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GLOBAL OPTIMIZATION OF EXPLICIT
STRONG-STABILITY-PRESERVING RUNGE-KUTTA METHODS

STEVEN J. RUUTH

Abstract. Strong-stability-preserving Runge-Kutta (SSPRK) methods are a
type of time discretization method that are widely used, especially for the time
evolution of hyperbolic partial differential equations (PDEs). Under a suitable
stepsize restriction, these methods share a desirable nonlinear stability prop-
erty with the underlying PDE; e.g., positivity or stability with respect to total
variation. This is of particular interest when the solution exhibits shock-like or
other nonsmooth behaviour. A variety of optimality results have been proven
for simple SSPRK methods. However, the scope of these results has been
limited to low-order methods due to the detailed nature of the proofs. In
this article, global optimization software, BARON, is applied to an appropri-
ate mathematical formulation to obtain optimality results for general explicit
SSPRK methods up to fifth-order and explicit low-storage SSPRK methods
up to fourth-order. Throughout, our studies allow for the possibility of nega-
tive coefficients which correspond to downwind-biased spatial discretizations.

Guarantees of optimality are obtained for a variety of third- and fourth-order
schemes. Where optimality is impractical to guarantee (specifically, for fifth-
order methods and certain low-storage methods), extensive numerical opti-
mizations are carried out to derive numerically optimal schemes. As a part
of these studies, several new schemes arise which have theoretically improved
time-stepping restrictions over schemes appearing in the recent literature.

1. Introduction

Popular time-stepping schemes are typically based on linear stability analysis.
Such analysis is often very effective on problems having smooth solutions. However,
these schemes often perform poorly on problems having discontinuous or shock-
like solutions. This poor performance can manifest itself in the form of spurious
oscillations, overshoots, or loss of positivity. On the other hand, strong-stability-
preserving (SSP) time discretization methods [21, 22, 8, 24] are designed to preserve
the nonlinear stability properties that arise when the forward Euler time-stepping
scheme is applied to the spatially discretized system. The ability to preserve this
underlying nonlinear stability makes SSP time-stepping methods particularly suit-
able for the simulation of partial differential equations with nonsmooth solutions.
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In this paper, particular attention will be paid to the development of guaranteed
optimal1 explicit SSP Runge-Kutta (SSPRK) time-stepping methods for hyperbolic
PDEs; e.g.,

(1.1) ut + f(u)x = 0,

subject to appropriate initial conditions. Solutions to these and other PDEs are of-
ten approximated by sequentially discretizing the temporal and spatial derivatives.
For example, in the method of lines, a discretization of the spatial derivatives of
the PDE is carried out to produce a large set of coupled time-dependent ordinary
differential equations (ODEs)

(1.2) U̇ = F (U).

These ODEs can then be treated by suitable time-stepping techniques such as linear
multi-step or Runge-Kutta methods.

For hyperbolic conservation laws, papers by Shu [21], Shu and Osher [22], and
subsequent work [7, 8, 20] have shown that improved nonlinear stability can some-
times be found by appropriately selecting nonlinearly stable upwind-biased (F (U))
and downwind-biased (F̃ (U)) spatial discretizations according to the coefficients of
the time-stepping method. Thus, this paper considers optimality over the broad
class of explicit SSPRK schemes that includes both upwind-and downwind-biased
spatial discretizations. We remark, however, that most of the optimal schemes that
we present involve only nonnegative coefficients. Nonnegative coefficient schemes
are appropriate to apply to general problems (including dissipative PDEs) since
they do not involve F̃ (·)

Optimal explicit SSPRK schemes with nonnegative coefficients and where the
number of stages s is equal to the order p for s = p = 1, 2, and 3 have been known
for some time [21, 22, 7]. Gottlieb and Shu [7] showed that no such method exists
with nonnegative coefficients when s = p = 4. In [24, 25], Spiteri and Ruuth
studied the general class of explicit nonnegative coefficient SSPRK methods with
s > p. They gave optimal SSPRK schemes with s stages and orders 1 and 2 (see
also [21, 7]), as well as specific schemes for p = 3, s = 4, 5 and p = 4, s = 5, 6, 7, 8.
The advantage afforded by these high-stage schemes is that the increase in the CFL
coefficient allows for a large enough increase in the stable time step to more than
offset the increase in computational cost per step. However, in [19] they showed
that it was impossible to have an explicit SSPRK method with order greater than 4
with nonnegative coefficients. Ruuth and Spiteri [20] later gave a unified treatment
of explicit SSPRK schemes with unrestricted coefficients and found that many of
the optimal explicit nonnegative coefficient SSPRK methods are also optimal in
terms of effective CFL coefficient when the sign of the coefficients is not restricted.
However, optimality proofs for third-order schemes were limited to the simplest
cases (s = 3, 4), and proofs were not attempted for higher orders. Indeed, even
finding efficient fifth-order SSPRK schemes proved challenging, and motivated the
development of this study.

To date, most of the practical interest in SSPRK schemes has been for explicit
schemes, and, unless otherwise stated, all studies appearing in this report are for
explicit SSPRK schemes. Implicit SSPRK schemes have been investigated by a
number of authors [8, 4, 10, 9]. It is noteworthy that implicit SSPRK schemes with

1Optimality will be determined with respect to the effective CFL coefficient defined in Sec-
tion 2.
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nonnegative coefficients cannot be unconditionally SSP [4, 10, 9] and that diagonally
implicit schemes with unrestricted coefficients cannot be unconditionally SSP [8].

The remainder of the paper is organized as follows. In Section 2 we review
some relevant results on SSP schemes and define key concepts such as the effective
CFL coefficient. In Section 3 we develop a mathematical formulation of the problem
suitable for global optimization and provide details on our optimization procedures.
Section 4 uses these techniques to achieve the first guarantees of optimality of several
third- and fourth-order SSPRK schemes. New fifth-order methods are also derived
which exceed the theoretical efficiency of previously known methods. In Section 5
our approach is used to guarantee the optimality of a variety of low-storage SSPRK
schemes appearing in the literature. Some improvements for recently derived low-
storage schemes are also found. Finally Section 6 concludes by summarizing the
main findings of the paper.

2. Background on SSP schemes

In this section we give some theoretical background on SSPRK schemes. We
begin by recalling the definition of strong stability:

Definition 1. A sequence {Un} is said to be strongly stable in a given semi-norm
|| · || if ||Un+1|| ≤ ||Un|| for all n ≥ 0.

Now assume that upwind-biased spatial discretizations are appropriate and ex-
press an s-stage, explicit Runge-Kutta method using an α − β (or Shu-Osher [3])
representation

U (0) = Un,(2.1a)

U (i) =
i−1∑
k=0

(αikU (k) + ∆tβikF (U (k))), i = 1, 2, . . . , s,(2.1b)

Un+1 = U (s),(2.1c)

where all the αik ≥ 0 [21]. A given Runge-Kutta scheme will typically have many
different representations of this type; see [24] for a discussion and an illustrative
example. Throughout this paper, we construct representations that maximize the
CFL coefficient, as defined in Theorem 1 or 2 below. We call an optimal representa-
tion of this type an optimal α−β representation and note that such representations
have been constructed both numerically (e.g., [22, 8, 24]) and via a contractivity-
based approach [3, 9].

By consistency we must have that
∑i−1

k=0 αik = 1, i = 1, 2, . . . , s. Assuming that
both sets of coefficients αik, βik are nonnegative, it is clear that (2.1) is a convex
combination of forward Euler steps with various step sizes βik

αik
∆t. The strong

stability property follows easily, and we conclude [22, 8]:

Theorem 1. If the forward Euler method is strongly stable under the CFL restric-
tion ∆t ≤ ∆tFE , then the Runge-Kutta method (2.1) with βik ≥ 0 is SSP provided

∆t ≤ C∆tFE ,

where C is the CFL coefficient

C ≡ min {cik : 0 ≤ k < i ≤ s} , where cik =
{ αik

βik
if βik �= 0,

∞ otherwise.
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The CFL coefficient for strong stability has an interesting relationship with the
time-stepping restriction associated with the more classical concept of contractiv-
ity, where the difference ||Ũn+1 − Un+1|| between any two sequences is required
to be nonincreasing with increasing n (see, e.g., [23, 14, 15]). It turns out that
many of the optimal SSP schemes found in [24] agree with optimal contractive
schemes in [15]. In fact, for a given Runge-Kutta method involving only upwind-
biased spatial discretrizations (2.1), Ferracina and Spijker [3, 4] have proven that
the CFL coefficient C corresponding to an optimal α − β representation equals
the related quantity R(A, b) [15] arising in contractivity studies, provided C ≥ 0.
(If C < 0 for an optimal α − β representation, then R(A, b) = 0 [3].) See also
the recent work of Higueras [9] for some interesting relationships between contrac-
tive and strong-stability-preserving Runge-Kutta methods when both upwind- and
downwind-biased operators arise.

SSPRK schemes with negative coefficients βik are also accommodated by mod-
ifying the spatial discretization. Following the procedure first suggested in papers
by Shu [21] and Shu and Osher [22], whenever βik < 0, the operator F̃ (·) is used in-
stead of F (·), where F̃ (·) approximates the same derivatives as F (·) but is assumed
to be strongly stable for Euler’s method solved backwards in time under a suitable
time-step restriction. In practice, this corresponds to differencing in the downwind
direction.

Remark 1. Suppose that an appropriate spatial discretization has been derived
for computing F for the hyperbolic conservation law (1.1). Then −F̃ is normally
found by applying this same spatial discretization technique to the backwards-in-
time variant

ut + (−f(u)x) = 0.

To explicitly illustrate, consider discretizing the linear, variable coefficient problem

(2.2) ut + a(x)ux = 0

using a uniform mesh (step size h) and first-order one-sided differencing. Then F
can be found by applying first-order upwinding to (2.2) to give

Fj = −
{

a(xj)(Uj − Uj−1)/h if a(xj) > 0,
a(xj)(Uj+1 − Uj)/h otherwise.

Similarly, first-order upwinding can also be applied to the backwards-in-time version
of (2.2) to give

−F̃j =
{

a(xj)(Uj+1 − Uj)/h if a(xj) > 0,
a(xj)(Uj − Uj−1)/h otherwise,

from which F̃ is trivially obtained. Clearly F̃ approximates the same quantity
as F , however, F̃ is based on first-order downwind differencing instead of first-
order upwinding. See [21] for further discussion on constructing downwind-biased
discretizations.

As shown by Shu [21] and Shu and Osher [22], an interesting generalization of
Theorem 1 is obtained by using both upwind- and downwind-biased operators:

Theorem 2. Let Euler’s method applied forward in time combined with the spatial
discretization F (·) be strongly stable under the CFL restriction ∆t ≤ ∆tFE. Let
Euler’s method applied backward in time combined with the spatial discretization
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F̃ (·) also be strongly stable under the same CFL restriction ∆t ≤ ∆tFE . Then the
Runge-Kutta method (2.1) is SSP provided

∆t ≤ C∆tFE ,

where C is the CFL coefficient

(2.3) C ≡ min {cik : 0 ≤ k < i ≤ s} , where cik =
{ αik

|βik| if βik �= 0,
∞ otherwise,

and βikF (·) is replaced by βikF̃ (·) whenever βik is negative.

We note that the assumptions on strong stability of Euler’s method applied
forward and backward in time restricts the theoretical advantages of this result to
non-dissipative equations such as (1.1).

If every coefficient βik is nonnegative, then the number of stages is trivially
equal to the number of function evaluations for an irreducible explicit Runge-Kutta
method. However, if both F (U (k)) and F̃ (U (k)) are required for some k, the Runge-
Kutta method (2.1) has more function evaluations2 than stages. As discussed
by Ruuth and Spiteri [20], the first step in deriving optimal schemes is to create
a fair comparison of the computational cost of a given Runge-Kutta method by
considering general methods that allow precisely one (new) function evaluation per
stage. This can be achieved by insisting that the nonzero coefficients βik for a given
k are all of the same sign [20]. For the remainder of the paper, we will tacitly assume
that the schemes under consideration are of this form, and we remark that schemes
that are written combining nonnegative and negative coefficients βik within a given
level k can be augmented with additional stages to be of this form [20]. Thus,
without loss of generality, we have that the total number of evaluations of F (·) and
F̃ (·) is identically equal to the number of stages of the method.

We emphasize that with this formulation it is quite natural to search for the
optimal scheme for a given order and a given number of stages (function evalu-
ations) by maximizing the CFL coefficient. In earlier formulations the effective
CFL coefficient could vary with the number of F̃ (·) evaluations, complicating the
development of optimal schemes.

Another advantage to this formulation is that schemes can be represented in
Butcher array form via

aik = βi−1,k−1 +
i−1∑

j=k+1

αi−1,j−1ajk, k = 1, 2, . . . , i − 1, i = 2, 3, . . . , s,(2.4)

bk = βs,k−1 +
s∑

j=k+1

αs,j−1ajk, k = 1, 2, . . . , s,

2The only difference between F̃ (·) and F (·) is a change in the upwind direction, so F̃ (·) can
clearly be computed with the same cost as F (·) [8]. Recent studies make the assumption that

if both F̃ (U(k)) and F (U(k)) must be computed for some k, the cost as well as the storage
requirements for that k doubles [7, 8, 24, 20].
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since differences of the form F (U (i)) − F̃ (U (i)) do not arise. Thus the method can
be implemented as

Ki =

⎧⎨
⎩

F
(
Un + ∆t

∑i−1
j=1 aijKj

)
if bi ≥ 0,

F̃
(
Un + ∆t

∑i−1
j=1 aijKj

)
otherwise,

i = 1, 2, . . . , s,

Un+1 = Un + ∆t

s∑
i=1

biKi.

Butcher array form may be desirable for a variety of reasons such as to simplify
optimality proofs, facilitate optimization (see Section 3), or (in some instances)
reduce storage requirements. Note that by construction, if the βij , j+1 ≤ i ≤ s, are
of one particular sign, then the corresponding ai,j+1, j + 2 ≤ i ≤ s, and bj+1 values
must be of that same sign. We further remark that the differences F (U (i))−F̃ (U (i))
contribute to artificial dissipation and smearing [20]. For example, this difference
is proportional to the discrete Laplacian when first-order upwinding is applied to
the linear advection equation. A natural consequence of this formulation is that
during optimization these dissipative differences do not arise, leading to schemes
with smaller errors and less smearing than would otherwise occur [20].

In order to make a fair comparison of the relative efficiencies of these methods
and to derive optimal schemes, we make the following definition.

Definition 2. The effective CFL coefficient Ceff of a SSPRK method is C/s, where
C is the CFL coefficient of the method and s is the number of stages (function
evaluations) required for one step of the method.

As conjectured in Shu and Osher [22] and subsequently proven in Gottlieb and
Shu [7], the optimal two-stage, order-two SSPRK scheme with nonnegative coeffi-
cients is the modified Euler scheme. It has a CFL restriction ∆t ≤ ∆tFE , which
implies a CFL coefficient of 1. Henceforth, we will refer to this scheme as SSP(2,2).
In general, we adopt the convention of referring to a numerically optimal s-stage,
order-p SSPRK scheme as SSP(s,p). This scheme is the first member of a class of
s-stage, order-two SSPRK schemes [5, 24] with a CFL coefficient of s− 1. For non-
negative coefficients, the optimality of these schemes was proven in [24]. Optimality
for the case of s general function evaluations was shown in [20].

Shu and Osher [22] also conjectured that the optimal three-stage, order-three
SSPRK scheme is

U (1) = Un + ∆tF (Un),

U (2) =
3
4
Un +

1
4
U (1) +

1
4
∆tF (U (1)),

Un+1 =
1
3
Un +

2
3
U (2) +

2
3
∆tF (U (2)),

which has a CFL coefficient of 1 as well. This scheme is commonly called the
TVD Runge-Kutta scheme, but we will refer to it as SSP(3,3). Optimality of this
scheme was proved for nonnegative coefficients in [7] and for three general function
evaluations in [20].
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In [19], Ruuth and Spiteri derived a linear bound that is used to prove that the
optimal four-stage, order three SSPRK scheme with nonnegative coefficients is

U (1) = Un +
1
2
∆tF (Un),

U (2) = U (1) +
1
2
∆tF (U (1)),

U (3) =
2
3
Un +

1
3
U (2) +

1
6
∆tF (U (2)),

Un+1 = U (3) +
1
2
∆tF (U (3)),

which has a CFL coefficient of 2. Following [24] we will refer to this scheme as
SSP(4,3). Optimality in the unrestricted case is shown in [20].

Moving on to nonnegative coefficient SSPRK schemes with five stages and order
three gives a numerically optimized scheme, SSP(5,3), with a CFL coefficient of
approximately 2.65 [24]. This scheme has a CFL coefficient that agrees with the
contractivity bound R(A, b) for linear constant-coefficient problems [14]. Because
these restrictions are equivalent [3] and the time-stepping restriction for nonlin-
ear problems cannot exceed that for linear problems, we conclude that SSP(5,3)
is also an optimal five-stage, third-order nonnegative coefficient SSPRK scheme.
Similarly, it was noted in [20] that third-order schemes with up to nine stages can
be constructed that have CFL coefficients that agree with the contractivity bound
R(A, b) for linear constant-coefficient problems. Unfortunately, proving optimality
for any of these schemes (s ≥ 5) when s general function evaluations are involved
is much more complicated than for the three- or four-stage cases. In Section 4.1
we use global optimization to directly guarantee the optimality of SSP(5,3) and
SSP(6,3) over this broader class of schemes. We also give third-order schemes with
seven and eight function evaluations and guarantee their optimality using global
optimization in combination with the linear contractivity bound.

The analysis for orders greater than 3 is more complicated still, since even for
the nonnegative coefficient case the linear contractivity bound fails to give a sharp
bound for the nonlinear problem. However, by appropriately applying global opti-
mization techniques, we are able to guarantee optimality of the five-stage, fourth-
order SSPRK scheme given in [24, 15] in the general setting where downwind-biased
spatial discretizations may arise. See Section 4.2. We remark that this scheme is
particularly important since it is impossible for a fourth-order SSPRK scheme to
use fewer than five (general) function evaluations [7, 20].

In [19] it is shown that explicit SSPRK schemes with only nonnegative coeffi-
cients do not exist with order greater than four. A similar restriction to orders
four or less was shown for contractive schemes by Kraaijevanger [15]. This means
that the search for schemes of order-five and higher must involve evaluations of
the downwind-biased operator F̃ (·). Fortunately, this still leads to schemes with
competitive effective CFL coefficients. In Section 5 we derive a fifth-order scheme
with an effective CFL coefficient of 0.3395, exceeding that of the popular SSP(3,3)
scheme.

Optimal low-storage SSPRK schemes have also received some attention in the
literature [7, 8, 24, 13]. In particular, Gottlieb and Shu [7] find an optimized three-
stage, third-order scheme of Williamson [32] type and Kennedy, Carpenter and
Lewis [13] find several optimized schemes of van der Houwen and Wray type. Using
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global branch-and-bound optimization techniques, we are able to guarantee the
optimality of these schemes and others. In the course of this work, improvements
to some recently published low-storage schemes are also found. We remark that
until now only nonnegative coefficients have been used to construct low-storage
schemes, since it has been assumed that downwind-biased operators destroy the low-
storage property. Section 5 disproves this assumption by exhibiting two examples
of low-storage schemes that are more efficient than the corresponding nonnegative
coefficient schemes.

The remainder of the paper commences with a discussion on our optimization
techniques.

3. Global optimization of SSPRK schemes

Traditional nonlinear programs are guaranteed to converge to the optimal so-
lution only under certain convexity assumptions [28]. On the other hand, deter-
ministic global optimization algorithms of the branch-and-bound type are available
for a variety of problems that are guaranteed to provide global optima under fairly
general assumptions [28].

In this section we give a mathematical formulation appropriate for BARON
[28, 29], and show how to bound the variables and their expressions in the nonlinear
programming (NLP) problem. We also effectively break the problem into parallel
subproblems to reduce the total number of CPU cycles required.

Subsequent sections use these ideas to determine and to guarantee the optimality
of several third- and fourth-order schemes in both the low-storage and general
settings.

3.1. Formulation of the optimization problem. We seek to optimize an s-
stage, order-p SSPRK scheme by maximizing the CFL coefficient defined in The-
orem 2. To achieve this goal, we will transform the problem into a smooth ver-
sion that has additional constraints, but is more amenable to treat using standard
numerical optimization techniques. As a first step, we replace the nonsmooth ob-
jective function arising in the original formulation with a new variable, z, that is
constrained to be a lower bound on all the ratios {αik/|βik|}. This well-known
technique applied to our problem gives the equivalent formulation [6, p. 96, 97]

(3.1a) max
(αik,βik)

z,

subject to

αik ≥ 0,(3.1b)
βk+1,k, βk+2,k, . . . , βsk ≥ 0,(3.1c)

or βk+1,k, βk+2,k, . . . , βsk ≤ 0, k = 0, . . . , s − 1,

i−1∑
k=0

αik = 1, i = 1, 2, . . . , s,(3.1d)

s∑
j=1

bjΦj(t) =
1

γ(t)
, t ∈ Tq, q = 1, 2, . . . , p,(3.1e)

αik − z|βik| ≥ 0, k = 0, 1, . . . , i − 1, i = 1, 2, . . . , s,(3.1f)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GLOBAL OPTIMIZATION 191

where the Φj(t) and bj are nonlinear polynomials in αik, βik and the optimal z-
value equals the CFL coefficient. The notation bj is used in the usual sense of
the Butcher array representation of a Runge-Kutta method, and the symbol Tq

stands for the set of all rooted trees of order equal to q. The number of constraints
corresponding to the order conditions (3.1e) is 1,2,4,8 or 17 for orders p=1,2,3,4 or
5, respectively. We remark that this approach was first used for the optimization
of SSPRK schemes with nonnegative coefficients in [24] and was first proposed for
the optimization of SSPRK schemes with unrestricted coefficients in [20].

This formulation is effective for the nonnegative coefficient problem [24]. To
study the unrestricted case, we wish to remove the nonsmooth absolute value func-
tion from our formulation, since general-purpose software for nonsmooth optimiza-
tion problems is not expected to be as efficient or robust as general-purpose soft-
ware designed for smooth problems. In particular, the GAMS User’s Guide [1, p.
70] states

Smooth functions can be used routinely in nonlinear models, but
non-smooth ones may cause numerical problems and should be used
only if unavoidable, and only in a special mode type called DNLP.
However, the use of DNLP model type is strongly discouraged and
the use of binary variables is recommended to model non-smooth
functions.

Following this recommendation, we introduce a sign variable for each level,

σ(k) =
{

+1 if βk+1,k, βk+2,k, . . . , βsk ≥ 0,
−1 otherwise,

indicating the sign of the coefficients at level k, 1 ≤ k ≤ s, and defining a variable,
β̄ik, to represent the absolute value of βik. To formulate the problem in these new
variables, we replace conditions (3.1c) and (3.1f) with β̄k+1,k, β̄k+2,k, . . . , β̄sk ≥ 0
and αik − zβ̄ik ≥ 0, respectively. Our updated formulation (given in terms of σ(k),
β̄ik and αik) is completed by replacing each βik by σ(k)β̄ik in the order conditions
(3.1e).

This mixed integer nonlinear programming (MINLP) formulation is comprised of
polynomial objective and constraint functions, and thus is suitable for optimization
in BARON.3 However, the nonlinear order conditions take a simpler form when
written in terms of the Butcher array entries aik and bk rather than αik, βik, so we
prefer to solve for the σ(k), αik and the (unsigned) Butcher array entries directly.
The β̄ik are formed, where needed, as a linear combination of αik and Butcher
array entries using (2.4). While this results in more complicated constraints on the
bound, z, the overall speed of computation sometimes experiences a noteworthy
improvement (e.g., a factor of two or more was observed in some tests), since the
complicated nonlinear order conditions are simplified.

3.2. Parallelization. As prescribed above, the optimal SSP scheme is given as the
global solution to a MINLP problem. While this is a suitable mathematical formu-
lation for a variety of GAMS optimization software using the GAMS MINLP model
type [2], the total computational effort can be reduced significantly by instead solv-
ing 2s NLP problems, each corresponding to one of the possible sign combinations.

3Note that a variety of nonlinear functions are allowed in BARON [26, p. 10]: “In addition to
multiplication and division, GAMS/BARON can handle nonlinear functions that involve exp(x),
ln(x), exp(x), ln(x), xα for real α, βx for real β, xy , and |x|.”
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This leads to a total of 2s cases, which we treat in a parallel fashion using the
GAMS NLP model type.

The total time savings was not found to have a predictable dependency on the
number of stages. For example, for third order and s = 3, 4, 5, we found that
treating separate NLP problems required about 40%, 60% and 40% of the total
CPU time of a single MINLP problem, respectively. It is interesting that in the
optimization of linear multistep SSP schemes, both approaches take about the
same overall CPU time if product disaggregation [27] (or distributing products over
their sums) is used in the MINLP problem [18]. Without product disaggregation
the MINLP problem is much slower [18]. For many models, product disaggregation
leads to overall improved efficiency by making use of tighter linear programming
relaxations; see [27] for details. Product disaggregation was not found to improve
the efficiency of the MINLP problem for the more complicated Runge-Kutta case
considered here. Nonetheless, it is possible that the tightness of linear programming
relaxations plays some role in the relative efficiencies of the two approaches.

We remark that the number of cases can be reduced somewhat by using the fact
that the number of nonnegative levels must be equal or exceed the CFL coefficient
[20]:

Lemma 1. Suppose a consistent s-stage SSPRK method (2.1) has coefficients βik ≥
0 at � distinct stages, i.e., βik ≥ 0 for all i and k = k1, k2, . . . , k� with 0 ≤ k1 <
k2 < · · · < k� ≤ s − 1. Then the CFL coefficient C of the method satisfies C ≤ �.

We illustrate the usage of this lemma for eight stages and order three in Sec-
tion 4.1.

3.3. Parameter bounds. For an efficient search and to guarantee optimality, the
variables must be bounded. Fortunately we know that all of the Butcher array
entries are bounded by the inverse of the CFL coefficient [20]:

Lemma 2. If a method of the form (2.1) with αik ≥ 0 has a CFL coefficient
c ≥ m > 0, then

− 1
m

≤ aik ≤ 1
m

for all k = 1, 2, . . . , i − 1, i = 2, 3, . . . , s,(3.2)

− 1
m

≤ bk ≤ 1
m

for all k = 1, 2, . . . , s.(3.3)

According to the lemma, if we can find any feasible solution with a CFL coeffi-
cient of m, we know that each of the Butcher array entries of the optimal solution
must be bounded in absolute value by 1/m. Fortunately, finding good feasible so-
lutions in BARON is a relatively inexpensive task which typically takes no more
than a few seconds in the preprocessing step for orders four or less.

If a better bound is not known, we may choose zero as a lower bound on the
variable z, since the CFL coefficient must be positive to be of any practical value.
Note that Lemma 1 may be used to derive an upper bound if such a bound is not
immediately clear from the problem or from numerical experience. We remark that,
in practice, computational speed was much more critically affected by the bounds
on the Butcher array entries than by bounds on z.

3.4. Optimization software. Deterministic global branch-and-bound software is
particularly appropriate for this formulation since it can guarantee optimality of a
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solution to within the given tolerance, provided bounds are supplied on each of the
variables.

Briefly, branch-and-bound methods solve an optimization problem by construct-
ing and solving a related (but much easier to solve) relaxed problem over succes-
sively refined partitions in the feasible space. In a minimization, the objective of
this relaxation bounds the objective of the original problem from below, while local
optimization and other bounding heuristics on the original problem give an upper
bound on the desired objective. With enough refinement, the difference between the
upper and lower bounds becomes sufficiently small, and the procedure terminates
with the current upper bounding solution. See [28, 29] for a detailed exposition on
deterministic branch-and-bound optimization methods.

As explained in [28, p. 4], “convergence of this algorithm (branch-and-bound)
is well established as long as the partitioning and bounding schemes obey certain
properties (cf. [12]).” In this project we use BARON 5.0 from the GAMS suite of
software to solve our reformulated problem. Given sufficient CPU time, BARON
will provide the optimal solution within the prescribed tolerances as long as the user-
supplied variable bounds (or the ones BARON infers from the problem constraints)
are such that all variables and expressions are bounded [28]. If these bounds are
missing, BARON reports upon termination:

*** User did not provide appropriate variable bounds ***
*** Globality is therefore not guaranteed ***

Thus the results in this article will be either guaranteed optimal or numerically
optimal. The former means that BARON is able to guarantee that the problem
has been solved (globally) to within the given tolerances. Numerically optimal
results are not guaranteed to be globally optimal and are instead based on extensive
numerical searching. Globality will not be guaranteed if some variable bound is
missing (see above) or if BARON is terminated before a guarantee of optimality
can be found (e.g., due to practical limitations on CPU time).

Because our SSP-based formulation involves polynomial functions which are
(typically) defined on bounded sets, it is very naturally treated by global branch-
and-bound optimization software such as BARON. On the other hand, BARON
cannot be directly applied to the contractivity-based formulation proposed in [3]
since BARON cannot treat the nonlinear objective function appearing there (see
footnote 3).

We recommend the use of BARON over Matlab’s Optimization Toolbox (cf.
[24]) for several reasons. Not only does BARON have the potential to guarantee
optimality of the solutions found, but it often finds solutions with larger effective
CFL coefficients. Furthermore, it is straightforward to satisfy constraints to full
double precision accuracy within GAMS by using the result from BARON as a
starting point for a local optimization with MINOS [17].

Throughout this manuscript, all schemes are provided to the full precision of the
optimization software (15 decimal digits). We conjecture that schemes satisfying the
order conditions to higher precision could be designed by taking our time-stepping
schemes as initial guesses for local optimizations in higher precision arithmetic.
Alternatively, near-optimal schemes that satisfy the order conditions exactly may
be sought among schemes with fractional coefficients. One approach to finding such
methods is to rewrite the corresponding class of schemes in terms of its parameters
(using, for example, a symbolic computation package such as Maple). Assuming
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that this step can be achieved, the parameters may be chosen as fractions which
give a scheme that closely approximates the optimal scheme, yet satisfies the order
conditions exactly. See Gottlieb, Shu and Tadmor [8] for several examples using
this technique.

To automate the construction of GAMS models, modifications of Macdonald’s
Maple scripts [16] for nonnegative coefficient SSPRK schemes were used. All opti-
mizations were carried out on a (shared) cluster of 96 dual 1.2 GHz Athlon proces-
sors.

3.5. BARON parameters. In all computations, MINOS was chosen as the NLP
solver and CPLEX [2] was chosen as the linear programming (LP) solver.

We terminate a run when the upper and lower bounds on the global maximum
differ by 10−10 or less. This is accomplished by setting epsa (εa) = 10−10 and epsr
(εr) = 0. In difficult problems, where a guarantee of optimality is not practical, a
CPU time limit is also assumed.

The number of probing problems (pdo) [28] had a strong effect on the speed
of computation and on the memory requirements. Larger values led to smaller
memory requirements. The effect on computational speed was more difficult to
predict. We have found that probing on the unsigned Butcher array variables was
usually satisfactory when a guarantee of global optimality was sought. The related
parameter pxdo [28] was found to have a weaker influence. Typically we took
pxdo=pdo which corresponds to a probing strategy whereby optimization problems
were solved over all the probing variables [28]. In difficult problems where CPU
time limits the computation, the default value (no probing) worked well.

4. Optimal schemes

We now give new existence and optimality results in the context of effective
CFL coefficient. We allow for the possibility of downwind-biased operations. This
contrasts with most previous work which focuses on optimizing CFL coefficients for
methods with nonnegative coefficients. Following [22, 21], we report our schemes
in optimal α − β form in this section. Butcher arrays are easily recovered via
equation (2.4).

4.1. Third-order schemes. As discussed in the introduction, SSP(3,3) and
SSP(4,3) are optimal three- and four-stage third-order schemes.

Moving on to methods with five stages and order-three gives a numerically opti-
mized scheme, SSP(5,3), with a CFL coefficient of approximately 2.65. See Table 1.
BARON guarantees optimality of this scheme in about 90 minutes.

Considering six stages and order-three gives a numerically optimized scheme,
SSP(6,3), with a CFL coefficient of approximately 3.52. See Table 1 for the optimal
α − β form of this scheme to double precision. BARON guarantees the optimality
of this scheme for the general case of unrestricted coefficients in about eight days
of CPU time. We remark that the bulk of this computational work is used to
verify that there are no nonnegative coefficient schemes that exceed the theoretical
efficiency of SSP(6,3).

Moving up to seven stages, it is no longer practical to verify the optimality of the
nonnegative coefficient case directly. However, seven-stage schemes which have a
time-stepping restriction that agrees with the contractivity bound R(A, b) for linear
constant-coefficient problems [14] can be found in less than two seconds during
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preprocessing (see, e.g., Table 2). Because the SSP and contractivity restrictions
are equivalent [3] and the time-stepping restriction for nonlinear problems cannot
exceed that for linear problems, we conclude that SSP(7,3) is an optimal seven-
stage, third-order nonnegative coefficient SSPRK scheme. Using BARON, we can
verify (in 14 hours) that this scheme exceeds the theoretical efficiency of any scheme
involving downwind-biased operators. Thus, SSP(7,3) is an optimal seven-stage,
third-order SSPRK scheme.

This approach can also be applied to the eight-stage case to guarantee that the
SSP(8,3) scheme shown in Table 2 is an optimal third-order SSPRK scheme. The
primarily computational effort comes from verifying that schemes with downwind-
biased operators are suboptimal. It takes about five days to check the most compu-
tationally intensive case. In this example, Lemma 1 is particularly useful for reduc-
ing the number of cases corresponding to the signs of the coefficients. BARON’s
preprocessing step immediately (i.e., in less than one second) finds a feasible non-
negative coefficient scheme with a CFL coefficient exceeding 5.1, which implies that
the CFL coefficient of the optimal scheme must also exceed 5.1. Thus, Lemma 1
indicates that the number of nonnegative levels, �, satisfies � > 5.1. But the number
of nonnegative levels is an integer, so � must satisfy 6 ≤ � ≤ 8. Over this range we
have ( 8

8 ) + ( 8
7 ) + ( 8

6 ) = 37 cases to check, which is a significant reduction over the
full 28 = 256 cases that correspond to all possibilities.

4.2. An optimal fourth-order scheme. Unfortunately optimality is more diffi-
cult to study for fourth-order schemes since the linear contractivity restriction does
not provide a sharp bound on the time-stepping restriction for the nonlinear case.
This implies that we must resort to applying global optimization software to all
cases, including the nonnegative coefficient case.

It was practical to treat the class of five-stage, fourth-order schemes (approx-
imately one day was required to verify the nonnegative coefficient case). Here,
BARON guarantees that the SSP(5,4) scheme given in [15, 24] is optimal. See
Table 3 for this scheme in optimal α − β form (in double precision) or [15] for this
scheme in Butcher array form (in quadruple precision).

4.3. Fifth-order schemes. We were unable to guarantee optimality of any fifth-
order schemes using our approach. Instead we carry out extensive numerical search-
es with a limited amount of CPU time for each job.

For a large numbers of stages, it is impractical to check all 2s possibilities. How-
ever, extensive numerical searches for seven-, eight-, nine- and ten-stage schemes
using one, two and three negative levels were carried out. In all cases we found that
for a fixed number of stages the maximal CFL coefficient was a strictly increasing
function of the number of nonnegative levels. This fact encouraged us to limit our
searches to schemes with precisely one, two or three negative levels. Results based
on this approach follow.

For six stages, the best scheme that was found had a CFL coefficient of 0.19
which is too small to be of practical use. Using seven or more stages, however,
reasonable CFL coefficients are observed. The best CFL coefficients using 14 hours
per job are reported in Table 4. We also report the fraction of total CPU time
required to find a feasible solution with a CFL coefficient that is within 1% of the
best found. Our formulation under BARON finds good solutions quickly, and we
suspect that these schemes may be optimal or nearly optimal.
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Table 1. The coefficients of the optimal SSPRK (5,3) and SSPRK (6,3) schemes.

Stages s = 5

1.000000000000000 αik

0.000000000000000 1.000000000000000

0.355909775063327 0.000000000000000 0.644090224936674

0.367933791638137 0.000000000000000 0.000000000000000 0.632066208361863

0.000000000000000 0.000000000000000 0.237593836598569 0.000000000000000 0.762406163401431

0.377268915331368 βik

0.000000000000000 0.377268915331368

0.000000000000000 0.000000000000000 0.242995220537396

0.000000000000000 0.000000000000000 0.000000000000000 0.238458932846290

0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.287632146308408

CFL number c = 2.65062919143939

Stages s = 6

1.000000000000000 αik

0.000000000000000 1.000000000000000

0.000000000000000 0.000000000000000 1.000000000000000

0.476769811285196 0.098511733286064 0.000000000000000 0.424718455428740

0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 1.000000000000000

0.000000000000000 0.000000000000000 0.155221702560091 0.000000000000000 0.000000000000000 0.844778297439909

0.284220721334261 βik

0.000000000000000 0.284220721334261

0.000000000000000 0.000000000000000 0.284220721334261

0.000000000000000 0.000000000000000 0.000000000000000 0.120713785765930

0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.284220721334261

0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.240103497065900

CFL number c = 3.51839230899685

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



G
L
O

B
A

L
O

P
T

IM
IZ

A
T

IO
N

1
9
7

Table 2. The coefficients of the optimal SSPRK (7,3) and SSPRK (8,3) schemes.

Stages s = 7

1.000000000000000 αik

0.000000000000000 1.000000000000000

0.000000000000000 0.000000000000000 1.000000000000000

0.184962588071072 0.000000000000000 0.000000000000000 0.815037411928928

0.180718656570380 0.314831034403793 0.000000000000000 0.000000000000000 0.504450309025826

0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 1.00000000000000

0.000000000000000 0.000000000000000 0.000000000000000 0.120199000000000 0.000000000000000 0.00000000000000 0.879801000000000

0.233213863663009 βik

0.000000000000000 0.233213863663009

0.000000000000000 0.000000000000000 0.233213863663009

0.000000000000000 0.000000000000000 0.000000000000000 0.190078023865845

0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.117644805593912

0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.233213863663009

0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.205181790464579

CFL number c = 4.28790975070412

Stages s = 8

1.000000000000000 αik

0.000000000000000 1.000000000000000

0.000000000000000 0.000000000000000 1.000000000000000

0.000000000000000 0.000000000000000 0.000000000000000 1.000000000000000

0.421366967085359 0.005949401107575 0.000000000000000 0.000000000000000 0.572683631807067

0.000000000000000 0.004254010666365 0.000000000000000 0.000000000000000 0.000000000000000 0.995745989333635

0.000000000000000 0.000000000000000 0.104380143093325 0.243265240906726 0.000000000000000 0.000000000000000 0.652354615999950

0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 1.000000000000000

0.195804015330143 βik

0.000000000000000 0.195804015330143

0.000000000000000 0.000000000000000 0.195804015330143

0.000000000000000 0.000000000000000 0.000000000000000 0.195804015330143

0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.112133754621673

0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.194971062960412

0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.127733653231944

0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.195804015330143

CFL number c = 5.10714756443533
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Table 3. The coefficients of the optimal SSPRK (5,4) scheme.

Stages 5

αik

1

0.444370493651235 0.555629506348765

0.620101851488403 0 0.379898148511597

0.178079954393132 0 0 0.821920045606868

0 0 0.517231671970585 0.096059710526147 0.386708617503269

βik

0.391752226571890

0 0.368410593050371

0 0 0.251891774271694

0 0 0 0.544974750228521

0 0 0 0.063692468666290 0.226007483236906

CFL coefficient 1.50818004918983
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Table 4. The CFL coefficients of some numerically optimal fifth-
order SSPRK schemes. We also report the fraction of total CPU
time required to find a feasible solution with a CFL coefficient that
is within 1% of the best found.

stages CFL coefficient Fraction of CPU time
7 1.1785083484719 0.076
8 1.8756849616413 0.054
9 2.6957882892949 0.00028
10 3.3953368327742 0.00052

Table 5. Coefficients of SSP(10,5). CFL coefficient is 3.39533683277420.

(i, k) αik βik

(1,0) 1 0.173586107937995
(2,0) 0.258168167463650 0
(2,1) 0.741831832536350 0.218485490268790
(3,0) 0 0
(3,1) 0.037493531856076 0.011042654588541
(3,2) 0.962506468143924 0.283478934653295
(4,0) 0.595955269449077 0
(4,1) 0 0
(4,2) 0.404044730550923 0.118999896166647
(4,3) 0 0
(5,0) 0.331848124368345 0.025030881091201
(5,1) 0 0
(5,2) 0 0
(5,3) 0.008466192609453 -0.002493476502164
(5,4) 0.659685683022202 0.194291675763785
(6,0) 0.086976414344414 0
(6,1) 0 0
(6,2) 0 0
(6,3) 0 0
(6,4) 0 0
(6,5) 0.913023585655586 0.268905157462563
(7,0) 0.075863700003186 0
(7,1) 0 0
(7,2) 0.267513039663395 0.066115378914543
(7,3) 0 0
(7,4) 0 0
(7,5) 0 0
(7,6) 0.656623260333419 0.193389726166555

(i, k) αik βik

(8,0) 0.005212058095597 0
(8,1) 0 0
(8,2) 0 0
(8,3) 0.407430107306541 -0.119996962708895
(8,4) 0 0
(8,5) 0 0
(8,6) 0 0
(8,7) 0.587357834597862 0.172989562899406
(9,0) 0.122832051947995 0.000000000000035
(9,1) 0 0
(9,2) 0 0
(9,3) 0 0
(9,4) 0 0
(9,5) 0 0
(9,6) 0 0
(9,7) 0 0
(9,8) 0.877167948052005 0.258344898092277
(10,0) 0.075346276482673 0.016982542367506
(10,1) 0.000425904246091 0
(10,2) 0 0
(10,3) 0 0
(10,4) 0 0
(10,5) 0.064038648145995 0.018860764424857
(10,6) 0.354077936287492 0.098896719553054
(10,7) 0 0
(10,8) 0 0
(10,9) 0.506111234837749 0.149060685217562

The seven-, eight- and nine-stage schemes obtained using this approach are re-
ported in Ruuth and Spiteri [20]. The ten-stage scheme is reported in Table 5.
Note that the effective CFL coefficient of this scheme is 0.3395, exceeding that of
the popular SSPRK scheme SSP(3,3).

We consider this to be a possible reason for further study of downwind-biased
spatial discretizations for hyperbolic conservation laws. As we shall see in the
next section, another possible reason to use these schemes arises when storage
considerations are paramount.

5. Low-storage schemes

There are computational problems for which memory management considera-
tions are at least as important as stability considerations when choosing a numer-
ical time discretization method, e.g., direct numerical simulation of Navier-Stokes
equations requiring high spatial resolution in three dimensions. In such cases, s-
stage explicit Runge-Kutta methods that use less than the usual storage are very
desirable (see, e.g., [32]).
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It is commonly assumed that two-register low-storage schemes cannot utilize
downwind-biased operators without destroying the low-storage property. See, e.g.,
[8]. However, if we assume that the β’s at a level are the same sign, then the low-
storage property is preserved since either F (U (j)) or F̃ (U (j)) appears, but not both.
As we shall see, downwind-biased operators provide a means to obtain improved
theoretical efficiency in certain low-storage SSPRK schemes.

5.1. Williamson schemes. We begin our discussion with SSPRK schemes of
Williamson type [32] that require two units of storage per step,4 although more
general methods requiring more storage per step are possible. These schemes take
the form

dU (i) = AidU (i−1) + ∆tF (U (i−1)),(5.1a)

U (i) = U (i−1) + BidU (i), i = 1, 2, . . . , s,(5.1b)

where U (0) = Un, Un+1 = U (s), and A1 ≡ 0. Again, we note that there is a
relation between the coefficients Ai, Bi and the coefficients αik, βik or equivalently
the usual quantities in the Butcher array. We denote the numerically optimal s-
stage, order-p low-storage SSPRK scheme by Williamson(s,p), and remark that
Bi = ai+1,i, 1 ≤ i ≤ s − 1, and Bs = bs in the usual Butcher notation, so that
the Bi are bounded according to Lemma 2. Unfortunately, an analytical bound on
the Ai is not known for general schemes of this form. For this reason, we do not
expect BARON to be able to guarantee optimality except perhaps in specialized
cases where it can determine bounds on the Ai based on the constraints of the
problem (see [28, 29] for further details on the construction of bounds based on
problem constraints). Nonetheless, improvements to the schemes reported in [24]
are possible via our approach.

Table 6. The coefficients of the first few numerically optimal
Williamson low-storage schemes of order three: Williamson(3,3),
Williamson(4,3) and Williamson(5,3). BARON guarantees opti-
mality in the three-stage case.

Stages Ai Bi CFL coefficient

3 0 0.924574112262461 0.322349301195940
-2.915493957701923 0.287712943868770

0 0.626538293270800

4 0 1.086620745813428 0.634274456962008
-0.449336503268844 0.854115548251602

0 -1.576604558206099
-4.661555711601366 -0.278475500113052

5 0 0.713497331193829 1.40154693827206
-4.344339134485095 0.133505249805329

0 0.713497331193829
-3.770024161386381 0.149579395628565
-0.046347284573284 0.384471116121269

4Note that if some form of error control is required, then additional storage for the current
solution vector is also needed [13].
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First, we remark that in the first-order case SSP(s,1) is the optimal scheme since
this is the provably optimal first-order, s-stage scheme and it may be written in
low-storage form with two registers. Moving on to second order, it is clear that a
traditional implementation of any two-stage scheme must be low-storage in the sense
we are considering, so the optimal low-storage method with s = p = 2 corresponds
to SSP(2,2) [24]. The SSP(2,2) scheme has an effective CFL coefficient of 1/2.
Extensive searching with more stages (s = 3, 4, 5, 6) did not find any schemes with
improved effective CFL coefficients, and we conjecture that an optimal scheme with
an even number of stages is just SSP(2,2) repeated (s/2) times:

dU (i−1) = ∆tF (U (i−2)),

U (i−1) = U (i−2) + (2/s) dU (i−1),

dU (i) = −dU (i−1) + ∆tF (U (i−1)),

U (i) = U (i−1) + (1/s) dU (i), i = 2, 4, 6, . . . , s,

where U (0) = Un, Un+1 = U (s). We further remark that all our numerical opti-
mizations for low-storage schemes with an odd number of stages lead to schemes
with effective CFL coefficients that were strictly less than 1/2. Thus, we conjec-
ture that low-storage schemes of this type and with an odd number of stages have
smaller effective CFL coefficients than the simple SSP(2,2) scheme.

The results for the coefficients Ai, Bi are given in Table 6 for up to five stages
and order three. We note that the optimal three-stage, order-three, low-storage
method reported in Table 6 agrees with that reported in [7]. In this particular case,
BARON is able to use the constraints of the problem to automatically construct
bounds on the Ai, and subsequently guarantee the optimality of the scheme. In the
more complicated four- and five-stage cases, the software was unable to determine
such bounds, and a guarantee of optimality was not obtained.

Using four stages, the third-order numerically optimal scheme involved two
downwind-biased operators per step and had a CFL coefficient of about 0.634. This
represents a 20% improvement over the nonnegative coefficient scheme reported in
[24]. For completeness, Table 7 supplies the coefficients of that nonnegative coeffi-
cient scheme to 15 digits.

Similar to [24], we find that the optimal five-stage scheme does not require
downwind-biased operators. However, here we find a numerically optimized scheme
with a 40% larger CFL coefficient. See Table 6.

Table 7. The coefficients of the four-stage Williamson low-storage
scheme of order three having nonnegative coefficients. This result
comes from extensive searching.

Stages Ai Bi CFL coefficient
4 0 1.032161930751755 0.528418106518184

-4.946517279341980 0.187941555751458
0 0.152152605134959

-0.151274934922161 0.656749852605931
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5.2. Van der Houwen and Wray schemes. Van der Houwen and Wray devised
another class of low-storage schemes which alternate information between two avail-
able storage registers at each successive stage [30, 31, 33]. See Kennedy, Carpenter
and Lewis [13] for details. Starting with X(j) and F (U (j)) stored in Registers 1
and 2 respectively, two intermediate stages would proceed according to

(Register 1) U (i+1) = X(i) + ai+1,i∆tF (U (i)),(5.3a)

(Register 2) X(i+1) = U (i+1) + (bi − ai+1,i)∆tF (U (i)),(5.3b)

(Register 2) U (i+2) = X(i+1) + ai+2,i+1∆tF (U (i+1)),(5.3c)

(Register 1) X(i+2) = U (i+2) + (bi+1 − ai+2,i+1)∆tF (U (i+1)),(5.3d)

where aij and bj are the usual Butcher array entries [13]. By overwriting, the
three vectors U , F , and X never fully coexist [13]. In particular, during the func-
tion evaluation, the previous solution vector is overwritten. While this will not be
acceptable in all situations, compressible Navier-Stokes equations provide a situa-
tion where this may be profitably utilized [13]. Full details on implementing these
schemes are given in the comprehensive article of Kennedy, Carpenter and Lewis
[13].

To distinguish these methods from Williamson schemes, we shall refer to them
as vdH schemes (cf. [13]). Note that these schemes are easily generalized to accom-
modate more than two registers of storage. We shall consider the cases where two
or three registers of storage are available, and for simplicity refer to the numerically
optimal r-register, s-stage, pth-order scheme as vdHr(s,p), and the corresponding
numerically optimal nonnegative coefficient scheme as vdHr+(s,p).

Table 8. The coefficients of the first few numerically optimal vdH
low-storage schemes of order three with two registers of storage:
vdH2(3,3), vdH2(4,3) and vdH2(5,3). BARON guarantees opti-
mality in all cases.

Stages ai+1,i bi CFL coefficient

3 0.755726313669390 0.245170292105110 0.838384821388215

0.386954492646558 0.184896041116058

0.569933666778832

4 0.410502506371045 0.222722477423144 1.067414323404809

0.508294264771036 0.167687843505189

0.309067503393721 0.151218171982708

0.458371507088958

5 0.674381436593749 0.174481959220521 1.482840341885634

0.116638367147961 0.116638367147961

0.674381436593749 0.162995387938952

0.162995387938952 0.106256369067643

0.439627916624922
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5.2.1. Two registers of storage. A two-register, s-stage vdH Runge-Kutta scheme
is specified by the Butcher array entries ai+1,i, 1 ≤ i ≤ s−1, and bi, 1 ≤ i ≤ s. The
remaining aij entries are defined according to aij = bj , so the Butcher array takes
the particularly simple form [13]

0
c2 a21

c3 b1 a32

...
... b2 a43

... b3 a54

...
. . . . . .

cs bs−2 aa,s−1

b1 b2 b3 · · · bs−2 bs−1 bs

Because each of the entries is bounded according to Lemma 2, we may directly
apply the algorithms of Section 3 to derive optimal schemes.

Similar to the case of Williamson low-storage schemes, we know that SSP(s,1) is
the optimal first-order, s-stage vdH SSPRK scheme and that SSP(2,2) is the optimal
second-order, two-stage vdH SSPRK scheme. For order two, BARON guarantees
that three- and five-stage schemes both have effective CFL coefficients that are
less than 0.5, and we conjecture that any scheme with an odd number of stages
will have a smaller effective CFL coefficient than SSP(2,2). For four- and six-stage
schemes and order-two BARON guarantees that an optimal scheme is just SSP(2,2)
repeated (s/2) times. We conjecture that this also holds for any even number of
stages.

The results for up to five stages and order three are given in Table 8. The
three-stage scheme is guaranteed optimal by BARON and agrees to single precision
with the RK3(2)3[2R+]N contractive scheme reported in [13]. We also report new
four- and five-stage stage schemes which are also guaranteed to be optimal. It is
interesting to note that in each case these schemes have improved CFL coefficients
over the corresponding Williamson schemes.

5.2.2. Three registers of storage. A three-register, s-stage vdH SSPRK scheme is
specified by the Butcher array entries ai+1,i, 1 ≤ i ≤ s−1, ai+2,i, 1 ≤ i ≤ s−2, and
bi, 1 ≤ i ≤ s. Similar to the two-register case, the remaining aij entries are simply

Table 9. The coefficients of the optimal five-stage vdH low-
storage scheme of order three with three registers of storage:
vdH3(5,3). BARON guarantees optimality.

Stages ai+1,i ai+2,i bi CFL coefficient

5 0.390109487215461 0.390109487215461 0.226019654979362 2.56338292907932

0.390109487215461 0.226019654979362 0.120298131155176

0.226019654979362 0.120298131155176 0.109515534018255

0.207634341633736 0.189023599836438

0.355143080010770
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defined according to aij = bj , and the Butcher array takes the form [13]

0
c2 a21

c3 a31 a32

... b1 a42 a43

... b2 a53 a54

...
. . . . . . . . .

cs bs−3 as,s−2 as,s−1

b1 b2 · · · bs−3 bs−2 bs−1 bs

which allows us to apply the algorithms of Section 3 to derive optimal schemes.
It is clear that the optimal SSP(3,3) and SSP(4,3) schemes fit within this class of

schemes, so they must be optimal three-register vdH SSPRK schemes [13]. Moving
on to five stages, we find a new five-stage scheme which BARON guarantees to be
optimal (see Table 9). It is noteworthy that the CFL coefficient for this scheme is
only about 3% smaller than the optimal SSP(5,3) scheme.

Moving up to fourth order and five stages proved more computationally intensive.
Nonetheless, BARON was able to guarantee that the optimal scheme (see Table 10)
involved one downwind-biased operator and had a CFL coefficient of 0.935. It took
12 days of CPU time for BARON to verify that schemes involving only nonnegative
coefficients must have smaller CFL coefficients. The best nonnegative coefficient
scheme (see Table 11) had a CFL coefficient of 0.531, an 11% improvement over the
scheme found in [13]. The optimality of this scheme was guaranteed by BARON in
21 days of CPU time.

Table 10. The coefficients of the optimal five-stage vdH low-
storage scheme of order four with three registers of storage:
vdH3(5,4). BARON guarantees optimality.

Stages ai+1,i ai+2,i bi CFL coefficient

5 0.537734210467782 0.000000000000000 0.299925395513371 0.935322006941531

0.000000000000000 0.596326927126672 0.449146588599927

-0.472823582086688 -0.545978886296898 -0.137488645434953

0.796906902183600 0.225363552896202

0.163053108425452

Table 11. The coefficients of the optimal five-stage vdH low-
storage scheme of order four with three registers of storage and
nonnegative coefficients: vdH3+(5,4). BARON guarantees opti-
mality.

Stages ai+1,i ai+2,i bi CFL coefficient

5 0.216747619157064 0.059060301553258 0.049733200550301 0.530770344137093

0.513374951629630 0.113274666138869 0.370241294854764

0.415710952208246 0.080866763251240 0.051983506105255

0.366498283222966 0.235595750064777

0.292446248424903
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6. Conclusions

We have studied explicit high-order strong-stability-preserving Runge-Kutta
methods with downwind-biased spatial discretizations. We have developed a practi-
cal approach to guarantee the optimality of a variety of schemes of up to order four
and have applied the technique to guarantee the optimality of SSP(5,3), SSP(5,4)
as well as several new third-order schemes: SSP(6,3), SSP(7,3) and SSP(8,3). We
also find an efficient fifth-order scheme that has an effective CFL coefficient that
exceeds the popular SSP(3,3) scheme.

Several new results for low-storage schemes were found. Our approach guar-
antees the optimality of the known Williamson(3,3) and vdH2(3,3) schemes. It
also guarantees the optimality of the third-order low-storage schemes vdH2(4,3)
and vdH2(5,3). Interestingly, we found that in two instances, Williamson(4,3) and
vdH3(5,4), significantly improved schemes arise when downwind-biased operators
are utilized, and we find and guarantee the optimality of the corresponding schemes.
Our approach also derives two nonnegative coefficient schemes, vdH3+(5,4) and
Williamson(5,3), which are more efficient than the corresponding schemes that were
previously proposed in the literature. These results demonstrate that global branch-
and-bound software may be applied to our mathematical formulation to achieve a
practical, constructive way of guaranteeing the optimality of SSPRK schemes.

This manuscript has considered the optimization of explicit SSPRK schemes.
However, we expect that general implicit schemes, e.g.,

U (0) = Un,(6.1a)

U (i) =
s∑

k=0

(
αikU (k) + ∆t max(βik, 0)F (U (k))(6.1b)

+ ∆t min(βik, 0)F̃ (U (k))
)

, i = 1, 2, . . . , s,(6.1c)

Un+1 = U (s),(6.1d)

could also be treated using the techniques outlined in this paper. To proceed,
assume Euler’s method applied forward in time combined with the spatial dis-
cretization F (·) is strongly stable under the CFL restriction ∆t ≤ ∆tFE . Also
assume Euler’s method applied backward in time combined with the spatial dis-
cretization F̃ (·) is strongly stable under the same CFL restriction ∆t ≤ ∆tFE .
Then the implicit (or backward) Euler method applied to these problems is uncon-
ditionally stable [11], and it easily seen that the method (6.1) will be SSP provided
∆t ≤ C∆tFE , where C is the CFL coefficient

C ≡ min {cik : 1 ≤ i ≤ s, 0 ≤ k ≤ s} , where cik =
{ αik

|βik| if βik �= 0 and i �= k,
∞ otherwise.

The development of appropriate optimization techniques then follows in a similar
manner to the techniques described in this paper. See also [3] for relevant discus-
sions on the underlying theory for general implicit SSPRK schemes with nonnega-
tive coefficients.

Nonlinearly stable explicit multistep methods with guaranteed optimal CFL co-
efficients have been derived using the ideas described in this article [18], and we
believe the derivation of optimal general linear methods (cf. [21, 8]) is another
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natural application area for these techniques. Ultimately, one might consider de-
veloping techniques to guarantee optimality over a combination of properties such
as error constant, nonlinear stability and linear stability (cf. [13, 16]). On the
other hand, our approach is not suitable to show the nonexistence of a scheme,
since as the CFL coefficient tends to zero, we no longer enjoy the property that
our intervals are bounded. Similarly, certain schemes such as the Williamson class
of low-storage schemes include parameters which are not obviously bounded. This
typically prohibits the use of our approach to guarantee optimality.

Nonetheless, as software and hardware advances take place and improved bounds
on variables are derived, we expect that the utility of the techniques outlined in
this paper for optimal explicit SSPRK schemes will experience a correspondingly
rapid growth in applicability and importance.
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