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Highlights: 
 

 A stochastic global optimization framework for open pit mining complexes is 
developed. 

 The method simultaneously optimizes production schedules and 
downstream processes. 

 The modeling is flexible and may be applied to numerous types of mining 
complexes. 

 Three combinations of metaheuristics are tested using simulated annealing, 
particle swarm optimization and differential evolution. 

 An example demonstrates that the stochastic design is 6.6% higher than the 
deterministic and 22.6% higher than commercial software. 
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Global Optimization of Open Pit Mining Complexes

with Uncertainty

Ryan C. Goodfellowa,∗, Roussos Dimitrakopoulosa

aCOSMO Laboratory, 3450 University Street, FDA Bldg., Room 123A, Montreal, QC,

Canada, H3A 0E8

Abstract

Global optimization for mining complexes aims to generate a production

schedule for the various mines and processing streams that maximizes the

economic value of the enterprise as a whole. Aside from the large scale of

the optimization models, one of the major challenges associated with op-

timizing mining complexes is related to the blending and non-linear geo-

metallurgical interactions in the processing streams as materials are trans-

formed from bulk material to refined products. This work proposes a new

two-stage stochastic global optimization model for the production schedul-

ing of open pit mining complexes with uncertainty. Three combinations of

metaheuristics, including simulated annealing, particle swarm optimization

and differential evolution, are tested to assess the performance of the solver.

Experimental results for a copper-gold mining complex demonstrate that the

optimizer is capable of generating designs that reduce the risk of not meet-

ing production targets, have 6.6% higher expected net present value than the
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deterministic-equivalent design and 22.6% higher net present value than an

industry-standard deterministic mine planning software.

Keywords: open pit mine design, global optimization, production

scheduling, metaheuristics, destination policy

1. Introduction

Global optimization for mining complexes addresses the issue of inte-

grated mining and processing operations with multiple pits or underground

mines, multiple metals or minerals, stockpiles, blending options and alter-

native processing streams to yield distinct products [1, 2]. The primary

objective of a mining enterprise is to maximize the net present value (NPV)

of its cash flows [3, 4], which requires optimizing the long-term mine extrac-

tion sequences and the use of the materials that have been mined. Extraction

sequences define the inventories of raw materials produced from the mines.

Downstream optimization defines how to use the mining complex’s process-

ing streams to maximize the utility of the available materials, and addresses

both the destination policies (where to send material from the mines) and

processing stream decisions (where to send stockpiled or processed material).

Historically, these components have been optimized independently, leading

to sub-optimal solutions for the mining complex as a whole [5]. Many of the

existing attempts at global optimization ignore the compounded effect that

uncertainty (i.e., geological or economic) has on the value and operational

feasibility of the supply chain [6, 7]. As the complexity of the supply chain in-

creases, with respect to the number of mines, processing stream options and

methods of distribution, it becomes increasingly necessary to integrate all
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elements simultaneously while considering the uncertainty that arises within

the mining complex’s various components.

Recent work has focused on integrating geological, or supply, uncertainty

into open pit mine production scheduling optimization models. Ramazan

and Dimitrakopoulos [8] propose a two-stage stochastic integer program-

ming (SIP) formulation [9] that seeks to maximize the NPV of a produc-

tion schedule while minimizing the risk of not meeting production targets.

By using a risk discounting parameter, the optimizer aims to strike a bal-

ance between extracting high-value and low-risk material at the beginning

of a mine’s life, and deferring riskier material to later periods when more

information is available. The basic SIP model has been tested and improved

upon [10, 11, 12, 13, 14], and results consistently demonstrate that the NPV

of the production schedule that considers geological uncertainty can be sub-

stantially higher than that of a conventional schedule; this is a direct result

of managing the impact of risk to ensure production targets are attained

throughout the life of the business.

The previous formulations assume an a-priori decision of what is ore (valu-

able) and waste material, which is commonly referred to as a cut-off grade

policy [15, 16]. Some past research has attempted to integrate dynamic des-

tination decisions with long-term deterministic production scheduling by ex-

ploiting the structure of the linear optimization model [17, 18, 19, 20]. Boland

et al. [21] propose a multistage stochastic optimization model that decides

the destinations for each scenario; this is overly-optimistic because it assumes

perfect knowledge of the material that will be extracted and allocated to the

available processing streams. Other research efforts have investigated the use

3
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of scenario-independent cut-off grade destination policies [22] and scenario-

independent block destinations [23, 24]. Each of these methods has a severe

limitation. Cut-off grade policies are primarily useful for mining complexes

that treat a single metal and do not have material quality constraints in the

processing streams. Using scenario-independent block destinations leads to

misrepresenting the inherent operational flexibility to change block destina-

tions based on short-term grade control information. This results in material

misclassification, where waste is sent for processing. In order to provide a

useful destination policy for mining complexes in general, it is necessary to

develop new approaches to define destination policies under uncertainty.

One of the underlying challenges for globally optimizing mining com-

plexes is the inherent non-linearity related to the blending and stockpiling

of materials [25], as well as the transformations that occur when refining the

bulk input material into a set of output products. There have been several

attempts to optimize mining complexes [1, 2, 26, 27, 28, 29, 30, 31, 32, 33],

however all models ignore geological uncertainty, and are often limited in

the degree of flexibility in modeling the non-linear transformations in the

processing streams. Existing optimization approaches avoid non-linear and

non-additive geo-metallurgical interactions in the processing streams by pre-

processing economic values, recoveries and throughput rates (among other

attributes of interest) for each individual block. This assumes that each

block is processed independently of others, which is often an unrealistic as-

sumption for mining complexes that require blending and homogenization

prior to processing. To provide an alternative assessment of the economic

viability of the mining operation, it is necessary to explore new models that

4
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shift the focus from the economic value of the blocks that are mined to the

economic value of the products that are sold to customers, which ultimately

permits integrating non-linear processing transformations directly in the op-

timization model.

Metaheuristics provide a useful platform for global optimization because

of their ability to handle large-scale non-linear optimization models. There

has been an increased effort to adapt existing metaheuristics to the open pit

mine design and production scheduling problem [14, 24, 34, 35, 36, 37, 38,

39, 40, 41]. These methods have consistently demonstrated the ability to op-

timize large-scale mine production schedules in a reasonable amount of time,

however, most of these works have been limited by defining the destination

policy a priori, and only optimize single-tier processing stream configurations

(i.e., from the single mine to a final processor, without stockpiles, multiple

refinery options, ports or customers).

This work focuses on the global optimization of open pit mining complexes

with supply uncertainty, and addresses many limitations of previous work.

A new type of destination policy is proposed, which is useful for decision-

making under uncertainty and mining complexes with blending constraints

on secondary elements. Moreover, a new global optimization model is devel-

oped, which can be used to model multi-tier processing stream configurations

with non-linear transformations. In the following section, an overview of the

modeling approach is given. Subsequently, a novel two-stage SIP formulation

is proposed, where the first-stage decisions optimize the extraction sequence

and destination policies, and second-stage recourse decisions are used to opti-

mize the various processing streams of the supply chain. Following this, three
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metaheuristic solvers are discussed, which use a combination of simulated an-

nealing, particle swarm optimization and differential evolution. The solvers

are then tested and compared for a copper-gold mining complex. Finally,

conclusions and future work are presented.

2. Modeling Mining Complexes with Uncertainty

This section discusses a generalized modeling framework for mining com-

plexes with uncertainty. First, definitions for materials and related attributes

in the context of mining complexes with uncertainty are provided. Following

this, the decision variables that govern the extraction sequence, destination

policies and processing streams are discussed.

2.1. Materials, flow and attributes

In a mining complex, materials are products that are mined or generated

through blending or processing. Materials are considered to have unique

mineralogy or metallurgical attributes and, as a result, may only be sent to

a set of certain locations in a mining complex for further treatment. In order

to define the flow of materials from the sources (mines) to the final products

(refined metals), it is useful to describe a mining complex as a directed graph.

Let the graph G (N ,A) represent the flow of materials through the mining

complex. The set of nodes, N , is comprised of three disjoint subsets:

1. C: clusters of materials at the mines that have similar attributes (e.g.,

metal content). See Section 2.3 for a detailed description.

2. S: destinations that are able to stockpile material over time. The input

material is not treated or transformed at these nodes.

6



Page 8 of 53

Acc
ep

te
d 

M
an

us
cr

ip
t

3. P: destinations that process (transform) and send all output material

to the subsequent nodes, if available.

The set of directed arcs, A, defines the ability to send material from i ∈ N

to a subsequent destination j ∈ S ∪ P. Let O (i) represent the set of nodes

that receive material from node i, which is defined by the outgoing arcs in

A from node i. Additionally, let I (j) represent the set of nodes that send

materials to j, which is defined by the incoming arcs to node j in A. Let

T = {1, ..., T} describe the set of periods of time in which the mining complex

operates (e.g., months, years), where T represents the end of the life for the

mining complex. In order to simplify future notations, the general case where

destinations j are able to receive or produce multiple distinct materials (e.g.,

multiple concentrates to be sent to various smelters), or nodes i operating

in non-contiguous periods is not discussed. The model, however, may be

generalized to include these complexities.

Attributes are used to quantify information of interest in the optimization

model, such as metal quantities and costs. Uncertainty in the attributes may

be quantified using a set of joint scenarios S = {1, ..., S}, where a scenario

defines a realization, or sampling, from all sources of uncertainty. Attributes

are categorized into two classes:

1. Primary attributes (p ∈ P): fundamental variables of interest to the

entire model (e.g., metal and total tonnages) that are sent from node

i ∈ N to a node j ∈ O (i). The quantity of the attribute is denoted by

vp,i,t,s ∀i ∈ S ∪ P ∪M, t ∈ T, s ∈ S. These often originate at the mines

(M), and may flow through the mining complex to the final products.

The amount of attribute recovered after treatment is denoted by rp,i,t,s.

7
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2. Hereditary attributes (h ∈ H): information that is relevant to the

optimization model, but is not necessarily passed from node i to j

(e.g., feed material chemistry, processing costs, throughput rates, en-

ergy consumption and revenues from sales). These attributes may be

expressed as (non-) linear functions, fh,i (vp,i,t,s), of the primary at-

tributes p ∈ P. The quantity of a hereditary attribute is denoted by

vh,i,t,s ∀i ∈ S ∪ P ∪M, t ∈ T, s ∈ S.

2.2. Mine extraction sequencing

Mines are the suppliers of bulk materials to the mining complex, and are

represented by the set M. Each mine m ∈ M is discretized into volumes of

material called blocks, Bm. To quantify the geological uncertainty for both the

materials and attributes, it is assumed that each block b ∈ Bm has a simulated

material classification and simulated attributes, βp,b,s ∀p ∈ P, s ∈ S. Fig. 1

shows a cross-section of two stochastic simulations of a real-world copper-

gold deposit used in the case study (Section 4). It is noted that there are

large differences in the material classifications and copper grades for the same

block between the two simulations.

The extraction sequence is determined by the decision variables xb,t ∈

{0, 1}, which define whether (1) or not (0) block b ∈ Bm is extracted in

period t ∈ T. In order to safely extract a block b ∈ Bm, it is necessary to

uncover b by extracting a set of overlying blocks, Ob, in their entirety. The

overlying blocks may be identified for each block b in a preprocessing step by

creating an inverted cone from the center of b and verifying which blocks lie

inside the cone. In more complex cases, there may be multiple geotechnical

zones in a deposit, each requiring variable slope angles for the North, East,

8
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Simulated Material Types Simulated Copper Grades

Material Code0 7 Copper Grade0% 1%

Figure 1: Example of a cross-section showing a comparison of simulated material types

and copper grades for the copper-gold mine used in the case study.

South and West walls. Fig. 2 gives a 2D example of how the overlying blocks

are defined with variable slope angles. For a more detailed description of the

3D preprocessing algorithm, the reader is referred to Khalokakaie et al. [42].

+ Elevation

+ East

Block b Overlying blocks �b

α1 α2

Figure 2: 2D example of blocks that must be uncovered (Ob) prior to extracting block b.

Note that variable slope angles are defined for the East-facing (α1) and West-facing (α2)

walls.

9
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2.3. Destination policies

In this work, each material from the mines is decomposed into sub-groups

based on attributes with similar quantities (e.g., valuable or deleterious metal

content). A destination policy outlines where each sub-group of material is

sent for all scenarios. A similar concept is introduced by Menabde et al. [22],

who separate the univariate distribution of the metal content (grades) into

“bins” (i.e., categories based on ranges of metal content), and create a time-

varied cut-off grade policy based on the bins (Fig. 3A). Rather than looking

at the individual blocks in the mine [21, 23, 24], the optimizer requires sub-

stantially fewer decision variables because it focuses on the distribution of

grades. In the more general case proposed herein, the sub-groupings of ma-

terials, called clusters, may be created on multivariate distributions, which

permit a higher degree of flexibility when defining the policies (Fig. 3B).

In both cases, the destination of a single block may change between simula-

tions, depending on the simulated attributes. The general method, however,

addresses many of the limitations of cut-off grade destination policies be-

cause it is able to consider the impacts of deleterious elements, blending and

stockpiling on the performance of the value chain.

In order to define destination policies, it is necessary to classify the sim-

ulated blocks into clusters, C ⊂ N . The k-means++ clustering algorithm

[43, 44] is a useful method for grouping information with similar attributes.

The algorithm first creates a predetermined number of cluster centroids for

each mine and material based on the simulated attributes. For a given sce-

nario, a block’s cluster membership is determined by the closest centroid,

measured using a Euclidean distance from the block’s simulated attributes

10
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Figure 3: (A) Simulated univariate copper distributions with a cut-off grade policy defined

using bins. (B) Destination policies using clusters, where the points represent a block’s

simulated copper and gold attributes.

to the centroid’s multivariate attributes. This cluster membership is subject

to change for a block, given that the material classification and attributes

may vary between simulations. Let θb,c,s represent the preprocessed param-

eter that defines whether (1) or not (0) block b ∈ Bm is a member of cluster

c ∈ C in scenario s ∈ S. The destination policies are determined using the

variable zc,j,t ∈ {0, 1}, which represents the decision of whether (1) or not (0)

cluster c ∈ C is sent to destination j ∈ O (c) in period t. It is noted that the

set of candidate destinations, O (c), is determined by the type of material

that the cluster belongs to.

2.4. Processing and stockpiling decisions

The destination policy variables described in Section 2.3 define where

to send material after it is mined. Depending on the configuration of the

processing streams for a given mining complex, it may be necessary to model

the transfer of materials between two locations. Processing stream decision

variables, yi,j,t,s ∈ [0, 1], define the proportion of an output material sent

11
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from i ∈ S ∪ P to destination j ∈ O (i) in period t ∈ T and scenario

s ∈ S. It is noted that, unlike the extraction sequence and destination

policies, these decisions are designed to be adaptive to uncertainty; after the

material is received at the initial destination and the uncertainty is revealed,

it is assumed that the mining complex can adapt appropriately. Given that

the primary attributes of interest are assumed to be linear and additive, the

recovered quantity of the primary attribute sent from destination i ∈ S ∪ P

to j ∈ O (i) is calculated using yi,j,t,s · vp,i,t,s · rp,i,t,s.

3. Optimizing Mining Complexes

3.1. Generalized two-stage stochastic optimization model

Similar to existing deterministic models in long-term production plan-

ning, the primary objective is to maximize the NPV [1, 3, 4, 26]. To introduce

risk management as a critical objective, the proposed mathematical formula-

tion is based on existing two-stage stochastic integer programming [9] models

developed for mine planning [8, 10, 11, 13]. The proposed model discussed

herein, however, differs substantially from existing SIP formulations because

it is generalized to optimize all aspects of the mining complex holistically.

Both the long-term extraction sequence and destination policies are defined

as first-stage decision variables, which are designed to be robust to the fluc-

tuations that arise from the uncertainty of geological attributes. Recourse

(second-stage) variables are used to adapt to the first-stage decisions, which

include the processing stream variables and penalties for excessive risk or

inability to meet specified targets.

To determine discounted revenues and expenses, any attribute in the

12
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mining complex may be directly included in the objective function with an

associated discounted value, ph,i,t = ph,i,1/ (1 + d)t, where d is a discount rate.

Deviation variables, d+h,i,t and d−h,i,t, are penalized using their related penalty

costs, c+h,i,t and c−h,i,t, respectively. Similar to a discount rate used to calculate

the NPV, these penalty costs are be defined to be monotonically decreasing

with respect to time, i.e., c+h,i,t = c+h,i,1/ (1 + rd)t. This phenomenon, referred

herein as risk discounting, attempts to defer riskier material to later periods

in the mine life. The risk discount rate, rd, is a parameter that may be used

to describe the modeler’s desire to balance the ability to meet production

targets in the short- and long-terms. The penalty costs relate to the will-

ingness to pay for a unit of deviation from a capacity constraint, or may

be determined experimentally by running the optimization model multiple

times to obtain a desirable risk profile for all of the constraints of interest

[12]. The general global optimization formulation for open pit mining com-

plexes is defined as follows:

Objective:

max
1

|S|

∑

i∈S∪P∪M

∑

t∈T

∑

h∈H

∑

s∈S

ph,i,t · vh,i,t,s

︸ ︷︷ ︸

Discounted revenues and costs

−
1

|S|

∑

i∈S∪P∪M

∑

t∈T

∑

h∈H

∑

s∈S

(
c+h,i,t · d

+
h,i,t,s + c−h,i,t · d

−
h,i,t,s

)

︸ ︷︷ ︸

Risk-discounted penalties for deviations

(1)

Subject to:

I. Capacity constraints are used to calculate the value of the hereditary

attributes and evaluate the surplus or shortage from an upper- (Uh,i,t) or

13
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lower-bound (Lh,i,t) at the various locations in the mining complex. Examples

of typical constraints may include, but are not limited to, mine production

capacity, stockpile capacity, processing hours and grade blending constraints.

vh,i,t,s = fh,i (vp,i,t,s) ∀h ∈ H, i ∈ S ∪ P ∪M, t ∈ T, s ∈ S (2)

vh,i,t,s − d+h,i,t,s ≤ Uh,i,t ∀h ∈ H, i ∈ S ∪ P ∪M, t ∈ T, s ∈ S (3)

vh,i,t,s + d−h,i,t,s ≥ Lh,i,t ∀h ∈ H, i ∈ S ∪ P ∪M, t ∈ T, s ∈ S (4)

II. Reserve and block access constraints ensure a block is extracted at

most once, and that the overlying blocks have also been extracted.

∑

t∈T

xb,t ≤ 1 ∀b ∈ Bm (5)

xb,t ≤
t∑

t′=1

xu,t′ ∀b ∈ Bm, u ∈ Ob, t ∈ T (6)

III. Destination policy constraints calculate the quantities of the primary

attributes for each cluster from the blocks, and ensure that a cluster is sent

to only one destination in the mining complex.

γp,c,t,s =
∑

b∈Bm

θb,c,s · βp,b,s · xb,t ∀m ∈M, p ∈ P, c ∈ C, s ∈ S (7)

∑

j∈O(c)

zc,j,t = 1 ∀c ∈ C, t ∈ T (8)

IV.Mine extraction constraints are used to determine the quantities of the

primary attributes that are extracted from each mine (e.g., annual tonnage).

vp,m,t,s =
∑

b∈Bm

βp,b,s · xb,t ∀m ∈M, p ∈ P, t ∈ T, s ∈ S (9)

14
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V. Processing stream flow constraints calculate the quantity of the pri-

mary attributes that are retained or received at each location, and ensure

mass balancing for materials sent from the stockpiles and processors to sub-

sequent destinations in the mining complex.

vp,j,(t+1),s =
∑

i∈(I(j)\C)

rp,i,t,s · vp,i,t,s · yi,j,t,s +
∑

c∈(I(j)∩C)

γp,c,(t+1),s · zc,j,(t+1)

+vp,j,t,s ·



1−
∑

k∈O(j)

yj,k,t,s



 ∀p ∈ P, j ∈ S ∪ P, t ∈ T, s ∈ S (10)

rp,i,t,s = 1 ∀p ∈ P, i ∈ S, t ∈ T, s ∈ S (11)

rp,i,t,s = fh,i (vp,i,t,s) ∀p ∈ P, i ∈ P, t ∈ T, s ∈ S (12)

∑

j∈O(i)

yi,j,t,s ≤ 1 ∀i ∈ S, t ∈ T, s ∈ S (13)

∑

j∈O(i)

yi,j,t,s = 1 ∀i ∈ P, t ∈ T, s ∈ S (14)

VI. End-of-year stockpile quantities are used to calculate the quantities

of materials that remain in the stockpile at the end of the production period.

vh,i,t,s = vp,i,t,s ·



1−
∑

j∈O(i)

yi,j,t,s



 ∀i ∈ S, t ∈ T, s ∈ S (15)

VII. Binary constraints for the extraction sequence (xb,t) enure that blocks

are not partially mined in any given period. Binary constraints for the desti-

nation policies variables (zc,j,t) ensure that a cluster c is only sent to a single

destination j ∈ O (c) in period t.

xb,t ∈ {0, 1} ∀b ∈ Bm, t ∈ T (16)

15
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zc,j,t ∈ {0, 1} ∀c ∈ C, j ∈ O (c) , t ∈ T (17)

VIII. Other variable definitions

γp,c,t,s ∈ R ∀p ∈ P, c ∈ C, t ∈ T, s ∈ S (18)

yi,j,t,s ∈ [0, 1] ∀i ∈ S ∪ P, j ∈ O (i) , t ∈ T, s ∈ S (19)

rp,i,t,s ∈ [0, 1] ∀p ∈ Bm, i ∈ S ∪ P, t ∈ T, s ∈ S (20)

vp,i,t,s ∈ R ∀p ∈ P, i ∈ S ∪ P ∪M, t ∈ T, s ∈ S (21)

vh,i,t,s ∈ R ∀h ∈ H, i ∈ S ∪ P ∪M, t ∈ T, s ∈ S (22)

d+h,i,t,s, d
−
h,i,t,s ≥ 0 ∀h ∈ H, i ∈ S ∪ P, t ∈ T, s ∈ S (23)

3.2. Optimization using metaheuristics

The generalized global optimization formulation can be challenging to

solve using conventional mathematical programming methods, particularly

when the models include non-linear functions. Metaheuristics are algorithms

that are useful for such cases because they do not require linear formulations

or a special structure in the optimization problem. Metaheuristics do not

guarantee a mathematically optimal solution, but have provided useful solu-

tions for mining-related problems [14, 24, 34, 36, 37, 38, 39, 40, 41, 45, 46].

These models and solution methods, however, have not been extended to the

global optimization of mining complexes.

Simulated annealing [47, 48, 49] is selected as a base algorithm for com-

parison purposes because of previous success using the method for extrac-

tion sequencing [24, 34, 37, 38]. While simulated annealing is often used for

discrete optimization problems, the algorithm has been adapted to accom-

modate the continuous processing stream decision variables (yi,j,t,s) [50, 51].
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One of the primary concerns with applying a single metaheuristic is the pos-

sibility of getting trapped in local optima, particularly in the context of a

mining complex with three distinct sets of decision variables that are inter-

related. The ability to optimize both discrete and continuous variables is

an important feature when selecting metaheuristics for the model at hand.

Both particle swarm optimization (PSO) [52, 53] and differential evolution

(DE) [54, 55] are known for their ability to optimize mixed integer non-linear

optimization models, without the need for complex encoding and decoding

schemes.

PSO has been used for mine extraction sequencing [39] by encoding the

extraction sequence as a two-dimensional surface. The decision variables re-

late to the depth mined at an (x, y) coordinate pair (column) in a given period

[36, 41]. While this encoding scheme is particularly suitable for population-

based metaheuristics, initial tests for the proposed global optimization model

using purely PSO or DE indicate that the method is sensitive to the initial

sequences and destination policies generated for the population. Addition-

ally, these methods require a substantial computational effort in order to

normalize the extraction sequence and enforce the slope constraints (Eq.

(6)). These methods, however, remain appealing, particularly for optimiz-

ing the destination policies and processing streams (i.e., downstream opti-

mization), given that they simultaneously modify both sets of interrelated

decision variables. To assess the performance of the basic simulated anneal-

ing (SA) algorithm, two additional variants are tested: simulated annealing

with downstream particle swarm optimization (SA-D-PSO), and simulated

annealing with downstream differential evolution (SA-D-DE). Algorithm 1
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(see Appendix) provides an overview of the global optimization metaheuris-

tic developed. Computational results for a copper-gold mining complex are

discussed in Section 4.2.

A solution vector, Φ = {x, z,y}, is used to store all decision variables.

The extraction sequence vector (x) stores an encoded version of all xb,t vari-

ables, where a discrete-valued element xb ∈ x represents the extraction period

of block b ∈ Bm, and may take on any value in T∪{T +1}, where an extrac-

tion period of T + 1 inidcates that the block is not mined. The destination

policy vector (z) stores an encoded version of the zc,j,t variables, where each

element zc,t ∈ z represents the encoded destination for cluster c ∈ C in period

t ∈ T, and may be in the range [1, ..., |O (c) |]. A decoding scheme is used

to convert the value to the appropriate destination for the cluster. Finally,

the processing stream vector (y) stores all yi,j,t,s variables, where each ele-

ment y ∈ y maps directly to a yi,j,t,s variable, and may lie in the range [0, 1].

To initialize the algorithm, an initial sequence (x) may be used, or may be

initialized with all blocks un-mined; the destination policies and processing

stream variables are randomly generated within their bounds.

It is noted that Equations (3) and (4) are inherently modeled as soft con-

straints in the original mathematical formulation; in these cases, deviations

from the capacity constraints are penalized in the objective function. While

other deterministic models solved with metaheuristics [36, 39, 41] treat penal-

ties as a tool to eliminate constraint violations, penalties are used as a tool

to manage the distribution of risk through time in the stochastic approach

[8, 10, 11, 12, 13, 14]. The slope constraints in Eq. (6) are guaranteed during

the perturbation mechanism of the algorithm [37], and the reserve constraints
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in Eq. (5) are guaranteed through the encoding scheme (x). Similarly, the

single-destination constraints in Eq. (8) are inherent in the encoding scheme

(z). Finally, the processing stream proportion constraints from Eq. (13) and

Eq. (14) are guaranteed by normalizing the values after the optimizer makes

any changes. It follows that all other constraints are automatically feasible

because they are simply calculations derived from other variables.

The basic algorithm uses a modified SA algorithm (Algorithm 2) to im-

prove the global best solution vector, Φg. Three classes of perturbations

(solution changes) are considered during annealing:

1. Extraction sequence perturbations (x ∈ Φ): a block is randomly se-

lected, and its mining period is changed (possibly to not being mined

at all). Blocks that would violate the slope constraints as a result of

this change are also considered [37].

2. Destination policy perturbations (z ∈ Φ): a cluster destination decision

variable is randomly selected and sent to a different destination, if

possible.

3. Processing stream perturbations (y ∈ Φ): a processing stream variable

is randomly selected and the value is modified using a random normal

number, N (yi,j,t,s, 0.1). Note that the variance of the normal distribu-

tion is sufficiently small to permit both local and global exploration.

All processing stream variables are then normalized to respect Eq. (13)

and Eq. (14).

The perturbation mechanism is outlined in Algorithm 3. Two parame-

ters, probseq and probdest, are used to determine the probability of selecting a
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sequencing, destination policy perturbation or processing stream perturba-

tion. The probability of accepting a perturbation of the solution vector for

a maximization problem is based on the following distribution:

P (g (Φ) , g (Φ′) , δ) =







1 if g (Φ′) ≥ g (Φ)

exp (− |g (Φ′)− g (Φ)| /δ) otherwise
(24)

where g (Φ) and g (Φ′) are the objective function values before and after

the perturbation, respectively, and δ is the annealing temperature. As the

algorithm progresses, the temperature is gradually reduced until only minor

changes are accepted. This is often controlled by the initial temperature

at the start of the algorithm, δ (0), the cooling schedule, which is defined

by a reduction factor, k ∈ [0, 1), and a number of iterations before the

reduction factor is applied, niter. Fig. 4 shows a comparison of the cumulative

distributions between the changes in objective function values (g (Φ)−g (Φ′))

for non-improving perturbations for the three neighborhoods. When using a

single temperature in the classic SA algorithm, for a very large temperature,

the optimizer may limit the number of sub-optimal changes in the destination

policy, but will likely accept all extraction sequence and processing stream

changes. As the temperature decreases, it becomes more likely that only

non-improving processing stream changes are accepted. This behavior is not

desirable, given that the neighborhoods are strongly related.

In the proposed modified SA algorithm, the cumulative probability dis-

tributions (cdfseq, cdfdest and cdfproc), shown in Fig. 4, are constructed by

proposing random perturbations to the solution. Rather than using a sin-

gle temperature, δ, for the neighborhoods in Eq. (24), the optimizer uses

a single parameter, ρ ∈ [0, 1], which represents a probability of accepting a
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Figure 4: Example of cumulative probability distributions of objective function changes

for perturbations that do not improve the solution quality.

non-improving perturbation. For a fixed ρ, the correct temperature variable

δ is retrieved from the appropriate cumulative probability distribution using

a look-up function (cdf−1
seq (ρ), cdf

−1
dest (ρ) or cdf

−1
proc (ρ)). The cooling schedule

(k, niter) is then applied to ρ, rather than δ. As the algorithm progresses,

the information garnered from any new proposed non-improving perturba-

tions is used as feedback to update the cumulative distributions; this better

reflects the current search space, rather than the search space when the SA

algorithm commenced.

In the global optimization algorithm (Algorithm 1), once SA is complete,

the acceptance probability ρ is reset to its initial value, and the algorithm is

re-started from the global best solution Φg. This diversification strategy is

repeated until no improvement is found. In order to assess the performance

of the basic SA algorithm, two variations (PSO and DE) are proposed to

improve the solution of the downstream variables (z,y ∈ Φg) prior to di-
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versifying with annealing. An outline of the downstream optimization is

provided in Algorithm 4. Both PSO and DE are population-based meta-

heuristics that employ unique approaches to modify existing solutions. Both

approaches require defining the size of the population, NP , as a parameter.

In PSO, a member of the population (particle) is comprised of three

equally-sized vectors: its solution vector, Φq, its best solution vector, Φbest
q ,

and its velocity vector, vq. Initially, the vectors Φq and vq are randomly

generated. To maintain a high-quality solution in the swarm and reduce

the chance of premature convergence, the last particle’s best vector, Φbest
NP , is

initialized to the global best solution previously found from annealing (Φg).

Algorithm 5 provides an outline of how the particle’s vectors are updated.

The key parameters that need to be calibrated for PSO are c1, c2 and c3,

which represent the weights for the particle’s inertia, its best solution and

the local-best solution, respectively. It is noted that in this algorithm, a local-

best ring topology [56] using the nearest NP local particles on either side of

particle q is used. The local-best solution, Φbest
lbest, represents the best solution

of the particles with adjacent indices, i.e.,
{
q −NP local, q +NP local

}
, and is

determined experimentally to delay swarm convergence.

The DE algorithm operates similar to the PSO algorithm. The population

is represented by a set of agents. Algorithm 6 provides an outline of how an

agent’s solution vector is modified. In order to update an agent q, three other

agents (a, b and c) are randomly selected from the population. An agent’s

best solution vector, Φbest
q , is modified by randomly selecting variables to be

crossed over with agent a and a weighted difference between agents b and

c. While there are several types of variations that may be used to modify
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the solution [57, 58], it has been determined experimentally that a simple

modification structure provides adequate results. This algorithm requires

calibrating two parameters: CR, a cross-over ratio that defines a probability

for modifying a decision variable, and F , a parameter that defines the weight

applied to a difference between the two solution vectors, b and c. Unlike

PSO, DE only modifies a proportion of the decision variables for each agent

in each iteration; it has been found through testing that this helps to prevent

the population from converging prematurely.

4. Case Study – Application at a Copper-Gold Mining Complex

The proposed integrated mine planning optimization framework is demon-

strated on a real-world copper-gold mining complex.

4.1. Overview of the mining complex

In the given case study, a single mine supplies materials to a mining

complex that produces gold and copper. Fig. 5 summarizes the definition

of the mine’s materials and the processing options. The mine contains three

main material groups: sulfides, transition and oxides. In order to respect

the chemistry requirements at the sulfide heap leach (processor), the sulfide

and transition material groups are both separated into two different material

types based on being above or below 0.2% copper. The oxide materials

are classified as ore or waste based on chemistry. The deposit’s uncertainty

is represented by a set of 25 equally probable geological simulations with

variable copper, gold, tonnages and material types.

With the exception of the oxide waste dump, all destinations (processors)

have variable grade-recovery curves that are based on the average grade of
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Figure 5: Definition of material types at the copper-gold mine, along with the various

destinations.

the incoming material at a process in a given period (Fig. 6). The non-linear

grade-recovery relationships have interesting implications when considering

the transition materials: for a given block or cluster that has (hypothetically)

similar economic values for two processing options, the selected destination

is the one that profits the most from an increase in recovery. As a result,

one cannot assume that the destinations can be specified a-priori in a greedy

manner because it is the recovery of the aggregated material sent to a given

processor that determines the potential value. For this reason, the model

never considers the economic value of a block; the economic values are eval-

uated using only the recovered copper and gold at the processors (mill and

leach pads).

The objective for the optimizer is to maximize the NPV of the mining

complex, which considers the sale of copper and gold from each of the desti-
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Figure 6: Grade-recovery curves for copper (left) and gold (right) at each of the processors.

nations, along with the processing and mining costs. All cost-related param-

eters in Table 1 are expressed relative to the mining cost for confidentiality

purposes. Table 2 summarizes the constraints and penalty costs used for the

deterministic and stochastic optimization models. A risk discount rate [8] of

10% is used to penalize the deviations from the production capacities, and

ensures that riskier material is deferred to later periods when more geological

information is available. The mine model contains 34 057 blocks that may

be scheduled over 22 years, and a slope angle of 45◦ is used [42].

4.2. Deterministic optimization and risk analysis

A deterministic orebody model is created by averaging the grades in the

given simulations and re-classifying the material types in the same manner

that the simulations are classified. This model is herein referred to as the

“E-type orebody model” [59]. A base-case design is first obtained using the

E-type orebody model and an industry-standard commercial mine planning

software package. The results from optimizing the deterministic model with

the proposed optimizer will be referred to as the “deterministic-equivalent”
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tTable 1: Economic parameters used in the model.

Parameter Value

Mining cost* $1.00/t

Sulfide mill cost* $11.30/t

Sulfide heap leach cost* $2.98/t

Sulfide dump leach cost* $1.87/t

Transition heap leach cost* $2.15/t

Oxide heap leach cost* $2.06/t

Copper price $2.88/lb

Gold price $1480/oz

Economic discount rate (d) 7%

Risk discount rate (rd) 10%
* For confidentiality reasons, all costs are ex-

pressed relative to the mining cost.

Table 2: Lower and upper bounds (Lh,i,1 and Uh,i,1) and respective penalty costs (c−h,i,1

and c
+

h,i,1) used in the deterministic and stochastic optimization models.

Description of constraint (Mtpa) Lower, Upper Bounds (*106) Penalty ($/tonne)

Mine capacity -, 25.0 -, 10

Stockpile capacity -, 1.0 -, 20

Sulfide mill capacity 2.8 a,b, 3.0 50, 50

Sulfide heap leach capacity 7.8 a,b, 8.0 10, 25
a Lower-bounds are not enforced for the deterministic model.

b Lower-bounds are removed from periods 11-22.
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design. For the deterministic-equivalent model, each material is clustered

into 15 groups, with the exception of the oxide waste material, which only

considers one. As a result, there are 1 672 encoded destination policy vari-

ables (z), along with 34 057 encoded block extraction decisions (x) and 22

stockpile processing stream variables (y).

Table 3 summarizes the parameters used for the simulated annealing, par-

ticle swarm optimization and differential evolution algorithms. It is noted

that in the first iteration of SA (igopt = 0, Algorithm 1), a different set of

parameters is used to compensate for the large number of new blocks that

are introduced into the extraction sequence. Table 4 shows a comparison of

the SA, SA-D-PSO and SA-D-DE algorithms, where 10 trials are performed

for each method. All trials are run on Amazon’s EC2 c4.8xlarge virtual

machines with 36 virtual CPUs (Intel Xeon E5-2666 v3) and 60 GB RAM.

Each trial is initialized without the use of an initial extraction sequence

(i.e., all xb,t = 0), and the downstream solution vectors (z and y) have

been randomly generated. It is apparent that the SA-D-PSO and SA-D-DE

algorithms consistently outperform the algorithm that only uses simulated

annealing, with an average increase in net present value (NPV) of 1.91%

and 2.57%, respectively. It is noted that the final solutions do not contain

capacity constraint violations, thus the NPV is analogous to the objective

function value. These slight improvements, however, come with a drastically

longer computing time. On average, it takes over 2.4 and 2.9 times longer

to run the SA-D-PSO and SA-D-DE algorithms, respectively, than the basic

SA algorithm. The basic SA algorithm converges after an average of 14.7 di-

versifications. When SA is combined with another metaheuristic to optimize
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the downstream variables, the number of diversification iterations increases.

Despite the SA-D-DE algorithm having a smaller initial population than SA-

D-PSO (16 agents versus 30 particles), the average run time is higher due to

the fact that more diversifications are performed, and the SA algorithm re-

quires more iterations to catch up and improve upon the global best solution

after optimizing with DE.

Fig. 7 (left) shows a comparison for the sulfide mill, the sulfide heap

leach and the cumulative discounted cash flows for the commercial and

deterministic-equivalent extraction sequences. It is noted that the deterministic-

equivalent solution generates a 13.8% higher NPV than the solution gen-

erated by the commercial mine planning tool, and the life of the mine is

extended by a year. This drastic increase is largely a result of the global

optimization approach, whereby the production schedule, destination pol-

icy and stockpiles are optimized simultaneously, rather than the commercial

approach, which relies on an iterative approximation (ultimate pit limit and

phase design definition prior to scheduling) and heuristics in order to provide

a production schedule.

A risk analysis is performed by taking the schedule and destination poli-

cies generated from the deterministic optimizer and testing how the 25 ge-

ological simulations perform. It is noted that the extraction sequence and

destination policies remain fixed, however, the stockpile variables (y) are op-

timized for each scenario using the DE algorithm. Fig. 7 (left) also provides

the risk profiles, which are defined by the exceedance probabilities for 10%,

50% and 90% (P90, P50, P10, respectively) of the simulations’ responses to

the deterministic-equivalent design. The simulations indicate that the deter-
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rameters used for both the deterministic and stochastic optimization trials.

Parameter Value

Initial annealing acceptance probability (ρ) 0.4∗, 0.3

Cooling factor (k) 0.99

Cooling iterations (niter) 600

Perturbation probability - extraction sequence (probseq) 0.3∗, 0.5

Perturbation probability - destination policy (probdest) 0.6∗, 0.4

Annealing global best updates before diversification (igbu) 2 000

Total annealing iterations before diversification (itotal) 500 000

Number of particles (NP ) 30

Number of particles in neighborhood (NP local) ± 1

Particle inertia (c1) 0.9

Particle best inertia (c2) 0.8

Local best inertia (c3) 0.6

Population convergence criteria (pcc) 0.0025

Maximum number of iterations (itotal) 2 500

Number of agents (NA) 16

Cross-over ratio (CR) 0.2

Weighting factor (F ) 0.8

Population convergence criteria (pcc) 0.0025

Maximum number of iterations (itotal) 2 500
* Parameters used for the first SA iteration to compensate for a large number of blocks

introduced into the extraction sequence.
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Table 4: Performance comparisons for deterministic optimization using the simulated

annealing (SA), simulated annealing with downstream particle swarm optimization (SA-

D-PSO) and simulated annealing with downstream differential evolution (SA-D-DE) al-

gorithms.

Parameter SA SA-D-PSO SA-D-DE

Number of trials 10 10 10

Minimum relative NPV* 1.085 1.105 1.104

Average relative NPV* 1.094 1.115 1.122

Maximum relative NPV* 1.104 1.123 1.138

Relative NPV standard deviation* 0.007 0.006 0.009

Average computing time (h) 5.345 13.033 15.499

Computing time standard deviation (h) 1.57 1.396 3.113

Average number of diversifications 14.7 17.8 18.3
* For confidentiality purposes, NPVs are expressed relative to the base-case solution

generated using an industry-standard commercial mine planning tool.
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ministic design performs noticeably worse than the E-type orebody model

indicates, which is attributed to the differences in the univariate grade dis-

tributions between the estimated model and the simulations. The spikes

in sulfide mill tonnage above the capacity are in the order of 5-10%, and

are related to the fact that the simulations contain excessive quantities of

high-grade material in the production schedule; these tonnage spikes are un-

realistic and inflate the NPV of the risk analysis. Moreover, the risk analysis

indicates that the deterministic design is consistently unable to meet the pro-

duction targets at the sulfide heap leach. Interestingly, the NPV of the risk

analysis is unaffected by its inability to fill the sulfide heap leach to capacity.

This is a result of sending excessive and higher valued materials to the sulfide

mill, which leads to an increased recovery and profits from the sulfide mill,

despite the underutilization of the sulfide heap leach.

4.3. Stochastic optimization

The stochastic optimizer aims to optimize the extraction sequence, des-

tination policies and the use of the stockpile while considering the geological

uncertainty. Table 2 outlines the penalty costs and constraint bounds that

are used to guide the risk profiles. A total of 10 trials are run for the stochas-

tic example using the SA-D-DE optimizer. The average computing time for

the stochastic optimizer is 75.6 hours, with a standard deviation of 8.6 hours.

When comparing the objective function value of the best stochastic design to

the simulations through the best deterministic design (calculated using the

same penalty costs and constraint bounds), the best stochastic design has a

16.6% higher value, with an average of 15% across all 10 trials. This is a

direct result of being able to manage the impact of risk on the sulfide mill
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and sulfide heap leach tonnages over time.

To elucidate these results, Fig. 7 (right) shows the risk profiles of the

stochastic solution for the sulfide mill tonnages, sulfide heap leach tonnages

and the cumulative discounted cash flows. It is apparent that the stochastic

design is capable of meeting the target capacity of 3 Mtpa at the sulfide mill

on average, with substantially less risk than the deterministic design (Fig. 7,

left). The stochastic design also meets the target sulfide heap leach tonnage

over the first 12 periods, after which, the quantities begin to decline. This

implies that the riskier sulfide heap leach material is being deferred until the

end of the mine life, which is a result of incorporating risk discounting in

the stochastic optimization model. Finally, it is noted that the NPV of the

stochastic design is 6.6% higher than the deterministic-equivalent design,

when comparing the P-50 values, and 22.6% higher than the commercial

(deterministic) mine planning software.
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Figure 7: (Left) Comparison of the deterministic design generated using a commercial

mine planning package, the best deterministic solution generated and its associated risk

profiles. (Right) Risk profiles of the best stochastic design.
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5. Conclusions

This work presents a framework for global asset optimization of mining

complexes under uncertainty, whereby the solutions provide robust long-term

open-pit mine extraction sequences and destination policies. The proposed

framework permits a high degree of flexibility and detail in modeling a mining

complex, including the opportunity to integrate non-linear relationships that

are generally ignored in existing models because of the challenges associated

with non-linear optimization. As a result, the proposed method overcomes a

major limitation of existing global optimization models: modeling the eco-

nomic value of the products sold, rather than the value of the blocks mined.

A new form of destination policies is also developed that overcomes the se-

vere limitations of other methods, such as quality constraints on secondary

elements in the processing streams. Three solvers, based on a combination of

simulated annealing, particle swarm optimization and differential evolution,

are developed and compared.

The method is tested on a copper-gold mining complex. When optimiz-

ing the deterministic example, the global optimizer achieves a design with

13.8% higher net present value than an industry-standard mine planning

tool. While optimizing with both simulated annealing and differential evo-

lution demonstrated improved results, this comes at the expense of a sub-

stantially longer computing time. For the stochastic optimization, results

indicate that the stochastic design is able to satisfy the target tonnage ca-

pacities, thus ensuring that the mine is able treat profitable material over

the life of mine. Additionally, the stochastic solution indicates a 6.6% higher

net present value when compared to the deterministic-equivalent design and
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22.6% higher value than the industry-standard software. Given that the pro-

posed method seeks to generate a single set of destination policies, future

research will investigate the use of multistage stochastic optimization in or-

der to permit adaptive policies under both supply (geological) and demand

(metal price) uncertainty, which will likely lead to higher economic value.
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Algorithm 1 Algorithm for the global optimization of mining complexes.

Require:

Φ = {x,y, z} ⊲ Initial solution vector.

usePSO ⊲ True if particle swarm optimization will be used.

useDE ⊲ True if differential evolution will be used.

procedure GlobalOptimization(Φ, usePSO, useDE)

Φg ← Φ ⊲ Initialize the global best solution vector.

igopt ← 0 ⊲ Global optimization iteration counter.

while true do

igopt ← igopt + 1 ⊲ Update the iteration counter.

Φ← Φg ⊲ Copy the solution vector for later comparison.

Φg ←SimulatedAnnealing(Φg) ⊲ See Algorithm 2.

if usePSO = true or useDE = true then ⊲ See Algorithm 4.

Φg ← DownstreamOptimization(Φg, usePSO, useDE)

if g (Φg) = g (Φ) then

break ⊲ No update in objective function.
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Algorithm 2 Simulated annealing for open pit mining complexes.

Require:

ρ, k, niter ⊲ Acceptance probability, cooling factor, cooling schedule.

probseq, probdest ⊲ Probability of a schedule or destination perturbation.

igbu ⊲ Total number of global best updates before terminating.

itotal ⊲ Total number of iterations before terminating.

cdfseq, cdfdest, cdfproc ⊲ Distributions of non-improving scheduling,

destination policy and processing stream changes.

function SimulatedAnnealing(Φg)

Φ,Φ′ ← Φg ⊲ The current and perturbed solution vectors.

i, iu ← 0 ⊲ Annealing iteration and global update counters.

δ ← 0 ⊲ A temporary annealing temperature.

while true do

i← i+ 1 ⊲ Update the iteration counter.

if i mod niter = 0 then

ρ← ρ ∗ k ⊲ Update the acceptance probability.

Φ′, δ ← PerturbSolution(Φ, ρ) ⊲ See Algorithm 3.

r ← U [0, 1] ⊲ A random uniform number.

if P (g (Φ) , g (Φ′) , δ) ≥ r then ⊲ See Eq. (24).

Φ← Φ′ ⊲ Update the current solution.

if g (Φ′) < g (Φ) then

Update cdfseq, cdfdest or cdfproc with |g (Φ′)− g (Φ) |

if g (Φ′) ≥ g (Φg) then

Φg ← Φ′ ⊲ Update the global best solution.

iu ← iu + 1 ⊲ Increase the global best update counter.

if i = itotal or iu = igbu then

break

return Φg
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annealing temperature with respect to the selected perturbation neighbor-

hood.
function PerturbSolution(Φ, ρ)

r ← U [0, 1] ⊲ A random uniform number.

δ ← 0 ⊲ A temporary annealing temperature.

if r < probseq then

Randomly select xb, an encoded variable from x ∈ Φ.

Find the set of blocks xb(t
′) that must be extracted in t′ to satisfy

Eq. (6), see [37].

Φ′ ← [x⊕ xb (t
′) , z,y] ⊲ Update the solution vector.

δ ← cdf−1
seq (ρ) ⊲ Retrieve the sequencing temperature.

else if r <
(
probseq + probdest

)
then

Randomly select zc,t, an encoded variable from z ∈ Φ.

z′c,t ← U [0, |O (c) |] ⊲ Get a new (encoded) cluster destination.

Φ′ ←
[
x, z⊕ z′c,t,y

]
⊲ Update the solution vector.

δ ← cdf−1
dest (ρ) ⊲ Retrieve the destination policy temperature.

else

Randomly select yi,j,t,s, a variable from y ∈ Φ.

y′i,j,t,s ← yi,j,t,s +N (yi,j,t,s, 0.1) ⊲ Add random normal number.

Φ′ ←
[
x, z,y⊕ y′i,j,t,s

]
⊲ Update the solution vector.

Normalize y ∈ Φa to obey Eq. (13) and Eq. (14).

δ ← cdf−1
proc (ρ) ⊲ Retrieve the processing stream temperature.

return Φ′, δ ⊲ Return the new solution vector and temperature.
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or differential evolution.
Require:

NP ⊲ Size of the population.

NP local ⊲ Number of particles in the local neighborhood (PSO).

c1, c2, c3 ⊲ Inertia, personal best and local-best coefficients (PSO).

CR, F ⊲ Crossover ratio and weighting factor (DE).

pcc ⊲ Population convergence criteria.

itotal ⊲ Total number of iterations before terminating.

function DownstreamOptimization(Φg, usePSO, useDE)

for all q ∈ {1, ..., NP} do

Randomize Φq (PSO, DE) and velocity vq (PSO).

(x ∈ Φq)← (x ∈ Φg) ⊲ Extraction sequence remains constant.

Normalize y ∈ Φq to obey Eq. (13) and Eq. (14).

Φbest
q ← Φq ⊲ Initialize the member’s best solution vector.

Φbest
NP ← Φg ⊲ Copy the global best solution to the last member.

while true do

i← i+ 1 ⊲ Update the iteration counter.

for all q ∈ {1, ..., NP} do

if usePSO = true then

Get Φbest
lbest, the member within q ± NP local with the best

objective function.

Φq ← PSOUpdate(vq, Φq, Φ
best
q , Φbest

lbest)
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else if useDE = true then ⊲ See Algorithm 6.

Randomly select members a, b and c, where (a, b, c) 6= q.

Φq ← DECrossover(Φbest
q , Φbest

a , Φbest
b , Φbest

c )

Correct z ∈ Φq to obey Eq. (8).

Normalize y ∈ Φq to obey Eq. (13) and Eq. (14).

if g (Φq) ≥ g
(
Φbest

q

)
then

Φbest
q ← Φq ⊲ Update member’s best solution.

if g (Φq) ≥ g (Φg) then

Φg ← Φq ⊲ Update the global best solution.

avg ← 1
NP
·
∑NP

q=1 g
(
Φbest

q

)
⊲ Get the average objective value.

if i = itotal or
(
g
(
Φbest

q

)
− avg

)
/avg < pcc ∀q = {1, ..., NP} then

break

return Φg

Algorithm 5 Particle swarm optimization update for particle q.

function PSOUpdate(vq, Φq, Φ
best
q , Φbest

lbest)

Let vz
q ,v

y
q ∈ vq represent the velocities of the downstream variables.

Let Φz
q ,Φ

y
q ∈ Φq represent the values of the downstream variables.

r1, r2 ← U [0, 1] ⊲ Vector of random uniform numbers of size |z|.

r3, r4 ← U [0, 1] ⊲ Vector of random uniform numbers of size |y|.

vz
q ← c1 · vz

q + c2 · r1 ·
(
zbestq − zq

)
+ c3 · r2 ·

(
zbestlbest − zq

)

vy
q ← c1 · v

y
q + c2 · r3 ·

(
ybest
q − yq

)
+ c3 · r4 ·

(
ybest
lbest − yq

)

zq ← zq + vz
q ⊲ Update zq ∈ Φq.

yq ← yq + vy
q ⊲ Update yq ∈ Φq.

return Φq
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Algorithm 6 Differential evolution (“DE/rand/1/bin”) for agent q.

function DECrossover(Φbest
q , Φbest

a , Φbest
b , Φbest

c )

Φq ← Φbest
q ⊲ Copy the best solution back.

for all zqε,t ∈ zq do

r ← U [0, 1] ⊲ Random uniform number.

if r ≤ CR then ⊲ Mutate the destination policies.

zqε,t ← za,bestε,t + F ·
(

zb,bestε,t − zc,bestε,t

)

⊲ Modify Φq.

for all yqi,j,t,s ∈ yq do

r ← U [0, 1] ⊲ Random uniform number.

if r ≤ CR then ⊲ Mutate the processing streams.

yqi,j,t,s ← ya,besti,j,t,s + F ·
(

yb,besti,j,t,s − yc,besti,j,t,s

)

⊲ Modify Φq

return Φq
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