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Global Optimization of Cerebral Cortex Layout
Supplementary Online Material

Christopher Cherniak*, Zekeria Mokhtarzada,
Raul Rodriguez-Esteban, B. K. Changizi

Functional areas of mammalian cerebral cortex ggesitioned to minimize finely costs
of their interconnections, down to a best-in-a-bill@ptimality level. Macaque and cat
cortex rank better in connection optimization thaawhring of comparably structured
computer chips, but somewhat worse than the economimodity-flow network among
U.S. states. Cortex wiring conforms to a Size Lawelbe¢han the macroeconomic
patterns, which may indicate cortex optimizing mechaniswave more global
processes.
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Fig. S1. Adjacency rule conformance, vs total wirecost, of 1@DOElegangianglion layouts
randomly sampled from the set of all 11! possible lay(i)tsAdjacency rule: If two components
are connected, then they are adjacent to each othérléout is scored in terms of its number of
violations of this "all or nothing™" adjacency rule. Gaation between good adjacency rule
performance and cheap wirecost is not strohg (-.05); generally, the adjacency rule is not an
effective means to good wirecost. However, the srealbsnematode nervous system layouts best
fitting the adjacency rule--the points at the fdi-lbehave markedly differently: they correspond
closely to the best wirecost layouts. (The largéntgt the far left of the dispersion diagram
represents the actual, minimum-wirecost layout.) Téosd adjacency rule scores are worth
exploring as a surrogate for wirecost of layouts.
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Fig. S2. Parcellation of cerebral cortex of macaque. Cciiorecost optimization analysis of
layout of 17 core areas of the visual cortex (white),giomh 10 immediately contiguous "edge”
areas (dark gray): Placement of the interconndatettional areas is evaluated for how well total
interconnection costs are minimized. 120 connectiomseported among the core areas and with
the edge areas. Core and edge areas are listed sWSlbbnnection matrix below. Rostral is to
right.(2)




TableS1. Combined connection and adjacency matrix for maecaual cortex. The series of 17
core visual areas shown above in Fig. S2 is listed @IT'v), in the order in which the areas
successively added to the analysis. They are folldwyete set of 10 edge areas for the total core
(PO - TH). Connections of an area to itself ardugbad. A cell with O indicates no known
connection between the area of that row and of tilatrm; 1 indicates connection in one direction
between the two areas; 2 indicates two-way connec@etl. values irbold designate topological
contiguity of the two areas on the cortex sheet, agind2.(3)
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Macague Visual Cortex: Optimality vs. Subset Size
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Fig. S3. Size Law for macaque visual cortex areas. The Sie Uf a set of connected
components is optimally placed, then, the smallelbaet of that total layout, the less optimized it
will tend to be. The system of components here isohfiguous macaque visual cortical areas as in
Fig. S2, with connections and adjacencies as in T&hl©ptimality-measure is conformance of the
system to the adjacency rule: If two components aneembed, then they are adjacent to each
other.(1) A layout is scored in terms of its numbevioktions of this "all or nothing" adjacency
rule. A series of nested compact subsets of thef settical areas was generated, each consisting
of from 4 to the full 17 areas. (Order of successigenehts added is as in Table S1.) Each subset
of the actual layout was compared with all possibleratese layouts of that subset for adjacency-
rule optimality (16 and 17-element sets were each cadmmly with random samples 0’10
alternative layouts).

The "Actual layout” curve shows that smaller subssetk approximately in the middle of their
group of alternative layouts. But, as subset sizeases, optimality-ranking of the actual layout
consistently improves (with two exceptionss p.02). Fewer than one in a million of all aleime
layouts conform to the adjacency rule better than¢he&hblayout of the complete 17-component
set. For comparison, the "Scrambled layout" broken-tineve shows the corresponding analysis
for a layout of the 17 visual areas with their adjass@andomly shuffled; no Size Law trend
toward improving optimality is now evident. Note thasthnalysis includes only 17 of the total 73
cortical areas.
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Fig. 4 . Parcellation of cerebral cortex of cat. Placdroéthe interconnected functional areas is
evaluated for how well total connection-costs are mireohiz(A) Connection-cost optimization
analysis of layout of 15 contiguous areas of the visuétx, along with 13 immediately contiguous
"edge" areas. 126 connections are reported amorgtbareas and with their edge areas. (B)
Similar combined analysis of 39 areas of the visualit@ty, and somatosensory cortex, along with
14 edge-areas (451 connections reported). Core anduexdgeare listed in Table S2 connection
matrix below. Lateral aspect only is shown. Rossréd right.(4)

TableS2. Combined connection and adjacency matrix for catalj auditory, and somatosensory
cortex. The series of 39 core areas as in Fig. [&tad, in the order in which the areas are
successively added to the analysis (17 - 6l). Thefplogved by the set of 14 edge areas for the
total core (POA - Ig). A cell with O indicates no kvioconnection between the area of that row and
of that column; 1 - 6 indicates connection betweero areas. (Afferent and efferent connection
weights of 1 - 3 have been summed.) Cell valué®lid designate topological contiguity of the

two areas on the cortex sheet, as in Fig. S4.(5)
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Cat Visual Cortex: Optimality vs. Subset Size
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Fig. S5. Size Law for cat visual cortex areas. The systetomponents here is the 15 contiguous
cat visual cortical areas in Fig. S4 (17 - PS), wiithnections and adjacencies as in Table S2.
Optimality-measure is conformance of the systerhéd'all or nothing” adjacency rule, with each
layout scored in terms of its number of violationsh&f rule. A series of nested compact subsets of
the set of cortex areas was generated, each consisfiogn 4 to the full 15 areas. Each subset of
the actual layout was compared with all possible aites@ layouts of that subset for adjacency-rule
optimality.

The "Actual layout” curve shows that smaller subssetk approximately in the middle of their
group of alternative layouts. But, again, as subzetiscreases, optimality-ranking of the actual
layout consistently improves (with one exceptior, @02). Only one in a hundred thousand of all
alternative layouts conform to the adjacency rule bt the actual layout of the complete 15-
component set. For comparison, the "Scrambled layookén-line curve shows the
corresponding analysis for a layout of the 15 visual axitagheir adjacencies randomly shuffled;
no Size Law trend toward improving optimality is evideNbte that this analysis includes only 15
of the total 57 cortical areas.
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TableS3. Combined connection and adjacency matrix for "methules” composed from areas of
cat visual, auditory, and somatosensory cortex. Thessefil4 metamodules, each constructed
from the areas in Fig. S4 above, with connectioasatljacencies from Table S2, is listed in the
order in which the areas are successively added to#iyses. They are followed by the set of 13
edge areas for the total core. A cell with 0 indsai® known connection between the metamodule
of that row and of that column; 1 - 44 indicates conoadbietween the two metamodules.

(Afferent and efferent connection weights of allearé the two metamodules have been summed.
A total 134 connections are included. Cell valudsold designate topological contiguity of the

two metamodules on the cortex sheet, as in Fig. S4.
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Cat Cortex Meta Modules: Optimality vs. Subset Size
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Fig. S6. Size Law for cat cortex "metamodules”. If a setayfnected components is optimally
placed, then a set of metamodules each consistinguifset of those components in the same
positions will also be optimally placed. 40 Brodmannswddhe visual, auditory, and
somatosensory regions of the cat cortex are groupel4réach modules, with connections and
adjacencies as in Table S3. A series of nestedtsulfddose metamodules was then generated.
The same Size Law trend of optimality improvement efdbtual metamodule layout with
increasing subset size is evident as for the actyaliaf individual areas of the cat visual cortex:
As subset size increases, optimality-ranking of atayaut consistently improves (with one
exception, < 0.02). (Exhaustive searches of all alternaayeuits were performed.)

However, since 40 individual areas are now incorporatdtese 14 metamodules, the Size Law
furthermore implies that such a larger subset of théS@tarea cortical system should show better
optimization than the 15-area visual subset. Suchowepnent is evident here: For example, by a
subset size of 11 metamodules (consisting of 31 abefeas), the actual layout's top 2tank
exceeds the full 15-area visual system's rank; thd4uthetamodule actual layout ranks in the top
1.09 x 10 of all 14! possible alternative layouts--almost 1@@s better than the full 15-area
visual system. "Scrambled layout” broken-line cunenshcorresponding analysis for a randomly
shuffled layout of the meta-modules; no Size Law tismVident.
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1mm

Fig. S7 . Integrated circuit networks for calibration of opdlity analysis: AMI49 microchip, the
largest of the MCNC set of benchmark circuits, withrt&lules.(6) A) Esbensen and Kuh layout;
cost to be minimized is a function of layout area angirmam path delay.(7)&) Hong et al layout;
cost to be minimized is a function of area and tote¢lemngth.(8) C) Lin and Chang layout; cost to
be minimized is total wirelength.(9) In each cale,dentral 15 blocks (white), along with the
surrounding edge-zone of immediately contiguous bloayst(¢jray), was analyzed. Again,
placement of the interconnected areas is evaluatdwbiv well total interconnection costs--
adjacency rule violations--are minimized. Core and edgas for Lin and Chang layout are listed
in Table S4 connection matrix below.




Table S4. Combined connection and adjacency matrix for bich @hang layout of AMI49
microchip. The series of 15 core blocks shown abot#®inS7C is listed (M014 - M020), in the
order in which the areas are successively added to#iheses. They are followed by the set of 14
edge blocks for the total core (M030 - M032). (Therel@feconnections among the core blocks
and with the edge blocks.) A cell with O indicates oonection between the area of that row and
of that column; 1 - 14 indicates connection densitwben the two areas. Cell valuedoid
designate topological contiguity of the two areas on tige ak in Fig. S7C.
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Microchip: Optimality vs. Subset Size
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Fig. S8. Size Law for three layouts of AMI49 chip. In eadse, the system of components is 15
contiguous central blocks as in Fig. S7; connections djadencies for Lin and Chang are as in
Table S4. Optimality-measure is conformance of yiséesn to the adjacency rule, with a layout
scored in terms of number of violations of the "alhothing" adjacency rule. A series of nested
compact subsets of the set of blocks was generated¢c@asikting of from 4 to the full 15 areas.
(For the Lin and Chang layout, order of successiveaksradded is as in Table S4.) Each subset
of the actual layout was compared with all possibleratese layouts of that subset for adjacency-
rule optimality (14 and 15-element sets were each cadmmly with random samples 0’10
alternative layouts).

The curve for the Lin and Chang layo@) Ghows the same Size Law pattern as the cortex
networks earlier, although somewhat weaker; the futdiponent subset only attains an
optimality-rank of 1.5 x 18. Both Esbensen and Kuh)({ and Hong et aR), layouts do not show
a Size Law pattern, nor does either attain significatatnagity. So, for these calibration networks,
adjacency rule conformance seems capable of distinguisimelgrgth minimization from some
other related cost-measures. Note that the anatygdigles only 15 of the total system of 49
modules. (See also Fig. S1 above.)
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Fig. S9. Macroeconomic commodity-flow networks. (A) U.Seirstate commodity flow.(10)
The central 15 states (white), along with the surrounddygge-zone of 19 immediately
contiguous states (light gray), were analyzed. Core dge areas for USAL5 states are listed in
Table S5 connection matrix below. (B) European int&nal commodity flow.(11) The central
8 countries (white), along with a fragmentary surroundoigeezone of 6 immediately
contiguous countries (light gray), were analyzed as géabé.




Table S5. Combined "connection" and adjacency matrix for thi®rstate commodity flow (1997
Survey Sample). The series of 15 core states shovwue @b Fig. S9A is listed (KS - OK), in the
order in which the areas are successively added to#iyses. They are followed by the set of 19
edge states for the total core (TX - LA). Cell valuesia $ millions. An all-or-nothing cutoff
threshold was set to yield approximately the sameeiivity density as macaque and cat cortex
above (see Table S7): If "export” + "import" flow betm two states exceeds $ 1,500,000,000, a
connection is recorded; sub-threshold economic traosadietween the state of a row and the state
of a column count as no connection. Cell values in tedignate topological contiguity of the two
states, as in Fig. S9A.
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USA Trade Data: Optimality vs. Subset Size
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Fig. S10. Size Law performance for commodity flow among 15 St&tes (BTS). The system of
components here is a core of contiguous economic zeneds-a. S9, with "connections" and
adjacencies as in Table S5. For evaluation of howtetal interconnection costs are minimized,
optimality-measure is conformance of the system tdater nothing" adjacency rule: each layout
is scored in terms of its number of violations ofitile. A series of nested compact subsets of the
set of zones was generated (order of successive atiated is as in Table S5). Each subset of the
actual layout was compared with all possible altevadfiyouts of that subset for adjacency-rule
optimality (14 and 15-element sets were each comuargdvith random samples of10

alternative layouts).

The US system attains better connection-optimizahian macaque or cat visual cortex, with no
layouts better than actual found in a 1 billion samipes may appear to vindicate the "invisible
hand" of laissez-faire economics. However, the UAtlayout” curve departs markedly from the
Size Law pattern; smaller subsets already attaie@eoptimality--i.e., an optimality ratio of O,

with no alternative layouts better than the actual dries breakdown suggests the macroeconomic
networks are optimized locally, unlike the cortex (anueschip) networks. For calibration, the
"Scrambled layout" (broken-line) curve, for the 15 &t&tes with their adjacencies randomly
shuffled, shows the usual "flat" unoptimized pattern.
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Table S6. Component placement optimization: results summé&Egtimated Rank" designates
proportion of all possible alternative layouts thatartower connection-cost than the actual
layout. Each layout is scored for violations of thgatency Rule. Size Law goodness of fiis
for a model of the form of an inverse exponential fiomcy = ke™.

Number of  Estimated Size Law
Components Rank r?
Neural Networks
-7

Caenorhabditis elegans 1 4010 0.99
Macaque Visual Cortex 17 1.2107 0.91
Cat Visual Cortex 15 7.210° 0.94
Cat Cortex Metamodules 14 1.1107 0.97
Cat Cortex:

Vis, Aud, Somato 39 [(3x) 10M]*
Non-Neural Networks
AMI49 Microchip

Esbenson & Kuh Layout 15 7.0 107 0.77

Hong et al Layout 15 3.310" 0.69

Lin & Chang Layout 15 1.510° 0.78
Macroeconomic Networks

USA Commodity-Flow 15

Europe Ex/Im 8 4.0 10"

*In each of 3 separate replications, 100 billion randomly sampled layouts were tested without finding a

better layout than the actual one.




Table S7. Connections vs adjacencies among network comporrt8:contingency tables.
For each neural system, the relationship is highly seamt:p < 0.0001y > 0.30. Connections
and adjacencies to immediately contiguous edge-componenteuded. (Number of core
components is given in parentheses.)

Cortex Networks

Macaque Visual Cortex (17)
Adj NotAdj Total X° r
Con 38 82 120  30.6433 0.30801
NotCon 16 187 203
Total 54 269 323

Cat Visual Cortex (15)
Adj NotAdj Total X? r
Con 40 86 126 40.0761 0.365496
NotCon 8 166 174
Total 48 252 300

Cat Metamodules (14)
Adj NotAdj Total X? r
Con 44 90 134  37.09234 0.368605
NotCon 6 133 139
Total 50 223 273

Cat Vis/Aud/Som Cortex (39)
Adj NotAdj Total X? r
Con 101 350 451 143.0408 0.333381
NotCon 18 818 836
Total 119 1168 1287

Non-Neural Networks
AMI49 Microchip

Esbensen & Kuh Layout (15)
Adj NotAdj Total X° r
Con 17 95 112 0.62703 0.0409
NotCon 32 231 263
Total 49 326 375

Hong et al Layout (15)

Adj NotAdj Total X° r
Con 14 86 100  0.00072 0.0016
NoCon 24 146 170



Total 38 232 270

Lin & Chang Layout (15)
Adj NotAdj Total X°
Con 19 84 103  6.62842
NotCon 18 194 212
Total 37 278 315

Macroeconomic Networks

USA Commodity-Flow (15) (@1500)
Adj NotAdj Total X°

0.1451

r

Con 47 137 184 29.4310924 0.274708

NotCon 12 194 206
Total 59 331 390

Europe Ex/Im (8) (@1250)
Adj NotAdj Total X°

Con 23 36 59 8.06358
NotCon 2 23 25
Total 25 59 84

r
0.3098
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