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Abstract

We describe a global optimization approach for
genome assembly where the steps of scaffolding, gap-
filling, and scaffold extension are simultaneously solved
in the framework of a common objective function.
The approach is based on integer programming
model for solving genome scaffolding as a problem of
finding a long simple path in a specific graph that
satisfies additional constraints encoding the insert-size
information. The optimal solution of this problem
allows one to obtain new kind of contigs that we call
distance-based contig. We test the algorithm on a
benchmark of chloroplasts and compare the quality of
the results with recent scaffolders.

keywords: genome assembly, scaffolding, unitig,
contig, longest simple weighted path problem, integer
programming

1 Introduction

Modern Next-Generation Sequencing (NGS) tech-
niques output billions of short DNA sequences, called
reads, and the typical way to process this information is
by using de novo assembly. However, assembling these
fragmented raw data into complete genomes remains a
challenging computational task. This is a very complex
procedure, usually involving three main steps: (1)
generation of contigs, which are contiguous genomic
fragments issued from the overlapping of the reads; (2)
constructing scaffolds—sequences of oriented contigs
along the genome interspaced with gaps; (3) finishing,
which aims to complete the assembly by inserting DNA
text in the gaps between the ordered contigs.

The first step generates a list of contigs (also called
unitigs) that usually represent the ”easily assembled
regions” of the genome. Building contigs is currently
supported by methods using a specific data structure
called de-Bruijn graph [13], where genomes are sought
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as maximal unambiguous paths. Despite the progress
done by the community in the domain, complex regions
of the genome (e.g., regions with many repeats) gener-
ally fail to be assembled by these techniques. If the
genome contains repeats longer than the size of the
reads, the entire genome cannot be built in a unique
way.

Whereas the main challenge of the first step relies
on handling huge volume of data, the scaffolding step
manipulates data of moderate size. However, the
problem remains largely open because of its NP-hard
complexity [9]). The goal here is to provide a reliable
order and orientation of the contigs in order to link
them together into scaffolds. Contigs can be linked
together using paired-end or mate-pair reads [16, 11].
This complementary data is due to the ability of the
sequencing technology to provide couples of reads that
are separated by a known distance (called insert size).
They bring a long distance information that is not
used in the first assembly stage, but is essential for the
second.

The scaffolding phase usually produces multiple scaf-
folds. Moreover, these scaffolds may contain regions
that have not been completely predicted. Hence,
two additional steps, gap-filling and scaffold extension
(elongating and concatenating the contigs after the
scaffolding step) are typically needed to complete the
genome.

The strategy proposed here differs significantly from
the approaches described in the literature. While
the latter apply various heuristics for tackling the
different assembly stages one after another separately,
our methodology consists of developing a global op-
timization approach where the scaffolding, gap-filling,
and scaffold extension steps are simultaneously solved
in the framework of a common objective function.
Our approach is based on integer programming models
for solving the genome scaffolding as a problem of
finding a long simple path in a specific graph that
satisfies additional constraints encoding the insert-size
information [4].
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We are not aware of previous approaches on scaffold-
ing based on longest path problem reduction. Most
previous work on scaffolding is heuristics based, e.g.,
SSPACE [2], GRASS [5], BESST [15] and SPAdes [1].
Such tools may find in some cases good solutions,
but their accuracies cannot be guaranteed or pre-
dicted. Exact algorithms for the scaffolding problem
are presented in [17], but the focus of that work is
on finding structural properties of the contig graph
that will make the optimization problem of polynomial
complexity. In [12], integer linear programming is used
to model the scaffolding problem, with an objective to
maximize the number of links that are satisfied. In
order to avoid sub-cycles in the solution, the authors
use an incremental process, where cycles that may have
been produced by the solver are forbidden in the next
iteration. Integrating the distances between contigs
and accounting for possible multiplicities of the contigs
(repeats) is indicated as future improvement in [12],
while it has been realized in our approach.

This paper focuses on circular genomes and, in
particular, on chloroplasts. The reasons for this choice
are as follows. Chloroplasts possess circular and rel-
atively small genomes. The particularity of these
genomes is the presence of numerous repetitions, while
these are the main chalenges for the modern genome
assembly techniques. On the other hand, the size
of the chloroplast genome permits assembling them
rapidly (each one of the instances from the considered
benchmark except one, EuglenaGracilis genome, has
been solved for less that 1 sec.) and so we were able to
refine our strategy and to focus entirely on the quality
of the obtained results.

The contributions of this study are as follows:

• We adapt and further develop the general case
approach proposed in [4] to the case of circular
genomes. Using the specificities of this particu-
lar case we succeed to simplify significantly the
sophisticated mixed integer linear program (MILP)
described in [4].

• We propose an exact approach for scaffolding
in the case of circular genomes as a problem
of finding longest paths in specific unitig graphs
with additional set of constraint distances between
couples of vertices along these paths.

• We deeply analyze the reasons for the existence
of a huge number of multiple equivalent optimal
solutions. These solutions are mainly explained by
the presence of repetitions in the set of unitigs.
We find sufficient conditions for the existence of
multiple solutions zones and propose an algorithm
for identifying these zones.

• By using the optimal path found by the MILP
model, our algorithm permits merging a set of
unitigs satisfying the link distances into what we
call distance-based contigs. These contigs, together
with the other unitigs, are given to QUAST [6] for
assessment.

• We tested this strategy on a set of 33 chloroplast
genome data and compared the results with
some of the most recent scaffolders (namely
with SPAdes [1], SSPACE [2], BESST [15] and
SWALO [14]).

• Our numerical experiments show that our ap-
proach produces assemblies of higher quality than
the above heuristics on the considered benchmark.

2 Modeling the scaffolding

problem

In this section we adapt the optimization approach
proposed in [4] to the particularities and characteristics
of the chloroplast genomes. Section 2.1 describes the
graph modeling that is common for both approaches,
while the mathematical programming formulation pre-
sented in section 2.2 includes enhancements of the
model that, while making it less general, greatly in-
crease its efficiency for chloroplast genome scaffolding.

2.1 Graph Modeling

The input data for our approach are the following:

• A set of unitigs together with their repetition
factor. Unitigs represents unambiguous paths of
a de-Bruijn graph. Only unitigs larger than a
predefined threshold (cf section 4.1 ) are consid-
ered. The repetition factor is determined from k-
mer counting techniques (cf section 4.1.2).

• A list of overlaps between the unitigs. Two
unitigs overlap if they share a minimum of common
nucleotides at their extremities.

• A list of oriented couples of unitigs (links). Links
are determined from paired-end or mate-pair infor-
mation. Due to insert size fluctuation, an interval
distance is associated with any link from this list.

We follow the modeling from [4] where the scaffolding
problem is reduced to a path finding in a directed graph
G = (V,E), called a unitig graph, where both vertices
V and edges E are weighted. The set of vertices V is
generated based on the set C of the unitigs according
the following rules: the unitig i is represented by at
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least two vertices vi and v′i (forward/inverse orientation
respectively). If the unitig i is repeated ki times (this
value corresponds to the repetition factor), it generates
a set Ci of 2ki vertices. If two different vertices v and
w belong to Ci and have the same orientations, we can
use the notation v ≈ w. Let us denote N =

∑

i∈C ki;
thus |V | = 2N .

The edges are generated following given patterns—
a set of known overlaps/distances between the unitigs.
Any edge is given in the graph G in its forward/inverse
orientation. We denote by eij the edge joining vertices
vi and vj and the inverse of edge eij by ej′ i′ . Let wv

be the length of the unitig corresponding to vertex v

and denote W =
∑

v∈V wv. Moreover, let the weight
le on the edge e = (vi, vj) correspond to the value of
the overlap/distance between unitigs represented by vi
and vj . The problem then is to find a path in the
graph G such that the total length (the sum over the
traversed vertices and edges) is maximized, while a set
of additional constraints are also satisfied:

• For any i, either vertex vi or v
′

i is visited (partici-
pates in the path).

• The orientations of the nodes does not contradict
the constraints imposed by the links. This is at
least partially enforced by the construction of G.

To any edge e ∈ E we associate a variable xe. Its
value is set to 1, if the corresponding edge participates
in the assembled genome sequence (the associated path
in our case), otherwise its value is set to 0. There are
two kinds of edges: edges corresponding to overlaps
between unitigs, denote them by O (from overlaps), and
edges associated with the links relationships, denote
them by L. We therefore have E = L ∪ O. Let le be
the length assigned to the edge e = (u, v). We define le
∀e ∈ O such that le < 0 and |le| < min {wu, wv} is the
overlap between the contigs corresponding to vi and vj ,
and le > 0 ∀e ∈ L, where le is the link distance between
unitigs represented by vi and vj .

Let δ+(v) ⊂ E (resp. δ−(v) ⊂ E) denote the sets of
edges outgoing from (resp. incoming to) v.

2.2 Mixed Integer Linear

Programming Formulation

The crucial observation in the approach proposed in
[4] is that the genome can be assembled by searching for
a particular longest path in the associated unitig graph.
However, the beginning and the end of this path are
unknown in the general case. This constraint leads to
the sophisticated model described in [4]. Here we use
the following two facts for chloroplast genomes in order
simplify the above general approach:

(1) Chloroplast genomes are circular;

(2) One can safely assume that the largest unitig (say
s) is always present in the solution.

Consequently, we introduce a supplementary vertex t

that gets all incoming edges from s. Specifically, each
edge (x, s) we replace by an edge (x, t) and set δ−(t) =
δ−(s), δ+(t) = ∅, and δ−(s) = ∅. Vertices s and t will
be considered respectively as the source (start) and the
sink (end) of the path we are looking for.

Furthermore, to any vertex v ∈ V \ {s} we associate
the variable iv s.t.

0 ≤ iv ≤ 1 (1)

encoding whether v is in the solution path. Moreover,
each vertex (or its inverse) should be visited at most
once, which we encode as

∀(v, v′) : iv + iv′ ≤ 1. (2)

We associate a binary variable for any edge of the
graph, i.e.,

∀e ∈ O : xe ∈ {0, 1} and ∀e ∈ L : ge ∈ {0, 1}. (3)

The two possibles states for a vertex v (to be (or not)
an intermediate vertex in the path) are enforced by the
following constraints

iv =
∑

e∈δ+(v)

xe =
∑

e∈δ−(v)

xe. (4)

It is then obvious that the real variables iv, ∀v ∈ V

take binary values.

We introduce a continuous variable fe ∈ R+ to
express the quantity of the flow circulating along the
edge e ∈ E. Without this variable, the solution found
may contains some loops and hence may not be a simple
path. We put a requirement that no flow can use an
edge e when xe = 0, which can be encoded as

∀e ∈ E : 0 ≤ fe ≤ Wxe, (5)

where W is as defined above (W =
∑

v∈V wv).

We use the flows fe in the following constraints, ∀v ∈
V \ {s},

∑

e∈δ−(v)

fe −
∑

e∈δ+(v)

fe = iv(wv +
∑

e∈δ−(v)

lexe), (6)

while for the source vertex we require

∑

e∈δ+(s)

fe = W. (7)
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We furthermore observe that, because of (4), the
constraint (6) can be written as follows

∀v ∈ V : (8)
∑

e∈δ−(v)

fe −
∑

e∈δ+(v)

fe = ivwv +
∑

e∈δ−(v) lexe.

The constraint (8) is linear and we keep it in our
model instead of (6).

The model so far defines a solution to the longest
path problem. We need also to add information related
to the links distances. For that reason, we associate
a binary variable ge with each link e. For (u, v) ∈ L,
the value of g(u,v) is set to 1 only if both vertices u

and v belong to the selected path and the length of the
considered path between them is in the given interval
[L(u,v), L(u,v)]. Constraints related to links are :

g(u,v) ≤ iu and g(u,v) ≤ iv (9)

∀(u, v) ∈ L : (10)
∑

e∈δ+(u)

fe −
∑

e∈δ−(v)

fe ≥ L(u,v)g(u,v) −M(1− g(u,v)),

∀(u, v) ∈ L : (11)
∑

e∈δ+(u)

fe −
∑

e∈δ−(v)

fe ≤ L(u,v)g(u,v)) +M(1− g(u,v)),

where M is some big constant.

Our goal is to find a long path in the graph such that
as many as possible link distances are satisfied. The
corresponding objective function hence is of the form

max

(

∑

e∈O

xele +
∑

v∈V

wviv + p
∑

e∈L

ge

)

(12)

where p is a parameter to be chosen as appropriate
(currently p = 1).

3 Dealing with multiple optimal

solutions

By its nature, the information provided by the
overlaps and mate pairs is not always sufficient to
determine the assembly in a unique way. For instance,
the unitig graph G is symmetric by constriction, e.g., if
there is an edge (v, w) between vertices v and w, then
there is an edge (w′, v′) between their inverses w′ of w
and v′ of v. Moreover, it contains repeated identical
unitigs, which are modeled by different vertices of
G. For all above reasons, for each optimal solution
(path) p∗ found by our algorithm, there are typically

multiple (exponential in the worst case) number of
equivalent solutions (paths). Such paths are different
from p∗ as sequences of vertices of G, but correspond
to the same set of unitigs (and their inverted copies)
and satisfy the same number of links, and hence
are equally ”optimal” from the point of view of the
optimization problem (1)–(12). This issue is especially
pronounced for chloroplasts due to their higher number
of repeated/symmetrical regions.

Choosing just any arbitrary path from the set of
equivalent optimal ones can result into an assembly
different from the genome reference, which is the main
criterion for evaluating the accuracy of the prediction.
Therefore, our strategy is to detect in the optimal
path multiple solutions portions and to separate them
from subpaths that cannot be replaced be equivalent
ones. This second type of subpaths will be merged
in what we call db-contigs (contiguous sequences that
satisfy the link distances). Obviously, none of the
optimal solutions is eliminated while proceeding in such
a manner. We call these zones ”unsafe” and ”safe,”
respectively, and describe in this section a way to
identify them.

Formally, we call two paths p1 = (v1, . . . , vk) and
p2 = (w1, . . . , wk) of G equivalent, if they satisfy the
same set of links and their components are permuta-
tions of the same set of unitigs (and their inverted
copies). These paths can differ (or not) as sequences
of base pairs. If p is a path in the unitig graph
representing a solution of the optimization problem, we
call a subpath p′ of p a safe zone of p if there exists no
path in the graphGminus p\p′ that is equivalent to and
different from p′, and p′ is a maximal subpath with this
property. Safe zones are in fact subpaths containing
a number of satisfied links, since each such link adds
a constraint that reduces the number of subpaths that
may be equivalent to it. Removing all safe zones from
p leaves a set of paths that we call unsafe zones. We
call a path p link-closed if for any link that has as an
endpoint an intermediate vertex of p, its other endpoint
is also p.

Next, we will illustrate a method for identifying un-
safe zones by an example. Consider a unitig vs of mul-
tiplicity two. According to the graph-generation rules,
there are vertices vs0 and vs1 inG corresponding to vs in
the forward orientation and their corresponding vertices
v′s0 and v′s1 in the opposite direction. Assume also that
there exists a link-closed subpath p = (vk, vk+1, . . . , vr)
of a solution to the optimization problem such that
vk = vs0 and vr = v′s1. Remember that, for each edge
(vi, vi+1) from p, the inverse edge (v′i+1, v

′

i, ) also exists
in the unitig graph. Then we show that the inverse of p,
i.e. the path p′ = inv(p) = (v′r, v

′

r−1, . . . , v
′

k) of inverted
unitigs is also an optimal solution of the optimization
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problem. Obviously, length(p) = length(p′). Since
v′r = vs1 = vs0 and v′k = v′s0 = v′s1, the paths p and
p′ have the same sets of unitigs corresponding to their
vertices and have identical unitigs at the beginning and
their ends, but they are different as paths (sequences
of vertices). The subsequence p = (vk+1, . . . , vr−1) is in
this sense unsafe zone in the solution path. An example
of such unsafe zone is illustrated on Figures 1.

vs0 vi vt vk v
′

s1

vs1 v
′

k v
′

t v
′

i v
′

s0

Figure 1: Top: a path p containing two links
visualized with dashed lines; Bottom: its reversible
path p

′

. Note that vs0(resp. v
′

s0) is identical to
vs1(resp. v

′

s1).

It turns out that the type of subpath illustrated in
the previous example is quite common and most of the
unsafe zones that we have identified in our experiments
can be captured using it. The algorithm for safe/unsafe
zones detection based on using this pattern works as
follows:

(1) The vertices belonging to any satisfied link from
the optimal path p∗ found by the model in section
2.2 are considered elements of a potential db-
contig.

(2) Potential db-contigs that overlap at least one
vertex are merged in new (longer) potential db-
contigs.

(3) Any vertex outside the potential db-contigs is
considered as unsafe.

(4) For any potential db-contig C we apply the follow-
ing algorithm.

(a) Any vertex vs ∈ C is initialized as safe.

(b) For any safe vertex vs ∈ C with multiplicity
of at least two, and such that exists a couple
(vs0, v

′

s1) belonging to C, and such that the
subpath between vs0 and v

′

s1 is link-closed do:
(i) indicate as unsafe both vertices vs0 and
v

′

s1; (ii) indicate the path between vs0 and
v

′

s1 as a new potential db-contig.

(5) All adjacent safe vertices are merged in true db-
contigs (new meta-vertices).

The algorithm is illustrated on Figures 2, 3 and 4.

v40 v
′

3 v
′

41
v2 v1 v

′

81
v6 v

′

7
v80

Figure 2: The initial solution.

v40 v
′

3 v
′

41
v2 v1 v

′

81
v6 v

′

7
v80

s s s s u s s s s

Figure 3: Steps 1, 2 and 3. Two potential db-contigs
are created (the first one is red colored, the second
is blue colored). Their vertices are initially labeled
as safe. The vertex v1 is labeled as unsafe since it is
outside the potential db-contigs.

v40 v
′

3 v
′

41
v2 v1 v

′

81
v6 v

′

7
v80

s s s s u u s s u

Figure 4: Step 4. Two repetitions are detected : the
couples (v40, v

′

41) and (v
′

81, v80). However, the path
(v40, v

′

3, v
′

41) is not reversible, since it is not link-
closed (because of the link (v

′

3, v2)). On the other
hand, the path (v

′

81, v6, v
′

7, v80) is reversible. The
vertices v

′

81 and v80 are labeled as unsafe. Finally,
two true db-contigs are created : the first one,
C1 (in red), contains the subpath (v40, v

′

3, v
′

41, v2),
the second one C2 (in blue), contains the subpath
(v6, v

′

7). These two db-contigs, together with
vertices/unitigs v2 (in white) and v80 (in yellow) are
given for assessment to QUAST.

In order to evaluate the quality of obtained solution
we use QUAST [6]. Note that this tool requires
for input just a set of contigs without indication
for their repetition and orientation (for example, the
input concerning the instance from Figure 4 consists in
contigs C1, C2, v1 and v80 uniquely). QUAST maps any
of them to the reference genome on order to assess its
quality.

Note that this algorithm does not necessarily find
all unsafe/safe zones, but it works well in practice.
Correctly identifying all such zones is an interesting
research problem, whose solution can further improve
the quality of our tool. In the next section we report
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some experimental results comparing our tool with
some of the best existing similar tools.

C1 v1

v
′

81

C2

v80

C2

v
′

1 C
′

1 C
′

2

Figure 5: The metagraph obtained by the algorithm.
Any cycle in this graph is an optimal solution and a
potential genome assembly.

The meta-vertices and the unsafe vertices, together
with the edges that they induce, can be visualized as
a meta-graph. Any cycle in this meta-graph is a po-
tential genome assembly (see Figure 5 for illustration).
However, only one of these cycles will be identical with
the reference genome (if provided).

4 Experimental Analysis

4.1 Data Generation

4.1.1 Simulated Data

From 33 chloroplast reference genomes (cf Table 4.1.4),
33 datasets of mate-pairs or pair-ended reads are
generated with the art-illumina software with 100x
depth of coverage [7]. For each dataset, the two
following tasks are performed: (i) unitig generation; (ii)
link computation.

4.1.2 Unitig generation

Unitigs are generated with the Minia assembler [3]. A
range of different k-mer sizes are tried to find the one
that yields the best assembly.

For each unitig, its abundance (repetition factor) is
computed, that is, the number of times it appears in the
genome. For that, we define the kmer abundance as the
number of times this kmer or its reverse-complement
appears in the read files. The abundance of a unitig
is then computed as the average abundance of all its
kmers. This abundance is computed and returned by
the Minia software.

In theory, the abundance of a unitig that is not
repeated in the genome should be equal to the depth
of coverage of sequencing, twice that amount for dupli-
cated unitigs, and so on. We assume that the longest
unitig is not duplicated, i.e. that its abundance is equal
to the depth of coverage. The multiplicity of each unitig
is then simply computed as its abundance divided by
the depth of coverage, rounded to the nearest upper
integer value.

This strategy provides an estimation of the coverage,
but its accuracy strongly depends of the length of the
unitigs. Longer the unitigs, better the estimation.
Actually, for very short unitigs, we can only provide
intervals of confidence or, at least an upper bound.

4.1.3 Link computation

Each mate-pair or pair-ended read is individually
mapped to unitigs with minimap [10]. We discard
reads that map ambiguously to several locations.
Reads of a pair that map to different unitigs indicate
a mate-pair link in the graph. To avoid false positives,
we only keep links that are validated by at least 5
pairs. The link size is estimated thanks to the known
inserts size and mapping position in each unitig, and
averaged over all pairs that confirm the link.

4.1.4 Computational results

We have generated a data set of 33 chloroplasts
genomes obtained from the NCBI website
(https://www.ncbi.nlm.nih.gov/genome). In order
to simulate mate-pairs and pair-ends sequencing,
we used the ART simulator Illumina [8]. We have
produced reads with a length of 250bp and 100X
coverage. Two types of simulation were performed:
for the pair-end simulation the inserts size was 600bp,
while, for the mate-pairs simulation, we used an insert
of 8000bp. The reads were subsequently assembled in
unitigs by Minia [3] and the generated fasta file was
input to the scaffolders that needed it (SPAdes [1]
and SWALO [14] work directly with the reads and do
not require it). The unitigs were produced with an
abundance of 4 and a k-mer of 125.

The assemblies were evaluated by QUAST [6] tool by
comparison with the reference genome that was used
for the simulation. (More detailed experimental data is
given in the Appendix.) Our tool is denoted by GAT
(Genscale Assembly Tool). In our experiments, GAT
has been as good as, and often better, than the best
current scaffolding tools, while ensuring good coverage
of the reference genome (a parameter that tends to
degrade with other scaffolders). It has been particularly
good in case of pair-ends computations by ensuring a
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regular and nearly optimal assembly.

During the mate pairs computations GAT performed
well by producing often the smallest number of contigs
and was outperformed only in the case of Atropa
genome. Figure 6 illustrates that GAT produces on
average fewer contigs than its competitors. Moreover,
it ensures the best genome coverage as we can observe
on Figure 7. This indicates that the output produced
by our tool are reliable, complete, and don’t lose
information compared to the original genome. SWALO
failed to assemble 10 genomes out of 33, SSPACE 3
genomes, and BESST–one genome. SPADES and GAT
where the only tools for which QUAST did not indicate
any missassemblies.

In the case of pair-end simulations, we have obtained
equally good results. The performance of GAT and
SPAdes are very close in term of average number of
contigs (cf. Figure 8). However, SPAdes is clearly
outperformed by GAT, BESST and SWALO concerning
the genome coverage (cf. Figure 9). On this figure
we also observe that BESST is as reliable as GAT,
but it couldn’t solve Euglena (21)–something that GAT
achieved.

Figure 6: Mate-pairs data : Average number of contigs
comparison.

5 Conclusion

Here we design and test an algorithm for scaffolding
and gap filling phases in the case of circular genomes.
Our approach is based on a version of the longest path
problem solved by MILP modeling. It works both
in case of mate-pairs and pair-ends distances. On a

No Genomes Size |V | |O| |L| nsl

1
Acorus

Calamus
153821 8 16 16 3

2
AdiantumCapillus

Veneris
150568 20 24 24 5

3
Agrostis

Stolonifera
136584 20 52 24 6

4
Angiopteris

Evecta
153901 34 78 70 12

5
Anthoceros

Formosae
161162 16 32 24 5

6
Arabidopsis

Thaliana
161162 20 40 32 7

7 Arabishirsuta 153689 12 24 24 5

8 Atropa 156687 46 90 34 9

9
Capsella Bursa

Pastoris
154490 12 24 24 5

10
Chaetosphaeridium

Globosum
131183 8 16 16 3

11
Chara

Vulgaris
184933 24 56 24 7

12
Chlorella

Vulgaris
150613 52 50 50 24

13
Chlorokybus

Atmophyticus
152229 10 18 18 4

14
Citrus

Sinensis
160129 12 24 24 5

15
Cyanidioschyzon

Merolae
149067 72 82 46 22

16
Cyanidium

Caldarium
164921 38 36 32 15

17
Daucus

Carota
155911 8 16 16 3

18
Draba

Nemorosa
153289 12 24 24 5

19
Eimeria

Tenella
160604 10 18 18 4

20
Epifagus

Virginiana
70028 12 24 24 5

21
Euglena

Gracilis
143171 146 554 30 5

22
Gossypium

Barbadense
160317 12 24 24 5

23
Gossypium

Hirsutum
160301 14 28 24 5

24
Gracilaria

Tenuistipitata
183883 54 54 44 21

25
Guillardia

Theta
121524 44 88 24 5

26
Helianthus

Annuus
151104 10 18 18 4

27
Huperzia

Lucidula
154259 20 48 20 5

28
Lactuca

Sativa
152765 8 16 16 3

29
Lepidium

Virginicum
154743 24 48 48 11

30
Liriodendron

Tulipifera
159886 8 16 16 3

31
Lobularia

Maritima
152659 16 32 32 7

32
Lotus

Corniculatus
150519 20 80 32 7

33 Pinus 116864 58 128 12 6

Table 1: The benchmark containing 36 chloroplast
genomes whose names given in the first column. The
second column contains their lengths. We observed that
this value equals the value given by the first term of the
objective function (12). The third and fourth columns
give the size of the graph (i.e. number of vertices and
edges). |L| indicates the number of given links, while
nsl stands for number of satisfied links in the solution.
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Figure 7: Mate-pairs data : Average fraction of genome
left out comparison.

Figure 8: Pair-ends data : Average number of contigs
comparison.

benchmark of 33 chloroplast genomes our algorithm
significantly outperforms four recent scaffolding heuris-
tics with respect to the quality of the scaffolds. The
obtained results fully justify the efforts for designing
exact approaches for genome assembly. Regardless
of that, we consider the current results as a work
in progress. The biggest challenge is to extend the
method to much bigger genomes. We are currently
implementing advanced combinatorial optimization de-
composition techniques to increase the scalability of the
approach without sacrificing the accuracy of the results.
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Appendix

Figure 10: Mate-pairs data : number of contigs comparison between Spades, Sspace, Besst, Swalo and GAT.

Figure 11: Mate-pairs data : fraction of genome left out comparison between Spades, Sspace, Besst,Swalo and GAT.
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Figure 12: Pair-ends data : number of contigs comparison between Spades, Sspace, Besst, SWALO and GAT.

Figure 13: Pair-ends data : fraction of genome left out comparison between Spades, Sspace, Besst, SWALO and
GAT.
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