain. o
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The above leads to the following simulated annealing algorithm in pseudo— PASCAL.:
PROCEDURE SIMULATED ANNEALING; (3.1)
begin "initialize (c,x)";
stopcriterion := false;
while stopcriterion = false do
begin fori :=1 to L do
begin "generate y from x";
if Af Xy < 0 then accept
else if exp(—4f, x)/c) > random [0,1) then accept;
if accept then x:=y
end;
"lower c¢"
end
end.

Below, we elaborate these parameters in more detail. We mention beforehand that the guarantee
that this finite-time implementation of the simulated annealing algorithm will eventually suc-
ceed in finding a global minimum no longer holds; this is because of the finite length and finite
number of Markov chains. However, the probability of finding a global minimum is still large
and can be raised by using longer Markov chains and/or a more careful decrease of the control
parameter. This will however effect the efficiency and therefore a compromise has to be made
between reliability and efficiency.

We now briefly summarize the cooling schedule as introduced by Aarts & Van Laarhoven.

For a detailed description see Aarts and Van Laarhoven [1985].

— initial value of the control parameter

The basic assumption underlying the calculation of the initial value of the control parameter is
that ¢ should be sufficiently large, such that approximately all transitions are accepted at this
value. This can be achieved by generating a number of trials, say m , and requiring that the
initial acceptance ratio ¥, 0= x(c o) is close to 1 (y(c) is defined as the ratio between the number
of accepted transitions and the number of proposed transitions). The initial value of C, is then

obtained from the following expression:
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-1
T )
c_=Af [m i (D) } (3.2)

where m ] and m, denote the number of trials (m My = mo) with Afxy <0 and Afxy > 0,

respectively, and Af+ the average value of those Afxy-values for which Afxy >0 (Afxy = f(x) —
Jy).

~—decrement of the control parameter

The new value of c, say ¢/, is calculated from the following expression:

I
c'=c[1+ %‘W] , (3.3)

where 6(c) denotes the standard deviation of the values of the cost function of the points in the
Markov chain at c, and § is a small positive real number. The constant & is called the distance

parameter and determines the speed of the decrement of the control parameter.

—final value of the control parameter

The stop criterion is based on the idea that the average function value f of a Markov chain is an
increasing function of ¢, i.e. if ¢ is lowered then f will lower too, such that f(c) converges to
fix, ;) as clo.

The algorithm is terminated if:
df s (c) ¢
dc  f(c)

where f(co) is the mean value of the points found in the initial Markov chain, 7S(c) is the

< &, (34)

smoothed value of f over a number of chains in order to reduce the fluctuations of f(c) and € is

a small positive real number, called the stop parameter.

—length of the Markov chains
The length of the Markov chains is based on the assumption that they should be sufficiently

large in order to enable the algorithm to exploire the neighbourhood of a given point in all

directions. A straightforward choice therefore is given by the following relation
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L=L_-n, (3.5)
where n denotes the dimension of S and Lo a constant called the standard length. Note that this

choice leads to a chain length which is constant for a given problem instance.

3.2 Generation of Points

There are several possibilities for generating new points from a given point. The only require-
ment is that the generation mechanism should satisfy (2.11), (2.34) and (2.35). We discuss two
alternatives.

Altenative A: A uniform ditribution on S, i.e.

gxy(c) = m—(% (3.6)

Clearly this alternative satisfies conditions (2.11), (2.34) and (2.35). An obvious disadvantage of
this choise is that no structural information about function values is used. This disadventage can
be circumvented by introducing an additional mechanism that uses descent directions. For each
new generation there are two possibilities, a point is drawn from a uniform distribution over S or

a step is made into a descent direction from the current point, i.e.
1

Alternative B: ifw<t
£,(©) = m(S) (3.7)
LS(x) ifw>t

where t is a fixed number in the interval [0,1) and w a random number drawn from U[0,1).
LS(x) is a Local Search procedure that generates a point y in a descent direction of x, thus with
Jy) £f(x) (y is not necessarily a local minimum). This generation mechanism seems more
efficient, because of its local search steps. There is one drawback to this generation mechanism:
gxy(c) # gy xX(C) and thus (2.34) is no longer satisfied. It can be shown however that this method
still converges to B f(e) (Definition 1.2).

Theorem 3.1: Let P denote the transition probability associated with the simulated annealing
algorithm (Definition 24), and let the random variables X(k) and Y(k) be defined as the out-
comes of the trials in the simulated annealing algorithm using alternative A and alternative B,
respectively. Then

v im Pr{ X(k) e Bf(e)lc} >Il-e. 0 (38)

k—oo

s limlimPr{ Y(k)e Bfe)|c} 2 1lim ]
e>0 cl0 k-e j( c
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Proof:

Pr{Y(k) e Bf(e) |Y(k—1) € Bf(e);c} =t Pr{X(k) e Bf(e) | X(k—1) € Bf(s);c}
+ (1-t) Pr{LS(Y(k—-1)) € Bf(8)|Y(k—1) € Bf(s);c}
= tPr{X(k) € Bye)|X(k~1) € Be)ic} + (1-1);

Pr{Y(k) e Bf(8)|Y(k—-1) 3 Bf(e);c] =t Pr(X(k) € Bf(e) | X(k—1) ¢ Bf(e);c}
+ (1-t) Pr{LS(Y(k—1)) € Bf(e)|Y(k—1) ¢ Bf(e);c}

=t rif{é;)') + (1-t) Pr{LS(Y(k-1)) € Bf(e) |Y(k—1) ¢ Bf(e);c};
Pr{Y(k) ¢ Bf(e) |Y(k—1) € Bf(s);c} =t Pr{X(k) ¢ Bf(s) | X(k—-1) € Bf(e);c}
+ (1) Pr{LS(Y(k—-1)) ¢ Bf(€)|Y(k——l) € Bf(e);c}
=t (1 —Pr{Xk)e Bf(e)|X(k——1) € Bf(e);c}),
Pr{Y(k) ¢ Bf(e)|Y(k—l) ¢ Bf(s);c} =t Pr{X(k) ¢ Bj(e) | X(k-1) ¢ Bf(e);c}
+ (1) Pr{LS(Y(k-1)) ¢ Bf(£)|Y(k——1) ¢ Bf(e);c}

m(B.(€))
=t [1— ‘m{—ST'J +(1-)(1 — Pr(LS(Y(k-1)) € Bye) | Y(k-1) € Bexic)).

Consequently using
PB(c) = Pr{ X(k) € Bj(e) | X(k-1) e Bf(e);c},
PLS(c) = Pr{ LS(Y(k-1)) € Bf(e) | Yk-1) ¢ Bj(e);c}:
E(waiting time of Y(k) in B f(e);c)

= X kPr{ V0.<.i£k: YG@) e Bf(e) and Y(k) ¢ Bf(s) | Y(0) e Bf(e);c}

k=0

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
(3.14)

= kEO k (t*PB(c) + ( l—t))k-.l (t 1 —PB(c))) =t (1 —PB(c)) k;O k (t**PB(c) + (1—t))k_1

1 _ 1

=t (1 —PB(c)) 5
(t (1 -PB(c)))” t (1-PB(c))

Similarly:
1
E(waiting time of Y(k) in S\B(e);c) = | m(Bg(e)) + (1-t)PLS(c)’
f( m

E(waiting time of X(K) in Be)ic) = (T%WW)’

.. . . o m(S)
E(waiting time of X(k) in S\B f(e),c) = Bf )"
From Theorem 2.2 we have

¥ . lim lim Pr{ X(k) € B£e) | X(0) € Sic} > 1 —¢,
e0" (10 kow £ |

(3.15)

(3.16)

(3.17)
(3.18)

(3.19)



Furthermore we have

lim Pr{ X(k) € Bf(e) | X(0) € Sic}
| ‘&)

E(waiting time of X(K) in Bf(e);c)
=E(waiting time of X(k) in Bf(s);c)+E(waiting time of X(k) in S\Bf(e);c)

1
_ (T = PB(c))
= 1 N m(Sy (3.20)
(1 - PB(c)) m(Bf(e))

Hence

1
(T = PB(c))
(T = PB(c)) m( f(e))

Finally, we obtain

Y. .on 11m11mPr{Y(k)eB(£)|Y(0)eSc}
>0 C»LO | ' &)
E(waiting time of Y(k) in Bf(e) ;C)

=E(waiting time of Y(k) in f(t-:) c)+E(waiting time of Y(k) 1in S\Bf(e) c)

1 1
- 5 t (1 — PB(c)) S = )t (1 - PB(C)%
m 1 =
‘ anf i) + (-0 PSE) + ey f<e))J T (1 = PB(e))
1
= T T - EB(;&) >1-—¢. (3.22)
T=TB()) * m(B(e))
So
V.o limlim Pr{ Y(k)e B(e) | Y(O)e S;c } >1 —¢€. (3.23)
8>0 C»JrO ko0 f( l

This completes the proof of the theorem. o

4. NUMERICAL RESULTS

The performance of the simulated annealing algorithm presented in Sections 2 and 3 is compa-
red with the performance of a number of two-phase methods known from literature. There are
three criteria that determine the performance of an algorithm: (i) the number of function evalua-

tions, (ii) the running time and (iii) the quality of the final result. The latter criterion can be
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quantified by the difference in the value of the cost function between the obtained minimum and
the global minimum. Our performance analysis is carried out for a set of test functions known
from the literature. The test functions are taken from Dixon & Szegd [1978b] and from Aluffi- -
Pentini, Parisi & Zirilli [1985] (see Appendix A and Appendix B, respectively). Because all
methods were implemented on different machines we used the standard unit of time as introdu-
ced by Dixon & Szegd [1978b]. One unit of time then is the running time needed for 1000
evaluations of the Shekel 5 function in the point (4,4,4,4) (see Appendix A).

It should be mentioned that a comparison between the various methods never will be
entirely fair. The implementation of the methods is done by different persons on different
machines and this always gives rise to some discrepancies in the results. Furthermore, different
implementations emphasize different aspects, i.e: a compromise is made between efficiency and
reliability, (where reliability refers to the probability of obtaining a (near) global minimum).

Choosing for efficiency will affect the reliability and vice-versa.

4.1 Implementation of the simulated annealing algorithm
The simulated annealing algorithm is implemented on the Burroughs B7900 of the Eindhoven
University of Technology using the programming language PASCAL. For the cooling schedule
we used the following parameters (see Section 3.1): Xo = 09,86=0.1, ¢ .= 104 and LO = 10.
Generation of points was done according to alternative B where t = 0.75.

The local search procedure is taken as a combination of steepest descent in the early
stages of the optimization and Quasi-Newton in the latter stages. The Quasi-Newton procedure
is implemented as the Broyden-Fletcher-Goldfarb-Shanno procedure as presented in Scales

[1985]. This local search is done along one descent direction.

4.2 Results

In this section the computational results of the methods listed in table 4.1 are summarized.
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table 4.1 Listing of different methods used in the comparison:

method | name reference

A Multistart Rinnooy Kan & Timmer [1984]

B Controlled Random Search Price [1978]

C Density clustering Térn [1978]

D Clustering with distribution De Biase & Frontini [1978]
function

E Multi Level Single Linkage Rinnooy Kan & Timmer [1987Db]

F Simulated Annealing this paper

G Simulated Annealing based on Aluffi-Pentini, Parisi &
stochastic differential Zirilli [1985]
equations

In tables 4.2 and 4.3 the results are given of methods A — F for the set of test functions
proposed by Dixon & Szegd [1978b] (see Appendix A). For method G no results for this set of
test functions are available. Table 4.2 gives the number of function evaluations and table 4.3

gives the running time in units of standard time.
table 4.2 Number of function evaluations:

function | GP BR H3 H6 S5 S7 510

me thod
A 4400 | 1600 | 2500 | 6000 | 6500 | 9300 | 11000
B 2500 | 1800 | 2400 | 7600 | 3800 | 4900 | 4400
C 2499 | 1558 | 2584 | 3447 | 3649 | 3606 | 3874
D 378 | 597 | 732| 87| 620 | 788 | 1160
E 148 | 206 | 197 | 487 | 404 | 432" 564
F 563 | 505 | 1459 | 4648 | 365 | 558 | 797

*
the global minimum was not found in one of the four runs.
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table 4.3 Running time in units of standard time:

function GP BR H3 H6 S5 S7 S10
me thod

A 45| 2 7 22 13 21 32

B 3 4 8 46 14 20 20

c 4 4 8 16 10 13 15

D 15 14 16 21 23 20 30
E 0.15| 0.25| 0.5| 2 1 1" 2

F 09| 09| 5 20 0.8 1.5| 2.7

* the global minimum was not found in one of the four runs.

It should be mentioned that for most methods the number of function evaluations and the run-
ning time used for the generation of the initial random sample are not taken into account. This
benefits some methods. The Multi Level Single Linkage method for instance uses 1000 function
evaluations for the random sample, and consequently the correspoding running time is not
negligible; whereas for simulated annealing the initialization uses m = 10-n function evalua-
tions (see (3.2)), where n is the dimension. This number is clearly less than in the Multi Level
Single Linkage method.

Tables 4.2 and 4.3 shows that Multi Level Single Linkage is the best method, and that our
simulated annealing algorithm is a good alternative. However, the Multi Level Single Linkage
algorithm is implemented in an efficient dynamic way: the data are handled without extra cost
in running time. Simulated annealing, on the other hand, is tested using a rather primitive imple-
mentation, which is not fully optimized. Hence, we may anticipate an increase in efficiency of
the latter algorithm by using a more sophisticated implementation.

In table 4.4 the results of methods F and G are given for some of the test functions used
by Aluffi-Pentini, Parisi & Zirilli [1985] (see Appendix B). For method F, both the running time
and the number of function evaluations are given; for method G only the number of function

evaluations is presented. Table 4.4 shows a striking difference in the number of function evalua-



tions used by both methods. Unfortunately, no figures are available on the running time of
method G, which disables us to draw any further conclusions. Though it seems that our simula-

ted annealing method is much faster.

table 4.4 Results for methods F and G :
F G

function

ok ok

# f.e. running time # f.e.
* %

P3 780 3.5 241 215
P8 2 667 7 72 851
P 16 9 018 33 66 365
P 22 1 677 2.3 74 194

* the global minimum was not found in one of the four runs;

* # f.e. is the number of function evaluations.

The effectivity of all methods seems acceptable for this set of test functions we have been
investigating. These functions (especially those of Dixon & Szegd [1978b]) have only a few
local minima and their dimensions range from 2 to 6. For functions with more local minima or
higher dimensions the performance may be worse: Multistart, both clustering methods, and
Multi Level Single Linkage have to store all minima found during execution of the algorithm,
(this can be as many as 30" for some functions, where n is the dimension, see for instance
Aluffi-Pentini, Parisi & Zirilli [1985], problem 12). For higher dimensions this number is too
large to handle and this will cause those methods to fail. Simulated annealing has the advantage
that Markov chains are used, for which only the last point has to be stored. But the convergence

of simulated annealing may become slow for these kind of functions.
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5. CONCLUSION AND DISCUSSION

The problem discussed in this paper concerns the global minimization of real valued functions
on R™. There are several methods available from the literature to solve this problem. The best
method, up to now, is the Multi Level Single Linkage method developed by Rinnooy Kan &
Timmer [1987a, 1987b]. This method is capable of finding the global minimum with a high
probability in a reasonable amount of computer time, as long as the function has a moderate
number of minima and the dimension of the search space is small. For higher dimensional
spaces, problems occur due to the enormous amount of data that has to be stored; to cope with
this problem a different approach seems to be necessary. Simulated annealing is proposed as
such an approach. The amount of data that has to be stored while running the simulated annea-
ling algorithm is negligible; only the current point in a Markov chain and some data used for
updating some parameters are needed. Furthermore, if the number of local minima or the dimen-
sion increases, this has no effect on the amount of data stored. Therefore simulated annealing is
a method that can cope with such problems. The simulated annealing algorithm performs slight-
ly worse than the Multi Level Single Linkage method in the sense that, for most functions, a
slightly larger running time is required. However, there is evidence that the total running time
(including the initialization overheads) compares favourably.

The simulated annealing algorithm presented in this paper should be seen as a first step.
Preliminary results show that the method is rather effective and efficient. However, further
research may yield more efficient generation mechanisms. Perhaps a more sophisticated step
than a uniform distributed one can be found, in which information gathered during the minimi-
zing is used. It also might be possible to make local search steps at more suitable moments, to
avoid that a relatively expensive local search step is followed by the acceptation of a large
deterioration.

It is certainly possible to improve the implementation, (the local search procedure was
implemented in a rather primitive way), remedying this will influence the performance positi-

vely.
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It can be concluded that there are several stochastic algorithms for global minimization that
perform satisfactorily, but none of these algorithms is perfect. Global optimization, therefore,

remains a challenging research topic.

APPENDIX A

Test functions proposed by Dixon & Szego [1978b] (x i denotes the i—th coordinate of x):

GP (Goldstein and Price):
f(xl,xz) =[1+ (xl +Xy+ 1)2 (19 — 14x1 + 3x§ - 14x2 + 6x1x2 + 3x§)]*

[30 + (2x, — 3x2)2 (18 — 32x,, + 12x§ +48x, —36x %, + 27x§)].

1
S={xel|-25x<2i=12), x . = (0~1),fx,_; )= 3. There are four local minima.

BR (Branin):

f(xl,xz) =a (x2 —bx‘zl +¢X; —d)2 +e (1 —f)cos X;t+e

wherea=1,b= 5.1/(47t2), c=5m,d=6,e=10, f=1/(8n).

S={xe IR2| -5 < X; < 10 and 0 < Xy € 15 }, X oin = (—=,12.275); (%,2.275); (3®,2.475),

f(xmin) = 5/(4x). There are no more minima.

H3 and H6 (Hartmann's family):

m n 2
fx) = = E i exp( -j i i (x; = p;)")

H3 (n =3 and m = 4):

! 3ij i Pij

1 3 10 30 1 0.3689 0.1170 0.2673

2 0.1 10 35 1.2 0.4699 0.4387 0.7470

3 3 10 30 3 0.1091 0.8732 0.5547

4 0.1 10 35 3.2 0.03815 0.5743 0.8828




H6 (n=6 and m = 4):

i aij C;

1 10 3 17 3.5 1.7 8 1

2 0.05 10 17 0.1 8 14 1.2

3 3 3.5 1.7 10 17 8 3

4 17 8 0.05 10 0.1 14 3.2
and

i Pjj

1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

3 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650

4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

S={xc¢ [R"| 0 < X; <1, 1 £1i £ n}. These functions both have four local minima,

Xioc = PiprPy)s fX), ) = =,

S5, S7 and S10 (Shekel's family):

m 1
f(x)=—i§1 (x - a;r (x -a;) +c;

T

with the dimension n = 4, m = 5, 7, 10 for S5, S7, 10 respectively, x = (XI"“’xn) and

_ T
a, = (aiI""’ain) .
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ij i

2 1 1 1 1 0.2

3 8 8 8 8 0.2

4 6 6 6 6 0.4

5 3 7 3 7 0.4

6 2 9 2 9 0.6

7 5 5 3 3 0.3

8 8 1 8 1 0.7

9 6 2 6 2 0.5

10 7 3.6 7 3.6/ 0.5

S={xeR|0< xj <10, 1<j<4). These functions have 5, 7 and 10 local minima for S5,

S7 and S10 respectively, X1pe = Ap f(xlo c

)= (1<igm).

i
APPENDIX B
In this appendix, 4 of the 24 test functions used by Aluffi-Pentini, Parisi & Zirilli [1985] are
given. These functions contain a penalty term, for Aluffi-Pentini, Parisi & Zirilli minimized over
R". For simulated annealing the minimization is done on S, where S just contains all unpenalized

points. The penalty function is defined by

k(xl.— a)m, X; >a,
u(xi, a,kkm) =10 —aniSa,
k (=x; — )", X; <.

Problem 3 (Two-Dimensional Penalized Shubert Function):

5 5
f(xl’XZ) = {Z i cos[(i+1)x1 + 1]}{ i cos[(i+1)x2 + 1]} + u(x],10,100,2) + u(x,,10,100,2).
i=1 i=1
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S={xe [Rnl ——IOSxiSIO, i = 1,2}. This function has 760 local minima, 18 of them are global.

Problem 8:
n-1 n
f(x) = (nt/n) {k sin (nyl) + Z (yl—kz) [1+k]sm (nyH_I)] + (y 2)2 + .Zlu(xi,10,100,4).
1=

where y; =1+ (xi + 1)/4, kl = 10 and ky=1.
S={xeR|-10<xg10,i=123),x . =(LL1),fx . )=0. This funtion has roughly 53

local minima.

Problem 16:

= ky{sin? n§1 L+k sin® (nk k)2 [1+k sin’ (nk
f(x) = kgysin”(nk,, 1)+ (x— 5) [L+kgsin®(mkyx; ]+ (x,—kg) [1+ksin® (mk x )]

+ Z u(x ,5,100,4)
i=1

with k3=0.1, k4=3, k5=1, k6= 1, k7

S={xeR| -5x<5i=1..5), x . =(LLLL1), fix . ) =0. This function has roughly

=2.
15" local minima.

Problem 22:
£ = 1055 + x5 — (x3+x5) + 1013 4+x2)? with k= 5 and 1 = =s.
={xe lR2| —20_xl.$20, i=1.2}, X oin = (0,15); (0,—15), f(xmin) = —24 775. The origin is a

local minimum.
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