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ABSTRACT

n-i this paper -we propose, I different methods for finding the global

minimum of a concave furnction subject to quadratic separable constraints. The

first method is of the branch and bound type, and is based on rectangular parti-

tions to obtain upper and lower bounds. Convergence of the proposed algo-

rithm is also proved. For computational purposes, different procedures that
% %

The second method is based on piecewise linear approximations of the

constraint functions. When the constraints are convex the problem is reduced

to global concave minimization subject to linear constraints. In the case of non-

convex constraints we use zero-one integer variables to linearize the con-

straints. The number of integer variables deiends only on the concave parts of

the constraint functions. -% -, ) ,--"

Parts of the present paper were prepared while the second author was visiting Georgia Tech and Penn State Universi- WI

ty.
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Introduction

In this paper, we are concerned with determining the global minimum of problems of the

form:

global min f (x)

s.t. giJx) := 1p(pxk2+qikxk+rik): 0 , i=1 ... m (1) -.

k=1 2 k"

_ T - <-Nk, k=l,... n

where pit, qit, rik, mtk, m'f, (i=1, . . m and k=l. n) are given real numbers, f(x) is a

real valued concave function defined on an open convex set containing the rectangle

Mo={x:m < x 5 f}, Mt=(M .. tE)T ' mf=(gj ... )T . Denote by D the feasible set

of problem (1). Clearly, D is compact and f is continuous on D so that the global minimum

off over D exists.

Note that the second problem addressed in the title of the paper can be included under

problem (1), since

global minf 0(x) = p (pok x+qok x+r o)
k=l 2

s.t. xED

is equivalent to ''4

global mint

s.t. xeD, f o(x) < It

with the additional variable t rR..'

Problems of the form (1) are very difficult to solve. Sahni [21], proved that the problem S

(with a linear objective function and quadratic constraints) is NP-hard. Interest in this problem

is apparent from its practical applications as well as from the theoretical point of view. Many

practical problems that can be formulated as in (1), include location problems, production plan-

ning, and minimization of chance-constrained risks [ 18]. Recently, it has been shown that some

VLSI chip design problems lead to the formulation of quadratic programs with quadratic con-

straints [ 11].

In this paper, we propose different methods for the solution of (1). From the computa- ,,,
tional point of view we are interested in algorithms that determine an C-approximate solution.

First we develop a branch and bound algorithm which is based on rectangular partitions to

obtain upper and lower bounds on the global minimum. Next, we use piccewise linear approx-

imations of the constraint functions. When all g, (x) are convex we reduce the approximate "
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piecewise linear program to concave minimization subject to convex constraints. For noncon-

vex constraints we use zero-one integer variables to linearize the piecewise linear functions that

approximate the concave parts of the constraint functions.

There is little work done on nonconvex problems with quadratic constraints. In t4], a

dual method is developed for minimizing a convex quadratic function subject to convex qua-

dratic constraints. This method may be used to obtain approximate solutions of (1), when a

conve," approximation of the objective function can be computed. Problems with a linear

objective function and quadratic constraints have been considered by Kabe [10]. Reeves [20]

proposed a branch and bound type algorithm for (I), where the objective function is separable.

This algorithm is based on locating local minima using linear programming techniques (see

also [121). Other methods for related problems are given in [2], [3], [6], [13], [22] and [231.

Branch and bound algorithm

The algorithm proposed for solving problem (1) will be a Branch-and Bound (BB) pro- % %.%

cedure consisting of

- more and more refined rectangular partitions of the initial rectangle M0 ,

- lower bounds P(M) < minf (M) associated with each partition element (rectangle) M •

generated by the procedure,

- upper bounds a,. > minf (D) determined in each step r of the algorithm, No W

- certain deletion rules by which some partition sets M are deleted since we know that

M r-D-- or that minf (D) cannot be attained in M.

'vyv.%

We briefly discuss the four elements of the procedure before presenting a complete state-

ment of the algorithm.

Subdivision of rectangles ,' , -

Definion 1: Let MaR" be an n-dimensional rectangle (n-rectangle) and let I be a finite

set of indices. A set {Mi:iI ) of n-rectangles Mi:cM is said to be a rectangular partition of

M if we have

M - ) Mi, Mi My = dM, rcdM, for all i,j c-, i j, (2) ,.

where aMi denotes the boundary of Mi.

Definition 2: Let {Mq be an infinite decreasing (nested) sequence of rectangular parti- "-%

tion sets generated by the algorithm. The underlying subdivision procedure of rectangles is

called exhaustive if the sequence of diameters d(Mq) of Mq satisfies

~Sr .* a~- .r -- ' " 1% *%.~.\S "S.. ~..\ ~ *\ N

Lof e.-~'.~ h ~*,* .'.\. ,---~ -V/d *S *
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lim d(Mq) = 0. (3)

Note that an n-rectangle M={x:a -Sx < b), a,beR", a<b, is uniquely determined by its

"lower left" vertex a, and its "upper right" vertex b. Each of the 2' vertices of M is of the

form

a +l

where I is a vector with components 0 or (bi-ai) (i=l . n), and for the diameter d(M) of , r

M we have

d(M) = 1lb-a II,

where II. 11 denotes the Euclidean norm in RM .

A very simple frequently used subdivision, called bisection (e.g. Horst [8]), consists of

subdividing an n-rectangle M=(x:a 5 x b ) into two n-rectangles by a cutting hyperplane

through (a+b)/2, perpendicular to the longest edge of M. It is well known that bisection is

exhaustive in the sense of Definition 2.

Lower and upper bounds

Let M be an n-rectangle and denote by V(M) the vertex set of M. Then it is well

known that, by concavity of f, we have minf (M)= minf (V(M)) and for the lower bound

P(M) we set

P(M) min f (V(M)). (4) S

Obviously, we have 
.

P(M) 5 min f(Dr'M)

whenever D rWd 0. .

For the upper bounds or , minf (D) in step r of the algorithm, we always choose %d -,

o, = minf (S,.), (5)

where S, is the set of feasible points calculated until step r, that is, we have 0

a, = f (xr), (6)

where xr is the best feasibk, point determined so far. If feasible points are not available, i.e. ..*,..

S,-0, we set X,=.-c 

%

U
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Deletion.,. _r

A partition set M is deleted of course whenever we have (M)>as for some iteration %

step s, because then, clearly, the global minimum of D cannot be attained in M.

A more difficult question is that of properly deleting infeasible partition sets M, i.e., sets

satisfying Mr'D--0. Usually M is known by its vertex set V(M) and V(M)rD= 0 does not

imply M rD --0. Therefore, from the information at hand, we will not be able to delete all par-

tition sets M satisfying M cD --0, and we have to apply a "deletion by infeasibilty" rule that is-,_

"certain in the limit" in the sense of fathoming "enough" infeasible sets to guarantee conver-

gence of the algorithm to a global minimum of f on D.

In order to derive such a deleting rule, note that each constraint function gi is obviously

Lipschitzian on M, that is, there is a constant Li =Li (M)>O such that we have

gi (z) - gi (x) 1 < LII z - x 1, for all x, z e M. (7)

An upper bound for Li is given by any number Ai satisfying '.

Ai _max { II Vg (y) y e M}. (8)

Let M = {x: ak < xk < bk, k=l .. n ). Using monotonicity and separability, we see that

A- * = max (ll Vgi(y)II: y M) (9)

is given by

Ai* =[( max 'pikyk +qik) 2 ]1 "- [ (piak +q/) 2 + t (Pikb 'q)] (10)
1 a*~y*~b* keNj kiN 

2

where

a__+_ 2 qik ak+ b k "
N i (k : - _ + 2 N i2 k : - - < 2

Pi 2 p 2

Let V (M) be any nonempty subset of the vertex set V(M); for example V (M)={a ,b if

M={x:a < x S b). Denote again by d(M)=lla-b II the diameter of M. Then we propose the

following: " "k "

Deletion Rule (DR): Delete a partition set M whenever there is an i E { 1,. m) satis- %

fying . . -

max {gi(x):XEV'(M)} -Aid(M) >0 (1).

where A>Lj (see (8), (9) and (10)). .

Lemma 1: Let the subdivision procedure be exhaustive and apply the Deletion Rule eA,*

(DR). Then every infinite decreasing sequence {Mq) of partition sets generated by the
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algorithm satisfies

Mq --> (I), XED.

Proof: The definition of an exhaustive subdivision implies that there is a point Y satisfy-

ing Mq -- {T}. We have to show that Ye D. Let Ai(Mq) be an overestimator of the

Lilchitzian Li (Mq) of gi on Mq. Since {Mq } is a decreasing sequence, we may assume that :. "

Aj(Mq+i) < Ai(Mq) holds and that

A 2!Ai(Mq), for all q, i=1, . m (12) ,__

is at hand.

Apply deletion rule (DR) and suppose that we have YdD. Since Mq---Y, by continuity

of gi (i=l, .... m) and by (12), it follows that, for each sequence of nonempty sets

V (Mq)CV (Mq), we have S

max {gj(x):x V'(Mq)j Aj(Mq)d(Mq) -+ gi(T), i=l, ... m (13)
q--

As Y4D, there is at least one i e ( 1 ... , m } satisfying gi ( ). Taking into account bounded-

ness of (Ai(Mq)) , d(Mq).-.. and continuity of gi, we see from (13) that there is a positive

integer q0 such that

max {gj(x):xEV (Mq)) - Ai(Mq)d(Mq) >0, for all q~qo

holds. This is a contradiction to the deletion rule (DR).

Remark: Note that, by Ai > Li, we have gi(z) gi(x)-L i Iz-x II > gi(x)-Aid(M) for -"

all x,zEM and (11) implies gi(z)> 0 for all zeM, hence deletion rule (DR) does, in fact,

only fathom infeasible sets M.

The algorithm

Step 0.

Let Mo=M, choose SMoCD (possibly empty) and determine O(Mo)=minf (V(M)),

dlo--minf(SM0) (at~oo- if SMo=--0 ). Let leMo}, and 00=P(Mo). If ao< then choose

x 0Eargminf (SMo) (i.e. f (x0)=a0). If cao-13,=0 (-<e>O for practical purposes) then stop; "

ceo=r3--minf (D) (a0-0o.e), x° is an e-approximate solution. Otherwise set r=l and go to step

Step r. , - .

At the the begining of step r we have the current rectangular partition I,_ of a subset of

M o still under consideration. Furthermore, for every M = 1, we have SM cM rD and bounds 'p

.--0.\
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O(M ), a(M ) satisfying -'. '

P(M) = min f (M) < a(M).

Moreover, we have the current lower and upper bounds or-l, a,- satisfying

0,_1 : min f (D )5 a,-,.

Finally, if o,-,<-*, then we have a point x'- ED satisfying f (x'-)=ar,_1 (the best feasible

point obtained so far).

r.1 Delete all MEI,_1 satisfying 13(M)>_a,_. Let R, be the collection of the remaining rec- I'

tangles in the partition !,1.

r.2 Select a nonempty collection of sets P, c.R, satisfying

argmin 1I3(M): M 4,_I}CP, (14)

and subdivide every member of P, by bisection (or any other exhaustive subdivision S

yielding rectangular partitions). Let P,' be the collection of all new partition elements.

r.3 Fathom any M P,' satisfying deletion rule (DR). Let I,' be the collection of all remain-

ing members of P,'.

r.4 Assign to each ME 4 ' the set SMcM rD) of feasible points in M known so far and ,-...

O(M) = minf(V(M)), a(M) = minf(SM) (a(M)-, if SM--0).

r.5 Set 14 = (R, - P C ).Jlr' Compute

o,. =inf {ct(M): M e , 1

O,= min{ (M): M I, 1

If c.c<-. then let x'E D such that f(x')=x,.

r.6 If oc,-13,=0 (Se), then stop; x'is an e-approximate solution. Otherwise go to step r+l.

The convergence of the algorithm is based on the following theorem. .?

Theorem 1: (i) The sequence of lower bounds O, satisfies

13= lim 13, = min f (D).

(ii) Assume that we have Sm 0 for all partition sets M. Then

13= lim 13, =min f(D)= lim = a .-. , .

holds and every accumulation point of the sequence {x'} solves problem (I).

31

............ 'M ' Ai. 1Y

I. -' s . - 1 ~ - -
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Proof: (i) Using a standard argument on finiteness of each partition I, (e.g. Horst [8], MI

Horst and Tuy [9]), we see by the selection rule (14) that there must be a decreasing sequence %

{Mq ) of successively refined partition sets satisfying

M) = P(15)NIP%

Clearly, by construction, {13,.} is a nondecreasing sequence bounded from above by minf (D)

such that

1:= lim ,. -minf(D) (16)

exists.

From Lemma I we see that lim Mq=[Y} and YE-D hold. But

1(Mq)--minf(V(Mq))=f(v q ) where vq V(Mq)CMq, hence continuity of f implies that we

have 
I

lim P(Mq)= f (-). (17)

Combining (15), (16), (17) yields -

=f(x-) min f (D) .

which is only possible if f ()=minf (D) since TE D.

(ii) Whenever SM O, i.e., a(M)<oo for all partition elements M, then the algorithm can

be regarded as a realization of the general (BB)- scheme presented in Horst [8] or in Horst and

Tuy [9] and (ii) follows from the theory developed in these papers if we show that the bound-

ing operation is "consistent", i.e., if C(Mq)-3(Mq )--0 as q ---, for every decreasing sequence ..-

{Mq}.

We have already seen that Mq -+ (Y), ED, and 1(Mq) ---f(T) hold. But

a(Mq)=minf(SMq), 0*SMqCMq, and continuity of f imply that likewise we have,....-..

ct(Mq) -f().
q-- * - *. '

Remark: For problem (1) it may be difficult to obtain enough feasible points such that

SM 0 for all partition elements M. In that case, we propose to consider the iteration sequence .* ",."

{" } defined by f(xr)= -r. Note that jr is not necessarily feasible for problem (1). However,

it can be proved in a similar way as above that every accumulation point of (V solves prob-

lern (1).

Oki %

A NV * .-
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Computational considerations and acceleration of convergence "- '

, The general algorithm was shown to converge using only simple calculations to make " N-,..

,,t decisions on partitioning, deleting and bounding. A closer examination presented here leads to -"_%l

- procedures that allow improved bounding, at the expense of solving additional subproblems to " - - e

.9"5 '

extract the information needed for these decisions. "?e

Let us assume that M has not been deleted by the deletion rule (11). We may still have

M D 0. Currently, the algorithm assigns a lower bound on the minimum of f over M c l n m
as.

P (M) = min f (M) = rain f (V (M)) !5 f (M (-D ).

'." %.

Since, from Step r.1, M is deleted whenever fkM)_ 2 _r,, a ighter lower bound would ,,;
invoke this test sooner. Assuming M th D e , a mechanism needs to be devised for identifying

points in SMCMreD. Otherwise, as mentioned earlier, it is conceivable for SM--st for all ".--

ME I,-, (in this case, a,-, *) These two situations shall be addressed next. In particular, ,-."

we shall attempt to obtain a better bound than D(M) by using only linear programming calcula-

tions. In the process, we wil be able to identify, at times, when Mr'u9 0 or possibly even ,2' .

(uncover feasible points of M o 0 for inclusion in Sm.

We begin by proposing a simple linearization of the constraints in lwron ou

1 -.2-,

Note that MattD = M G since M et and D = Motn . Let g(x ) erpiX + qiix + rica.c

and let VexAf denote the convex envelope off over A. Then we have [50 orpsibye

Vexmgi(x) = Vex~tgi,(x) !5 gi(x) (18)
k=1•

~~~where.--'

JX =k {x" ak S xk <5 bk} k =1... n. .:.--

Each gik(Xk) is linearized by one of the following three casts:r i

Case 1: Pik = 0. Then gik(xk) is linear

Case 2: Pik < 0. Then gi(Xk) is concave and Vexgik(X) (ikXk + Pik where

OXik = [gik(bk) - gik(ak)]/(bk - ark), Pik 
= gik(bk) - tikbk 

= gik(ak) - Oikak.

'.5:5%

eac g(Xk) s liarize by ~ on oftePoloigthe-css

- ik* . = fg k b ) - ina Ib - Ik n 
13

i = "bk - Ik .. ...~ - .... ka[ ' -
% %S S

Rep~~~~~ice~~~ P
5 (~ y£kX)=(~x ~k
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Case 3: Pik > 0. Then gik is convex. Compute 1k=-qik/Pik which minimizes gik. If

gik( )>O, replace gk(xk) by the constant gk(.fk) in the constraint gi(x)<0. (This effectively
enlarges the region feasible to that constraint). Otherwise, continue.

Case 3a: If . <ak, compute

Pik = -[-q + (qik2 -2pikri .",*
Pik

Replace gk(xk) by the linear support of its graph at pi. This is given by

lik(X) = CXkxk + Pik < g:(x), ,

where aik = pikPik + qjk > 0 and 3
ik = --(xkpi-.

Case 3b: If fk > bk, replace gi (xk) by the linear support of its graph at

Pi -[-q= - (qik - 2pkr) 1/2,

Pik -. pi. )'

namely,

lik(Xk) = oXikXk + Pik < g(xk),"

where aik = Pik Pi + qjk < 0 and Pi = --ai p. •

Case 3c: If ak < 2 k : bk, compute pik and pi, as above, and replace gik(xk) by the max-

imuni of the supports at pI and p 2..
ik ik,% %,

max {(l(xk), 1i(xk)"

where

l(x)= aixk + I, j = 1,2

ccJ = i P jP k + qik, j =  1, 2 """ "

01k = --a,*p;, j = l,.' .= ",2

Let t, be the number of terms in gi(x) that fall into Case 3c. That is, t, is the cardinality of

the index set

K i = {k:pik >O0, gij(k)<O , ak <. <f 5bk k=l, ,n} ..N,'

Using the above linearization, for each constraint i we have

lI(x) := ik(xk) + , max {lk(xk), 1,2(xk))<gi(x), '.','X

kEK i  kEK1  S

where we take lik(Xk) = gik(-k) in the case Pik > 0 and gik(.xk) > 0. Now, we have 1 (x) is a

linear underestimate of g,(x) when K, = 0, and it is piecewise linear and convex, otherwise.

.,, .% •
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In particular, the region defined by Ii (x) <- 0 is equivalent to the polyhedral set

li 4-XI) + FZik O
kgKi keKi ,

Iij(xk) + z, kz, _ 0

12(Xk) :5ik i

which involves ti new variables (zi, .1 z,,,) and 2ti additional constraints. A

Performing the above linearization for every constraint i, let L(G) denote the resultant -.-..

polyhedral set and let L.,(G) denote its projection onto the n-dimensional space of x. It is

clear that

L, (G) conv (G) m G

where cony (G) denotes the convex hull of G. Also, it is clear that if (T, Y) minimizes f (x)

over L(G)n)M, then T minimizes f(x) over L,(G)rcM, If L.(G)'-M = 0, then .- '.- .-

GrM = Mr)D = 0.

Since f is concave (with no assumed exploitable structure), too much effort is required to

find the global minimizer '. Instead, we seek an Re L. (G )r4 that satisfies f (2) < f (Y).

Consider the problem

min f (x) (19) .
.", -, %

s.t. (x, z)eL(G)r)M."'.,

Since the feasible set is compact, the algorithm of Falk and Hoffman [7] applies. But we only

run the algorithm until the best lower bound occurs at a point (2,f) that satisfies

2 e L. (G)n-M. Their method guarantees that f (f) < f (T), as desired. Thus, we obtain .. ',-.

P(M) = min f(M) 5 f(R) < min f (Mr:),

thereby achieving a higher lower bound than P(M). If 2 EG, then SM 0. Otherwise, schemes .,"

can be developed to find at least one point in L. (G)r G, starting from 2, and these points are

added to the set SM.

Bilinear constraint approach % %

An alternative linearization of G can be derived from the bilinear constraints that arise

from the quadratic constraints in the following way. Each constraint function can be written as
"-_",,'kTk2 0

gi(x) ( + qikXk + rik) =Y(xkyik + rik)

k-l 2 k=1

-w! i
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| ,, ? ,

where yik = PkXk + qik for every i and all k. We also have from Theorems 2 and 3 of Al-

Khayyal and Falk [1]

Vex.gi(x) -,[Vexn (xkyk) + rit] (20)
k=1

where

=i (Xk~Yi): ak :5 Xk 5 bk, cik 5 yik 5 dik)

Vexa- (xkyi) = max{l.(x,yL ), li(xk, yk))

l4(xk,yC) = cikxk + aYik-akcik

lik(xk,yik) = dikxk + byik-bkdk

Cik =1min{pikak, pikbk) + q .

2

dik =maxpikak, pikbk ) + qik.
2

Let Y, (y, 1.Y .)T. Since Vexagi(x) is piecewise linear and convex, the feasible region

defined by

Vexag i (x) -0

Y ,k-- - ,~xt +  qik, k =1 . .. n . -.

(X, Yi1 W(fl,

is equivalent to the polyhedral region involving n additional variables (zi1,  zm) and 2n

additional linear inequality constraints:

~Zik 5 0
k=1

Yik = jPikx, + qi,. k=l. n

l 2 (xk,yik) + rik < 
Zik, k=l. n

li(xk,yik) + rik Zik, k=l . n

(X, Yi )C 'i.

This is done for each constraint i=l .... m to yield a polyhedral set P (G) whose projection

onto R" (the space of x-variables), denoted by P (G) contains the convex hull of G, that is,

• ~~ ~ ~ I e le At V"""- 
"

,
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we have

G c conv (G) g P. (G).

Hence,

min {f(x): (x, y, z)eP(G)rMl < min (f (x): xrGOrM }.

The discussion at the end of the preceding section may now be followed with the set L (G)

replaced by P (G) and the vector (x, z ) replaced by (x ,y ,z). ._

Piecewise linear approximation

In [17], [19], a computational algorithm is proposed for the solution of separable concave

problems subject to linear constraints. In that paper an approximate piecewise linear program is

considered that provides an e-approximate solution for any given tolerance F > 0. The concave

piecewise linear program is solved by using an equivalent mixed zero-one integer linear pro- -
gramming formulation (see also [14]) having a simple structure. The same techniques have

been extended for problems with an indefinite quadratic objective function [15].

For problem (1) we assume that the objective function f(x) is continuous. For each

interval [MAmfk J choose a fixed grid of points by partitioning it into nk subintervals of length S

hk = (iflk-m )/n. (21)

n n
Let yi(x) = Yilk(Xk) be the piecewise linear function that approximates gi(x) = Ygik(Xk).

k=1 k=1

Each piecewise linear function Yik(Xk) interpolates gi,(x) at the grid points xk,=M-k+ihk for

j=0 ... nk. We may assume that nk > 1, since for n, = I we obtain a linear function inter-

polating each gik(xk) at the endpoints Mk and mA. Then the separable piecewise linear pro- .

gram •

global min f (x) 
,.'U."

s.t. yi(x) = E"Yi(xk) 
< 0, il, .... m (22)

k=1

Mk Xk Fffk, k=l n,

will provide an approximate solution to the original problem (I). The approximation error

depends on the mesh sizes hk, k=l. n, and the curvature of the objective and constraint

functions.

Piecewise linear interpolation preserves monotonicity ,convexity and concavity. Next we

prove that when the constraint functions gi(x) are convex then the piecewise linear approxi- ;

mate problem (22) is reduced to an equivalent one with linear constraints.
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Convex constraints S

If g (x) is a piecewise linear convex function, then g (x) can be defined as the pointwise - ,J"

maximum of k affine functions I(x) ,... lk(X), that is

g(x) =max {1(x), .... /(x)). (23) ,l

Moreover, given the set ,

n
S = (x: ',max{l (x),, J(x)} < O) :5 01 "

j=1

we associate the following set (with n additional variables): 0

n

S= {(xy):yj _lil(x), i=l, .... k,j=l, .... n and yj -O}. 
j=1

Then it is easy to see that if (xy) solves the problem min{f(x): (xy)ES), then x solves ._

min{f (x): xS .

Let ljkj(xk) be the affine function that coincides with y (xk) in the interval [xkj-l xk'],

where x k'=mk+jhk, j=1, .. . , Then by (23)

Yi(x) = lyl(xik) = F max ({k'(xk), • .k(x}k), i=l, . m,

k=1 k=1

where 
W_'-

lij. = (yt (xkJ)--yj(xkJ-'))(xk- '-1)hk)lhk + yik(xkj), j=l. nk.

Hence, problem (22) can be solved by solving the following problem under linear constraints: .. ,

global min f (x)

s.t. j yik +rk < 0, i=l. m (24)
k=l 

"1 '"'

y> lik(,x), k=l. n, j=l. . n, i=. m M.

_<k xk <k, k=1. n

If (x* ,y*) is a solution of problem (24), then x* solves problem (22). The number of addi- -.-

tional variables yk introduced is independent of the number of partitions used and is equal to

Y = mn.

The number of additional constraints depends on the partition set and is given byn
C =mn Z nk.

k=1

* i de *
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When f (x) is a concave quadratic function problem (21) is a global concave minimiza-

tion under linear constraints. A method such as the one described in [17] can be used to obtain e e%-

a guranteed c-approximate solution.

If the objective function is indefinite quadratic, we have the same approach since

indefinite quadratic programming is reduced to concave programming with convex constraints.

This is true because if f(x) is indefinite, then f(x) =fI(x) +f 2(x) where f1 (x) is concave

and f 2(x) is convex. Then any problem of the form

global min f (x) = f I(x) + f 2(x)
x S

is equivalent to the concave minimization problem

global min f I(x)

s.t. xES,f 2(x)<y-

with y an additional real variable.

Nonconvex constraints

When some of the constraint functions gi's are nonconvex the separable piecewise linear

program is more difficult to solve. It is of interest to note that problems with integer 0-1 res- ,*

trictions can be formulated as problems with concave (reverse convex) constraints. For

instance, the constraint xkG (0, 1} can be written as

-Xk2 + Xk5, 0O Xk ! 1.

For problems with nonconvex constraints we obtain an equivalent formulation with linear "%*4,

constraints and zero-one integer variables of special structure. To illustrate the idea behind this

formulation consider one of the functions yk (xk) which is assumed to be concave. Let

nk

Xk = Mk + I hk CJ k (25) .'

J j=1

where
k _'0 !5 (Oj < 1, j=l ... nk .'

k<Zk<0+k, Z kr= %O'

O+j++ j j z j{0,1}, j=l. nk-l. (26)

Under this transformation we obtain a linearization of the piecewise linear concave function

Y'k (xk) by setting

Yi(xk) = Yik (M) + Ok(Yik(l- + jhk) - Y k(Ik + (J-lhk)). (27) A
j=1 S

p,'~~*'. V ',. .. '-.,', ,N ,." '. " , • . t". '-'. " . . /.. P." % ,% ' ".',. " " ' , "% ' V ,V , ' " .
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For each function lik we introduce nk-1 zero-one integer variables. However, because of (26)

we must have

zk = (z k, . ,zlk) -(1, 1,,....,1, 0, 0. 0). (28) '-

This property of zero-one variables makes the integer problem easier to solve, since zk takes '

only nk possible values, instead of 2n-' values for the general case when (28) does not hold.

Applying the above arguments for all constraint functions we have that, in case of con-

cave functions, problem (22) is eqivalent to the following problem:

global min f (o)S

Yi [ (pMk) + O )Jjk(Y Qhl* + Ad4k -Yit(En + (J-)'4 ) I +ra -50, i=l..M
k=1 j--

0 < Ok) < 1, k=l, ... ,n, j=l ..... n (29)

(oj+1k < zf < (.o/+1k zj:e (0,11, k=1, . n j=, ,nk-I

0Shkhjk Mk, k-=1l...,n.
j=1

If git(xik) is convex we may use the same transformation as in (25), (26) and (27). How- .'

ever, in the presence of convexity it is easy to see (because of the monotone increasing

slopes) that we do not need to use integer variables. Hence it is clear that an all-quadratic

separable problem can be solved by solving an equivalent concave zero-one program with

linear constraints.

Concluding remarks

This paper presents different methods for the global minimization of concave functions 0

subject to quadratic separable constraints. The first method is a branch and bound algorithm

based on rectangular partitions to obtain upper and lower bounds of the global minimum. Vari-

ous techniques that improve branching and bounding have been considered.

We also discussed bilinear programming techniques to approximate the feasible domain

using convex envelopes. From the practical point of view, an approximate solution is desired.

An alternative method for computing an e-approximate solution is given based on the use of

piecewise linear approximations of the constraint functions. For convex constraints the approxi-

mate problem can be formulated as a concave minimization problem subject to linear con-

straints. For nonconvex constraints the resulting problem has linear and integer 0-1 constraints.

p.',.¢



-17-

References

[] A1-Khayyal F.A. and Falk J.E., Jointly constrained biconvex programming. Mathematics

of Operations Research 8 (1983), 273-286.

[2] Arana R.M., Programming with some linear and one quadratic economic activities.

Cahiers du C.E.R.O., Vol. 21, No. 3 (1979), 247-255.

[3] Baron, D.P. Quadratic programming with quadratic constraints. Naval Research Logis- V1

tics Quarterly 19 (1972), 253-260.

[4] Ecker, J.G. and Niemi R.D., A dual method for quadratic programs with quadratic con-

straints. SIAM J. Appl. Math. 28 (1975), 568-576.

[51 Falk J.E., Lagrange multipliers and nonconvex programming. SIAM J. Control 7

(1969), 534-545.

[61 Falk J.E., An algorithm for locating approximate global solutions of nonconvex separ-

able problems. Working paper T-262 (1972), The George Washington University, Wash-

ington, DC. 20052.

[7] Falk J.E. and Hoffman K.L., A successive underestimation method for concave minimiza-

tion. Mathematics of Operations Research 1 (1976), 251-259. '

[8] Horst, R., A general class of branch and bound methods in global optimization with

some new approaches for concave minimization. JOTA 51 (1986), 271-291.

[9] Horst R. and Tuy, H., On the convergence of global methods in multiextremal optimiza-
dion. JOTA 54 (1987), 253-271.,"7'

[1019Kabe D.G.,Quadratic constrained linear programming. Ind. Math. Vol. 33, pt. 2

[11] Maling K., Mueller S.H. and Heller W.R., On finding most optimal rectangular package

plans. Proceeding of the 19th Design Automation Conference (1982), 663-670.

[12] Miller C.E., The simplex method for local separable programming. In "Recent advances

in mathematical programming" (Graves R.L. and Wolfe P. editors), pp. 89-100,

McGraw Hill, New York (1965).

(131 Van de Panne C., Programming with a quadratic constraint. Management Science 12

(1966), 709-815.

[14] Pardalos P.M., Objective function approximation in nonconvex programming. Proceed- 0

ings of the 18th Modeling and Simulation Conference (1987), 1605-1610. :

[15] Pardalos P.M., Glick J.H. and Rosen J.B., Global minimization of indefinite quadratic

problems. Computing 39 (1987), 281-291.



I%

-18 -

[16] Pardalos P.M. and Rosen J.B., Methods for global concave minimization: A biblio-

graphic survey. SIAM Review, Vol. 28, No. 3 (1986), 367-379. 6

[17] Pardalos P.M. and Rosen J.B., Constrained global optimization: Algorithms and applica-

tions, Springer Verlag, Lecture Notes in Computer Science 268 (1987).

[181 Phan H., Quadratically constrained quadratic programming: Some applications and a

method of sob 'on. Zeitschrift fur Oper. Research 26 (1982), 105-119.

[19] Rosen J.B. and Pardalos P.M., Global minimization of large-scale constrained concave

quadratic problems by separable programming. Mathem. Program. 34 (1986), pp. 163-

174.

(201 Reeves G.R., Global minimization in nonconvex all-quadratic programming. Manage-

ment Science, Vol. 22, No. 1 (1975), 76-86.

[21] Sahni S., Computationally related problems. SIAM J. Computing 3 (1974), 262-279.

[22] Soland R.M., An algorithm for separable nonconvex programming problems II: noncon-

constraints. Manag. Sc. 17, No. 11 (1971), 759-773.

[231 Swarup K., Indefinite quadratic programming with a quadratic constraint. Ekonom- P 4,V.l

ickomatem. Obzor 4 No. 1 (1966), 69-75.

[24] Tuy H., Global minimization of a difference of two convex functions. Mathem. Progr.

Study 30 (1987), 150-182.

"2",

[ •%

"-



rww

p

*J
*.A

pp.

pp


