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Abstract We propose a deterministic global optimization approach, whose novel

contributions are rooted in the edge-concave and piecewise-linear underestimators,

to address nonconvex mixed-integer quadratically-constrained quadratic programs

(MIQCQP) to ε-global optimality. The facets of low-dimensional (n ≤ 3) edge-con-

cave aggregations dominating the termwise relaxation of MIQCQP are introduced

at every node of a branch-and-bound tree. Concave multivariable terms and sparsely

distributed bilinear terms that do not participate in connected edge-concave aggre-

gations are addressed through piecewise-linear relaxations. Extensive computational

studies are presented for point packing problems, standard and generalized pooling

problems, and examples from GLOBALLib [55].

1 Introduction

Nonconvex quadratically-constrained quadratic programs (nonconvex QCQP) and

those admitting integer variables (MIQCQP), are ubiquitous in process systems ap-

plications including heat integration networks, separation systems, reactor networks,

reactor-separator-recycle systems, and batch processes (e.g., [2, 5, 18, 24, 26, 28, 29,

31, 33, 42, 44, 45, 47, 48, 50, 66, 67, 70, 71, 88, 91]).

Our recent work has focused on the pooling problem, an optimization challenge

of maximizing profit subject to feedstock availability, intermediate storage capacity,

demand, and product specification constraints [40, 61, 63, 64]. The pooling problem,

which is a MIQCQP under the assumption of linearly blending qualities, has im-

portant practical applications to many process systems engineering domains, includ-
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ing petroleum refining, water systems, supply-chain operations, and communications

[13, 44, 60, 88].

Large-scale pooling problems were addressed to ε-global optimality using a dis-

junctive relaxation formulation that activates appropriate under- and over-estimators

in specific domain segments and integrates this relaxation scheme into a branch-and-

bound global optimization algorithm. Similar underestimators have been exploited in

an array of process network applications [18, 42, 45, 59, 66, 71, 91].

Complementing the piecewise-linear relaxations, we investigate cuts generated

through edge-concave aggregations. Edge-concave functions admit a vertex polyhe-

dral envelope and therefore have a convex hull consisting entirely of linear facets

[58, 79, 80, 81]. We detect possible edge-concave aggregations of two or three vari-

ables in MIQCQP, determine the convex hull of the aggregated terms, and integrate

facets that strictly dominate the termwise relaxation into our underestimation scheme.

The facets that do not strictly dominate the termwise relaxation are still useful for

interval arithmetic-based bounds reduction within the context of branch-and-bound

global optimization.

The proposed global optimization algorithm, whose novel contributions are rooted

in the underestimators, determines an appropriate relaxation scheme employing piece-

wise-linear underestimators and edge-concave relaxations and integrates the resulting

mixed-integer linear program (MILP) into a branch-and-bound global optimization

algorithm. We begin in Section 2 by defining MIQCQP and situating our investi-

gations within the context of other work. Section 3 describes the algorithmic de-

cisions with respect to relaxation formulation (§3.1), bounds reduction (§3.2), and

other choices (§3.3). Section 4 computationally investigates the performance of the

piecewise-linear underestimators and edge-concave relaxations and seeks to elucidate

the conditions under which either is advantageous. Section 5 concludes the paper.

2 Problem Introduction and Literature Review

We consider Mixed-Integer Quadratically-Constrained Quadratic Programs:

min xT ·Q0 · x+a0 · x+ c0 · y
s.t. xT ·Qm · x+am · x+ cm · y ≤ bm ∀ m ∈ {1, . . . , M}

x ∈ ℜC; y ∈ {0, 1}B
(MIQCQP)

where C, B, and M represent the number of continuous variables, binary variables,

and constraints, respectively. We assume that it is possible to infer finite bounds
[

xL
i , xU

i

]

on the variables participating in nonlinear terms, that matrices Qm ∀m ∈
{0, . . . , M} are upper triangular, and that the continuous component may be noncon-

vex (i.e., ∃m ∈ {0, . . . , M} : Qm � 0). We alternatively denote quadratic products as:

xT ·Qm · x =
C

∑
i=0

C

∑
j=i

Qm, i, j · xi · x j ∀ m ∈ {0, . . . , M}

Our approach is related to the work of Al-Khayyal and Falk [6] that globally opti-

mized bilinear programs by replacing each nonconvex term (xi ·x j) in MIQCQP with
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an auxiliary variable (zi, j) representing its convex hull [54]:

zi, j ≥ max
{

xi · xL
j + xL

i · x j − xL
i · xL

j ; xi · xU
j + xU

i · x j − xU
i · xU

j

}

(1)

zi, j ≤ min
{

xi · xL
j + xU

i · x j − xU
i · xL

j ; xi · xU
j + xL

i · x j − xL
i · xU

j

}

. (2)

and integrated the resulting linear relaxation into a branch-and-bound global opti-

mization algorithm [27]. For the sake of brevity, we do not discuss basic branch-

and-bound global optimization in this paper, but the reader is referred to an array of

excellent books, research papers, and review articles [3, 4, 16, 27, 30, 32, 38, 75, 82].

This paper’s primary contribution is rooted in tightening the linear relaxation of

MIQCQP, so we limit our discussion of MIQCQP to previous successful efforts to-

wards generating tight relaxations. We mention several methodologies. First, there

have been advances that reduce MIQCQP to bilinear programs with the fewest num-

ber of complicating variables [19, 41]. This technique transforms MIQCQP into a

form that can be exploited by primal-dual global optimization algorithms [5, 28, 36,

34, 35, 36, 89, 90].

Efforts towards reformulating MIQCQP have also taken the form of reducing the

number of nonconvex bilinear terms [12, 17, 49]. For example, Ben-Tal et al. [17]

showed that the dual of MIQCQP is sometimes smaller than the primal, Audet et al.

[12] eliminated bilinear terms in the pooling problem through mass balances at the

intermediate nodes, and Liberti and Pantelides [49] generalized the contribution of

Audet et al. [12] to automatically eliminate unnecessary bilinear terms in MIQCQP.

A number of methods add redundant constraints to MIQCQP that tighten the

MILP relaxation [9, 11, 22, 45, 67, 70, 73, 75, 76, 77, 78, 82]. We distinguish be-

tween techniques that automatically generate cuts for MIQCQP [9, 11, 22, 73, 75,

76, 77, 78] and redundant equations that are designed through close analysis of

specific models [45, 67, 70, 82]. The generic approaches include those based on

the Reformulation-Linearization Technique (RLT) [11, 75, 76, 77, 78] and efforts

to integrate semidefinite programming (SDP) relaxations (or linear projections of

SDP relaxations) into the underestimation scheme [9, 14, 22, 73, 72]. The model-

specific approaches are based on careful analysis of optimization problem classes

[9, 45, 67, 70, 82]

Rather than adding relaxations of redundant nonlinear constraints to the MILP

relaxation of MIQCQP, an alternative set of techniques adds cuts to strengthen the

relaxation of specific equations through eigenvector projections [23, 65, 69, 72],

polyhedral facets [10, 15, 21], or the KKT necessary optimality conditions [83, 84].

The use of polyhedral facets is motivated by the following observation: although

Equations (1) – (2) represent the convex hull of a single bilinear term, the sum

of these termwise convex hulls in the MILP relaxation of objective or constraint

m ∈ {0, . . . , M} does not necessarily generate the convex hull of m itself. There-

fore, there has been work towards uncovering the vertex polyhedral properties of a

bilinear equation to generate a family of valid cuts that characterize the convex hull

[10, 15, 21, 56, 57, 58, 68].

These polyhedral facets can be alternatively determined through edge-concave

relaxations. Edge-concave functions admit a vertex polyhedral envelope and therefore

have a convex hull consisting entirely of linear facets [58, 79, 80, 81]. Although
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we only investigate low-dimensional edge-concave aggregations of MIQCQP in this

paper, the edge-concave relaxation paradigm is relevant to a much broader class of

expressions because it generates the convex hull of aggregated terms that follow a few

simple rules [63, 79]. The derivation of explicit facets of the convex hull for trilinear

monomials by Meyer and Floudas [56, 57] uses the same triangulation principles.

A final set of methods which tighten the linear relaxation of MIQCQP construct

alternative relaxations for zi, j = xi · x j. Linderoth [51] generated termwise convex

envelopes over triangular regions rather than solely rectangles. It is also possible to

generate an alternative relaxation of zi, j = xi · x j which is tighter than the convex

hull of an individual bilinear term through the ab initio piecewise relaxation of non-

convex bilinear terms as first developed by Meyer and Floudas [59] and Karuppiah

and Grossmann [45]. Recognizing the importance of formulating these piecewise-

linear relaxations in the most computationally effective manner possible, Wicaksono

and Karimi [91] introduced fifteen mathematically-equivalent alternative formula-

tions and compared the relaxation performance on several test cases. We recently

proposed five additional piecewise-linear formulations and conducted a comprehen-

sive comparative study on the computational performance of these formulations over

a collection of benchmark pooling problems [40]. Hasan and Karimi [42] studied the

possibility of bivariate partitioning, that is, segmenting both variables participating

in each bilinear term. Other groups who have used piecewise-linear underestimators

include: Bergamini et al. [18] in their Outer Approximation for Global Optimization

Algorithm; Saif et al. [71] in a reverse osmosis network case study; and Pham et al.

[66] in a fast-solving algorithm that generates near-optimal solutions.

Each of the previously-mentioned partitioning schemes requires a number of bi-

nary variables that scales linearly with the number of disjunctive segments in the re-

laxation. Vielma and Nemhauser [85] and Vielma et al. [86] recently proposed mod-

eling piecewise functions with a number of binary switches that scales logarithmi-

cally with the number of partitions. Motivated by their work, we recently introduced

a novel formulation for the logarithmically-sized piecewise relaxation of MIQCQP

and tested the performance of this new formulation [64].

The primary novelty of the methodology described in this paper is rooted in the in-

tegration of edge-concave and piecewise-linear relaxations that tightly underestimate

MIQCQP. The edge-concave relaxations consider low-dimensional (n ≤ 3) term ag-

gregations in an effort to reduce the complexity of deriving cutting planes. Other than

our own work with respect to relaxing the polynomial non-exhaust benzene emis-

sions function, this contribution represents, to the best of our knowledge, the first

effort towards integrating the edge-concave based relaxation methodology described

by Meyer and Floudas [58] into a branch-and-bound global optimization algorithm.

For the piecewise-linear relaxations [40, 61, 63, 64], we propose a new preprocessing

step to choose the best variables for partitioning.

3 Theoretical and Algorithmic Development

This section describes the algorithmic decisions with respect to relaxation formula-

tion (§3.1) for generating the edge-concave facets (§3.1.1 – 3.1.3), eigenvector pro-
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jections (§3.1.4), piecewise-linear underestimators (§3.1.5 – 3.1.8), bounds reduction

(§3.2) through RLT (§3.2.1) and the edge-concave paradigm (§3.2.2), and other ac-

cessory choices (§3.3).

3.1 Tight Relaxation Generation

3.1.1 Properties of Edge-Concave Facets

Our discussion of edge-concave facets is based on work of Tardella [79, 80, 81] and

Meyer and Floudas [58].

Definition 3.1.1.1 [80]: Let D = {d1, . . . , dk} be a set of vectors such that for each

edge E of a polyhedron P, D contains a vector parallel to E. Function f (x1, . . . , xn)
is edge-concave on P if and only if it is concave on all segments in P that are parallel

to an edge of P.

Tardella [79] proved that edge-concave functions admit a vertex polyhedral en-

velope (i.e., that the facets of the convex hull can be determined solely from the

vertices of P). Although edge-concavity represents a broad class of functions, we

limit ourselves to several special cases to simplify the detection and exploitation of

the vertex polyhedral envelope. Tardella [80] observed that for the special case of

twice-continuously differentiable function f defined on a box P, the edge-concave

definition is equivalent to
∂ 2 f

∂x2
i

≤ 0 ∀ i = 1, . . . , n [80]:

Applying this property, observe that the following functions are edge-concave on a

box: f (xi) = α · xi; f (xi) = −1 · |α| · x2
i ; and f (xi, x j) = α · xi · x j for xi, x j ∈ ℜ and

scalar α . Because the sum of edge-concave functions is itself edge-concave [68, 80],

the objective and constraints in MIQCQP can each be decomposed into the sum of (1)

an edge-concave function, (2) a convex function, and (3) an integer linear function.

While performing such a decomposition and generating the vertex polyhedral

envelope of the edge-concave portion of each equation in MIQCQP would generate

a tight relaxation, the brute force method of checking each of the simplices defined

by the vertices of polyhedron P for facet-defining hyperplanes is combinatorially

complex [10, 15, 80]. Therefore, like Meyer and Floudas [58] and Anstreicher and

Burer [10], we limit ourselves to low-dimensional cases (n ≤ 3) so that each edge-

concave function has six or fewer distinct facet-defining hyperplanes. Specifically,

we decompose the edge-concave portion of each m ∈ {0, . . . , M} into aggregated

functions of the form:

f (xi, x j, xk) =α1 · xi · xi +α2 · xi · x j +α3 · xi · xk +α4 · xi +α5 · x j · x j+

α6 · x j · xk +α7 · x j +α8 · xk · xk +α9 · xk

(EC-AGG)

where α1, . . . , α9 are scalars and α1, α5, α8 are non-positive scalars. The twin goals

of generating aggregations of form EC-AGG are (1) integrating dominant cuts into

the MILP relaxation of MIQCQP and (2) adding equations that tighten a bounding

scheme based on interval arithmetic (see discussion in §3.2.2). Aggregated functions

of the form EC-AGG achieving both goals are most desirable, so we elucidate the

conditions under which the facets of EC-AGG dominate the termwise relaxation of
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MIQCQP. After detecting low-dimensional aggregations with facets that may domi-

nate the termwise relaxation, we find aggregations augmenting the bounding scheme.

When the convex envelope of a sum is equivalent to the sum of the convex enve-

lope, no dominant polyhedral cut can be introduced to tighten the sum of functions.

Using the notation of Tardella [80, 81] and Meyer and Floudas [58]:

Definition 3.1.1.2 [81]: When the convex envelope of a sum of functions coincides

with the sum of the convex envelopes of the functions, we say that the sum of func-

tions is sum decomposable.

Therefore, only low-dimensional aggregations that are not sum decomposable

may have a LP relaxation that dominates the termwise relaxation and we do not

search for dominant cuts within sum decomposable EC-AGG. Separable functions

are clearly sum decomposable. Function h = f + g is sum decomposable when g is

affine [80]. Meyer and Floudas [58] exploited pairwise compatibility as a sufficient

test to determine if almost separable functions are sum decomposable. To further

characterize sum decomposibility, we define convS( f ) on conv(S) as the convex en-

velope of f on the convex hull of S ⊂ ℜn and state the following result from Tardella

[81], which generalizes work of Meyer and Floudas [58], without proof:

Theorem 3.1.1.3 [81]: Let Vp be the set of vertices on a polytope P, define edge-

concave functions f , g 7→ ℜ with facet representations { fi : i ∈ I} and {g j : j ∈ J}
defining the convex hull of f and g, respectively, and let Fi = {x ∈ P : convVP

( f )(x) =
fi(x)} , i ∈ I and G j =

{

x ∈ P : convVP
(g)(x) = g j(x)

}

, j ∈ J denote the linearity do-

mains of convVP
( f ) and convVP

(g) (i.e., the sets Fi and Gi are polyhedra composed of

facet-defining hyperplanes fi and g j). The following are equivalent:

1 convVP
( f )+ convVP

(g) is vertex polyhedral;

2 convVP
( f )+ convVP

(g) = convVP
( f +g);

3 Fi ∩G j has all vertices in VP ∀ i ∈ I, j ∈ J.

For the specific case of almost separable function h(x, y, z) = f (x, y, z)+g(x, y, z) =
f̂ (x, y)+ ĝ(x, z) defined on V = X ×Y ×Z where X , Y, Z are the vertex sets of poly-

topes, then the three conditions listed above are further equivalent to:

4 FX
i ∩GX

j has all vertices in X for all linearity domains Fi of convVP
( f ) and Gi of

convVP
(g).

Based on the preceding, we make the following observations specific to MIQCQP:

Observation 3.1.1.4: Including or excluding the affine sum α4 · xi +α7 · x j +α9 · xk

in EC-AGG does not make a difference in tightening the relaxation of MIQCQP [80].

Observation 3.1.1.5: If α3 = α6 = 0, the function f (xi, x j, xk) = f (xi, x j)+ f (xk) is

separable and there is no advantage to aggregating f (xi, x j) with f (xk). Symmetric

cases hold for α2 = α3 = 0 and α2 = α6 = 0.

Observation 3.1.1.6: The function f (xi, x j) = α1 · xi · xi +α2 · xi · x j +α5 · x j · x j is

sum decomposable. To see this, note that convex envelope [conv(α2 · xi · x j)] is vertex

polyhedral and both the convex envelopes [conv(α1 · xi · xi)] and [conv(α5 · x j · x j)] are

affine functions (namely, α1 ·
[

xi · (xU
i + xL

i )− xU
i · xL

i

]

and α5 ·
[

x j · (xU
j + xL

j )− xU
j · xL

j

]

).
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Because [conv(α1 · xi · xi)+ conv(α2 · xi · x j)+ conv(α5 · x j · x j)] is the sum of a vertex

polyhedral function and two affine functions, it is itself vertex polyhedral. By Con-

dition 1 of Theorem 3.1.1.3, the facets of aggregate function f (xi, x j) introduce no

dominant cuts to MIQCQP.

Observation 3.1.1.7: Function f (xi, x j, xk) = α2 · xi · x j +α6 · x j · xk is almost sepa-

rable and meets the fourth condition in Theorem 3.1.1.3, so it is sum decomposable

and its convex envelope is equivalent to the sum of the termwise convex envelopes.

Observation 3.1.1.8: Combining Observations 3.1.1.4 – 3.1.1.7, note that functions

of form EC-AGG in MIQCQP satisfying α2 6= 0, α3 6= 0, α6 6= 0 (called EC-AGGTRIP

hereafter) are necessary to generate polyhedral cuts dominating the termwise relax-

ation of MIQCQP.

Observation 3.1.1.9: Even for aggregations with α2 6= 0, α3 6= 0, α6 6= 0, not all the

facets of EC-AGG are necessarily tighter than the termwise relaxation of EC-AGG.

Therefore, we seek facets that introduce dominant cuts to MIQCQP. We compare

each of the unique facets of EC-AGGTRIP with each of the eight possible termwise

underestimators. A termwise underestimator cannot strictly dominate one of the EC-

AGGTRIP facets, so any facet that is not equal to one of the eight termwise relaxations

must itself be a dominant cut.

The preceding necessary (Observation 3.1.1.8) and sufficient (Observation 3.1.1.9)

conditions allow us to augment the MILP relaxation of MIQCQP with the facets of

EC-AGGTRIP that strictly dominate the termwise relaxation of EC-AGGTRIP. It is

important to note that, for the secondary goal of bounds reduction, we detect nonsep-

arable but sum decomposable aggregations and include linear terms in EC-AGG (see

§3.2.2 for a discussion of variable bounding).

3.1.2 Implementation for Generating EC-AGG Aggregations and Determining

Facet-Defining Hyperplanes

The procedure for (1) generating aggregations of the form EC-AGG within MIQCQP

and (2) determining the facet-defining hyperplanes of EC-AGG that dominate the

termwise relaxation of MIQCQP is presented in this section. To generate aggregations

EC-AGG, we begin by searching each equation m ∈ {0, . . . , M} for nonzero triplets

α2 · xix j = Qm, i, j · xix j, α3 · xixk = Qm, i,k · xixk, α6 · x jxk = Qm, j,k · x jxk (recalling that

Qm is upper triangular, note that i < j < k). To avoid introducing too many extra

cuts, we place each term in equation m in at most one aggregation (i.e., if Qm, i, j ·
xix j ∈EC-AGGm, i, j,k, then Qm, i, j ·xix j 6∈EC-AGGm, i, j, ℓ for k 6= ℓ). After aggregating

triplets, we also aggregate nonseparable, sum decomposable edge-concave terms for

the purpose of bounds reduction (see §3.2.2). Our aggregation scheme is generated

in a preprocessing step and does not change over the course of the branch-and-bound

global optimization algorithm.

Meyer and Floudas [58] designed a method to generate the facets of the convex

envelope of any edge-concave function with dimension three or fewer. For three di-

mensional aggregations, Meyer and Floudas [58] proposed (1) determining the domi-

nance pattern on each minimal affine dependency of the cube, (2) matching the dom-

inance pattern to a reorientation of one of the six triangulation types of the 3-cube,
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and (3) calculating the facets of the convex envelope. Because EC-AGG is low di-

mensional, the computational load of re-calculating the appropriate triangulations at

each node of the branch-and-bound tree is minimal. We do store the relaxation of

each aggregation so that the convex and concave hulls are not re-computed if vari-

able bounds remain the same between two calls to the facet-generating routine.

Illustration 3.1.2.1: As an example of determining the facets of the convex hull, con-

sider function f (xi, x j, xk) = α2 · xi · x j +α3 · xi · xk such that α2 > 0 and α3 < 0. By

Observation 3.1.1.7, this function is sum decomposable, but it is still aggregated for

the purpose of bounds tightening. These dominant and non-dominated circuits are

compared to the six equivalence classes of the 3-cube and a re-orientation of what

Figure 4.4 in Meyer and Floudas [58] denotes triangulation type A is found to be

both a superset of the strictly dominant affine dependencies and a subset of the non-

dominated affine dependencies. The facets of the convex envelope for f (xi, x j, xk)
are determined using triangulation type A.

Illustration 3.1.2.2: As a specific example of detecting dominant cuts by applying

Observations 3.1.1.8 and 3.1.1.9, consider EC-AGGTRIP:

f (xi, x j, xk) =0.5 · xix j −0.9 · xixk − x jxk

xi ∈ [−10, 0] ; x j ∈ [4, 10] ; xk ∈ [7, 10]

with McCormick relaxation:

f (xi, x j, xk)≥















































−7 · xi −15 · x j +5 · xk −30

−7 · xi −12 · x j −1 · xk

−4.3 · xi −15 · x j −4 · xk +60

−4.3 · xi −12 · x j −10 · xk +90

−4 · xi −10 · x j +5 · xk −50

−4 · xi −7 · x j −1 · xk −20

−1.3 · xi −10 · x j −4 · xk +40

−1.3 · xi −7 · x j −10 · xk +70

(TW-RLX)

and facets of the convex envelope determined through the Meyer and Floudas [58]

algorithm:

f (xi, x j, xk)≥































−7 · xi −15 · x j +5 · xk −30

−1.3 · xi −7 · x j −10 · xk +70

−5.2 · xi −12 · x j −1 · xk +18

−3.1 · xi −10 · x j −4 · xk +40

−4 · xi −10 · x j −1 · xk +10

−4.3 · xi −12 · x j −4 · xk +48

(EC-RLX)

The first two constraints of EC-RLX are equivalent to the first and last cuts of TW-

RLX, so we do not add them to the MILP relaxation of MIQCQP. However, we do

augment the MILP relaxation of MIQCQP with the final four cuts of EC-RLX.

We conclude this section with a summary of our strategy. As a preprocessing

step, we decompose each of the equations in MIQCQP into aggregations with the

form EC-AGG. Then, for the MILP relaxation of every branch-and-bound tree node,

we recompute the facets of the edge-concave terms with α2 6= 0, α3 6= 0, α6 6= 0 and

add the cuts that dominate the termwise relaxation of MIQCQP.
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3.1.3 Edge-Concave Aggregation for Specific Classes of MIQCQP

Stepping back from this analysis of generic MIQCQP, we make observations specific

to process network problems and the density of the quadratic matrices Qm.

Property 3.1.3.1: Process networks equations are generally sum decomposable.

Nonlinearities in process network constraints typically track node quality:

∑
i∈I

pk
i,n · fi,n − pk

n · ∑
j∈J

f j,n ∀ n ∈ N; k ∈ K (3)

where fi,n is the flow of stream i into node n, pk
i,n is quality k of stream i entering

node n, pk
n is quality k of node n itself, and f j,n is the flow of stream j leaving node

n. Expression 3 excludes nonlinear blending and costing rules also present in process

networks problems, but Expression 3 (or a simplification thereof) can be found in

problems related to pooling, wastewater systems, data reconciliation, heat exchanger

networks, distillation sequences, etc. [2, 18, 26, 28, 29, 31, 42, 44, 45, 60, 61, 63, 64,

66, 67, 70, 71, 88, 91]. For example, the product quality bounds in a standard pooling

problem with a single layer of intermediate nodes are represented as:

∑
l:(l, j)

pl,k · yl, j + ∑
i:(i, j)

Ci,k · zi, j ≤ ∑
l:(l, j)

PU
j,k · yl, j + ∑

i:(i, j)

PU
j,k · zi, j ∀ j, k (4)

where the variables in the Equation 4 are pl,k, yl, j, zi, j and the nonlinear bilinear

terms (in the first left-hand-side summation) are equivalent to the first summation in

Expression 3 [60].

To see that Expression 3 is sum decomposable, we begin by noting that the two

summations are separable from one another (and therefore sum decomposable). The

terms in the first summation are also separable because each of the variables pk
i,n and

fi,n appear only once in Expression 3. The second summation pk
n · ∑

j∈ j

f j,n is almost

separable and the participating terms satisfy Condition 4 of Theorem 3.1.1.3.

Because the termwise relaxation of Expression 3 is equivalent to its convex hull,

there are no additional cuts that can be introduced on an equation-by-equation basis

to tighten process network MIQCQP. Thus, for the specific case of process network

problems, neither aggregating edge-concave functions as presented in this paper nor

generating multiterm relaxations as suggested by Bao et al. [15] tightens the relax-

ation of MIQCQP. This observation that the termwise convex relaxation of MIQCQP

is equivalent to its convex hull motivates the advantage of using generic RLT tech-

niques [75, 76, 77, 78], specially designed cuts [45, 67, 70, 82], or piecewise-linear

relaxations [18, 40, 42, 45, 59, 61, 63, 64, 66, 71, 91] to tighten sum decomposable

process networks problems.

As a second observation regarding MIQCQP, note from the computational results

of Bao et al. [15] that their multiterm cuts are especially effective for dense matrices

(i.e., for problems where there will be many aggregations EC-AGG with α2 6= 0, α3 6=
0, α6 6= 0). By the MIQCQP-specific observations we made in response to Theorem
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1 [81], these are the same circumstances under which we expect a tighter relaxation

from edge-concave aggregations. The low-dimensional aggregations proposed here

are quickly-generated (and therefore re-computed at every node of the branch-and-

bound tree). The cuts of Bao et al. [15] are applicable to dimensions higher than

three but are more costly to generate and therefore they could be used effectively

only at the root node. The computational studies presented in Section 4 use only

low-dimensional aggregations, but a hybrid algorithm could use the Bao et al. [15]

multiterm relaxation at the root node and the edge-concave aggregations we discuss

in subsequent nodes.

3.1.4 Eigenvector Projections

Eigenvector projections are a common relaxation strategy for nonconvex quadratic

programming problems [23, 65, 69] that also have been used for underestimating

MIQCQP [72]. The major difference between the seminal strategy proposed first by

Rosen and Pardalos [69] and the more recent effort of Saxena et al. [72] is that Sax-

ena et al. [72] do not transform the variables participating in connected, noncon-

vex quadratic terms into separable terms but rather augment the relaxation of each

quadratic expression with a convex relaxation of the eigenvectors.

The Saxena et al. [72] treatment is suited for MIQCQP because nonlinearities may

appear in multiple equations within MIQCQP and variable transformation is therefore

undesirable. Our approach is similar to that of Saxena et al. [72] except that (1) we

segment each quadratic matrix xT ·Qm · x into separable, multivariable terms ∑i xT
i ·

Qm,i · xi before finding the eigenvectors and eigenvalues of each separable multiterm

Qm, i and (2) we only augment the MILP relaxation of MIQCQP with eigenvector

projections of xT
i ·Qm,i · xi that are not sum decomposable (see Definition 3.1.1.2).

3.1.5 Definition of the Piecewise-Linear Underestimators

We have previously discussed our use of piecewise-linear underestimators for the

pooling problem [40, 61, 63, 64]. Like other process networks problems, the pooling

problem is sum decomposable and therefore the edge-concave strategies described

in the previous section do not tighten the relaxation of MIQCQP. However, by using

appropriately-designed RLT-style cuts and constructing piecewise-linear underesti-

mators that are tighter than the convex hull of each term, we were able to effectively

close the optimality gap for large-scale problems [61, 63, 67, 82].

Suppose we wish to generate an underestimator for bilinear term z = x · y that

is tighter than its convex hull. The envelope in Equations (1) – (2) is dependent on

the size of the domain, so we partition variable x into NP segments of length a =
(xU − xL)/NP.

We consider three MILP reformulation schemes scaling either linearly or loga-

rithmically with the number of partitions that are outlined in Table 1. The first refor-

mulation, which is presented in detail in Misener et al. [64], uses a number of binary

variables that scales linearly with the number of partitions [40, 91].

The second reformulation is based on the work of Vielma and Nemhauser [85]

and Vielma et al. [86] that recently proposed modeling piecewise functions with
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Table 1: Additional variables and constraints for the relaxation of a bilinear term [64].

Contin Vars Binry Vars Constraints

McC Hull 1 – 4

PW Linear Scheme NP +1 NP NP +8

PW Log Scheme 1 2 ·NP +1 ⌈log2 NP⌉ NP +2 · ⌈log2 NP⌉+8

PW Log Scheme 2† 2 · ⌈log2 NP⌉+1 ⌈log2 NP⌉ 3 · ⌈log2 NP⌉+6

† Applicable to powers of two (i.e., log2 NP = ⌈log2 NP⌉)

a number of binary switches that scales logarithmically with the number of parti-

tions (i.e., NL = ⌈log2 NP⌉). Although the following formulation maps from the par-

tition containing x to λ using a base-2 representation, note that any injective func-

tion B : {1, . . . , NP} 7→ {0, 1}⌈log2 NP⌉ could formulate the SOS1-like constraints for

the activation of exactly one of the NP segments [85]. This logarithmic formulation

uses binary switch λ ∈ {0, 1}NL and continuous switches ∆y ∈
[

0, yU − yL
]NP and

λ̂ ∈ [0, 1]NP :

Logarithmic Partitioning Scheme 1:

xL +
NL

∑
nL=1

2NL−nL ·a ·λ (nL)≤ x ≤ xL +a+
NL

∑
nL=1

2NL−nL ·a ·λ (nL) (5a)

NP

∑
nP=1

λ̂ (nP) = 1 (5b)

∑
nP:⌊ nP−1

2NL−nL
⌋ (mod 2)=0

λ̂ (nP)≤ (1−λ (nL)) ∀ nL ∈ {1, . . . , NL} (5c)

∑
nP:⌊ nP−1

2NL−nL
⌋ (mod 2)=1

λ̂ (nP)≤ λ (nL) ∀ nL ∈ {1, . . . , NL} (5d)

∆y(nP)≤ (yU − yL) · λ̂ (nP) ∀ nP ∈ {1, . . . , NP} (5e)

y = yL +
NP

∑
nP=1

∆y(nP) (5f)

z ≥ x · yL +
NP

∑
nP=1

[

xL +a · (nP −1)
]

· ∆y(nP) (5g)

z ≥ x · yU +
NP

∑
nP=1

[

xL +a · nP

]

·
[

∆y(nP)− (yU − yL) · λ̂ (nP)
]

(5h)

z ≤ x · yL +
NP

∑
nP=1

[

xL +a · nP

]

· ∆y(nP) (5i)

z ≤ x · yU +
NP

∑
nP=1

[

xL +a · (nP −1)
]

·
[

∆y(nP)− (yU − yL) · λ̂ (nP)
]

(5j)

xL ≤ x ≤ xU ; yL ≤ y ≤ yU (5k)
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When the number of partitions NP is a power of two (i.e., NL = log2 NP = ⌈log2 NP⌉),

we use a second logarithmic formulation with binary switch λ ∈ {0, 1}NL and con-

tinuous switches ∆y ∈
[

0, yU − yL
]NL and s ∈

[

0, yU − yL
]NL [64].

3.1.6 Sharpness Properties for the Piecewise-Linear Underestimators

For these piecewise-linear relaxations to work effectively in the context of a MILP

branch-and-bound solver, they must be sharp (i.e., the linear programming relaxation

of the linear and logarithmic MILP formulations must be equivalent to the convex

hull of the MILP model). We state without proof the result of Wicaksono and Karimi

[91] that the Linear Partitioning Scheme is sharp. Appendix A proves that the lin-

ear programming relaxation of Logarithmic Partitioning Scheme 1 is nondominated

by the convex hull in Equations (1) – (2) and that the smaller Logarithmic Partition-

ing Scheme 2 is sharp in the case where the number of partitions NP is a power of two.

Property 3.1.6.1 [91]: The linear programming relaxation of the Linear Partitioning

Scheme is nondominated by the convex hull.

Property 3.1.6.2: The linear programming relaxation of Logarithmic Partitioning

Scheme in 1 Equations (5g) - (5j) is nondominated by the convex hull.

Proof: See Appendix A.

Property 3.1.6.3: The linear programming relaxation of Logarithmic Partitioning

Scheme 2 in Misener et al. [64] is nondominated by the convex hull when the number

of partitions is a power of two (i.e., NL = log2 NP = ⌈log2 NP⌉).

Proof: See Appendix A.

3.1.7 Piecewise-Linear Underestimators for Concave Quadratic Terms

When the preprocessing scheme chooses to partition a variable participating in a

concave quadratic term, our treatment of the partitioned variable remains the same

as presented in Section 3.1.5. However, the nonlinear image of the domain is repre-

sented according to the convex hull representation that Sherali [62, 74] defined for

piecewise functions rather than an equivalent of the formulations in Section 3.1.5.

This formulation is both sharp and locally ideal [46].

3.1.8 Variable Partitioning for the Piecewise-Linear Underestimators

The piecewise underestimating schemes will always be at least as good as the simple

McCormick underestimating scheme [54]. However, despite the additional tightness

advantage afforded by the piecewise-linear scheme, we want to avoid introducing too

much extra machinery to the MILP relaxation of MIQCQP.

For concave multivariable terms identified via the preprocessing strategy outlined

in Section 3.1.4, we create auxiliary variables for the inner product of an eigenvector

and the participating variables νT
m,nx and partition along the auxiliary variables cor-

responding to the most negative eigenvalue. This is similar to the method of Rosen
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and Pardalos [69] except that we may not choose to partition along every eigenvec-

tor of every concave term and therefore prioritize the most negative eigenvalues. We

partition as many as ten auxiliary variables corresponding to the eigenvectors.

For generic nonconvex terms that do not participate in concave expressions, we

are motivated by past work that transformed MIQCQP into bilinear programs with the

fewest number of complicating variables for input into a primal-dual based global op-

timization algorithm [5, 19, 28, 36, 34, 35, 36, 41, 89, 90]. Although this paper does

not use a primal-dual based method, the following contributions assist our approach:

(1) establishing a co-occurrence graph for bilinear terms and (2) identifying compli-

cating variables.

We begin our selection of which variables to partition (and thereby which nonlin-

ear terms to piecewise-linearly underestimate) by establishing the equivalent of the

co-occurence graph proposed by Hansen and Jaumard [41] where the nodes repre-

sent the variables participating nonlinearly in MIQCQP and the edges represent the

nonlinear terms {xi ·x j : i, j = 1, . . . , n; i < j;∃m ∈ {0, . . . , M} : Qm, i, j 6= 0∧Qm, i, j 6∈
EC-AGGTRIP

m } in MIQCQP.

We exclude edges representing bilinear terms that always participate in active

edge-concave triplets from the co-occurence graph because we are already adding

edge-concave-based cuts related to those nonlinear terms (§3.1.1 – 3.1.2). By exclud-

ing the variables that are always aggregated into a EC-AGGTRIP term, we effectively

integrate the two complementary underestimation strategies of (1) low-dimensional

polyhedral facets for equations that are not sum decomposable and (2) tight piecewise

relaxations for the more sparsely-distributed remaining terms.

However, unlike a generalized Benders-based scheme where at least one variable

in each bilinear term must be a complicating variable, we do not have to partition

at least one variable in each bilinear term. Therefore, if our preprocessing scheme

selects a variable i to partition, it excludes the possibility of partitioning any j where

∃m ∈ {0, . . . , M} : Qm, i, j 6= 0. In other words, there is at most one partitioned vari-

able in each bilinear term. We begin by selecting the variable i participating in the

greatest number of nonlinear terms (i.e., the node i with the greatest number of as-

sociated edges). After excluding node i and its associated edges, we find the node

j : 6 ∃m ∈ {0, . . . , M} : Qm, i, j 6= 0 with the greatest number of associated edges. For

large problems where, even after this preprocessing scheme is employed, there are

a large number of variables tagged as needing partitioning, we limit the number of

variables to partition to 30.

3.2 Bounds Tightening

Feasibility-based bounds tightening (FBBT) is a commonly-used technique using in-

terval arithmetic to infer variable bounds [3, 4, 16]. Because it is computationally

inexpensive, we follow Androulakis et al. [8], Sherali and Tuncbilek [77], and Audet

et al. [11] in augmenting a FBBT scheme with several additional sets of constraints.

Namely, we add additional equations to the LP relaxation of MIQCQP based on the

Reformulation Linearization Technique (RLT) and the edge-concave aggregations.

We cycle through this augmented LP relaxation, inferring tighter bounds though in-
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terval arithmetic, until the volume of the hyperrectangle representing the bounds of

the nonlinearly participating variables fails to fall by at least a factor of 0.95.

3.2.1 Reformulation Linearization Technique

The additional RLT constraints we use in the context of bounds reduction are derived

from the work of Sherali and co-workers [75, 76, 77, 78]. For each (i, j) pair such

that ∃m ∈ {0, . . . , M} : Qm, i, j 6= 0, i.e., term xi · x j participates in MIQCQP, we add

the termwise convex hull to the FBBT scheme.

For each equation m ∈ {0, . . . , M} : Qm = 0∩ cm = 0, i.e., linear equations with

solely continuous variables, we consider product of m with the bounds on each con-

tinuous variable j. To reduce the complexity, we only augment the FBBT scheme

with products whose bilinear terms already actively participate in MIQCQP. Finally,

for each pair of equations m, n ∈ {0, . . . , M} : Qm = Qn = 0∩ cm = cn = 0, we add

products to FBBT when the products do not introduce any additional bilinear terms.

3.2.2 Edge-Concave Paradigm

The non-dominant facets of the edge-concave aggregations developed in Section

3.1.1 are very useful for bounds reduction. As a trivial example, consider function

f (xi) = −x2
i + xi ≤ −1 on domain [0.5, 2]. Following Observation 3.1.1.4, the pre-

processing step of our implementation identifies this as a sum decomposable but still

nonseparable term and aggregates the sum. A FBBT bounds tightening scheme with-

out the edge-concave paradigm would have allowed these bounds to persist, but per-

forming standard interval arithmetic on the edge-concave derived facet
[

−xL
i − xU

i +1
]

·
x+

[

2 · (xL
i + xU

i )−4
]

≤ −1 tightens the variable bounds from [0.5, 2] to [4/3, 2] to

[11/7, 2] and would eventually converge to [(1+
√

5)/2, 2] if we allowed the process

to continue beyond the volume improvement parameter 0.95.

3.3 Other Global Optimization Considerations

We have employed a number of typical algorithmic choices to implement our branch-

and-bound algorithm [3, 4, 6, 8, 16, 27, 82]. In addition to using FBBT at each node

of the branch-and-bound tree, we tighten the root node relaxation of MIQCQP us-

ing optimality-based bounds tightening (OBBT) with the same volume improvement

parameter 0.95 used for the FBBT scheme [53]. After the root node, OBBT contin-

ues as long as it significantly tightens nonlinearly participating variables. A parent

node deactivates OBBT in its children nodes once the volume representing the hy-

perrectangle of the variable bounds fails to fall by a factor of at least 0.95 [64]. OBBT

operates on the LP relaxation of MIQCQP rather than addressing any binary terms in

MIQCQP or using the tight piecewise-linear relaxations [6, 54].

We select an appropriate branching variable via reliability branching, a technique

that combines dynamic strong branching with a pseudocost heuristic to predict the

best branching variable [1, 16]. We do not branch on integer variables because our

MILP relaxations of MIQCQP are addressed directly using a MILP solver. In the
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notation of Achterberg et al. [1], we use reliability parameter ηREL = 8 and maxi-

mum number of simplex iterations γITER = 1000. We scale the pseudocosts with the

infeasibility of a variable (rb-inf in the analysis of Belotti et al. [16]) and continue

to update the pseudocosts even after they are deemed reliable. Although we gener-

ally find the advantage of exploring fewer branch-and-bound tree nodes worth the

computational expense of generating reliable pseudocosts, we reduce the reliability

parameter ηREL to ⌊ CPUMAX
100·CPUROOT

⌋ if the solution time for the root node of the branch-

and-bound tree takes a significant fraction of the total allotted CPU limit. When us-

ing the piecewise-linear relaxation schemes, we use a plain, maximum error-based

branching scheme that branches on the variable with the greatest difference between

the linear programming relaxation and the nonlinear representation (i.e., branch on

the variable with arg maxi ∑ j |zi, j −xi ·x j|). We branch at a convex combination of the

variable midpoint (λ = 0.15) and the solution to the MILP relaxation (1−λ = 0.85)
but require that the branching point be a minimum distance away from the variable

bounds (xL
i +0.10 · (xU

i − xL
i )≤ xBRANCH

i ≤ xU
i −0.10 · (xU

i − xL
i )).

We initialize our search for good upper bounds using feasible solutions to the

MILP relaxation of MIQCQP at every branch-and-bound tree node.

4 Computational Studies

4.1 Experimental Implementation

We performed our computational studies on a Linux workstation containing one Intel

Core 2 Quad processor with four 2.83 GHz cores. Our code base is written in C++ and

interfaces CPLEX 11.1 [43] for the MILP relaxations, SNOPT 5.3 [39] for the local

NLP solves, and LAPACK [7] for determining the facets of the edge-concave func-

tions and the eigenvectors and eigenvalues of each connected multiterm. Our code

is itself built as a library and linked to GAMS 23.6 [20] using the GAMS Modeling

Object (GMO) interface. The code linking our solver to GAMS is adapted from the

COIN-OR/GAMSLinks project [52, 87].

We ran each of the 43 computational experiments in GAMS 23.6 [20] under two

termination criteria: (1) an optimality gap ε = UB−LB
|LB| ≤ 1×10−6 = 1×10−4% and (2)

a 7200 CPU s time limit. We consider point packing problems [9], process network

problems [37, 62, 64], and other examples from GLOBALLib [37, 55]. Comparisons

between the algorithmic components are based on performance profiles first defined

by Dolan and Moré [25]:

tp,s ≡ Performance metric (e.g., CPU s) for problem p by technique s ∈ S

rp,s ≡
tp,s

min
{

tp,s′ : s′ ∈ S
}

∀ p ∈ P
; s ∈ S

ρs(τ) =
1

np

size
{

p ∈ P : rp,s ≤ τ
}

The plots in this paper, which diagram ρs(τ) as a function of τ , were generated using

the MATLAB performance profile implementation from http://www.mcs.anl.

gov/˜more/cops/perf.m.
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4.2 Test Cases

Point Packing: Using the notation of Anstreicher [9], we consider the point packing

problem of maximizing the separation distance between n points in the unit square:

min −θ

s.t. −(xi − x j)
2 − (yi − y j)

2 ≤−θ , 1 ≤ i < j ≤ n

xi+1 ≤ xi 1 ≤ i ≤ n−1

0 ≤ xi ≤ 1
2

1 ≤ i ≤ ⌈ n
2
⌉

x ∈ [0, 1]n ; y ∈ [0, 1]n

(PP)

By Observation 3.1.1.6, all of the equations in (PP) are sum decomposable. There-

fore, any computational distinction between using an edge-concave strategy or not is

based entirely on augmenting the FBBT scheme with the redundant equations as dis-

cussed in Section 3.2.2. Additionally, all of the connected multivariable terms in (PP)

are concave, so any partitioning scheme will be along the most negative eigenvector

(in this case, νT
i, j =

[

1/
√

2,−1/
√

2
]

).

Note that, because our MIQCQP methods do not automatically infer problem

symmetry, PP does not include the RLT-based cuts that Anstreicher [9] conjectures

to produce an LP relaxation as tight as the SDP relaxation. For PP(n), there are 2 ·n
continuous variables,

n·(n+1)
2

equations, 2 ·n concave quadratic terms, and n · (n−1)
nonconvex bilinear terms. We tested 14 instances (2 ≤ n ≤ 15) and checked the

correctness our computational results (shown in Tables 3 and 4) with the website

packomania.com/. Figures 1 and 3 diagram the results in Tables 3 and 4.

Process Networks: The test suite of twenty pooling problems comprises the stan-

dard and generalized instances from our previous work [64]. We additionally con-

sider three process networks examples from the GLOBALLib test library [37, 55].

By Property 3.1.3.1, the process network problems are sum decomposable and there-

fore using edge-concave strategies affects only the bounding scheme. Because the

connected multivariable terms in process networks problems are neither convex nor

concave, our algorithm selects variables to partition based on the co-occurrence graph

discussed in Section 3.1.8. Figure 2 diagrams the results in Tables 5 and 6.

Other GLOBALLib Problems: We consider six additional examples (camshape100,

camshape200, camshape400, dispatch, st iqpbk1, and st iqpbk1) from

GLOBALLib [55] with quadratic equations that are not sum decomposable. These

examples, which directly demonstrate the advantage of the edge-concave underesti-

mators, are characterized in Table 2. Table 2 also demonstrates the duality gap closed

at the root node by the edge-concave underestimators.

Each of the 37 process network and point packing test problems was run four times

with the following algorithmic choices:

McC Only: Equations (1) – (2) were used to relax MIQCQP. No edge-concave ag-

gregations or piecewise-linear relaxations were introduced (see Tables 3 and 5).

McC + EC: In addition to Equations (1) – (2), the dominant facets of the low-

dimensional aggregations EC-AGGTRIP identified via Observations 3.1.1.4 – 3.1.1.9

augmented each relaxation of MIQCQP. As described in Section 3.2.2, nondominant
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facets of edge-concave aggregations were integrated into the FBBT scheme (see Ta-

bles 3 and 5).

McC + EC + PW Lin N = 4: edge-concave aggregations were still used to generate

tighter relaxations and reduce variable bounds. We additionally employed piecewise

relaxations using the linear underestimation scheme rather than Equations (1) – (2)

(see Tables 4 and 6).

McC + EC + PW Log N = 4: These runs used the second logarithmic underestima-

tion scheme to piecewise relax the variables not participating in EC-AGGTRIP (see

Tables 4 and 6).

The piecewise strategies for the point packing problems were additionally con-

sidered for N = 2, 8. We graph the results of N = 2, 8 in Figures 1 and 3 to illustrate

the performance differences but do not tabulate the results for N = 2, 8 because they

are fairly similar to N = 4. The N = 4 parameter for process networks problems is

based on our previous studies [64].

Table 2: GLOBALLib Test Instances [55]

Problem

Name

# Cnt

Vars

#

Eqns

# Bln

Terms

Root Node Rlxn Glob

Opt.

Gap

Clsd
McC Only McC + EC

camshape100 200 201 198 -4.8321 -4.6583 -4.2842 0.32

camshape200 400 401 398 -4.9213 -4.8475 -4.2785 0.11

camshape400 800 801 798 -5.0645 -5.0243 -4.2757 0.06

dispatch 5 3 6 3153.30 3155.29 3155.29 1.00

st iqpbk1 9 8 36 -1298.96 -1204.63 -621.49 0.14

st iqpbk1 9 8 36 -2601.98 -2413.95 -1195.23 0.13

4.3 Discussion

To discuss the trade-offs of the edge-concave and piecewise-linear strategies, we have

integrated each of the strategies into a global optimization algorithm and compare

the strategies with the context of the entire global optimization process. This holistic

view makes the comparisons fairly subtle but also allows us to draw better-informed

conclusions.

The six instances from GLOBALLib [55] with non-sum decomposable multivari-

able terms are the most straightforward of the test cases to analyze. Table 2 compares

the gap closed at the root node relaxation of the McC and McC + EC strategies (ob-

serve that these root node relaxations do not correspond to naive application of the

underestimators described in this paper because of our extensive bounds tightening

strategies). Defining the gap closed as:
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(a) Performance Profile: CPU s (2 ≤ n ≤ 9) (b) Performance Profile: Optimality Gap at 7200

CPU s (10 ≤ n ≤ 15)

Fig. 1: Performance Profiles of Algorithmic Strategies for Point Packing [25].

(a) Performance Profile: CPU time (s) for the 23

process network problems

(b) Performance Profile: Optimality Gap at 7200

CPU s for meyer10, meyer15, ex5 2 5,

ex5 3 3

Fig. 2: Performance Profiles of Algorithmic Strategies for Process Networks [25].

Gap Closed ≡ RlxMcC+EC −RlxMcC

Global Opt−RlxMcC

,

notice in Table 2 that the edge-concave underestimators have added dominant cuts

into the LP relaxation. Observe from the results in Tables 3 and 5 that in the nine

test cases with at least a ten percent difference between McC and McC + EC, seven

give the advantage to using both McCormick and edge-concave strategies. Further,

note in Figure 1 that there is a significant performance distinction between McC

and McC + EC for the point packing problems. Because the equations in (PP) are

sum decomposable, this advantage must be exlusively based on the bounds tightening

strategy that appends cuts redundant in the LP relaxation to the FBBT scheme. Gen-

erating the facets of the low-dimensional aggregations and integrating them into the

FBBT scheme takes time (observe in Figure 3 that on average McC + EC explores
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Fig. 3: Nodes Explored (in 7200 CPU s) for Point Packing Problems (10 ≤ n ≤ 15).

The centered point for each choice diagrams the average number of nodes explored

and the error bars above and below the point each represent a standard deviation.

20% fewer nodes than McC), but Figure 1 demonstrates that additional complexity

at each node pays dividends. There is no particular advantage to the edge-concave

aggregations for the process networks problems, but there is no particular disadvan-

tage, either (see Table 5 and Figure 2). These results suggest that there is a consistent

advantage to using low-dimensional edge-concave strategies.

The analysis of the piecewise-linear relaxation schemes is more complex. A piece-

wise-linear relaxation that partitions 30 variables into 4 segments is equivalent to ex-

ploring level 90 of a global optimization tree with a pre-determined branching scheme

that has no associated bounding. The initial nodes of the branch-and-bound tree are

therefore significantly tighter than in a polyhedral underestimation scheme, but there

is a tradeoff between the solution time at each node and the number of nodes ex-

plored. This tradeoff is illustrated in Figure 3 where the average number of nodes

explored in the 7200 CPU s time limit is graphed for each of the relaxation schemes

for (PP). For the case of the point packing problems, taking this tradeoff is not advan-

tageous (see Figure 2), but using the piecewise-linear relaxation schemes increases

the probability that (1) the process networks problems will solve to global optimality

and (2) for the process networks that do not solve to global optimality, that the gap

remaining at the time limit will be significantly reduced (see Figure 2). When McC

or McC + EC are sufficient to solve the process network problem, they tend to do so

faster than the piecewise schemes, but the best strategies for closing the gap on the

most difficult problems are the piecewise methods.

Observe in Table 6 that our pooling problem-specific solver APOGEE [64] regu-

rally outperforms the more generic work presented here. APOGEE makes branching

and bounding decisions based on topological reasoning. APOGEE reduces the big-

M multipliers controlling the activation/deactivation of storage tanks and inter-node

connections in later nodes of the branch-and-bound global optimization tree as vari-

able bounds shrink. This generic MIQCQP solver does not have embedded knowl-

edge as to the special structure of the pooling problem.
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McC + EC + PW Lin N = 4 and McC + EC + PW Log N = 4 are more similar

to one another than McC and McC + EC, but of the 10 test instances where there

is at least a ten percent difference between the behavior of the two, eight give the

advantage to the linear scheme. These results corroborate the computational studies

of and Vielma et al. [85, 86] and our own previous work [64].

In summary, while we find strong evidence for the value of low-dimensional edge-

concave aggregations in any MIQCQP, the piecewise-linear underestimation scheme

is best applied to specific classes of MIQCQP (e.g., process networks problems with

many nonlinearly-participating variables).

5 Conclusion

We have presented an underestimation scheme for MIQCQP that is easily integrated

into a branch-and-bound global optimization algorithm. The facets of low-dimensional

(n ≤ 3) edge-concave aggregations dominating the termwise relaxation of MIQCQP

are introduced at every node of a branch-and-bound tree. These edge-concave ag-

gregations significantly improved the computational performance of our global op-

timization algorithm. The piecewise-linear relaxations, which were used to address

both concave multivariable terms and the more sparsely distributed quadratic and

bilinear terms that do not participate in edge-concave aggregations, solved the large-

scale process networks problems more reliably than the traditional relaxation and

closed a more significant fraction of the gap. Many of the MIQCQP instances ad-

dressed in this paper represent large-scale test cases.
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A Sharpness Proofs for Piecewise-Linear Underestimators with a Logarithmic

Number of Binary Variables

Property 3.1.6.2: The linear programming relaxation of Logarithmic Partitioning Scheme in 1 Equations

(5g) - (5j) is nondominated by the convex hull in Equations (1) – (2).

Proof: To prove that Equations (5g) - (5j) are nondominated by Equations (1) – (2), we relax λ ∈ {0, 1}NL

to λ ∈ [0, 1]NL and observe:

z ≥ x · yL +
NP

∑
nP=1

[

xL +a · (nP −1)
]

·∆y(nP)

(1)
= x · yL + xL · y− xL · yL +

NP

∑
nP=1

a · (nP −1) ·∆y(nP)
(2)
≥ x · yL + xL · y− xL · yL

(6a)

Equality (6a.1) holds because Equation (5f) implies that
NP

∑
nP=1

xL ·∆y(nP) = xL ·y−xL ·yL. Inequality (6a.2)

follows from a · (nP −1) ·∆y(nP)≥ 0 ∀ nP ∈ {1, . . . , NP}.

z ≥ x · yU +
NP

∑
nP=1

[

xL +a · nP

]

·
[

∆y(nP)− (yU − yL) · λ̂ (nP)
]

(1)
= x · yU + xU · y− xU · yU +

NP

∑
nP=1

a · (nP −NP) ·
[

∆y(nP)− (yU − yL) · λ̂ (nP)
]

(2)
≥ x · yU + xU · y− xU · yU

(6b)

Equality (6b.1) follows from the definition of a and Equations (5b) and (5f) because xL + a · nP = xU +

a · (nP −NP) and
NP

∑
nP=1

xU ·
[

∆y(nP)− (yU − yL) · λ̂ (nP)
]

= xU · y− xU · yU . Inequality (6b.2) follows from

inequality (5e) because a · (nP −NP) ·
[

∆y(nP)− (yU − yL) · λ̂ (nP)
]

≥ 0 ∀ nP ∈ {1, . . . , NP}.

z ≤ x · yL +
NP

∑
nP=1

[

xL +a · nP

]

·∆y(nP)

(1)
= x · yL + xU · y− xU · yL +

NP

∑
nP=1

a · (nP −NP) ·∆y(nP)
(2)
≤ x · yL + xU · y− xU · yL

(6c)

Equality (6c.1) holds by the definition of a and Equation (5f). Inequality (6c.2) follows from a · (nP −NP) ·
∆y(nP)≤ 0 ∀ nP ∈ {1, . . . , NP}.

z ≤ x · yU +
NP

∑
nP=1

[

xL +a · (nP −1)
]

·
[

∆y(nP)− (yU − yL) · λ̂ (nP)
]

(1)
= x · yU + xL · y− xL · yU +

NP

∑
nP=1

a · (nP −1) ·
[

∆y(nP)− (yU − yL) · λ̂ (nP)
]

(2)
≤ x · yU + xL · y− xL · yU

(6d)

Equality (6d.1) is a result of Equations (5b) and (5f). Inequality (6d.2) holds by Equation (5e). ⊓⊔
Property 3.1.6.3: The linear programming relaxation of Logarithmic Partitioning Scheme 2 in Equations

(7e) - (7h) is nondominated by the convex hull in Equations (1) – (2) when the number of partitions is a

power of two (i.e., NL = log2 NP = ⌈log2 NP⌉).

Logarithmic Partitioning Scheme 2 [64]:

xL +
NL

∑
nL=1

2NL−nL ·a ·λ (nL)≤ x ≤ xL +a+
NL

∑
nL=1

2NL−nL ·a ·λ (nL) (7a)

∆y(nL)≤ (yU − yL) ·λ (nL) ∀ nL ∈ {1, . . . , NL} (7b)

∆y(nL) = (y− yL)− s(nL) ∀ nL ∈ {1, . . . , NL} (7c)



Global Optimization of Mixed-Integer Quadratically-Constrained Quadratic Programs 31

s(nL)≤ (yU − yL) · (1−λ (nL)) ∀ nL ∈ {1, . . . , NL} (7d)

z ≥ x · yL + xL · (y− yL)+

[

NL

∑
nL=1

a ·2NL−nL ·∆y(nL)

]

(7e)

z ≥ x · yU +(xL +a) · (y− yU )+

[

NL

∑
nL=1

a ·2NL−nL ·
(

∆y(nL)−λ (nL) · (yU − yL)
)

]

(7f)

z ≤ x · yL +(xL +a) · (y− yL)+

[

NL

∑
nL=1

a ·2NL−nL ·∆y(nL)

]

(7g)

z ≤ x · yU + xL · (y− yU )+

[

NL

∑
nL=1

a ·2NL−nL ·
(

∆y(nL)−λ (nL) · (yU − yL)
)

]

(7h)

xL ≤ x ≤ xU ; yL ≤ y ≤ yU (7i)

Proof: To prove that Equations (7e) - (7h) are nondominated by Equations (1) – (2) for powers of two, we

relax λ ∈ {0, 1}NL to λ ∈ [0, 1]NL and observe:

z ≥ x · yL + xL · y− xL · yL +

[

a ·2NL−nL ·
NL

∑
nL=1

∆y(nL)

]

(1)
≥ x · yL + xL · y− xL · yL (8a)

Inequality (8a) results from the bounds of ∆y.

z ≥ x · yU +(xL +a) · (y− yU )+

[

NL

∑
nL=1

a ·2NL−nL ·
(

∆y(nL)−λ (nL) · (yU − yL)
)

]

(1)
= x · yU + xU · y− xU · yU +(xU − xL −a) · (yU − y)+

[

NL

∑
nL=1

a ·2NL−nL ·
(

y− yL − s(nL)−λ (nL) · (yU − yL)
)

]

(2)
≥ x · yU + xU · y− xU · yU +(xU − xL −a) · (yU − y)+

[

NL

∑
nL=1

a ·2NL−nL ·
(

y− yL − (1−λ (nL)) · (yU − yL)−λ (nL) · (yU − yL)
)

]

(3)
= x · yU + xU · y− xU · yU +(xU − xL −a) · (yU − y)+

[

NL

∑
nL=1

a ·2NL−nL ·
(

y− yU
)

]

(4)
= x · yU + xU · y− xU · yU

(8b)

Equality (8b.1) results from addition and subtraction of xU · (y−yL) and the definition of s(nL). Inequality

(8b.2) follows from Equation (7d) and Equality (8b.3) simplifies the expression. Assuming NP is a power

of two, Equality (8b.4) holds because xU − xL −a =
NL

∑
nL=1

a ·2NL−nL .

z ≤ x · yL +(xL +a) · (y− yL)+

[

NL

∑
nL=1

a ·2NL−nL ·∆y(nL)

]

(1)
= x · yL + xU · y− xU · yL − (xU − xL −a) · (y− yL)+

[

NL

∑
nL=1

a ·2NL−nL ·∆y(nL)

]

(2)
≤ x · yL + xU · y− xU · yL − (xU − xL −a) · (y− yL)+

[

NL

∑
nL=1

a ·2NL−nL · (y− yL)

]

(3)
= x · yL + xU · y− xU · yL

(8c)
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Equality (8c.1) results from addition and subtraction of xU · (y−yL). Inequality (8c.2) follows from Equa-

tion (7c). Equality (8c.3) holds because NP is a power of two.

z ≤ x · yU + xL · y− xL · yU +

[

NL

∑
nL=1

a ·2NL−nL ·
(

∆y(nL)−λ (nL) · (yU − yL)
)

]

(1)
≤ x · yU + xL · y− xL · yU

(8d)

Equality (8d.1) follows from Equation (7b). ⊓⊔
Although we have proven sharpness of Logarithmic Scheme 2 for powers of two, observe that Equali-

ties (8b.4) and (8c.3) are violated when log2 NP 6= ⌈log2 NP⌉. Therefore, we select Logarithmic Relaxation

Scheme 1 when the number of partitions is not a power of two. However, observe in Table 1 that Log-

arithmic Partitioning Scheme 2 is smaller than Logarithmic Partitioning Scheme 1, so we choose to use

the second scheme exclusively when the number of partitions is a power of two. Based on our previous

computational study on a test suite of pooling problems [64], the advantage of piecewise-linear relaxations

is fairly robust in the range NP = 3, 4, 5 and we therefore choose NP = 4 for the computations in this work

because of the complexity advantage in using the smaller Logarithmic Partitioning Scheme 2.

B Complexity of the Piecewise-Linear Underestimators

Observe in Table 7 that the additional complexity introduced by the piecewise-linear relaxations scales

with both the number of partitioned variables and the number of piecewise-relaxed bilinear terms. The

additional variables and constraints scaling with the number of piecewise-relaxed bilinear terms are un-

avoidable, but we reduce the complexity of the piecewise-linear underestimators by minimizing the number

of partitioned variables. Because the piecewise-linear relaxation formulations introduce binary variables

and linear constraints for each partitioned variable in MIQCQP, our goal of partitioning as few variables as

possible is similar to the objective of minimizing the number of complicating variables for a primal-dual

context [5, 19, 28, 34, 35, 36, 41, 89, 90].

Table 7: Additional variables and constraints for the relaxation of MIQCQP with

NVAR partitioned variables participating in NBIL bilinear terms

Contin Vars Bnry Vars Constraints

McC Hull NBIL – 4 ·NBIL

Lin Rlxn NBIL( NP +1) NVAR ·NP NBIL( NP +5)+NVAR · 3

Log Rlxn 1 NBIL(2 ·NP +1) NVAR ·NL NBIL( NP +5)+NVAR · (2 ·NL +3)
Log Rlxn 2† NBIL(2 ·NL +1) NVAR ·NL NBIL(3 ·NL +4)+NVAR · 2

† Applicable to powers of two (i.e., log2 NP = ⌈log2 NP⌉)

NL = ⌈log2 NP⌉; NBIL ≡ number of bilinear terms; NVAR ≡ number of partitioned variables




