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Global optimization of concave functions subject to separable
quadratic constraints and of all-quadratic separable problems.
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' ABSTRACT
AN »
-—Ia this paper e pmposej/ different methods for finding the global

minimum of a concave function subject to quadratic separable constraints. The

first method is of the branch and bound type, and is based on rectangular parti-

tions to obtain upper and lower bounds. Convergence of the proposed algo-

rithm is also proved. For computational purposes, different procedures that
: accelerate the convergence of the proposed algorithm are analysed.

The second method is based on piecewise linear approximations of the
constraint functions. When the constraints are convex the problem is reduced
to global concave minimization subject to linear constraints. In the case of non-
convex comnstraints we use zero-one integer variables to linearize the con-
straints. The number of in}eger variable

*

s depends only on the concave parts of
/ . .

+

t
-~

the constraint functions. -~ -

-

v
i
;

* Pants of the present paper were prepared while the second author was visiting Georgia Tech and Penn State Universi-
ty.
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Introduction

In this paper, we are concemed with determining the global minimum of problems of the

form:
global min f (x)
st g(x)=73 (%p,-kx,‘2+q,~kxk+r,-,,) <0, i=1,....,m n
k=1
my Sx,, Sﬁk, k=1, P /]

where pu, qu, rig, My, My, (i=1, ... ,m and k=1, ... ,n) are given real numbers, f (x) is a
real valued concave function defined on an open convex set containing the rectangle
ME(xm <x <), m=@m,. . ...m,)", @=(,, ... ,m,)T. Denote by D the feasible set
of problem (1). Clearly, D is compact and f is continuous on D so that the global minimum
of f over D exists.

Note that the second problem addressed in the title of the paper can be included under
problem (1), since

. 1
global minfy(x) = ¥, (EP ok XE+q ok X+ o)
k=1

st. xeD
is equivalent to
global min ¢
st.xeD, fox) <S¢t
with the additional variable teR.

Problems of the form (1) are very difficult to solve. Sahni {21], proved that the problem
(with a linear objective function and quadratic constraints) is NP-hard. Interest in this problem
is apparent from its practical applications as well as from the theoretical point of view. Many
practical problems that can be formulated as in (1), include location problems, production plan-
ning, and minimization of chance-constrained risks [18]. Recently, it has been shown that some
VLSI chip design problems lead to the formulation of quadratic programs with quadratic con-
straints [11].

In this paper, we propose different methods for the solution of (1). From the computa-
tional point of view we are interested in algorithms that determine an e-approximate solution.
First we develop a branch and bound algorithm which is based on rectangular partitions to
obtain upper and lower bounds on the global minimum. Next, we use piccewise linear approx-
imations of the constraint functions. When all g,(x) are convex we reduce the approximate
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piecewise linear program to concave minimization subject to convex constraints. For noncon- 3
vex constraints we use zero-one integer variables to linearize the piecewise linear functions that e
approximate the concave parts of the constraint functions. k:."."::':
() !' D)
There is little work done on nonconvex problems with quadratic constraints. In (4], a :': ::.:::::
halede
dual method is developed for minimizing a convex quadratic function subject to convex qua- (RN
dratic constraints. This method may be used to obtain approximate solutions of (1), when a hReht
\ )'— 3
conve* approximation of the objective function can be computed. Problems with a linear ‘;;f:?“
- - '\)‘“ i 3
objective function and quadratic constraints have been considered by Kabe [10]. Reeves [20] l:f_{:,_‘{ )
BN Ty,
proposed a branch and bound type algorithm for (1), where the objective function is separable. S ‘
This algorithm is based on locating local minima using linear programming techniques (see Y 'I;a'"":,
. \
also [12]). Other methods for related problems are given in [2], [3], [6], [13], [22] and ([23]. i %
v "
) )
SO0
Branch and bound algorithm N '
The algorithm proposed for solving problem (1) will be a Branch-and Bound (BB) pro- Eﬁ-ﬁi‘_’.\
cedure consisting of RN
g . Ranied:
- more and more refined rectangular partitions of the initial rectangle M, N .:
- lower bounds P(M) < minf (M) associated with each partition element (rectangle) M . % P
generated by the procedure, }:j:;‘::
FATDINY
- upper bounds a, 2 minf (D) determined in each step 7 of the algorithm, f;ﬁ'::.___
.J'" "
- certain deletion rules by which some partition sets M are deleted since we know that & ®
M AD =@ or that minf (D) cannot be attained in M. ::‘.K)&E‘
'y
¥, 00 0
R
We briefly discuss the four elements of the procedure before presenting a complete state- 5'.{\"’_-.:'.-.
B
ment of the algorithm. i 'h.
MR
,\‘"-\_-‘\.\
Subdivision of rectangles '\:-‘?E\ N
LS, »
Definion 1: Let M cR" be an n-dimensional rectangle (n-rectangle) and let / be a finite ::'{-:f_: N
EOL VALY

set of indices. A set {M;:iel} of n-rectangles M;cM is said to be a rectangular partition of
M if we have

M= M, MoM; =dM,0oM, forall ijcl,i%), )
1€

where oM, denotes the boundary of M;.

Definition 2: Let {Mq} be an infinite decreasing (nested) sequence of rectangular parti-
tion sets generated by the algorithm. The underlying subdivision procedure of rectangles is
called exhaustive if the sequence of diameters d(M,) of M, satisfies

> ™

o N N

- - “u® " - L IR RN I -, .. B I N N R I Y SR I LS Y I
S TP S A R O T N PR R, \. BN (U N SN Y

ARy N

S,



O PR OOV L TR O T T N T T O O I TN IO T R SR A S LU £ MR R Rt R0 0 g Ty

"
o '::g:
®

-4 -

lim d(M,) = 0. 3)
g e

Note that an n-rectangle M={x:a S x < b}, a,beR", a<b, is uniquely determined by its
“lower left" vertex @, and its "upper right” vertex b. Each of the 2" vertices of M is of the
form

a+l

where ! is a vector with components 0 or (b;—a;) (i=1, . . . ,n), and for the diameter d(M ) of
M we have

dM)=lb-all,

TR
where 1.1l denotes the Euclidean norm in R". 0 X

. A very simple frequently used subdivision, called bisection (e.g. Horst [8]), consists of

k subdividing an n-rectangle M={x:a < x < b} into two n-rectangles by a cutting hyperplane
through (a+b)/2, perpendicular to the longest edge of M. It is well known that bisection is
exhaustive in the sense of Definition 2.
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Lower and upper bounds

Let M be an n-rectangle and denote by V(M) the vertex set of M. Then it is well
known that, by concavity of f, we have minf (M) = minf (V(M)) and for the lower bound
BM ) we set
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BM) = min f (V(M)). )
Obviously, we have
B(M) < min f (D ~M) e
whenever D "M #J.
For the upper bounds ¢, 2 minf (D) in step r of the algorithm, we always choose t N

. L
a, = minf (S,), ) :,.‘i;-_:" ,
where S, is the set of feasible points calculated until step r, that is, we have ®
o =fG"), ©) el

where x” is the best feasibl. point determined so far. If feasible poinis are not available, i.e. RN
S, =0, we set o, =oo, B
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Deletion

A partition set M is deleted of course whenever we have B(M)>o, for some iteration
step s, because then, clearly, the global minimum of D cannot be attained in M.

A more difficult question is that of properly deleting infeasible partition sets M, i.e., sets
satisfying M N\D=. Usually M is known by its vertex set V(M) and V(M )ND =2 does not
imply M N\D =(J. Therefore, from the information at hand, we will not be able to delete all par-
tition sets M satisfying M ND =0, and we have to apply a "deletion by infeasibilty" rule that is
"certain in the limit" in the sense of fathoming "enough" infeasible sets to guarantee conver-
gence of the algorithm to a global minimum of f on D.

In order to derive such a deleting rule, note that each constraint function g; is obviously
Lipschitzian on M, that is, there is a constant L;=L;(M )>0 such that we have

lgi(z) — g;(x)I SL;liz —x 1, forall x,zeM. 7
An upper bound for L; is given by any number A; satisfying
A; 2max{lIVg;(y)l:yeM }. ®
LetM = {x: a, Sx, S b, k=1, . . . ,n}. Using monotonicity and separability, we see that
A; =A;" =max (IVg;()Il: yeM) ©)

is given by

n
A" =1X( max Ipuye + @D ={ T Guar +qu)*+ T @abe + g (10)
k=1 3 SyyShy keN;! keN;?

where

i +b ; +b
Nl (oo J 5 200 N2 g, o 3% St ey
Pa 2 Dix 2

Let V'(M) be any nonempty subset of the vertex set V(M ); for example V' (M )={a,b} if
M=(x:a <x < b}. Denote again by d(M)=Illa—b Il the diameter of M. Then we propose the
following:

Deletion Rule (DR): Delete a partition set M whenever there is an ie {1, . . ., m} satis-
fying
max {g;(x):xeV (M)} — A;d(M) >0 1)
where A;2L; (see (8), (9) and (10)).

Lemma 1: Let the subdivision procedure be exhaustive and apply the Deletion Rule
(DR). Then every infinite decreasing sequence {M,} of partition sets generated by the
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algorithm satisfies CVN
SN
M, - (X}, XeD. ChOY

g—see

¥

Proof: The definition of an exhaustive subdivision implies that there is a point X satisfy- f'.;"- k
ing M, — {X}. We have to show that XYeD. Let A;(M;) be an overestimator of the
q oo

Lipschitzian L;(M,) of g; on M,. Since {M,} is a decreasing sequence, we may assume that '.};"'-"»
A;(M_,1) < A;(M,) holds and that A

A 2A,My), forall q,i=l,...,m 12) ey
is at hand. ‘5'."' i,

Apply deletion rule (DR) and suppose that we have X¢D. Since M, —(X}, by continuity

of g (i=1,...,m) and by (12), it follows that, for each sequence of nonempty sets ﬁ,
V(M )V (M,), we have .W;. .
max {g;(x):xe V' (M,)} — A;(M,)d(M,) q:: g&@®), i=1, ... .m 13) ‘ééii
As XdD, there is at least one i€ {1, . . . ,m} satisfying g;(¥)>0. Taking into account bounded- E‘Esé

ness of {4;(M,)}, d(M,)—0 and continuity of g;, we see from (13) that there is a positive rered
integer g such that EEQ_";
max {g;(x):xe V' (M,)} — A;(M,)d(M,) >0, forall g2q, _E:é:
holds. This is a contradiction to the deletion rule (DR). AF"?:? l
Remark: Note that, by A; 2 L;, we have g;(z) 2 g;(x)~L; lz—x | > g8i(x)-A;dM) for ‘:f:,::
all x,zeM and (11) implies g;(z) > O for all ze M, hence deletion rule (DR) does, in fact, :ii;;
only fathom infeasible sets M. A
..
The algorithm i‘;éz}.-
Step 0. ;,“.:‘3:}3'

Let My=M, choose Sy <D (possibly empty) and determine B(M )=minf (V(M)), l‘l:‘::
ag=minf (Sy ) (og=> if Su~0). Let I=(My}, and By=P(M). If op<eo then choose 'a‘:."}.f.r
x%% argminf (S ) (e f (x%=0ay). If ag-By=0 (<e>0 for practical purposes) then stop; ::j‘.-:‘:.
og=Po=minf (D) (0g—Po<e), x%is an €-approximate solution. Otherwise set r=1 and go to step :E:EE‘
AN

r.

Step r.

At the the begining of step r we have the current rectangular partition /,_; of a subset of
M still under consideration. Furthermore, for every M e/,_; we have Sy, cM ND and bounds



B(M), oM ) satisfying

B(M) = min f (M) < o(M).

Moreover, we have the current lower and upper bounds B,_;, a,_; satisfying

B,.1 <minf(D)< .

Finally, if o,_j<eo, then we have a point x"'eD satisfying f (x" D=0, _; (the best feasible

point obtained so far).

r.1

r.2

r.3

r4

r.S

r.6

Delete all Mel,_; satisfying B(M)2a,_,. Let R, be the collection of the remaining rec-
tangles in the partition /,_;.

Select a nonempty collection of sets P, <R, satisfying

argmin {BM): Mel,_|}cP, (14)
and subdivide every member of P, by bisection (or any other exhaustive subdivision
yielding rectangular partitions). Let P,” be the collection of all new partition elements.

Fathom any M e P,’ satisfying deletion rule (DR). Let /,’ be the collection of all remain-
ing members of P,’.

Assign to each M el,’ the set SyycM "D of feasible points in M known so far and
BM) = min f(V(M)), M) =min f(Sy) (oM )= if Sy=0Q).

Set I, = (R, — P,)ul,’”. Compute

o, =inf (a(M): Mel, },

B, = min{BM): Mel,},

If o, <o, then let x"€ D such that f (x" )=c, .

If o, —f3,=0 (<e), then stop; x"is an e-approximate solution. Otherwise go to step r+1.
1Y

The convergence of the algorithm is based on the following theorem.

Theorem 1: (i) The sequence of lower bounds P, satisfies

B :=lim B, =min f(D).

(ii) Assume that we have Sy #Q for all partition sets M. Then

B=1lim B, =min f(D)=lim o, = «
r —o0 r —oo

holds and every accumulation point of the sequence {x”} solves problem (1).
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Proof: (i) Using a standard argument on finiteness of each partition /, (e.g. Horst 8], -
Horst and Tuy [9]), we see by the selection rule (14) that there must be a decreasing sequence Ao Ny
{M,} of successively refined partition sets satisfying NNy

BM,) =B, (15) N

Clearly, by construction, {B,} is a nondecreasing sequence bounded from above by minf (D)
such that

's
B := lim B, < min f(D) (16) 2]
r = Ry
exists.
From Lemma 1 we see that lim M,={x} and xeD hold. But
q =
B(Mq)=minf VM)+f (v?) where vie V(M,)cM,, hence continuity of f implies that we
have
lim BM,) = f (®). a7
q ~oo
Combining (15), (16), (17) yields
B=f@ <minf(D)
which is only possible if f (X)=minf (D) since xeD.

(ii) Whenever Sy, #Q, i.e., (M )< for all partition elements M, then the algorithm can
be regarded as a realization of the general (BB)- scheme presented in Horst [8] or in Horst and
Tuy [9] and (ii) follows from the theory developed in these papers if we show that the bound-

ing operation is "consistent”, i.e., if (M, )—B(Mq )0 as g 9o, for every decreasing sequence

{M,}.

We have already seen that M, q—_—)m {x}, xeD, and B(Mq) qj“f (X) hold. But ..
(M, )=minf (Sy,), DSy cM,, and continuity of f imply that likewise we have N_:N:.
aM,) > f@. RN

e AN

Remark: For problem (1) it may be difficult to obtain enough feasible points such that e
Sy # for all partition elements M. In that case, we propose to consider the iteration sequence "‘:.:
{x"} defined by f (x")=B,. Note that " is not necessarily feasible for problem (1). However, ,..::.'t'_:.':
it can be proved in a similar way as above that every accumulation point of {%"} solves prob- ::-;\E-;

NI

lem (1).
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Computational considerations and acceleration of convergence

The general algorithm was shown to converge using only simple calculatons to make
decisions on partitioning, deleting and bounding. A closer examination presented here leads to
procedures that allow improved bounding, at the expense of solving additional subproblems to
extract the information needed for these decisions.

" Let us assume that M has not been deleted by the deletion rule (11). We may still have
. MAD = Q. Currently, the algorithm assigns a lower bound on the minimum of f over M N\D
.
ry as
: M) =min f (M) =min f (V(M)) < f(MND). SR
w Y
J Since, from Step r.1, M is deleted whenever B(M) 2 o, _;, a tighter lower bound would i
NNA
_ invoke this test sooner. Assuming M ND #, a mechanism needs to be devised for identifying '.“_-;:-; '
g points in Sy, cM ND. Otherwise, as mentioned earlier, it is conceivable for Sy = for all '-\"'C;A
Mel,_; (in this case, 0,_; = o). These two situations shall be addressed next. In particular, :"'\_.
A we shail attempt to obtain a better bound than B(M ) by using only linear programming calcula- ‘:E (A
tions. In the process, we will be able to identify, at times, when M "D = & or possibly even 1‘?&’_‘-«.-
. vy
> uncover feasible points of M "D # for inclusion in Sy, . - "~."-
We begin by proposing a simple linearization of the constraints in r_,:.f‘
- n ‘::\":-:‘
N G = (x: - 1 2 <q iz SANAS
e ={x:g(x)= 3, (-2—p‘~kxk +quxe +ry) £0,i=1,... ,m}. ROV
k=1 AN
" -:‘ h‘!
@
Note that M D = MG since McMjyand D = My\G. Let g, (x,) = %p,-,,)c,,2 + guXxy + Ty ,\«-,
RANCe
. and let Vex, f denote the convex envelope of f over A. Then we have {5] ,\}'s f
» . B
. % ‘\
Vexygi(x) = 3 Vex, gu(x) < g:(x) (18) N
k=1
0 where 7
: p.,,={x,,:a,, Sx,‘ Sbk},k=1,...,n. ::-
i Each g, (x;) is linearized by one of the following three cases: -
§ ; Case 1: p;, = 0. Then g, (x;) is linear ’.:"'-
v e
Case 2: p, < 0. Then g; (x,) is concave and Vex,, i (x,) = oy x, + By where ::;::::{_‘_ ]
f) Q:’\J'-- X
L4 -,
o = [ (i) = u(a)V(by — ar). B = gu(br) — by = 8u(ay) — 0. ®
.\}'}'x
Replace g, (x,) by [ (x¢) = 0 + B .'\-“.:,\.
) R
RSAY
e
' P
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A
e A e et S o et T A s e AT NN ]
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If
8 (£.)>0, replace g, (x,) by the constant g, (£,) in the constraint g;(x)<0. (This effectively

Case 3: p; > 0. Then g, is convex. Compute £,=—q;/py; which minimizes g;.

enlarges the region feasible to that constraint). Otherwise, continue.

Case 3a: If £, <a,, compute

1

Pik "2,

1
= —([—qu + (qu>2PuTu)
Pix

Replace g, (x,) by the linear support of ils graph at p.}. This is given by
L (xe) = otaexe + B < gue(xe),
where oy = pupl + i > 0 and By = -0 P

Case 3b: If £, > b,, replace g, (x;) by the linear support of its graph at

1
—[~qu - @ = 2para)?);
Pix

pi

namely,
L (xe) = ogexy + B < gue(xe),
where o = pypd + que < 0 and By = —0ypi.

Case 3c: If a, < £, < b,, compute p;} and pZ, as above, and replace g, (x,) by the max-
imum of the supports at p; and p3,

max {Iii(xk)v luf(xk)]
where
e = afexe + Bho j = 1,2
O = PPl + qier J = 1,2
B

Let ¢; be the number of terms in g;(x) that fall into Case 3c. That is, ¢ is the cardinality of

=—0fph j=1,2.

the index set
K,'—"-'{k:p“k >0,g,~k(fk)SO,a,, ka Sbk, k=1,...,fl}.
Using the above linearization, for each constraint { we have

L) = 3 L)+ X max {Li(x), Lix)) < gi(x).
keK; kekK;

where we take [;;(x;) = g, (f,) in the case p; > 0 and g, (£,) > 0. Now, we have /;(x) is a

linear underestimate of g;(x) when K; = &, and it is piecewise linear and convex, otherwise.
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In particular, the region defined by /;(x) < 0 is equivalent to the polyhedral set

z I;k(x,‘) + z Zig <0
kak; keK;

Li(x) S 2y, keK;
12(x,) < 2, keK;,
which involves t; new variables (z;;, . . . ,z;,) and 2f; additional constraints.

Performing the above linearization for every constraint i, let L(G) denote the resultant
polyhedral set and let L,(G) denote its projection onto the n-dimensional space of x. It is
clear that

L,(G)Dcomv(G)DG

where conv(G) denotes the convex hull of G. Also, it is clear that if (X, ) minimizes f (x)
over L(G)~\M, then X minimizes f(x) over L, (G)"M, If L. (G)~\WM =, then
G\ =MnD =0,

Since f is concave (with no assumed exploitable structure), too much effort is required to
find the global minimizer X. Instead, we seek an felL, (G)~M that satisfies f (%) < f(X).
Consider the problem
min f (x) (19)
st (x,2)eL(G)nM.
Since the feasible set is compact, the algorithm of Falk and Hoffman (7] applies. But we only
run the algorithm until the best lower bound occurs at a point (£,7) that satisfies
£eL,(G)M . Their method guarantees that f (£) < f (X), as desired. Thus, we obtain
BM)=min f(M) < f(£) < min f(MND),

thereby achieving a higher lower bound than B(M). If £eG, then Sy, #. Otherwise, schemes
can be developed to find at least one point in L, (G )G, starting from £, and these points are
added to the set Sy,.

Bilinear constraint approach

An altemative lincarization of G can be derived from the bilinear constraints that arise

from the quadratic constraints in the following way. Each constraint function can be written as

n 1 n
gilx) = Z(-Z'P.'kxkz + GQuxe +ri) = (XY + ri)
k=1

k=1
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where y; = %pikx,‘ + ¢, for every i and all k. We also have from Theorems 2 and 3 of Al-

Khayyal and Falk [1]

Vexg gi(x) = ¥ [Vexq, (xeyy) + ri] (20
k=1

where

Q,’ = annizx s ><Q,-,,

4

N Qe = {(xe-yie): G S X S by, € S yy S di}
K Vexq, (xeyi) = max {lf(xeyae), L3 (xe, ya))
"

1 -
L Yu) = CuXi + QrYu—arCix

L3 (6 yae) = digXy + byyu—bdy

|~

Cixg = —min{pyay, pub} + qu

dy = —max{pyax, picbx} + qir.

[N [E RS

Let y; = i1, . - . ,yin)". Since Vexq g:(x) is piecewise linear and convex, the feasible region
B defined by

e
e B ] *.)
.‘:' R A
St
AL

::('n
""1
r

Vexq gi(x) S0

=

e
=1 _ -
Yie = 2 Pie¥e +qu., k=1,.. . .n 'n_
J';";"‘
z (x, y:)e;, C\,:f,"

&

is equivalent to the polyhedral region involving n additional variables (z;;, . . . ,z,) and 2n ( PA
. additional linear inequality constraints: AN
. S
n N '
. ZZ,* <0 \.J:\_;
. k=1 N
» h -‘!.I?‘
1 o
Yie = -z_pikxk + Gik» k=1- N "—\'F\,-
- GG
y NN
l‘-}(xk,y‘-k) + ik < ik k=1, Y ] ... 'R\..
Iiz(xk')’ik) +ri €z, k=1,....,n
(x, y)eQ;.
\ This is done for each constraint i=1, ... ,m to yield a polyhedral set P(G) whose projection

onto R”" (the space of x-variables), denoted by P, (G) contains the convex hull of G, that is,

- \ ‘-:;“"r”""l"ﬂr"’.l.!‘l' W oW ¥u 'y lrn‘-.l(
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we have *

i

l..\l.
"

'
5"y

G < conv(G) g P, (G). -

LY )
VeV
A

22,

Ll
Wy
o o
)

Hence,

£

min {f (x): (x,y,2)eP(G)WM} <min (f(x): xeGrM }.

s

5 The discussion at the end of the preceding section may now be followed with the set L(G)

o
} l"ﬁl."
";' K

X'

replaced by P(G) and the vector (x, z) replaced by (x,y.z).
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Piecewise linear approximation

v

In [17], [19], a computational algorithm is proposed for the solution of separable concave

X

problems subject to linear constraints. In that paper an approximate piecewise linear program is

25

A
8 considered that provides an e-approximate solution for any given tolerance € > 0. The concave ;'::‘::.
piecewise linear program is solved by using an equivalent mixed zero-one integer linear pro-
e gramming formulation (see also [14]) having a simple structure. The same techniques have
' been extended for problems with an indefinite quadratic objective function [15].
- For problem (1) we assume that the objective function f (x) is continuous. For each
interval [m, m; ] choose a fixed grid of points by partitioning it into n, subintervals of length
he = (Fig—my)iny. (1)
n n
Let v;(x) = X Yu(x) be the piecewise linear function that approximates g;(x) = ¥ gi (x;).
k=1 k=1
Each piecewise linear function Yy (x,) interpolates gy (x,) at the grid points x,’/ =m, +jh;, for
Jj=0, ... ,n,. We may assume that n, > 1, since for n, = 1 we obtain a linear function inter-
b polating each g, (x,) at the endpoints m, and /m,. Then the separable piecewise linear pro-
gram
o
- global min f (x)
n
: st Yi(x) = ZY,-,,(X,,) <0, i=l,....m (22)
k=1
. mkakSﬁfk, k=1,...,n, ;
5 90!
will provide an approximate solution to the original problem (1). The approximation error e
TP
depends on the mesh sizes A4,, k=1, ... ,n, and the curvature of the objective and constraint o
¥ RIS B
functions. [
. A2
4 Piecewise linear interpolation preserves monotonicity ,convexity and concavity. Next we ;-\:-;*_
N
K prove that when the constraint functions g;(x) are convex then the piccewise lincar approxi- " 4,:f
¢
mate problem (22) is reduced to an equivalent one with linear constraints. :}\
o
) :ﬁn'
\J,\._‘-
:'.:-',:.\
\
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Convex constraints

If g(x) is a piecewise linear convex function, then g(x) can be defined as the pointwise
™ maximum of & affine functions /,(x), . . . , [ (x), that is

g(x) =max {L;x), ... [ (®x)}. 23)

“ Moreover, given the set

S = [x:imax{llj(x), oL} £0)
j=1

we associate the following set (with n additional variables):

. n
. S={Gxy)y 2l/x), i=l,... ,k, j=1,...,nand ¥y; <0}
J=1
! Then it is easy to see that if (x,y) solves the problem min{f (x): (x,y)e S}, then x solves
min{f (x): xeS}.
Let I3/ (x;) be the affine function that coincides with v, (x) in the interval [x,’~! x./],

where x,/=m;+jhg, j=1, . . ., n. Then by (23)
n n .
%) = Tyata) = ¥ max ('®e), - @) =1 m,
=] k=1

M where

i/ = G ) Ve N ~G =D b + Ya (), j=1, ..., n.

o ED
Hence, problem (22) can be solved by solving the following problem under linear constraints: \f:ﬁ»’
AR

. -.‘ LIS,
E : glObal min f (x) ::;:"‘:: E
- n :_ :'_\::' ]

st. Y yu +r <0,i=1,....m (24)

k=1 N

J j , , ;3\:.\
Y 2/ (xe), k=1, .. .0, j=1, .. n, 0=, ... .m ;-r.‘_-r:'}

J‘_\_J‘\
my S Xy S My, k=1, o ‘.-::5‘- '

. . . e

If (x*,y*) is a solution of problem (24), then x* solves problem (22). The number of addi- N

. tional variables y, introduced is independent of the number of partitions used and is equal to NSO
RO

Y =mn. ":.:_::_\'

‘; NATA

The number of additional constraints depends on the partition set and is given by L

o

n )
C=mn 3 n.
k=1

R '\-':-':

-':\"\'.
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When f (x) is a concave quadratic function problem (21) is a global concave minimiza-

" tion under linear constraints. A method such as the one described in [17] can be used to obtain
. a guranteed e-approximate solution.
)
¥ If the objective function is indefinite quadratic, we have the same approach since
indefinite quadratic programming is reduced to concave programming with convex constraints.
& This is true because if f (x) is indefinite, then f (x) = f |(x) + f,(x) where f;(x) is concave
and f,(x) is convex. Then any problem of the form
% global min £ ) = £ (%) + £ 206)
. X
.. : is equivalent to the concave minimization problem
o
global min f (x)
E; st. xe§, fyx) Sy
) with y an additional real variable.
E Nonconvex constraints
When some of the constraint functions g;’s are nonconvex the separable piecewise linear
_'_: program is more difficult to solve. It is of interest to note that problems with integer 0—1 res-
d trictions can be formulated as problems with concave (reverse convex) constraints. For
instance, the constraint x, € {0, 1} can be written as
L~
' -x2+x,<0, 0<sx < 1.
)
i . For problems with nonconvex constraints we obtain an equivalent formulation with linear
constraints and zero-one integer variables of special structure. To illustrate the idea behind this
R formulation consider one of the functions vy, (x;) which is assumed to be concave. Let
g o
M
. e=m+ Y hot (25)
1 4 ]=l
where
‘ -
2 0<wt*<1,j=1,... ,n
: (I)j+1k < ij < (Dj,”k, ijE {0,1}, j=1, R ,n,‘-l. (26)

Under this transformation we obtain a linearization of the piecewise linear concave function
Yir (x) by setting

Yie () = Ye(me) + T 05 (Y (m + jhy) = Ya (o + G=15k))). 27N

j=
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> For each function y; we introduce n,—1 zero-one integer variables. However, because of (26)

N
<

v we must have

P ELEE
NALL AL LT
','-'s:"{'v

‘I
-~
JIL

=@t =01,,...,1,00,...,0. (28)

o

S -

[

This property of zero-one variables makes the integer problem easier to solve, since z* takes

' only n, possible values, instead of 2"'-l values for the general case when (28) does not hold.

P *
=

& 5

Applying the above arguments for all constraint functions we have that, in case of con-

v
2] s

e
¥
S

cave functions, problem (22) is egivalent to the following problem:

A

global min f (@)

n Ry h
. . . <
Icz [ Yalme) + Z‘l @ Gty + Jhe) — Ya(oy + G=Dh)) 147y <0, i=1, ....m “nd
=] J= .
N RAYN
oy 0<sw*<1, k=1,...,n,j=1,...,n (29) ke
N
s Y
5 O)j,,lk < zj" < mj,,,", zj"e{O,I}, k=1,...,nj=1,... ,m-1 i,-;f»
» ny .‘lj: “"
0s Ihot<sm —m, k=1,...,n Wt
j=1 Lt
.’*"'.‘ ]
If g, (xy) is convex we may use the same transformation as in (25), (26) and (27). How- ol 4
.‘J,‘ ;".
3 ever, in the presence of convexity it is easy to see (because of the monotone increasing _::.\i
¥ o

slopes) that we do not need to use integer variables. Hence it is clear that an all-quadratic

v »

g
g‘;&
A

separable problem can be solved by solving an equivalent concave zero-one program with

1-

L85
?&Sr

e

) linear constraints.
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N Concluding remarks

el
S
A

[

This paper presents different methods for the global minimization of concave functions

flJ
R

N subject to quadratic separable constraints. The first method is a branch and bound algorithm

P
«

By
%1

&

based on rectangular partitions to obtain upper and lower bounds of the global minimum. Vari-

v,
\. g
- . . . . N,
N ous techniques that improve branching and bounding have been considered. \:é‘ \
We also discussed bilinear programming techniques to approximate the feasible domain ".‘F“ )
' using convex envelopes. From the practical point of view, an approximate solution is desired. K "‘-'.':\
D) i-'f 4

An aiternative method for computing an €-approximate solution is given based on the use of

a v N

>

PR

1 piecewise linear approximations of the constraint functions. For convex constraints the approxi-
mate problem can be formulated as a concave minimization problem subject to linear con-

straints. For nonconvex constraints the resulting problem has linear and integer 0—1 constraints.
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