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Abstract

This paper proposes a method for solving optimization problems in which the decision-

maker cannot evaluate the objective function, but rather can only express a preference 

such as “this is better than that” between two candidate decision vectors. The algorithm 

described in this paper aims at reaching the global optimizer by iteratively proposing the 

decision maker a new comparison to make, based on actively learning a surrogate of the 

latent (unknown and perhaps unquantifiable) objective function from past sampled deci-

sion vectors and pairwise preferences. A radial-basis function surrogate is fit via linear or 

quadratic programming, satisfying if possible the preferences expressed by the decision 

maker on existing samples. The surrogate is used to propose a new sample of the decision 

vector for comparison with the current best candidate based on two possible criteria: mini-

mize a combination of the surrogate and an inverse weighting distance function to balance 

between exploitation of the surrogate and exploration of the decision space, or maximize 

a function related to the probability that the new candidate will be preferred. Compared 

to active preference learning based on Bayesian optimization, we show that our approach 

is competitive in that, within the same number of comparisons, it usually approaches the 

global optimum more closely and is computationally lighter. Applications of the proposed 

algorithm to solve a set of benchmark global optimization problems, for multi-objective 

optimization, and for optimal tuning of a cost-sensitive neural network classifier for object 

recognition from images are described in the paper. MATLAB and a Python implemen-

tations of the algorithms described in the paper are available at http://cse.lab.imtlu cca.

it/~bempo rad/glis.
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1 Introduction

1.1  Learning and optimization from preferences

Taking an optimal decision is the process of selecting the value of certain variables that 

produces “best” results. When using mathematical programming to solve this problem, 

“best” means that the taken decision minimizes a certain cost function, or equivalently 

maximizes a certain utility function. However, in many problems an objective function 

is not quantifiable, either because it is of qualitative nature or because it involves several 

goals, whose relative importance is not well defined. Moreover, sometimes the “goodness” 

of a certain combination of decision variables can only be assessed by a human decision 

maker.

This situation arises in many practical cases. When calibrating the parameters of 

a deep neural network whose goal is to generate a synthetic painting or artificial music, 

artistic “beauty” is hardly captured by a numerical function, and a human decision-maker 

is required to assess whether a certain combination of parameters produces “beautiful” 

results. For example, Brochu et al. (2008) propose a tool to help digital artists to calibrate 

the parameters of an image generator so that the synthetic image “resembles” a given 

one. Another example is in industrial automation when calibrating the tuning knobs of a 

control system: based on engineering insight and rules of thumb, the task is usually car-

ried out manually by trying a series of combinations until the calibrator is satisfied by the 

observed closed-loop performance. Another well-known example is A/B testing  (Siro-

ker and Koomen 2013), which aims at comparing two versions of a marketing asset to 

find which performs better. A frequent situation in which it is also hard to formulate an 

objective function is multi-objective optimization (Chinchuluun and Pardalos 2007). Here, 

selecting a-priori the correct weighted sum of the objectives to minimize in order to choose 

an optimal decision vector can be very difficult, and is often a human operator that needs to 

assess whether a certain Pareto optimal solution is better than another one, based on his or 

her (sometimes unquantifiable) feelings.

It is well known in neuroscience that humans are better at choosing between two options 

(“this is better than that”) than among multiple ones  (Chau et  al. 2014; Chernev et  al. 

2015). In consumer psychology, the “choice overload” effect shows that a human, when 

presented an abundance of options, has more difficulty to make a decision than if only a 

few options are given. On the other hand, having a large number of possibilities to choose 

from creates very positive feelings in the decision maker  (Chernev et  al. 2015). In eco-

nomics, the difficulty of rational behavior in choosing the best option was also recognized 

in Simon (1955), due to the complexity of the decision problem exceeding the cognitive 

resources of the decision maker. The importance of focusing on discrete choices in psy-

chology dates back at least to the 1920’s (Thurstone 1927).

Several authors have investigated algorithms to learn models that can predict the out-

come of a preference query. In Hüllermeier et al. (2008) the authors classify four differ-

ent ways of learning from preference information. They distinguish between modeling a 

utility function and modeling pairwise-preferences, and also between object ranking, i.e., 

learning how to rank a set of objects (Tesauro 1989; Cohen et al. 1999) and label ranking, 

i.e., learning (for a given instance) a preference relation between a finite set of labels (Har-

Peled et al. 2002; Hüllermeier et al. 2008). In particular, the approach of Tesauro (1989) 

consists of training a neural-network architecture that, given the two samples to compare, 

predicts the outcome of the comparison. Consistency of comparisons is guarantee by a 
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particular symmetry chosen for the architecture. Interestingly, the value of the final layer of 

the network corresponds to an absolute numerical score associated with the input sample, 

that can be reinterpreted as a utility value. The reader is referred to Wang (1994), Herbrich 

et  al. (1998), Joachims (2002), Haddawy et  al. (2003) for alternative methods to learn a 

utility function from pairwise-preferences.

Rather than learning a full preference model that, given any pair of objects (i.e., two 

vectors of decision variables), can predict the outcome of their comparison, in this paper 

we are interested in learning a model for the sole purpose of driving the search towards 

the most preferable object. In other words, rather than introducing a utility function as an 

instrument to model preferences, we want to maximize a (totally unknown) utility function 

from preference information, or equivalently to minimize an underlying objective function. 

The link between preferences and objective function can be simply stated as follows: given 

two decision vectors x
1
 , x

2
 , we say that x

2
 is not “preferred” to x

1
 if f (x

1
) ≤ f (x

2
) . There-

fore, finding a global optimizer of f by preference information can be reinterpreted as the 

problem of looking for the vector x⋆ such that it is preferred to any other vector x. Such a 

preference-based optimization approach requires a solution method that only observes the 

outcome of the comparison f (x
1
) ≤ f (x

2
) , not the values f (x1), f (x2) , not even the value of 

the difference f (x
1
) − f (x

2
).

1.2  Optimization of expensive black-box functions (not based on preferences)

Different methods were proposed in the global optimization literature for finding a global 

minimum of a function whose analytical expression is not available (black-box function) 

but can be evaluated, although the evaluation can be expensive (Rios and Sahinidis 2013). 

Some of the most successful methods rely on computing a simpler-to-evaluate surrogate 

of the objective function and use it to drive the search of new candidate optimizers to sam-

ple (Jones 2001). The surrogate is refined iteratively as new values of the actual objective 

function are collected at those points. Rather than minimizing the surrogate, which may 

easily lead to miss the global optimum of the actual objective function, an acquisition func-

tion is minimized instead to generate new candidates. The latter function consists of a com-

bination of the surrogate and of an extra term that promotes exploring areas of the decision 

space that have not been yet sampled.

Bayesian Optimization (BO) is a very popular method exploiting surrogates to globally 

optimize functions that are expensive to evaluate. In BO, the surrogate of the underlying 

objective function is modeled as a Gaussian process (GP), so that model uncertainty can be 

characterized using probability theory and used to drive the search (Kushner 1964). BO is 

used in several methods such as Kriging (Matheron 1963), in Design and Analysis of Com-

puter Experiments (DACE) (Sacks et al. 1989), material and drug design (Ueno et al. 2016; 

Pyzer-Knapp 2018), tuning of controllers (Piga et al. 2019), in the Efficient Global Opti-

mization (EGO) algorithm (Jones et al. 1998), and is nowadays heavily used in machine 

learning for hyper-parameter tuning (Brochu et al. 2010).

Other methods for derivative-free optimization of expensive black-box functions are 

also available outside the BO literature  (Ishikawa et al. 1999; Gutmann 2001; Regis and 

Shoemaker 2005). These approaches have the same rationale of Bayesian optimization, in 

the sense that they iteratively estimate a surrogate function fitting to the available observa-

tions of the objective function. The surrogate is then used (along with other terms promot-

ing global search) to suggest the next query point. Bayesian optimization mainly differs 
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from these methods as Bayesian inference is employed in BO to build the surrogate func-

tion, and its probability interpretation is used to select next query point.

The method proposed in this paper for preference-based optimization partially relies on 

the approach recently proposed by one of the authors in Bemporad (2020) for global opti-

mization of known, but difficult to evaluate, functions. In Bemporad (2020), general radial 

basis functions (RBFs) are used to construct the surrogate, and inverse distance weighting 

(IDW) functions to promote exploration of the space of decision variables.

1.3  Preference-based optimization of expensive black-box function

As we assume that the function f is unknown, finding an optimal value of the decision 

variables that is “best”, in that the human operator always prefers it compared to all other 

tested combinations, may involve a lot of trial and error. For example, in parameter calibra-

tion the operator has to try many combinations before being satisfied with the winner one. 

Algorithms are therefore required that drive the trials by automatically proposing decision 

vectors to the operator for testing, so to converge to the best choice possibly within the 

least number of experiments.

In the derivative-free black-box global optimization literature there exist some methods 

for minimizing an objective function f that can be used also for preference-based optimiza-

tion. For example particle swarm optimization (PSO) algorithms (Kennedy 2010; Vaz and 

Vicente 2007) drive the evolution of particles only based on the outcome of comparisons 

between function values and could be used in principle for preference-based optimization. 

However, although very effective in solving many complex global optimization problems, 

PSO is not conceived for keeping the number of evaluated preferences small, as it relies 

on randomness (of changing magnitude) in moving the particles, and would be therefore 

especially inadequate in solving problems where a human decision maker is involved in the 

loop to express preferences.

Therefore, optimization of expensive (unknown) black-box functions based only on 

preferences expressed by a user require specific approaches. In particular, active preference 

learning, in which the user is iteratively asked to express a preference between a paired 

comparison, have been proved a successful one.

Several algorithms were proposed in the literature for active preference learning. The 

survey paper  (Busa-Fekete et  al. 2018) presents an exhaustive review of different active 

learning algorithms proposed for multi-armed dueling bandit problems (Yue et al. 2012), 

where the goal is to find the most desirable choice from a finite set of possible options 

only based on pairwise preferences expressed by the user. Among others, we mention 

the methods based on Upper Confidence Bounds  (Zoghi et  al. 2014, 2015), Thompson 

Sampling  (Yue and Joachims 2011; Wu and Liu 2016), and Minimum Empirical Diver-

gence (Komiyama et al. 2015).

Algorithms for active preference learning were also developed in the field of reinforce-

ment learning (see, e.g.,  Fürnkranz et  al. 2012; Akrour et  al. 2012; Wilson et  al. 2012; 

Akrour et al. 2014; Christiano et al. 2017), for situations in which the quantitative evalua-

tion of the reward function is not available, and the policy is learned only based a qualita-

tive evaluation of the agent’s behavior expressed by the user in terms of preferences.

Bayesian optimization has been also adapted for preference-based optimization of 

expensive (unknown) black-box functions  (Chu and Ghahramani 2005a; Brochu et  al. 

2008; González et al. 2017; Abdolshah et al. 2019). In these works, the surrogate function 

describing the observed set of preferences is described in terms of a GP, using a probit 
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model to describe the observed pairwise preferences  (Chu and Ghahramani 2005b). The 

posterior distribution of the latent function is then approximated (e.g., using Laplace’s 

method or Expectation Propagation). This approximation provides a probabilistic predic-

tion of the preference that is used to define an acquisition function (like expected improve-

ment) which is maximized in order to select the next query point. As in standard Bayesian 

optimization, the acquisition function used in Bayesian preference automatically balances 

exploration (selecting queries with high uncertainty on the preference) and exploitation 

(selecting queries which are expected to lead to improvements in the objective function).

Successful applications of active preference learning include optimal scheduling of cal-

enders shared by multiple users (Gervasio et al. 2005), medical applications such as recov-

ering motor function after a spinal-cord injury  (Sui and Burdick 2014; Sui et  al. 2017), 

semi-automated calibration of optimal controllers  (Zhu et al. 2020), and robotics  (Wilde 

et al. 2020a; Sadigh et al. 2017; Wilde et al. 2020b), just to cite a few.

1.4  Contribution

In this paper we propose a new approach for optimization based on active preference learn-

ing in which the surrogate function is modeled by RBFs. The surrogate function only needs 

to satisfy, if possible, the preferences already expressed by the decision maker at sampled 

points. The weights of the RBFs defining the surrogate are computed by solving a linear 

or quadratic programming problem aiming at satisfying the available training set of pair-

wise preferences. The training dataset of the surrogate function is actively augmented in an 

incremental way by the proposed algorithm according to two alternative criteria. The first 

criterion, similarly to Bemporad (2020), is based on a trade off between minimizing the 

surrogate and maximizing the distance from existing samples using IDW functions. The 

second alternative criterion is based on quantifying the probability of getting an improve-

ment based on a maximum-likelihood interpretation of the RBF weight selection problem, 

which allows quantifying the probability of getting an improvement based on the surrogate 

function. Based on one of the above criteria, the proposed algorithm constructs an acquisi-

tion function that is very cheap to evaluate and is minimized to generate a new sample and 

to query a new preference.

Compared to preferential Bayesian optimization (PBO), the proposed approach is com-

putationally lighter, due to the fact that computing the surrogate simply requires solving a 

convex quadratic or linear programming problem. Instead, in PBO one has to first compute 

the Laplace approximation of the posterior distribution of the preference function, which 

requires to calculate (via a Newton–Raphson numerical optimization algorithm) the mode 

of the posterior distribution, and then solve a system of linear equations, whose size is 

equal to the number of observations. Moreover, the IDW term used by our approach to 

promote exploration does not depend on the surrogate, which guarantees that the space 

of optimization variables is well explored even if the surrogate poorly approximates the 

underlying preference function.

Overall, our formulation does not require to derive posterior probability distributions, with 

the advantage that (1) it can be more easily generalized than PBO, for example additional 

constraints on the surrogate function can be immediately taken into account in the convex 

programming problem that might not have a probabilistic interpretation; (2) in particular the 

RBF+IDW version of the method is purely deterministic and delivers a similar level of per-

formance with an easier interpretation than PBO; (3) the method does not require approxi-

mating posteriors that cannot be computed analytically and hence may result computationally 
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involved. Such advantages do not compromise the performance of the algorithm in determin-

ing the best solution: compared to PBO that uses Laplace approximation of the posterior, 

within the same number of queried preferences our algorithm often achieves a better quality 

solution, as we will show in a set of benchmarks used in global optimization and in solving a 

multi-objective optimization problem.

1.5  Outline

The paper is organized as follows. In Sect. 2 we formulate the preference-based optimi-

zation problem we want to solve. Section 3 proposes the way to construct the surrogate 

function using linear or quadratic programming and Sect. 4 the acquisition functions that 

are used for generating new samples. The active preference learning algorithm is stated 

in Sect.  5 and its possible application to solve multi-objective optimization problems in 

Sect. 6. Section 7 presents numerical results obtained in applying the preference learning 

algorithm for solving a set of benchmark global optimization problems, a multi-objective 

optimization problem, and for optimal tuning of a cost-sensitive neural network classifier 

for object recognition from images. Finally, some conclusions are drawn in Sect. 8.

A MATLAB and a Python implementation of the proposed approach is available for 

download at http://cse.lab.imtlu cca.it/ bempo rad/glis.

2  Problem statement

Given two vectors x1, x2 ∈ ℝ
n of decision variables, consider the preference function 

� ∶ ℝ
n ×ℝ

n
→ {−1, 0, 1} defined as

where for all x1, x2 ∈ ℝ
n it holds �(x1, x1) = 0 , �(x1, x2) = −�(x2, x1) , and the transitive 

property

Moreover, assume that we are interested in searching for decision vectors with values 

within lower and upper bounds �, u ∈ ℝ
n and within the set

where q ≥ 0 is the number of constraints defining X  , g ∶ ℝ
n
→ ℝ

q , and X = ℝ
n when 

q = 0 (no inequality constraint is enforced). We assume that the function g defining the 

condition x ∈ X  in (1) is known. For example, in case of linear inequality constraints we 

have g(x) = Ax − b , A ∈ ℝ
q×n , b ∈ ℝ

q , q ≥ 0 . We exclude equality constraints A
e
x = b

e
 , as 

they can be eliminated by reducing the number of decision variables.

The objective of this paper is to solve the following constrained global optimization 

problem:

�(x1, x2) =

⎧
⎪
⎨
⎪
⎩

−1 if x1 “better” than x2

0 if x1 “as good as” x2

1 if x2 “better” than x1

�(x1, x2) = �(x2, x3) = −1 ⇒ �(x1, x3) = −1

(1)X = {x ∈ ℝ
n ∶ g(x) ≤ 0}

(2)find x
⋆ such that �(x⋆, x) ≤ 0, ∀x ∈ X, � ≤ x ≤ u

http://cse.lab.imtlucca.it/%c2%a0bemporad/glis
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that is to find the vector x⋆ ∈ ℝ
n of decision variables that is “better” (or “no worse”) than 

any other vector x ∈ ℝ
n according to the preference function � within the given admissible 

set.

The problem of minimizing an objective function f ∶ ℝ
n
→ ℝ under constraints,

can be written as in (2) by defining

In this paper we assume that we do not have a way to evaluate the objective function f. 

The only assumption we make is that for each given pair of decision vectors x1, x2 ∈ X  , 

� ≤ x ≤ u , only the value �(x1, x2) is observed. The rationale of our problem formulation is 

that often one encounters practical decision problems in which a function f is impossible to 

quantify, but anyway it is possible to express a preference, for example by a human opera-

tor, for any given presented pair (x1, x2) . The goal of the preference-based optimization 

algorithm proposed in this paper is to suggest iteratively a sequence of samples x1,… , x
N

 

to test and compare such that x
N

 approaches x⋆ as N grows.

In what follows we implicitly assume that a function f actually exists but is completely 

unknown, and attempt to synthesize a surrogate function f̂ ∶ ℝ
n
→ ℝ of f such that its associ-

ated preference function �̂ ∶ ℝ
n ×ℝ

n
→ {−1, 0, 1} defined as in (3) coincides with � on the 

finite set of sampled pairs of decision vectors.

3  Surrogate function

Assume that we have generated N ≥ 2 samples X = {x
1
… x

N
} of the decision vector, with 

xi, xj ∈ ℝ
n such that xi ≠ xj , ∀i ≠ j , i, j = 1,… , N , and have evaluated a preference vector 

B = [b1 … b
M
]� ∈ {−1, 0, 1}M

where M is the number of expressed preferences, 1 ≤ M ≤

(

N

2

)

 , h ∈ {1,… , M} , 

i(h), j(h) ∈ {1,… , N} , i(h) ≠ j(h).

In order to find a surrogate function f̂ ∶ ℝ
n
→ ℝ such that

where �̂ is defined from f̂  as in (3), we consider a surrogate function f̂  defined as the fol-

lowing radial basis function (RBF) interpolant (Gutmann 2001; McDonald et al. 2007)

x⋆ = arg minx f (x)

s.t. � ≤ x ≤ u

x ∈ X

(3)�(x1, x2) =

⎧
⎪
⎨
⎪
⎩

−1 if f (x1) < f (x2)

0 if f (x1) = f (x2)

1 if f (x1) > f (x2)

(4)bh = �(xi(h), xj(h))

(5)�(xi(h), xj(h)) = �̂(xi(h), xj(h)), ∀h = 1,… , M

(6)f̂ (x) =

N
∑

i=1

�i�(�d(x, xi))
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In (6) function d ∶ ℝ
n
×ℝ

n
→ ℝ is the squared Euclidean distance

� > 0 is a scalar parameter, � ∶ ℝ → ℝ is a RBF, and �
i
 are coefficients that we determine 

as explained below. Examples of RBFs are �(�d) =
1

1+(�d)2
 (inverse quadratic), 

�(�d) = e
−(�d)2 (Gaussian), �(�d) = (�d)2 log(�d) (thin plate spline), see more examples 

in Gutmann (2001); Bemporad (2020).

In accordance with (5), we impose the following preference conditions

where � > 0 is a given tolerance and �
h
 are slack variables, �

h
≥ 0 , h = 1,… , M.

Accordingly, the coefficient vector � = [�
1
… �

N
]� is obtained by solving the follow-

ing convex optimization problem

where c
h
 are positive weights, for example c

h
= 1 , ∀h = 1,… , M . The scalar � is a regulari-

zation parameter. When � > 0 problem (8) is a quadratic programming (QP) problem that, 

since c
h
> 0 for all h = 1,… , M , admits a unique solution. If � = 0 problem (8) becomes a 

linear program (LP), whose solution may not be unique.

The use of slack variables �
h
 in (8) allows one to relax the constraints imposed by the 

specified preference vector B. Constraint infeasibility might be due to an inappropriate 

selection of the RBF and/or to outliers in the acquired components b
h
 of vector B. The 

latter condition may easily happen when preferences b
h
 are expressed by a human deci-

sion maker (or by different decision makers) in an inconsistent way. Since each slack 

variable �
h
 is multiplied by a positive weight c

h
 , an (optional) “degree of confidence” �

h
 

can be associated with the outcome b
h
 of the query, where small �

h
 means low confi-

dence, a high �
h
 means high confidence. According to this interpretation of the “degree 

of confidence” �
h
 , the user can define the weights c

h
 as inversely proportional to �

h
 , for 

example by setting c
h
=

1

�
h

.

For a given set X = {x
1
… x

N
} of samples, setting up  (8) requires computing the 

N × N symmetric matrix �  whose (i, j)-entry is

d(x1, x2) = ‖x1 − x2‖
2

2
, x1, x2 ∈ ℝ

n

(7)

f̂ (xi(h)) ≤ f̂ (xj(h)) − � + �h, ∀h = 1,… , M such that �(xi(h), xj(h)) = −1

f̂ (xi(h)) ≥ f̂ (xj(h)) + � − �h, ∀h = 1,… , M such that �(xi(h), xj(h)) = 1

|f̂ (xi(h)) − f̂ (xj(h))| ≤ � + �h, ∀h = 1,… , M such that �(xi(h), xj(h)) = 0

(8)

min�,�

M
∑

h=1

ch�h +
�

2

N
∑

k=1

�2

k

s.t.

N
∑

k=1

(

�
(

�d(xi(h), xk)
)

− �
(

�d(xj(h), xk)
))

�k ≤ −� + �h, ∀h ∶ bh = −1

N
∑

k=1

(

�
(

�d(xi(h), xk)
)

− �
(

�d(xj(h), xk)
))

�k ≥ � − �h, ∀h ∶ bh = 1

N
∑

k=1

(

�
(

�d(xi(h), xk)
)

− �
(

�d(xj(h), xk)
))

�k ≤ � + �h, ∀h ∶ bh = 0

N
∑

k=1

(

�
(

�d(xi(h), xk)
)

− �
(

�d(xj(h), xk)
))

�k ≥ −� − �h, ∀h ∶ bh = 0

h = 1,… , M
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with �
ii
= 1 for the inverse quadratic and Gaussian RBF, while for the thin plate spline 

RBF �
ii
= lim

d→0
�(�d) = 0 . Note that if a new sample x

N+1
 is collected, updating matrix 

� only requires computing �(d(xN+1, xj), �) for all j = 1,… , N + 1.

An example of surrogate function f̂  constructed based on preferences generated as 

in (3) by the following scalar function (Bemporad 2020)

is depicted in Fig. 1. The surrogate is generated from N = 6 samples by solving the LP (8) 

( � = 0 ) with matrix � generated by the inverse quadratic RBF with � = 2 and � =
1

N
.

3.1  Self-calibration of RBF

Computing the surrogate f̂  requires choosing the hyper-parameter � defining the shape 

of the RBF � (Eq.  (6)), thus influencing the capability of the resulting surrogate model of 

capturing the latent objective function. Therefore, as typical in machine learning for hyper-

parameter tuning, we adapt � through K-fold cross-validation (Stone 1974), by splitting the M 

�ij = �(�d(xi, xj))

(9)f (x) =

(

1 +
x sin(2x) cos(3x)

1 + x2

)2

+
x2

12
+

x

10

Fig. 1  Example of surrogate function f̂  (middle plot) based on preferences resulting from function f (top 

plot, blue) as in (9). Pairs of samples generating comparisons are connected by a green line. IDW explora-

tion function z (bottom plot)
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available pairwise comparisons into K (nearly equally sized) disjoint subsets. To this end, let 

us define the index sets S
i
 , i = 1,… , K , such that ∪K

i=1
S

i
= {1,… , M} , Si ∩ Sj = � , for all 

i, j = 1,… , K , i ≠ j . For a given � and for all i = 1,… , K , the preferences indexed by the set 

{1,… , M} ⧵ S
i
 are used to fit the surrogate function f̂

�
 by solving (8), while the performance 

of f̂
�
 in predicting comparisons indexed by S

i
 is quantified in terms of number of correctly 

classified preferences C
i
(�) =

∑

h∈S
i

�
h
(�) , where �

h
(�) = 1 if �(xi(h), xj(h)) = �̂

�
(xi(h), xj(h)) or 

0 otherwise, and �̂
�
 is the preference function induced by f̂

�
 as in (3). Since the hyper-parame-

ter � is scalar, a fine grid search can be used to find the value of � maximizing 
∑K

i=1
C

i
(�).

Since in active preference learning the number M of observed pairwise preferences is usu-

ally small, we use S
h
= {h} , h = 1,… , M , namely M-fold cross validation or leave-one-out, 

to better exploit the M available comparisons.

Let x⋆
N
∈ ℝ

n be the best vector of decision variables in the finite set X = {x1,… , x
N
} , cor-

responding to the smallest index i⋆ such that

Since in active preference learning one is mostly interested in correctly predicting the pref-

erence w.r.t. the best optimal point x⋆
N

 , the solution of problem (8) and the corresponding 

score C
i
(�) are not computed for all indexes h such that x

i(h) = x
⋆

N
 , that is the preferences 

involving x⋆
N

 are only used for training and not for testing.

For a given value of the hyper-parameter � , the K-fold cross-validation procedure for self-

calibration requires to formulate and solve problem  (8) K times ( M = N − 1 times in case 

of leave-one-out cross validation, or less when comparisons involving x
⋆

N
 are only used for 

training). As � is a scalar value, the complexity trivially scales linearly with the number of 

values of � for which the K-fold cross-validation procedure is executed. In order to reduce 

computations, we execute the self-calibration procedure and change � only at a subset 

Isc ⊆ {1,… , Nmax − 1} of iterations.

4  Acquisition function

Let x⋆
N
∈ ℝ

n be the best vector of decision variables defined in (10). Consider the following 

procedure: (i) generate a new sample by pure minimization of the surrogate function f̂  defined 

in (6),

with � obtained by solving the LP (8), (ii) evaluate �(x
N+1, x

⋆

N
) , (iii) update f̂  , and (iv) iter-

ate over N. Such a procedure may easily miss the global minimum of (2), a phenomenon 

that is well known in global optimization based on surrogate functions: purely minimiz-

ing the surrogate function may lead to converge to a point that is not the global minimum 

of the original function (Jones 2001; Bemporad 2020). Therefore, the exploitation of the 

surrogate function f̂  is not enough to look for a new sample x
N+1

 , but also an exploration 

objective must be taken into account to probe other areas of the feasible space. Such a bal-

ance between exploration and exploitation is addressed by defining a proper acquisition 

function a ∶ ℝ
n
→ ℝ , which is minimized instead of the surrogate function f̂ (x) . In the 

next paragraphs we propose two different acquisition functions that can be used to define 

the new sample x
N+1

 to compare the current best sample x⋆
N

 to.

(10)�(x
i⋆

, x
i
) ≤ 0, ∀i = 1,… , N

xN+1 = arg min f̂ (x) s.t. � ≤ x ≤ u, x ∈ X
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4.1  Acquisition based on inverse distance weighting (IDW)

Following the approach suggested in Bemporad (2020), we construct an exploration func-

tion using ideas from inverse distance weighting (IDW). Consider the IDW exploration 

function z ∶ ℝ
n
→ ℝ defined by

where w
i
∶ ℝ

n
→ ℝ is defined by Shepard (1968)

Clearly z(xi) = 0 for all x
i
∈ X (namely, for all inputs x

i
 already sampled), and z(x) > 0 in 

ℝ
n ⧵ X . Fig. 1 shows the IDW exploration function z obtained from (11) for the example 

generated from (9). Note that the IDW exploration function z(x) increases for inputs x far 

away from the sampled inputs X. Thus, maximization of z(x) promotes sampling in unex-

plored regions of the input space. The arc tangent function in  (11) avoids that z(x) gets 

excessively large far away from all sampled points.

Given an exploration parameter � ≥ 0 , the acquisition function a is defined as

where

is the range of the surrogate function on the samples in X. By setting

we get f̂ (xi) = yi , ∀i = 1,… , N , and therefore

Clearly �F̂ ≥ � if at least one comparison b
h
= �(x

i(h), x
i(h)) ≠ 0 . The scaling factor �F̂ is 

used to simplify the choice of the exploration parameter �.

The following lemma immediately derives from Bemporad (2020, Lemma 2):

Lemma 1 Function a is differentiable everywhere on ℝn.

As we will detail below, given a set X of N samples {x1,… , x
N
} and a vector B of pref-

erences defined by (4), the next sample x
N+1

 is defined by solving the global optimization 

problem

(11)z(x) =

⎧
⎪⎨⎪⎩

0 if x ∈ {x1,… , xN}

tan−1

�
1∑N

i=1
wi(x)

�
otherwise

w
i
(x) =

1

d2(x, x
i
)

(12)a(x) =
f̂ (x)

�F̂
− �z(x)

�F̂ = max
i
{f̂ (xi)} − min

i
{f̂ (xi)}

y = ��

�F̂ = max(y) − min(y)

(13)x
N+1 = arg min

�≤x≤u, x∈X

a(x)
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Problem (13) can be solved very efficiently using various global optimization techniques, 

either derivative-free (Rios and Sahinidis 2013) or, if X = {x ∶ g(x) ≤ 0} and g is also dif-

ferentiable, derivative-based. In case some components of vector x are restricted to be inte-

ger, (13) can be solved by mixed-integer programming.

4.2  Acquisition based on probability of improvement (PI)

In this section, we show how the surrogate function f̂  derived by solving problem (8) 

can be seen as a maximum-likelihood estimate of an appropriate probabilistic model. 

This will allow us to define an alternative acquisition function based on the probability 

of improvement (PI) with respect to the current best solution. The analyses described in 

the following are inspired by the probabilistic interpretation of support vector machines 

described in Franc et al. (2011).

Let � > 0 and let �(�, X, xi(h), xj(h)) be the N-dimensional vector obtained by collecting 

the terms �(�d(xi(h), xk)) − �(�d(xj(h), xk)) , with h = 1,… , M , k = 1,… , N.

Let us rewrite the QP problem (8) without the slack variables �
i
 as

where 

 are piecewise linear convex functions of � , for all h = 1,… , M.

Theorem 1 For a given hyper-parameter � > 0 , let �(�) be the minimizer of problem (14) 

and let �(�) = ‖�(�)‖ . Then vector u⋆ =
�(�)

�(�)
 is the minimizer of the following problem

Proof See Appendix.   ◻

Theorem  1 thus provides a relation between the solution of the unconstrained reg-

ularized optimization problem  (14) and the constrained, non-regularized, optimiza-

tion problem (16). This allows us to focus on problem (16) instead of problem (14) (or 

equivalently, instead of the original QP problem (8)).

In order to avoid heavy notation, in the following we restrict the coefficients c
h
 

in (8) such that they are equal when the preference b
h
 is the same, that is c

h
= c̄

b
h
 where 

c̄
−1, c̄0, c̄1 are given positive weights.

Let us now focus on problem (16) and consider the joint p.d.f.

(14)min
�

M�

h=1

ch�bh
(�(�, X, xi(h), xj(h))

��) +
�

2
‖�‖2

(15a)�−1(�(�, X, xi(h), xj(h))
��) = max{0,�(�, X, xi(h), xj(h))

�� + �)}

(15b)�1(�(�, X, xi(h), xj(h))
��) = max{0; −�(�, X, xi(h), xj(h))

�� + �}

(15c)�0(�(�, X, xi(h), xj(h))
��) = max{0,±�(�, X, xi(h), xj(h))

�� − �}

(16)min
u∶‖u‖=1

M�

h=1

ch�bh
(�(�)�(�, X, xi(h), xj(h))

�u)
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defined for � ∈ ℝ
N and t ∈ {−1, 0, 1} , and parametrized by c̄ = [c̄−1

c̄
0

c̄
1
]� , a strictly posi-

tive scalar � , and a generic unit vector u.

The distribution (17) is composed by three terms. The first term Z(c̄, �, u) is a normali-

zation constant. We will show next that Z(c̄, �, u) does not depend on u when we restrict 

‖u‖ = 1 . The second term e−c̄
t
�

t
(���

u) depends on all the parameters (c̄, �, u) and it is related 

to the objective function minimized in  (16). The last term �(�) ensures integrability of 

p(�, t;c̄, �, u) and that the normalization constant Z does not depend on u, as discussed 

next. A possible choice for � is �(�) = e
−��

�.

The normalization constant Z in (17) guarantees that p(�, t;c̄, �, u) is a probability den-

sity function, and thus it computed as

where for t ∈ {−1, 0, 1} the term I
t
(c̄

t
, �, u) is the integral defined as

The following Theorem shows that I
t
(c̄

t
, �, u) does not depend on u, and so Z(c̄, �, u) is also 

independent of u.

Theorem 2 Let �(�) in (17) be �(�) = e
−��

� . For any t ∈ {−1, 0, 1},

Proof See Appendix.   ◻

Because of Theorem  2, since now on, when we restrict ‖u‖ = 1 , we will drop the 

dependence on u of Z(c̄, �, u) and simply write Z(c̄, �).

Let us assume that the samples of the training sequence {�(�, X, h), b
h
}M

h=1
 are i.i.d. and 

generated from the joint distribution p(�, t;c̄, �, u) defined in (17). The negative log of the 

probability of the dataset {�(�, X, xi(h), xj(h)), bh}
M
h=1

 given c̄, �, u is

Thus, for fixed values of c̄ and � = ‖�(�)‖ , by Theorem 1 the minimizer u⋆
L
(�) of

(17)p(�, t;c̄, �, u) = Z(c̄, �, u)e−c̄t�t(��
�u)
�(�),

Z(c̄, �, u) =
1

∑

t∈{−1,0,1} I
t
(c̄

t
, �, u)

(18)I
t
(c̄

t
, �, u) = ∫

�∈ℝN

e
−c̄

t
�

t
(���

u)
�(�)d�

I
t
(c̄

t
, �, u) = I

t
(c̄

t
, �, ū) ∀u, ū ∶ ‖u‖ = ‖ū‖ = 1.

L(c̄, �, u) = −

M
∑

h=1

log p(�(�, X, xi(h), xj(h)), bh;c̄, �, u) =

= −M log Z(c̄, �) −

M
∑

h=1

log �(�(�, X, xi(h), xj(h)))

+

M
∑

h=1

c̄bh
�bh

(��(�, X, xi(h), xj(h))
�u)

min
u∶ ‖u‖=1

L(c̄, �(�), u)
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is u⋆
L
=

�(�)

�(�)
 . In other words, for any fixed � > 0 , the solution �(�) of the QP problem (8) 

can be reinterpreted as � times the maximizer u⋆
L
(�) of the joint likelihood L(c̄, �, u) with 

respect to u, ‖u‖ = 1 , when � = ‖�(�)‖.

It is interesting to note that the marginal p.d.f. derived from the probabilistic model (17) 

is equal to

and therefore the corresponding preference posterior probability is

where � = �u.

The preference posterior probability given in (19) can be used now to explore the vector 

space ℝn and to define an alternative acquisition function, as described next.

Let � be the vector obtained by solving (8) with N samples and M preferences. Let us 

treat again x
N+1

 as a free sample x to optimize and consider (19) also for the new generic 

(M + 1)th comparison

A criterion to choose x
N+1

 is to maximize the preference posterior probability of obtaining 

a “better” sample compared to the current “best” sample x⋆
N

 given by (19), or equivalently 

of getting �(x
N+1, x

⋆

N
) = −1 . This can be achieved by the following acquisition function

Examples of acquisition functions a constructed based on preferences generated by the 

function f defined in (9) are depicted in Fig. 2, based on the same setting as in Fig. 1.

4.3  Scaling

Different components xj of x may have different upper and lower bounds uj , �j . Rather 

than using weighted distances as in stochastic process model approaches such as Kriging 

methods (Sacks et al. 1989; Jones et al. 1998), we simply rescale the variables in optimiza-

tion problem (2) to range in [−1, 1] . As described in Bemporad (2020), we first tighten the 

given range B
�,u

= {x ∈ ℝ
n ∶ � ≤ x ≤ u} by computing the bounding box B

�
s
,u

s

 of the set 

p(�;c̄, �, u) =
∑

t=−1,0,1

p(�, t;c̄, �, u) = Z(c̄, �)�(�)
∑

t=−1,0,1

e−c̄t�t(��
�u)

(19)
p(t|�;c̄, �, u) =

p(�, t;c̄, �, u)

p(�;c̄, �, u)
=

e−c̄t�t(�
��)

∑

t=−1,0,1

e
−c̄t�t(�

��)

�(�, X, x, x
⋆(N)) =

⎡
⎢
⎢
⎣

�(�d(x, x1)) − �(�d(x⋆
N

, x1)

…

�(�d(x, x
N
)) − �(�d(x⋆

N
, x

N
)

⎤
⎥
⎥
⎦

(20)

a(x) = −p

�
t = −1

����
�(�, X, x, x⋆

N
);c̄, ‖�‖,

�

‖�‖

�

= −
e−c̄−1�−1(�(�,X,x,x⋆

N
)��)

�

t=−1,0,1

e−c̄t�t(�(�,X,x,x⋆
N
)��)



431Machine Learning (2021) 110:417–448 

1 3

{x ∈ ℝ
n ∶ x ∈ X} and replacing B

�,u
 with B

�
s
,u

s

 . The bounding box B
�

s
,u

s

 is obtained by 

solving the following 2n optimization problems

where e
i
 is the ith column of the identity matrix, i = 1,… , n . Note that Prob-

lem  (21) is a linear programming (LP) problem in case of linear inequality constraints 

X = {x ∈ ℝ
n

Ax ≤ b} . Then, we operate with new scaled variables x̄ ∈ ℝ
n , x̄

i
∈ [−1, 1] , 

and replace the original preference learning problem (2) with

where the scaling mapping x ∶ ℝ
n
→ ℝ

n is defined as

where clearly xj(−1) = �s , x
j(1) = us , and X

s
 is the set

When X  is the polyhedron {x ∶ Ax ≤ b}, (22) corresponds to defining the new polyhedron

(21)
�

i

s
= min

�≤x≤u, x∈X
e
�

i
x

u
i

s
= max

�≤x≤u, x∈X
e
�

i
x

find x̄
⋆ such that �(x(x̄⋆), x(x̄)) ≤ 0, ∀x̄ ∈ X

s
, �

s
≤ x(x̄) ≤ u

s

xj(x̄) =
u

j
s − �

j
s

2
x̄j +

u
j
s + �

j
s

2
, j = 1,… , n

(22)X
s
= {x̄ ∈ ℝ

n ∶ x(x̄) ∈ X}

Fig. 2  Example of acquisition functions a based on preferences resulting from function f as in  (9) and 

Fig. 1. Top plot: RBF+IDW acquisition function a as in (12) with � = 1 and � = 2 . Bottom plot: RBF+PI 
acquisition function a as in  (20) based in probability of improvement. The minimum of a is highlighted 

with a diamond
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where

and diag(
u

s
−�

s

2
) is the diagonal matrix whose diagonal elements are the components of 

u
s
−�

s

2
.

Note that in case the preference function � is related to an underlying function f 

as in  (3), applying scaling is equivalent to formulate the following scaled preference 

function

5  Preference learning algorithm

Algorithm 1 summarizes the proposed approach to solve the optimization problem (2) 

by preferences using RBF interpolants  (6) and the acquisition functions defined in 

Sect. 4.

In Step 3 Latin Hypercube Sampling (LHS) (McKay et al. 1979) is used to generate 

the initial set X of N
init

 samples. The generated samples may not satisfy the constraint 

x ∈ X  . We distinguish between two cases:

i) the comparison �(x1, x2) can be done even if x
1
∉ X  and/or x

2
∉ X ;

ii) �(x1, x2) can only be evaluated if x1, x2 ∈ X .

In the first case, the initial comparisons are still useful to define the surrogate func-

tion. In the second case, a possible approach is to generate a number of samples larger 

than N
init

 and discard the samples x
i
∉ X  . An approach for performing this is suggested 

in Bemporad (2020, Algorithm 2).

Step 5.1.4 requires solving a global optimization problem. In this paper we use par-

ticle swarm optimization (PSO) (Kennedy 2010; Vaz and Vicente 2007) to solve prob-

lem  (13). Alternative global optimization methods such as DIRECT  (Jones 2009) or 

others methods (Huyer and Neumaier 1999; Rios and Sahinidis 2013) could be used to 

solve (13). Note that penalty functions can be used to take inequality constraints (1) into 

account, for example by replacing (13) with

X
s
= {x̄ ∶ Āx̄ ≤ b̄}

Ā = Adiag
(

u
s
−�

s

2

)

b̄ = b − A

(

u
s
+�

s

2

)

�(x̄1, x̄2) =

⎧
⎪
⎨
⎪
⎩

−1 if f (x(x̄1)) < f (x(x̄2))

0 if f (x(x̄1)) = f (x(x̄2))

1 if f (x(x̄1)) > f (x(x̄2))

(23)xN+1 = arg min
�≤x≤u

a(x) + ��F̂

q
∑

i=1

max{gi(x), 0}2
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where � ≫ 1 in (23).

Algorithm 1 consists of two phases: initialization and active learning. During initializa-

tion, sample x
N+1

 is simply retrieved from the initial set X = {x1,… , x
Ninit

} . Instead, in the 

active learning phase, sample x
N+1

 is obtained in Steps 5.1.1–5.1.4 by solving the optimiza-

tion problem (13). Note that the construction of the acquisition function a is rather heuris-

tic, therefore finding global solutions of very high accuracy of (13) is not required.

When using the RBF+IDW acquisition function (12), the exploration parameter � pro-

motes sampling the space in [�, u] ∩ X  in areas that have not been explored yet. While set-

ting � ≫ 1 makes Algorithm 1 exploring the entire feasible region regardless of the results 

of the comparisons, setting � = 0 can make Algorithm 1 rely only on the surrogate func-

tion f̂  and miss the global optimizer. Note that using the RBF+PI acquisition function (20) 

does not require specifying the hyper-parameter � . On the other hand, the presence of the 

IDW function in the acquisition allows promoting an exploration which is independent of 

the surrogate, and therefore � might be a useful tuning knob to have.

Figure 1 (upper plot) shows the samples generated by Algorithm 1 when applied to min-

imize the function f (9) in [−3, 3] , by setting � = 1 , N
max

= 6 , N
init

= 3 , I
sc
= � , � gener-

ated by the inverse quadratic RBF with � = 2 , and � =
1

N
max

.

5.1  Computational complexity

Algorithm  1 solves N
max

− N
init

 quadratic or linear programs  (8) with growing size, 

namely with 2N − 1 variables, a number q of linear inequality constraints with 

N − 1 ≤ q ≤ 2(N − 1) depending on the outcome of the preferences, and 2 equality con-

straints. Moreover, it solves N
max

− N
init

 global optimization problems (13) in the n-dimen-

sional space, whose complexity depends on the used global optimizer. The computation of 

matrix � requires overall N
max

(N
max

− 1) RBF values �(�d(xi, xj)) , i, j = 1,… , Nmax , j ≠ i . 

The leave-one-out cross validation executed at Step 5.1.1 for recalibrating � requires to for-

mulate and solve problem (8) at most N − 1 times. On top of the above analysis, one has to 

take account the cost of evaluating the preferences �(xi(h), xj(h)) , h = 1,… , Nmax − 1.
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6  Application to multi‑objective optimization

The active preference learning methods introduced in the previous sections can be effec-

tively used to solve multi-objective optimization problems of the form

where � ∈ ℝ
n� is the optimization vector, F

i
∶ ℝ

n� → ℝ , i = 1,… , n , are the objective 

functions, n ≥ 2 , and g ∶ ℝ
n� → ℝ

n
g is the function defining the constraints on � (including 

possible box and linear constraints). In general Problem (25) admits infinitely many Pareto 

optimal solutions, leaving the selection of one of them a matter of preference.

Pareto optimal solutions can be expressed by scalarizing problem (25) into the follow-

ing standard optimization problem

where x1,… , x
n
 are nonnegative scalar weights. Let us model the preference between 

Pareto optimal solution through the preference function � ∶ ℝ
n ×ℝ

n
→ {−1, 0, 1}

where x, y ∈ ℝ
n . The optimal selection of a Pareto optimal solution can be therefore 

expressed as a preference optimization problem of the form  (2), with � = 0 , u = +∞ , 

X = ℝ
n.

Without loss of generality, we can set 
∑n

i=1
x

i
= 1 and eliminate x

n
= 1 −

∑n−1

i=1
x

i
 , so to 

solve a preference optimization problem with n − 1 variables under the constraints x
i
≥ 0 , 

∑n−1

i=1
x

i
≤ 1 . In Sect. 7.3 we will illustrate the effectiveness of the active preference learn-

ing algorithms introduced earlier in solving the multi-objective optimization problem (25) 

under an instance of the preference function (24).

7  Numerical results

In this section we test the active preference learning approach described in the previous 

sections on different optimization problems, only based on preference queries.

Computations are performed on an Intel i7-8550 CPU @1.8GHz machine in MATLAB 

R2019a. Both Algorithm 1 and the Bayesian active preference learning algorithm are run 

in interpreted code. Problem  (13) (or  (23), in case of constraints) is solved by the PSO 

solver (Vaz and Vicente 2009). For judging the quality of the solution obtained by active 

preference learning, the best between the solution obtained by running the optimization 

min
�

F(�) =

⎡
⎢
⎢
⎣

F
1
(�)

⋮

Fn(�)

⎤
⎥
⎥
⎦

s.t. g(�) ≤ 0

�⋆(x) = arg min
�

n
∑

i=1

xiFi(�)

s.t. g(�) ≤ 0

(24)�(x, y) =

⎧
⎪
⎨
⎪
⎩

−1 if F(�⋆(x)) is “preferred to” F(�⋆(y))

0 if F(�⋆(x)) is “as good as” F(�⋆(y))

1 if F(�⋆(y)) is “preferred to” F(�⋆(x))
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algorithm DIRECT (Jones 2009) through the NLopt interface (Johnson 2020) and by run-

ning the PSO solver  (Vaz and Vicente 2009) was used as the reference global optimum, 

except for the brochu-6d benchmark example. In this case, both methods failed in finding 

the global minimum, so we used the GLIS algorithm (Bemporad 2020) to estimate it. The 

Latin hypercube sampling function lhsdesign of the Statistics and Machine Learning 

Toolbox of MATLAB is used to generate initial samples.

As our numerical experience is that the proposed algorithms are quite robust with 

respect to the values of the various hyper-parameters involved, we use the same hyper-

parameters in all the considered examples, even if the functions that are minimized based 

on preferences are very different in terms of shape and number of variables.

7.1  Illustrative example

We first illustrate the behavior of Algorithm  1 when solving the following constrained 

benchmark global optimization problem proposed by Sasena et al. (2002):

The minimizer of problem (25) is x⋆ = [2.7450 2.3523]� with optimal cost f⋆ = −1.1743 . 

Algorithm 1 is run with initial parameter � = 1 and inverse quadratic RBF to fit the sur-

rogate function, using the RBF+IDW acquisition criterion  (12) with � = 1 , N
max

= 25 , 

N
init

= 8 feasible initial samples, � = 1 . Self-calibration is executed at steps N indexed by 

Isc = {8, 12, 17, 21} over a grid of 10 values �
�
= ��

�
 , �

�
∈ � , � = {10

−1+
1

5
(�−1)

}10

�=1
.

Figure  3a shows the samples X = {x1,… , x
Nmax

} generated by a run of Algorithm  1, 

Fig. 3b the best (unmeasured) value of the latent function f as a function of the number 

(25)

min 2 +
1

100
(x2 − x

2

1
)2 + (1 − x1)

2 + 2(2 − x2)
2 + 7 sin

(

1

2
x1

)

sin

(

7

10
x1x2

)

s.t. − sin

(

x1 − x2 −
�

8

)

≤ 0

0 ≤ x1, x2 ≤ 5

(a) (b)

Fig. 3  Preference-based global optimization of Sasena benchmark function
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of preference queries, Fig. 4 the shapes of f and of the surrogate function f̂  . It is apparent 

that while f̂  achieves the goal of driving the algorithm towards the global minimum, its 

shape is quite different from f, as it has been constructed only to honor the preference con-

straints (7) at sampled values. Therefore, given a new pair of samples x
1
 , x

2
 that are located 

far away from the collected samples X, the surrogate function f̂  may not be useful in pre-

dicting the outcome of the comparison �(x1, x2).

It is apparent that f̂  can be arbitrarily scaled and shifted without changing the outcome 

of preferences. While the arbitrariness in scaling is taken into account by the term �F̂ 

in (12), it would be immediate to modify problem (8) to include the equality constraint

so that by construction f̂  is zero at the current best sample x
i⋆

.

7.2  Benchmark global optimization problems

We test the proposed global optimization algorithm on standard benchmark global optimi-

zation problems. Problems brochu-2d, brochu-4d, brochu-6d were proposed in Brochu 

et al. (2008) and are defined as follows:

with x ∈ [0, 1]d , where the minus sign is introduced as we minimize the latent function, 

while in Brochu et al. (2008) it is maximized. For the definition of the remaining bench-

mark functions and associated bounds on variables the reader is referred to  Bemporad 

(2020); Jamil and Yang (2013).

N
∑

j=1

�(�d(xi⋆ , xj))�j = 0

fd(x) =

d
∑

i=1

sin(xi) +
1

3
xi + sin(12xi)

f
������−��(x) = −max{f2(x) − 1, 0}

f
������−��(x) = −f4(x)

f
������−��(x) = −f6(x)

Fig. 4  Latent function f and surrogate f̂  from the problem defined in (25), along with the samples X (red 

circles) generated by Algorithm 1 (Color figure online)
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In all tests, the inverse quadratic RBF with initial parameter � = 1 is used in Algo-

rithm 1, with � = 2 in (12), N
init

= ⌈
N

max

3
⌉ initial feasible samples generated by Latin Hyper-

cube Sampling as described in Bemporad (2020, Algorithm 2), and � =
1

N
max

 . Self-calibra-

tion is executed at steps N indexed by 

Isc = {Ninit, Ninit + ⌈
Nmax−N

rminit

4
⌉, Ninit + ⌈

Nmax−Ninit

2
⌉, Ninit + ⌈

3(Nmax−Ninit)

4
⌉} over a grid of 10 

values �
�
= ��

�
 , �

�
∈ � , � = 1,… , 10 , with the same set � used to solve problem (25).

For comparison, the benchmark problems are also solved by the Bayesian active prefer-

ence learning algorithm described in Brochu et al. (2008), which is based on a Gaussian 

Process (GP) approximation of the posterior distribution of the latent preference function f. 

The posterior GP is computed by considering a zero-mean Gaussian process prior, where 

the prior covariance between the values of the latent function at the two different inputs 

x ∈ ℝ
n and y ∈ ℝ

n is defined by the squared exponential kernel

where �f  and �
l
 are positive hyper-parameters. The likelihood describing the observed pref-

erences is constructed by considering the following probabilistic description of the prefer-

ence �(x, y):

where Q is the cumulative distribution of the standard Normal distribution, and �
e
 is the 

standard deviation of a zero-mean Gaussian noise which is introduced as a contamina-

tion term on the latent function f in order to allow some tolerance on the preference rela-

tions (see  (Chu and Ghahramani 2005b) for details). The preference relation �(x, y) = 0 

is treated as two independent observations with preferences �(x, y) = −1 and �(x, y) = 1 . 

The hyper-parameters �f  and �
l
 , as well as the noise standard deviation �

e
 , are computed 

by maximizing the probability of the evidence (Chu and Ghahramani 2005b, Section 2.2). 

For a fair comparison with the RBF-based algorithm in this paper, these hyper-parameters 

are re-computed at the steps indexed by I
sc

 . Furthermore, the same number N
init

 of initial 

feasible samples is generated using Latin hypercube sampling (McKay et al. 1979).

Algorithm 1 is executed using both the acquisition function (12) (RBF+IDW) and (20) 

(RBF+PI), and results compared against those obtained by Bayesian active preference 

learning (PBO), using the expected improvement as an acquisition function (Brochu et al. 

2008, Sec. 2.3). Results are plotted in Figs. 5 and 6, where the median performance and 

the band defined by the best- and worst-case instances over N
test

= 20 runs is reported as 

a function of the number of queried preferences. The vertical line represents the last query 

N
init

− 1 at which active preference learning begins. The dashed red line in the figures 

shows the global minimum.

The results of Figs. 5 and 6 clearly show that, in all the considered benchmarks, the 

RBF+IDW and RBF+PI algorithms perform as good as (and often outperform) PBO 

in approaching the minimum of the latent function. Furthermore, the RBF+IDW and 

RBF+PI methods are computationally lighter than PBO, as shown in Table  1, where 

K(x, y) = �
2

f
e

‖x−y‖2

2�2
l

Pr(�(x, y)�f (x), f (y)) =

⎧
⎪⎨⎪⎩

Q

�
f (y)−f (x)√

2�e

�
if �(x, y) = −1

Q

�
f (x)−f (y)√

2�e

�
if �(x, y) = 1
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the average CPU time spent on solving each benchmark problem is reported1. The 

RBF+IDW and RBF+PI algorithms have similar performance and computational load.

7.3  Multi-objective optimization by preferences

We consider the following multi-objective optimization problem
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Fig. 5  Comparison between Algorithm 1 based on IDW acquisition (12) (RBF+IDW) and Bayesian prefer-

ence learning (PBO) on benchmark problems: median (thick line) and best/worst-case band over N
test

= 20 

tests of the best value found of the latent function. The dashed red line corresponds to the global optimum. 

The thin green line shows the median obtained by RBF+PI, as reported in Fig. 6 (Color figure online)

1 Around 40 to 80% of the CPU time is spent in self-calibrating � as described in Sect. 3.1.
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Let assume that the preference in  (24) is expressed by a decision maker in terms of “simi-

larity” of the achieved optimal objectives, that is a Pareto optimal solution is “preferred to” 

another one if the objectives F1, F2, F3 evaluated at �⋆(x) are closer to each other. In our 

min
�

F(�) =

⎡
⎢
⎢
⎣

(2�1 sin �2 − 3 cos(�1�2))
2

�2

3
(�1 + �2)

4

(�1 + �2 + �3)
2

⎤
⎥
⎥
⎦

s.t. − 1 ≤ �
i
≤ 1, i = 1, 2, 3
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Fig. 6  Comparison between Algorithm 1 based on probability of improvement (20) (RBF+PI) and Bayes-

ian preference learning (PBO) on benchmark problems: median (thick line) and best/worst-case band over 

N
test

= 20 tests of the best value found of the latent function. The dashed red line corresponds to the global 

optimum. The thin purple line shows the median obtained by RBF+IDW, as reported in Fig. 5 (Color figure 

online)
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numerical tests we therefore mimic the decision maker by defining a synthetic preference 

function � as in (3) via the following latent function f ∶ ℝ
n
→ ℝ

As we have three objectives, we only optimize over x1, x2 and set x
3
= 1 − x

1
− x

2
 , under 

the constraints x1, x2 ≥ 0 , x
1
+ x

2
≤ 1.

Figure 7 shows the results obtained by running N
test

= 20 times Algorithm 1 with � = 1 

and the same other settings as in the benchmarks examples described in Sect.  7.2. Fig-

ure 7a shows the results when when the IDW exploration term is used in (12) with � = 2 , 

Fig. 7b when the PI acquisition function (20) is used.

The optimal scalarization coefficients returned by the algorithm are 

x
⋆

1
= 0.2857 , x

⋆

2
= 0.1952 and x

⋆

3
= 1 − x

⋆

1
− x

⋆

2
= 0.5190 , that lead to 

F
⋆ = F(�⋆(x⋆)) = [1.3921 1.3978 1.3895]� . The latent function  (26) optimized by the 

(26)f (x) =

�������

⎡
⎢
⎢
⎣

F(�⋆(x)) − F
2
(�⋆(x))

F
1
(�⋆(x)) − F

3
(�⋆(x))

F
2
(�⋆(x)) − F

3
(�⋆(x))

⎤
⎥
⎥
⎦

�������

Table 1  CPU time (s) spent for 

solving each benchmark problem 

considered in the comparison, 

averaged over N
test

= 20 runs

Problem n RBF+IDW RBF+PI PBO

brochu-2d 2 5.9 6.0 18.5

adjiman 2 1.2 1.2 13.3

brochu-4d 4 21.1 21.4 30.7

ackley 2 30.8 30.9 51.2

brochu-6d 6 20.3 22.5 32.3

hartman3 3 19.7 20.4 27.2

hartman6 6 57.6 61.5 60.6

rosenbrock8 8 68.1 70.1 306.4

stepfunction2 4 4.2 4.3 45.2

camelsixhumps 2 1.2 1.2 14.6
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0

1

2

3

4

5

6
RBF+IDW

PBO

(a)

10 20 30 40 50 60 70 80
0

1

2

3

4

5

6
RBF+PI

PBO

(b)

Fig. 7  Multi-objective optimization example: median (thick line) and best/worst-case band over N
test

= 20 

tests of latent function (26) as a function of queried preferences



441Machine Learning (2021) 110:417–448 

1 3

algorithm is plotted in Fig. 8. Note that the optimal multi-objective F achieved by setting 

x
1
= x

2
= x

3
=

1

3
 , corresponding to the intuitive assignment of equal scalarization coeffi-

cients, leads to the much worse result F(�⋆([
1

3

1

3

1

3
]�)) = [0.2221 0.2581 2.9026]�.

7.4  Choosing optimal cost-sensitive classifiers via preferences

We apply now the active preference learning algorithm to solve the problem of choosing 

optimal classifiers for object recognition from images when different costs are associ-

ated to different types of misclassification errors.

A four-class convolutional neural network (CNN) classifier with 3 hidden layers and 

a soft-max output layer is trained using 20000 samples, which consist of all and only 

the images of the CIFAR-10 dataset (Krizhevsky 2009) labelled as: automobile, deer, 

frog, ship, that are referred in the following as classes C
1
 , C

2
 , C

3
 , C

4
 , respectively. The 

network is trained in 150 epochs using the Adam algorithm (Kingma and Ba 2015) and 

batches of size 2000, achieving an accuracy of 81% over a validation dataset of 4000 

samples.

We assume that a decision maker associates different costs to misclassified objects and 

the predicted class of an image U is computed as

where p(Ci|U) is the network’s confidence (namely, the output of the softmax layer) that 

the image U is in class C
i
 , and x

i
 are nonnegative weights to be tuned in order to take 

into account the preferences of the decision maker. As for the multi-objective optimiza-

tion example of Sect. 7.3, without loss of generality we set 
∑4

i=1
x

i
= 1 and the constraints 

x
i
≥ 0 , 

∑3

i=1
x

i
≤ 1 , thus eliminating the variable x

4
= 1 −

∑3

i=1
x

i
.

In our numerical tests we mimic the preferences expressed by the decision maker by 

defining the synthetic preference function � as in (3), where the (unknown) latent function 

f ∶ ℝ
n
→ ℝ is defined as

(27)Ĉ = arg max
i={1,2,3,4}

xip(Ci|U)

Fig. 8  Multi-objective optimiza-

tion example: latent function (26)
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In (28), the term r(i, j, x) is the number of samples in the validation set of actual class C
i
 

that are predicted as class Cj according to the decision rule (27), while C(i, j) is the cost of 

misclassifying a sample of actual class C
i
 as class Cj . The considered costs are reported in 

Table 2, which describes the behaviour of the decision maker in associating a higher cost in 

misclassifying automobile and ship rather than misclassifying deer and frog. In (28), m 

is a random variable uniformly distributed between −0.15 and 0.15 and it is introduced to 

represent a possible inconsistency in the preferences made by the user.

Figure  9 shows the results obtained by running N
test

= 30 times Algorithm  1, 

� = 1 , N
init

= 10 , � = 2 for RBF+IDW, and the same other settings as in the bench-

marks examples described in Sect.  7.2, and by running preference-based Bayesian opti-

mization ( � = 2 is used for RBF+IDW). The optimal weights returned by the algo-

rithm after evaluating N
max

= 40 samples are x
⋆

1
= 0.3267 , x

⋆

2
= 0.1613 , x

⋆

3
= 0.1944 

and x
⋆

4
= 1 − x

⋆

1
− x

⋆

2
− x

⋆

3
= 0.3176 , that lead to a noise-free cost f (x⋆, 0) in  (28) 

equal to 2244 (against f (x, 0) = 2585 obtained for unweighted costs, namely, for 

(28)f (x, m) = (1 + m)

4
∑

i=1

4
∑

i=1

C(i, j)r(i, j, x)
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Fig. 9  Noise-free cost f(x, 0) as a function of the number of queried preferences. Median (solid lines) and 

bands defined by the best- and worst-case instances over N
test

= 30 ; reference global optimum achieved by 

PSO (dashed red line) (Color figure online)

Table 2  Cost matrix

Predicted class

C
1

C
2

C
3

C
4

Actual class

C
1

0 10 10 3

C
3

4 0 2 4

C
3

4 2 0 4

C
4

3 10 10 0
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x
1
= x

2
= x

3
= x

4
= 0.25 ). As expected, higher weights are associated to automobile and 

ship (class C
1
 and C

4
 , respectively). For judging the quality of the computed solution, the 

minimum of the noise-free cost f (x⋆, 0) = 2201 is computed by PSO and used as the refer-

ence global optimum.

The obtained results show comparable performance among RBF+IDW, RBF+PI 

and PBO, with the median of the three methods converging to a similar value after 40 

iterations. Because of the random term m influencing the underlying preference function 

f(x, m), the minimum of the noise-free cost f (x⋆, 0) = 2201 is never achieved (dashed red 

line in Fig. 9). Nevertheless, it is interesting to notice that the worst solution obtained by 

RBF+IDW is even better than the noise-free unweighted cost f (x, 0) = 2585.

We remark that the purpose of this example is only to illustrate the effectiveness of the 

proposed preference-based learning algorithms, rather than to propose a new good way of 

solving the classification problem itself.

7.5  Dependence of RBF+IDW on the acquisition parameter ı

To analyze the influence of � in defining the RBF+IDW acquisition function (12), we con-

sider the behavior of Algorithm 1 for varying values of � when solving the ackley bench-

mark problem. Each experiment is repeated N
test

= 20 times. The distribution of the best 

achieved function value obtained after generating N = 20, 30, 70, 100 samples is reported 

in Fig. 10. The figure also shows the distribution of the best function values obtained by 

just randomly sampling the feasible set.
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6

Fig. 10  Distribution over N
test

= 20 tests of the best achieved function value of ackley function after N que-

ries obtained by running Algorithm 1 with RBF+IDW acquisition (12) for different values of � . The case 

of pure minimization of the surrogate function without exploration term corresponds to � = 0 . The results 

obtained by sampling the set of feasibly vectors randomly are labeled as rand 
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Note that in the absence of the exploration term z(x) in the RBF+IDW acquisition func-

tion (12), that is for � = 0 , the algorithm easily gets trapped away from the global mini-

mum. For comparison, in Fig. 10 we also report the behavior obtained by merely sampling 

the set of feasible vectors randomly by LHS (labelled as rand in the plot), which clearly 

shows the benefits brought by the proposed method.

8  Conclusions

In this paper we have proposed an algorithm for choosing the vector of decision variables 

that is best in accordance with pairwise comparisons with all possible other values. Based 

on the outcome of an incremental number of comparisons between given samples of the 

decision vector, the main idea is to attempt learning a latent cost function, using radial 

basis function interpolation, that, when compared at such samples, provides the same pref-

erence outcomes. The algorithm actively learns such a surrogate function by proposing 

iteratively a new sample to compare based on a trade-off between minimizing the surro-

gate and visiting areas of the decision space that have not yet been explored. Through sev-

eral numerical tests, we have shown that the algorithm usually performs better than active 

preference learning based on Bayesian optimization, in that it frequently approaches the 

optimal decision vector with less computations. We have proposed two different criteria 

(IDW, PI) to drive the exploration of the space of decision vectors. According to our expe-

rience there is not a clear winner between the two criteria, so both alternatives should be 

considered.

The approach can be extended in several directions. First, rather than only comparing 

the new sample x
N+1

 with the current best x
⋆ , one could ask for expressing preferences 

also with one or more of the other existing samples x1,… , x
N

 . Second, we could expand 

the codomain of the comparison function �(x, y) to say {−2,−1, 0, 1, 2} where �(x, y) = ±2 

means “x is much better/much worse than y”, and consequently extend  (7) to include a 

much larger separation than � whenever the corresponding preference � = ±2 . Third, often 

one can qualitatively assess whether a given sample x is “very good”, “good”, “neutral”, 

“bad”, or “very bad”, independently of how it compares to other values, and take this 

additional information into account when learning the surrogate function, for example by 

including additional constraints that force the surrogate function to lie in [0,  0.2] on all 

“very bad” samples, in [0.2, 0.4] on all “bad” samples, ..., in [0.8, 1] on all “very good” 

ones, and choosing an appropriate value of � . Furthermore, while a certain tolerance to 

errors in assessing preferences is built-in in the algorithm thanks to the use of slack vari-

ables in (7), the approach could be extended to better take evaluation errors into account in 

the overall formulation and solution method.

Regarding the constraints  (1) imposed in the preference-based optimization problem, 

we have assumed that, contrarily to the objective function f, they are known. An interesting 

subject for future research is the case when the constraint function g is also unknown. The 

algorithm proposed in this paper already handles such a case indirectly, in that the samples 

that according to the human oracle violate the constraints will never be labeled as “pre-

ferred” when compared to feasible samples. Accordingly, we can interpret this as the fact 

that our algorithm would learn a function that is a surrogate of the latent objective function 

augmented by a penalty function on constraint violation. In alternative, one may explicitly 

train a binary classifier, based on human assessment of whether a generated sample x
k
 is 

feasible or not, and take the output of the classifier into account in the acquisition function.
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Finally, we remark that one should be careful in using the learned surrogate function to 

extrapolate preferences on arbitrary new pairs of decision vectors, as the learning process 

is tailored to detecting the optimizer rather than globally approximating the unknown latent 

function, and moreover the chosen RBFs may not be adequate enough for reproducing the 

shape of the unknown latent function.
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Appendix

Proof of Theorem 1

Let �(�) be the minimizer of problem  (14) for some positive scalar � . Let us define 

�(�) = ‖�(�)‖ and the set B� = {� ∈ ℝ
N ∶ ‖�‖ = �(�)} . Then, we have

where u⋆ is the minimizer of (16). Thus, u⋆ =
�(�)

�(�)
.

Proof of Theorem 2

Let u, ū ∈ ℝ
N be arbitrary unit vectors. Then, there exists an orthogonal (rotation) matrix 

R with determinant +1 such that ū = R
�
u . Let � ∶ ℝ

N
→ ℝ

N be a vector value function 

defined as �(v) = Rv . Note that the Jacobian matrix J
�
 of � is R, and thus its determinant 

det(J
�
) is equal to +1.

Let us now write the integral I
t
(c̄

t
, �, u) in (18) as

�(�) = arg min
�∈ℝN

M�

h=1

ch�bh
(�(�, X, xi(h), xj(h))

��) +
�

2
‖�‖2

= arg min
�∈B�

M�

h=1

ch�bh
(�(�, X, xi(h), xj(h))

��)

= �(�) arg min
u∶‖u‖=1

M�

h=1

ch�bh
(�(�)�(�, X, xi(h), xj(h))

�u)

= �(�)u⋆

http://creativecommons.org/licenses/by/4.0/
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where the third equality holds since �(�(v)) = e
−�(v)��(v) = e

−v
�
RR

�
v = e

−v
�
v = �(v).
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