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Abstract. We consider the problem of computing the global infimum of a

real polynomial f on Rn. Every global minimizer of f lies on its gradient
variety, i.e., the algebraic subset of Rn where the gradient of f vanishes. If f

attains a minimum on Rn, it is therefore equivalent to look for the greatest

lower bound of f on its gradient variety. Nie, Demmel and Sturmfels proved
recently a theorem about the existence of sums of squares certificates for such

lower bounds. Based on these certificates, they find arbitrarily tight relaxations

of the original problem that can be formulated as semidefinite programs and
thus be solved efficiently.

We deal here with the more general case when f is bounded from below

but does not necessarily attain a minimum. In this case, the method of Nie,
Demmel and Sturmfels might yield completely wrong results. In order to

overcome this problem, we replace the gradient variety by larger semialgebraic

subsets of Rn which we call gradient tentacles. It now gets substantially harder
to prove the existence of the necessary sums of squares certificates.

1. Introduction

Throughout this article, N := {1, 2, . . . }, R and C denote the sets of natural, real
and complex numbers, respectively. We fix n ∈ N, and consider real polynomials
in n variables X̄ := (X1, . . . , Xn). These polynomials form a commutative ring

R[X̄] := R[X1, . . . , Xn].

1.1. The problem. We consider the problem of computing good approximations
for the global infimum

f∗ := inf{f(x) | x ∈ Rn} ∈ R ∪ {−∞}

of a polynomial f ∈ R[X̄]. Since f∗ is the greatest lower bound of f , it is equivalent
to compute

(1) f∗ = sup{a ∈ R | f − a ≥ 0 on Rn} ∈ R ∪ {−∞}.

To solve this hard problem, it has become a standard approach to approximate f∗

by exchanging in (1) the nonnegativity constraint

(2) f − a ≥ 0 on Rn
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by a computationally more feasible condition and analyze the error caused by this
substitution. Typically, the choice of this replacement is related to the interplay
between (globally) nonnegative polynomials, sums of squares of polynomials and
semidefinite optimization (also called semidefinite programming):

1.2. Method based on the fact that every sum of squares of polynomials
is nonnegative (Shor [Sho], Stetsyuk [SS], Parrilo and Sturmfels [PS] et
al.) We start with the most basic ideas concerning these connections which can be
found in greater detail in the just cited references. A first try is to replace condition
(2) by the constraint

(3) f − a is a sum of squares in the polynomial ring R[X̄]

since every sum of squares in R[X̄] is obviously nonnegative on Rn.
The advantage of (3) over (2) is that sums of squares of polynomials can be nicely

parametrized. Fix a column vector v whose entries are a basis of the vector space
R[X̄]d of all real polynomials of degree ≤ d in n variables (d ∈ N0 := {0} ∪ N).
This vector has a certain length k = dim R[X̄]d. It is easy to see that the map
from the vector space SRk×k of symmetric k × k-matrices to R[X̄]2d defined by
M 7→ vT Mv is surjective. Using the spectral theorem for symmetric matrices, it
is not hard to prove that a polynomial f ∈ R[X̄]2d is a sum of squares in R[X̄] if
and only if f = vT Mv for some positive semidefinite matrix M ∈ SRk×k. Use the
following remark which is an easy exercise (write the polynomials as sums of their
homogeneous parts).

Remark 1. In any representation f =
∑

i g2
i of a polynomial f ∈ R[X̄]2d as a sum

of squares gi ∈ R[X̄], we have necessarily deg gi ≤ d.

The described parametrization shows that the modified problem (where we ex-
change (2) by (3)), i.e., the problem to compute

(4) f sos := sup{a ∈ R | f − a is a sum of squares in R[X̄]} ∈ R ∪ {−∞}

can be written as a semidefinite optimization problem (also called semidefinite pro-
gram or SDP for short), i.e., as the problem of minimizing (or maximizing) an
affine linear function on the intersection of the cone of positive semidefinite ma-
trices with an affine subspace in SRk×k. For solving SDPs, there exist very good
numerical algorithms, perhaps almost as good as for linear optimization problems.
Linear optimization can be seen as the restriction of semidefinite optimization to
diagonal matrices, i.e., a method to minimize an affine linear function on the inter-
section of the cone Rk

≥0 with an affine subspace of Rk. Speaking very vaguely, most
concepts from linear optimization carry over to semidefinite optimization because
every symmetric matrix can be diagonalized. We refer for example to [Tod] for an
introduction to semidefinite programming.

Whereas computing f∗ as defined in (1) is a very hard problem, it is relatively
easy to compute (numerically to a given precision) f sos defined in (4). Of course,
the question arises how f∗ and f sos are related. Since (3) implies (2), it is clear
that f sos ≤ f∗. The converse implication (and thus f sos = f∗) holds in some cases:
A globally nonnegative polynomial

• in one variable or
• of degree at most two or
• in two variables of degree at most four
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is a sum of squares of polynomials. We refer to [Rez] for an overview of these and
related old facts. However, recently Blekherman has shown in [Ble] that for fixed
degree d ≥ 4 and high number of variables n only a very small portion (in some
reasonable sense) of the globally nonnegative polynomials of degree at most d in
n variables are sums of squares. In particular, f sos will often differ from f∗. For
example, the Motzkin polynomial

(5) M := X2Y 2(X2 + Y 2 − 3Z2) + Z6 ∈ R[X, Y, Z].

is nonnegative but not a sum of squares (see [Rez, PS]). We have M∗ = 0 but
M sos = −∞. The latter follows from the fact that M is homogeneous and not a
sum of squares by the following remark applied to f := M − a for a ∈ R (which
can again be proved easily by considering homogeneous parts).

Remark 2. If f is a sum of squares in R[X̄], then so is the highest homogeneous
part (the leading form) of f .

We see that the basic problem with this method (computing f sos by solving
an SDP and hoping that f sos is close to f∗) is that polynomials positive on Rn

in general do not have a representation as a sum of squares, a fact that Hilbert
already knew.

1.3. The Positivstellensatz. In the 17th of his famous of 23 problems, Hilbert
asked whether every (globally) nonnegative (real) polynomial (in several variables)
was a sum of squares of rational functions. Artin answered this question affirma-
tively in 1926 and today there exist numerous refinements of his solution. One of
them is the Positivstellensatz (in analogy to Hilbert’s Nullstellensatz). It is often
attributed to Stengle [Ste] who clearly deserves credit for finding it independently
and making it widely known. However, Prestel [PD, Section 4.7] recently discovered
that Krivine [Kri] knew the result about ten years earlier in 1964. Here we state
only the following special case of the Positivstellensatz.

Theorem 3 (Krivine). For every f ∈ R[X̄], the following are equivalent.
(i) f > 0 on Rn

(ii) There are sums of squares s and t in R[X̄] such that sf = 1 + t.

By this theorem, we have of course that f∗ is the supremum over all a ∈ R such
that there are sums of squares s, t ∈ R[X̄] with s(f − a) = 1 + t. When one tries to
write this as an SDP there are two obstacles.

First, each SDP involves matrices of a fixed (finite) size. But with matrices of
a fixed size, we can only parametrize sums of squares up to a certain degree. We
need therefore to impose a degree restriction on s and t. There are no (at least
up to now) practically relevant degree bounds that could guarantee that such a
restriction would not affect the result. We refer to the tremendous work [Scd] of
Schmid on degree bounds. This first obstacle, namely the question of degrees of
the sums of squares, will us accompany throughout the article. The answer will
always be to model the problem not as a single SDP but as a whole sequence of
SDPs, each SDP corresponding to a certain degree restriction. As you solve one
SDP after the other, the degree restriction gets less restrictive and you hope for fast
convergence of the optimal values of the SDPs to f∗. For newcomers in the field, it
seems at first glance unsatisfactory having to deal with a whole sequence of SDPs
rather than a single SDP. But after all, it is only natural that a very hard problem
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cannot be modeled by an SDP of a reasonable size so that you have to look for
good relaxations of the problem which can easier be dealt with and to which the
techniques of mathematical optimization can be applied.

The second obstacle is much more severe. It is the fact that the unknown poly-
nomial s ∈ R[X̄] is multiplied with the unknown a ∈ R on the left hand side of
the constraint s(f − a) = 1 + t. This makes the formulation as an SDP (even after
having imposed a restriction on the degree of s and t) impossible (or at least highly
non-obvious). Of course, if you fix a ∈ R and a degree bound 2d for s and t, then
the question whether there exist sums of squares s and t of degree at most 2d such
that s(f − a) = 1 + t is equivalent to the feasibility of an SDP. But this plays
(at least currently) only a role as a criterion that might help to decide whether a
certain fixed (or guessed) a ∈ R is a strict lower bound of f . We refer to [PS] for
more details. What one needs are representation theorems for positive polynomials
that are better suited for optimization than the Positivstellensatz (even if they are
sometimes less aesthetic).

1.4. “Big ball” method proposed by Lasserre [L1]. In the last 15 years, a lot
of progress has been made in proving existence of sums of squares certificates which
can be exploited for optimization (although most of the new results were obtained
without having in mind the application in optimization which has been established
more recently). The first breakthrough was perhaps Schmüdgen’s theorem [Sch,
Corollary 3] all of whose proofs use the Positivstellensatz. In this article, we will
prove a generalization of Schmüdgen’s theorem, namely Theorem 9 below. In [L1],
Lasserre uses the following special case of Schmüdgen’s theorem which has already
been proved by Cassier [Cas, Théorème 4] and which can even be derived easily
from [Kri, Théorème 12].

Theorem 4 (Cassier). For f ∈ R[X̄] and R ≥ 0, the following are equivalent.

(i) f ≥ 0 on the closed ball centered at the origin of radius R
(ii) For all ε > 0, there are sums of squares s and t in R[X̄] such that

f + ε = s + t(R2 − ‖X̄‖2).

Here and in the following, we use the notation

‖X̄‖2 := X2
1 + · · ·+ X2

n ∈ R[X̄].

Similar to Subsection 1.2, it can be seen that for any fixed d ∈ N0, computing the
supremum over all a ∈ R such that f−a = s+t(R2−‖X̄‖2) for some sums of squares
s, t ∈ R[X̄] of degree at most 2d amounts to solving an SDP. Therefore you get a
sequence of SDPs parametrized by d ∈ N0. Theorem 4 can now be interpreted as a
convergence result, namely the sequence of optimal values of these SDPs converges
to the minimum of f on the closed ball around the origin with radius R. If one
has a polynomial f ∈ R[X̄] attaining a minimum on Rn and for which one knows
moreover a big ball on which this minimum is attained, this method is good for
computing f∗. Of course, if you do not know such a big ball in advance you might
choose larger and larger R. But at the same time you might have to choose a bigger
and bigger degree restriction d ∈ N0 and it is not really clear how to get a sequence
of SDPs that converges to f∗.
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1.5. Lasserre’s high order perturbation method [L2]. Recently, Lasserre used
in [L2] a theorem of Nussbaum from operator theory to prove the following result
that can be exploited in a similar way for global optimization of polynomials.

Theorem 5 (Lasserre). For every f ∈ R[X̄], the following are equivalent:
(i) f ≥ 0 on Rn

(ii) For all ε > 0, there is r ∈ N0 such that

f + ε
n∑

i=1

r∑
k=0

X2k
i

k!
is a sum of squares in R[X̄].

Note that (ii) implies that f(x) + ε
∑n

i=1 exp(xi) ≥ 0 for all x ∈ Rn and ε > 0
which in turn implies (i). In condition (ii), r depends on ε and f . Using real algebra
and model theory, Netzer showed that in fact r depends only on ε, n, the degree of
f and a bound on the size of the coefficients of f [Net, LN].

1.6. “Gradient perturbation” method proposed by Jibetean and Laurent
[JL]. The most standard idea for finding the minimum of a function everybody
knows from calculus is to compute critical points, i.e., the points where the gradient
vanishes. It is a natural question whether the power of classical differential calculus
can be combined with the relatively new ideas using sums of squares. Fortunately,
it can and the rest of the article will be about how to merge both concepts, sums
of squares and differential calculus.

If a polynomial f ∈ R[X̄] attains a minimum in x ∈ Rn, i.e., f(x) ≤ f(y) for
all y ∈ Rn, then the gradient ∇f of f vanishes at x, i.e., ∇f(x) = 0. However,
there are polynomials that are bounded from below on Rn and yet do not attain a
minimum on Rn. The simplest example is perhaps

(6) f := (1−XY )2 + Y 2 ∈ R[X, Y ]

for which we have f > 0 on Rn but f∗ = 0 since limx→∞ f(x, 1
x ) = 0. In the

following,

(∇f) :=
(

∂f

∂X1
, . . . ,

∂f

∂Xn

)
⊆ R[X̄]

denotes the ideal generated by the partial derivatives of f in R[X̄]. We call this
ideal the gradient ideal of f .

Without going into details, the basic idea of Jibetean and Laurent in [JL] is
again to apply a perturbation to f . Instead of adding a truncated exponential like
Lasserre, they just add ε

∑n
i=1 X

2(d+1)
i for small ε > 0 when deg f = 2d. If f > 0 on

Rn, then the perturbed polynomial fε := f + ε‖X̄‖2(d+1) is again a sum of squares
but this time only modulo its gradient ideal (∇fε). In this case, this is quite easy
to prove since it turns out that this ideal will be zero-dimensional, i.e., R[X̄]/(∇fε)
is a finite-dimensional real algebra. We will later see in Theorems 6 and 46 that
this finite-dimensionality is not needed for the sums of squares representation. But
the work of Jibetean and Laurent exploits the finite-dimensionality in many ways.
We refer to [JL] for details.

1.7. “Gradient variety” method by Nie, Demmel and Sturmfels [NDS].
The two perturbation methods just sketched rely on introducing very small coeffi-
cients in a polynomial. This small coefficients might lead to SDPs which are hard
to solve because of numerical instability. It is therefore natural to think of another
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method which avoids perturbation at all. Nie, Demmels and Sturmfels considered,
for a polynomial f ∈ R[X̄], its gradient variety

V (∇f) := {x ∈ Cn | ∇f(x) = 0}.
This is the algebraic variety corresponding to the radical of the gradient ideal (∇f).
It can be shown that a polynomial f ∈ R[X̄] is constant on each irreducible compo-
nent of the gradient variety (see [NDS] or use an unpublished algebraic argument
of Scheiderer based on Kähler differentials). This is the key to show that a polyno-
mial f ∈ R[X̄] nonnegative on its gradient variety is a sum of squares modulo its
gradient ideal in the case where the ideal is radical. In the general case where the
gradient ideal is not necessarily radical, the same thing still holds for polynomials
positive on their gradient variety. The following is essentially [NDS, Theorem 9]
(confer also the recent work [M2]). We will later prove a generalization of this
theorem as a byproduct. See Corollary 47 below.

Theorem 6 (Nie, Demmel and Sturmfels). For every f ∈ R[X̄] attaining a mini-
mum on Rn, the following are equivalent.

(i) f ≥ 0 on Rn

(ii) f ≥ 0 on V (∇f) ∩ Rn

(iii) For all ε > 0, there exists a sum of squares s in R[X̄] such that

f + ε ∈ s + (∇f).

Moreover, (ii) and (iii) are equivalent for all f ∈ R[X̄].

For each degree restriction d ∈ N0, the problem of computing the supremum
over all a ∈ R such that

f − a = s + p1
∂f

∂X1
+ · · ·+ pn

∂f

∂Xn

for some sum of squares s in R[X̄] and polynomials p1, . . . , pn of degree at most
d, can be expressed as an SDP. Theorem 6 shows that the optimal values of the
corresponding sequence of SDPs (indexed by d) tend to f∗ provided that f attains
a minimum on Rn. However, if f does not attain a minimum on Rn, the computed
sequence still tends to the infimum of f on its gradient variety which might however
now be very different from f∗. Take for example the polynomial f from (6). It is
easy to see that V (∇f) = {0} and therefore the method computes f(0) = 1 instead
of f∗ = 0. In [NDS, Section 7], the authors write:

“This paper proposes a method for minimizing a multivariate poly-
nomial f(x) over its gradient variety. We assume that the infimum
f∗ is attained. This assumption is non-trivial, and we do not ad-
dress the (important and difficult) question of how to verify that
a given polynomial f(x) has this property.”

1.8. Our “gradient tentacle” method. The reason why the method just de-
scribed might fail is that the global infimum of a polynomial f ∈ R[X̄] is not
always a critical value of f , i.e., a value that f takes on at least one of its critical
points in Rn. Now there is a well-established notion of generalized critical values
which includes also the asymptotic critical values (a kind of critical values at infinity
we will introduce in Definition 12 below).

In this article, we will replace the real part V (∇f)∩Rn of the gradient variety by
several larger semialgebraic sets on which the partial derivatives do not necessarily
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vanish but get very small far away from the origin. These semialgebraic sets often
look like tentacles, and that is how we will call them. All tentacles we will consider
are defined by a single polynomial inequality that depends only on the polynomial

‖∇f‖2 :=
(

∂f

∂X1

)2

+ · · ·+
(

∂f

∂Xn

)2

and expresses that this polynomial gets very small. Given a polynomial f for which
you want to compute f∗, the game will consist in finding a tentacle such that two
things will hold at the same time:

• There exist suitable sums of squares certificates for nonnegativity on the
tentacle.

• The infimum of f on Rn and on the tentacle coincide.

One can imagine that these two properties are hardly compatible. Taking Rn as
a tentacle, would of course ensure the second condition but we have discussed
in Subsection 1.2 that the first one would be badly violated. The other extreme
would be to take the empty set as a tentacle. Then the first condition would
trivially be satisfied whereas the second would fail badly. How we will roughly
be able to find the balancing act between the two requirements is as follows: The
second condition will be satisfied by known non-trivial theorems about asymptotic
behaviour of polynomials at infinity. The existence of suitable sums of squares
certificates will be based on the author’s (real) algebraic work [Sr1] on iterated
rings of bounded elements (also called real holomorphy rings).

1.9. Contents of the article. The article is organized as follows. In Section
2, we prove a general sums of squares representation theorem which generalizes
Schmüdgen’s theorem we have mentioned in Subsection 1.4. This representation
theorem is interesting in itself and will be used in the subsequent sections. In
Section 3, we introduce a gradient tentacle (see Definition 17) which is defined by
the polynomial inequality

‖∇f‖2‖X̄‖2 ≤ 1.

We call this gradient tentacle principal since we can prove that it does the job in
a large number of cases (see Theorem 25) and there is hope that it works in fact
for all polynomials f ∈ R[X̄] bounded from below. Indeed, we have not found
any counterexamples (see Open Problem 33). In case this hope were disappointed,
we present in Section 4 a collection of other gradient tentacles (see Definition 41)
defined by the polynomial inequalities

‖∇f‖2N (1 + ‖X̄‖2)N+1 ≤ 1 (N ∈ N).

Their advantage is that if f ∈ R[X̄] is bounded from below and N is large enough
for this particular f , then we can prove that the corresponding tentacle does the
job (see Theorems 46 and 50). We call these tentacles higher gradient tentacles
since the degree of the defining inequality gets unfortunately high when N gets big
which has certainly negative consequences for the complexity of solving the SDPs
arising from these tentacles. However, if f attains a minimum on Rn, then any
choice of N ∈ N will be good. Conclusions are drawn in Section 5.
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2. The sums of squares representation

In this section, we prove the important sums of squares representation theorem
we will need in the following sections. It is a generalization of Schmüdgen’s Positiv-
stellensatz (see [PD, Sch]) which is also of independent interest. Schmüdgen’s result
is not to confuse with the (classical) Positivstellensatz we described in the intro-
duction. The connection between the two is that all known proofs of Schmüdgen’s
result use the classical Positivstellensatz. Our result, Theorem 9 below, is much
harder to prove than Schmüdgen’s result. Its proof relies on the theory of iterated
rings of bounded elements (also called real holomorphy rings) described in [Sr1].

Definition 7. For any polynomial f ∈ R[X̄] and subset S ⊆ Rn, the set R∞(f, S)
of asymptotic values of f on S consists of all y ∈ R for which there exists a sequence
(xk)k∈N of points xk ∈ S such that

(7) lim
k→∞

‖xk‖ = ∞ and lim
k→∞

f(xk) = y.

We now recall the important notion of a preordering of a commutative ring.
Except in the proof of Theorem 9, we need this concept only for the ring R[X̄].

Definition 8. Let A be a commutative ring (with 1). A subset T ⊆ A is called
a preordering if it contains all squares f2 of elements f ∈ A and is closed under
addition and multiplication. The preordering generated by g1, . . . , gm ∈ A

(8) T (g1, . . . , gm) =

 ∑
δ∈{0,1}m

sδg
δ1
1 . . . gδm

m | sδ is a sum of squares in A


is by definition the smallest preordering containing g1, . . . , gm.

If g1, . . . , gm ∈ R[X̄] are polynomials, then the elements of T (g1, . . . , gm) have
obviously the geometric property that they are nonnegative on the (basic closed
semialgebraic) set S they define by (9) below. The next theorem is a partial con-
verse. Namely, if a polynomial satisfies on S some stronger geometric condition,
then it lies necessarily in T (g1, . . . , gm). In case that S is compact, the conditions
(a) and (b) below are empty and the theorem is Schmüdgen’s Positivstellensatz
(see [PD, Sch]). The more general version we need here is quite hard to prove.

Theorem 9. Let f, g1, . . . , gm ∈ R[X̄] and set

(9) S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}.
Suppose that
(a) f is bounded on S,
(b) f has only finitely many asymptotic values on S and all of these are positive,

i.e., R∞(f, S) is a finite subset of R>0, and
(c) f > 0 on S.
Then f ∈ T (g1, . . . , gm).

Proof. Write R∞(f, S) = {y1, . . . , ys} ⊆ R>0 and consider the polynomial

h :=
s∏

i=1

(f − yi).

This polynomial is “on S small at infinity” by which we mean that for every ε > 0
there exists k ∈ N such that for all x ∈ S with ‖x‖ ≥ k, we have |h(x)| < ε.
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To show this, assume the contrary. Then there exists ε > 0 and a sequence
(xk)k∈N of points xk ∈ S with limk→∞ ‖xk‖ = ∞ and

(10) |h(xk)| ≥ ε for all k ∈ N.

Because the sequence (f(xk))k∈N is bounded by hypothesis (a), we find an infinite
subset I ⊆ N such that the subsequence (f(xk))k∈I converges. The limit must
be one of the asymptotic values of f on S, i.e., limk∈I,k→∞ f(xk) = yi for some
i ∈ {1, . . . , s}. Using (a), it follows that limk∈I,k→∞ h(xk) = 0 contradicting (10).

Let A := (R[X̄], T ) where T := T (g1, . . . , gm). The set

H ′(A) := {p ∈ R[X̄] | N ± p ∈ T for some N ∈ N}

is a subring of A (see, e.g, [Sr1, Definition 1.2]). We endow H ′(A) with the pre-
ordering T ′ := T ∩ H ′(A) and consider it as also as a preordered ring. By [Sr1,
Corollary 3.7], the smallness of h at infinity proved above is equivalent to h ∈ S∞(A)
in the notation of [Sr1]. By [Sr1, Corollary 4.17], we have S∞(A) ⊆ H ′(A) and
consequently h ∈ H ′(A). The advantage of H ′(A) over A is that its preordering is
archimedean, i.e., T ′ + Z = H ′(A). According to an old criterion for an element
to be contained in an archimedean preordering (see for example [PD, Proposition
5.2.3 and Lemma 5.2.7] or [Sr1, Theorem 1.3]), our claim f ∈ T ′ follows if we can
show that ϕ(f) > 0 for all ring homomorphisms ϕ : H ′(A) → R with ϕ(T ′) ⊆ R≥0.
For all such homomorphisms possessing an extension ϕ̄ : A → R with ϕ̄(T ) ⊆ R≥0,
this follows from hypothesis (c) because it is easy to see that such an extension ϕ̄
must be evaluation p 7→ p(x) in the point x := (ϕ̄(X1), . . . , ϕ̄(Xn)) ∈ S. Using
the theory in [Sr1], we will see that the only possibility for such a ϕ not to have
such an extension ϕ̄ is that ϕ(h) = 0. Then we will be done since ϕ(h) = 0 implies
ϕ(f) = yi > 0 for some i. We have used here that f ∈ H ′(A) which follows from
h ∈ H ′(A) since H ′(A) is integrally closed in A (see [Sr1, Theorem 5.3]).

So let us now use [Sr1]. By [Sr1, Corollary 3.7 and Theorem 4.18], the smallness
of h at infinity means that

Ah = H ′(A)h

where we deal on both sides of this equation with the localization of a preordered
ring by the element h (see [Sr1, pages 24 and 25]). If ϕ : H ′(A) → R is a ring
homomorphism with ϕ(T ′) ⊆ R≥0 and ϕ(h) 6= 0, then ϕ extends to a ring homo-
morphism ϕ̃ : Ah = H ′(A)h → R with ϕ̃(Th) = ϕ̃(T ′h) ⊆ R≥0. Then ϕ̄ := ϕ̃|A is
the desired extension of ϕ. �

Example 10. Consider the polynomials

(11) hN := 1− Y N (1 + X)N+1 ∈ R[X, Y ] (N ∈ N)

in two variables. We fix N ∈ N and apply Theorem 9 with f = hN+1, m = 3,
g1 = X, g2 = Y und g3 = hN . The set S defined by the gi as in (9) is a subset of
the first quadrant which is bounded in Y -direction but unbounded in X-direction.
Of course, we have 0 ≤ hN ≤ 1 and

0 ≤ Y (1 + X) ≤ 1
N
√

1 + X
on S

showing that 0 is the only asymptotic value of

1− hN+1 = (1− hN )Y (1 + X)
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on S and therefore R∞(hN+1, S) = {1}. It follows also that 0 ≤ hN+1 ≤ 1 on S.
By Theorem 9, we obtain

(12) hN+1 + ε ∈ T (X, Y, hN )

for all ε > 0.

The following lemma shows that (12) holds even for ε = 0, a fact that does not
follow from Theorem 9. This lemma will be interesting later to compare the quality
of certain SDP relaxations (see Proposition 49). In its proof, we will explicitly
construct a representation of hN+1 as an element of T (X, Y, hN ). Only part of this
explicit representation will be needed in the sequel, namely an explicit polynomial
g ∈ T (X, Y ) such that hN+1 ∈ T (X, Y ) + ghN ⊆ T (X, Y, hN ). This explains the
formulation of the statement. Theorem 9 will not be used in the proof but gave us
good hope before we had the proof. The role of Theorem 9 in this article is above
all to prove Theorems 25 and 46 below.

Lemma 11. For the polynomials hN defined by (11), we have

hN+1 −
(

1 +
1
N

)
Y (1 + X)hN ∈ T (X, Y ).

Proof. For a new variable Z,

(Z − 1)2
N−1∑
k=0

(N − k)Zk = (Z − 1)2
(

N
N−1∑
k=0

Zk − Z
N−1∑
k=1

kZk−1

)

= (Z − 1)2
(

N
ZN − 1
Z − 1

− Z
∂

∂Z

(
ZN − 1
Z − 1

))
= N(Z − 1)(ZN − 1)− Z((Z − 1)NZN−1 − (ZN − 1))

= ZN+1 − (N + 1)Z + N.

Specializing Z to z := Y (1 + X), we have therefore

NhN+1 − (N + 1)zhN = N(1− zN+1(1 + X))− (N + 1)z(1− zN (1 + X))

= zN+1X + (zN+1 − (N + 1)z + N)

= zN+1X + (z − 1)2
N−1∑
k=0

(N − k)zk ∈ T (X, Y ).

Dividing by N = (
√

N)2 yields our claim. �

3. The principal gradient tentacle

In this section, we associate to every polynomial f ∈ R[X̄] a gradient tentacle
which is a subset of Rn containing the real part of the gradient variety of f and
defined by a single polynomial inequality whose degree is not more than twice the
degree of f . The infimum of any polynomial f ∈ R[X̄] bounded from below on
Rn will coincide with the infimum on its principal gradient tentacle (see Theorem
19). Under some technical assumption (see Definition 20) which is not known to be
necessary (see Open Problem 33), we prove a sums of squares certificate for non-
negativity of f on its principal gradient tentacle which is suitable for optimization
purposes. This representation theorem (Theorem 25) is of independent interest and
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its proof is mainly based on the nontrivial representation theorem from the previ-
ous section and a result of Parusiński on the behaviour of polynomials at infinity
([P1, Theorem 1.4]). In Subsection 3.2, we outline how to get a sequence of SDPs
growing in size whose optimal values tend to f∗ for any f satisfying the conditions
of Theorem 25 (or perhaps for any f with f∗ > −∞ if the answer to Open Problem
33 is yes). In the Subsections 3.3 and 3.4, we give a MATLAB code for the sums
of squares optimization toolboxes YALMIP [Löf] and SOSTOOLS [PPS] that pro-
duces and solves these SDP relaxations. This short and simple code is meant for
readers who have little experience with such toolboxes and want nevertheless try
our proposed method on their own. In Subsection 3.5, we provide simple examples
which have been calculated using the YALMIP code from Subsection 3.3.

We start by recalling the concept of asymptotic critical values developed by
Rabier in his 1997 milestone paper [Rab]. For simplicity, we stay in the setting of
real polynomials right from the beginning (though part of this theory make sense
in a much broader context).

Definition 12. Suppose f ∈ R[X̄]. The set K0(f) of critical values of f consists
of all y ∈ R for which there exists x ∈ Rn such that ∇f(x) = 0 and f(x) = y. The
set K(f) of generalized critical values of f consists of all y ∈ R for which there
exists a sequence (xk)k∈N in Rn such that

(13) lim
k→∞

‖∇f(xk)‖(1 + ‖xk‖) = 0 and lim
k→∞

f(xk) = y.

The set K∞(f) of asymptotic critical values consists of all y ∈ R for which there
exists a sequence (xk)k∈N in Rn such that limk→∞ ‖xk‖ = ∞ and (13) hold.

The following proposition is easy.

Proposition 13. The set of generalized critical values of a polynomial f ∈ R[X̄]
is the union of its set of critical and asymptotic critical values, i.e.,

K(f) = K0(f) ∪K∞(f).

The following notions go back to Thom [Tho].

Definition 14. Suppose f ∈ R[X̄]. We say that y ∈ R is a typical value of
f if there is neighbourhood U of y in R and a smooth (i.e., C∞) manifold F
such that f |f−1(U) : f−1(U) → U is a (not necessarily surjective) trivial smooth
fiber bundle, i.e., there exists a smooth manifold F and a C∞ diffeomorphism
Φ : f−1(U) → F × U such that f |f−1(U) = π2 ◦ Φ where π2 : F × U → U is the
canonical projection. We call y ∈ R an atypical value of f if it is not a typical
value of f . The set of all atypical values of f is denoted by B(f) and called the
bifurcation set of f .

Note that a Φ like in the above definition induces a C∞ diffeomorphism f−1(y) →
F × {y} ∼= F for every y ∈ U . In this context, the preimages f−1(y) are called
fibers and F is called the fiber. We do not require that the fiber bundle f |f−1(U) :
f−1(U) → U is surjective (if it is not then the image is necessarily empty). Hence
the fiber F may be empty and a typical value is not necessarily a value taken on by
f . We make use the following well-known theorem (see, e.g., [KOS, Theorem 3.1]).

Theorem 15. Suppose f ∈ R[X̄]. Then B(f) ⊆ K(f) and K(f) is finite.
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The advantage of K(f) over K0(f) is that f∗ ∈ K(f) even if f does not attain
a minimum on Rn. This is an easy consequence of Theorem 15. See Theorem 19
below.

Example 16. Consider again the polynomial f = (1−XY )2+Y 2 ∈ R[X, Y ] from (6)
that does not attain its infimum f∗ = 0 on R2. Calculating the partial derivatives,
it is easy to see that the origin is the only critical point of f . Because f takes
the value 1 at the origin, we have K0(f) = {1} and therefore f∗ = 0 /∈ K0(f).
Clearly, we have 0 ∈ B(f) since f−1(−y) = ∅ 6= f−1(y) for small y ∈ R>0. By
Theorem 15, we have therefore 0 ∈ K∞(f) ⊆ K(f). To show this directly, a
first guess would be that ‖∇f(x, 1

x )‖(1 + ‖(x, 1
x )‖) tends to zero when x → ∞

because limx→∞ f(x, 1
x ) = 0. But in fact, this expressions tends to 2 when x →∞.

However, a calculation shows that limx→∞ ‖∇f(x, 1
x )‖(1 + ‖(x, 1

x −
1
x3 )‖) = 0.

Definition 17. For a polynomial f ∈ R[X̄], we call

S(∇f) := {x ∈ Rn | ‖∇f(x)‖‖x‖ ≤ 1}
the principal gradient tentacle of f .

Remark 18. In the definition of S(∇f), the inequality ‖∇f(x)‖‖x‖ ≤ 1 could be
exchanged by ‖∇f(x)‖‖x‖ ≤ R for some constant R > 0. Then all subsequent
results will still hold with obvious modifications. Using an R different from 1 might
have in certain cases a practical advantage (see Subsection 3.6 below). However,
we decided to stay with this definition in order to get not too technical and to keep
the paper readable.

As expressed by the notation S(∇f), polynomials f with the same gradient ∇f
have the same gradient tentacle, in other words

S(∇(f + a)) = S(∇f) for all a ∈ R.

The first important property of S(∇f) is stated in the following immediate
consequence of Theorem 15.

Theorem 19. Suppose f ∈ R[X̄] is bounded from below. Then f∗ ∈ K(f) and
therefore f∗ = inf{f(x) | x ∈ S(∇f)}.

Proof. By Theorem 15, it suffices to show that f∗ ∈ B(f). Assume that f∗ /∈ B(f),
i.e., f∗ is a typical value of f . Then for all y in a neighbourhood of f∗, the fibers
f−1(y) are smoothly diffeomorphic to each other. But this is absurd since f−1(y)
is empty for y < f∗ but certainly not empty in a neighbourhood of f∗. �

Let Pn−1(C) denote the (n−1)-dimensional complex projective space over C. For
a homogeneous polynomial f and a point z ∈ Pn−1(C), we simply say f(z) = 0 to
express that f vanishes on (a non-zero point of) the straight line z ⊆ Cn. Following
[P1], we give the following definition.

Definition 20. We say that a polynomial f ∈ C[X̄] has only isolated singularities
at infinity if f ∈ C (i.e., f is constant) or d := deg f ≥ 1 and there are only finitely
many z ∈ Pn−1(C) such that

(14)
∂fd

∂X1
(z) = · · · =

∂fd

∂Xn
(z) = fd−1(z) = 0

where f =
∑

i fi and each fi ∈ C[X̄] is zero or homogeneous of degree i.
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As shown in [P1, Section 1.1], the geometric interpretation of the above definition
is that the projective closure of a generic fiber of f has only isolated singularities.

Remark 21. A generic complex polynomial has only isolated singularities at infinity.
In fact, much more is true: A generic polynomial f ∈ C[X̄] of degree d ≥ 1 has
no isolated singularities at infinity in the sense that there is no z ∈ Pn−1(C) such
that (14) holds. In more precise words, to every d ≥ 2, there exists a complex
polynomial relation that is valid for all coefficient tuples of polynomials f ∈ C[X̄]
of degree d for which (14) has an infinite number of solutions. This follows from
the fact that for a generic homogeneous polynomial g ∈ C[X̄] of degree d ≥ 1, there
are only finitely many points z ∈ Pn−1(C) such that ∂f

∂Xi
(z) = 0 for all i. See [Kus,

Théorème II] or [Shu, Proposition 1.1.1].

Remark 22. In the two variable case n = 2, every polynomial f ∈ C[X̄] has only iso-
lated singularities at infinity. This is clear since (14) defines an algebraic subvariety
of P1(C).

The following theorem follows easily from [P1, Theorem 1.4].

Theorem 23. Suppose f ∈ R[X̄] has only isolated singularities at infinity. Then

R∞(f, S(∇f)) ⊆ K(f).

In particular, R∞(f, S(∇f)) is finite, i.e., f has only finitely many asymptotic
values on its principal gradient tentacle.

Proof. Let (xk)k∈N be a sequence of points xk ∈ S(∇f) and y ∈ R such that
limk→∞ ||xk|| = ∞ and limk→∞ f(xk) = y /∈ K0(f). We show that y ∈ K∞(f)
using implication (i) =⇒ (ii) in [P1, Theorem 1.4]. Because of our sequence (xk)k∈N,
it is impossible that there exists N ≥ 1 and δ > 0 such that for all x ∈ Rn with
‖x‖ sufficiently large and f(x) sufficiently close to y, we have

||x||||∇f(x)‖ ≥ δ n
√
‖x‖.

This means that condition (ii) in [P1, Theorem 1.4] is violated. The implication
(i) =⇒ (ii) in [P1, Theorem 1.4] yields that y ∈ B(f) (here we use that y /∈ K0(f)).
But B(f) ⊆ K(f) by Theorem 15. This shows y ∈ K(f) \ K0(f) ⊆ K∞(f) by
Proposition 13. �

Lemma 24. Every f ∈ R[X̄] is bounded on S(∇f).

Proof. By the  Lojasiewicz inequality at infinity [Spo, Theorem 1], there exist c1, c2 ∈
N such that for all x ∈ Cn,

|f(x)| ≥ c1 =⇒ |f(x)| ≤ c2‖∇f(x)‖‖x‖.
Then |f | ≤ max{c1, c2} on S(∇f). �

3.1. The principal gradient tentacle and sums of squares. Here comes one
of the main results of this article which is interesting on its own but can later be
read as a convergence result for a sequence of optimal values of SDPs (Theorem 30
below).

Theorem 25. Let f ∈ R[X̄] be bounded from below. Furthermore, suppose that f
has only isolated singularities at infinity (which is always true in the two variable
case n = 2) or the principal gradient tentacle S(∇f) is compact. Then the following
are equivalent.
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(i) f ≥ 0 on Rn

(ii) f ≥ 0 on S(∇f)
(iii) For every ε > 0, there are sums of squares of polynomials s and t in R[X̄]

such that

(15) f + ε = s + t(1− ‖∇f‖2‖X̄‖2).

Proof. First of all, the polynomial g := 1− ‖∇f‖2‖X̄‖2 is a polynomial describing
the principal gradient tentacle

S := {x ∈ Rn | g(x) ≥ 0} = S(∇f).

Because sums of squares of polynomials are globally nonnegative on Rn, identity
(15) can be viewed as a certificate for f ≥ −ε on S. Hence it is clear that (iii)
implies (ii). For the reverse implication, we apply Theorem 9 (with m = 1 and
g1 := g) to f +ε instead of f . We only have to check the hypotheses. Condition (a)
is clear from Lemma 24. By Theorem 23, we have that R∞(f, S) is a finite set if
f has only isolated singularities at infinity. If S(∇f) is compact, the set R∞(f, S)
is even empty. Since f ≥ 0 on S by hypothesis, this set contains clearly only
nonnegative numbers. This shows condition (b), i.e., R∞(f + ε, S) = ε + R∞(f, S)
is a finite subset of R>0. Finally, the hypothesis f ≥ 0 on S gives f + ε > 0 on
S which is condition (c). Therefore (ii) and (iii) are proved to be equivalent. The
equivalence of (i) and (ii) is an immediate consequence of Theorem 19. �

Remark 26. Let f ∈ R[X̄] be bounded from below and S(∇f) be compact. Then
f attains its infimum f∗. To see this, observe that the equivalence of (i) and (ii)
in the preceding theorem implies

f∗ = sup{a ∈ R | f − a ≥ 0 on Rn}
= sup{a ∈ R | f − a ≥ 0 on S(∇f)}
= min{f(x) | x ∈ S(∇f)}.

The following observation is proved in the same way than Remark 2.

Remark 27. If f is a sum of squares in the ring R[[X̄]] of formal power series, then
its lowest (non-vanishing) homogeneous part must be a sum of squares in R[X̄].

Remark 28. There are polynomials f ∈ R[X̄] such that f ≥ 0 on Rn but there
is no representation (15) for ε = 0. To see this, take a polynomial f ∈ R[X̄]
such that f ≥ 0 on Rn but f is not a sum of squares in the ring R[[X̄]] of formal
power series (the Motzkin polynomial from (5) is such an example by the preceding
remark). Then a representation (15) with ε = 0 is impossible since the polynomial
1− ‖∇f‖2‖X̄‖2 has a positive constant term and is therefore a square in R[[X̄]].

3.2. Optimization using the gradient tentacle and sums of squares. The-
orem 25 shows that under certain conditions, computation of f∗ amounts to com-
puting the supremum over all a such that f − a = s + t(1− ‖∇f‖2‖X̄‖2) for some
sums of squares s and t in R[X̄]. As sketched in the introduction, sums of squares of
bounded degree can be nicely parametrized by positive semidefinite matrices. This
motivates the following definition.

Definition 29. For all polynomials f ∈ R[X̄] and all k ∈ N0, we define f∗k ∈
R∪{±∞} as the supremum over all a ∈ R such that f −a can be written as a sum

(16) f − a = s + t(1− ‖∇f‖2‖X̄‖2))
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where s and t are sums of squares of polynomials with deg t ≤ 2k.

Here and in the following, we use the convention that the degree of the zero
polynomial is −∞ so that t = 0 is allowed in the above definition. Note that when
the degree of t in (16) is restricted then automatically also the degree of s.

Therefore the problem of computing f∗k can be written as an SDP. How to do
this, is already suggested in our introduction. It goes exactly like in the well-
known method of Lasserre for optimization of polynomials on compact basic closed
semialgebraic sets. We refer to [L1, M1, Sr2] for the details. There are anyway
several toolboxes for MATLAB (a software for numerical computation) which can
be used to create and solve the corresponding SDPs without knowing these details.
The toolboxes we know are YALMIP [Löf] (which is very flexible and good for much
more than sums of squares stuff), SOSTOOLS [PPS] (which has a very flexible and
nice syntax), GloptiPoly [HL] (very easy to use for simple problems) and SparsePOP
[KKW] (specialized for sparse polynomials). Besides MATLAB and such a toolbox
one needs also an SDP solver for which the toolbox provides an interface.

A side remark that we want to make here is that to each SDP there is a dual
SDP and it is desirable from the theoretical and practical point of view that strong
duality holds, i.e., the optimal value of the primal and dual SDP coincide. For the
SDPs arising from Definition 29, strong duality holds. This follows from the fact
that principal gradient tentacles (unlike gradient varieties) always have non-empty
interior (they always contain a small neighbourhood of the origin). For a proof
confer [L1, Theorem 4.2], [M1, Corollary 3.2] or [Sr2, Corollary 21]. Here we will
not define the dual SDP nor discuss its interpretation in terms of the so-called
moment problem.

Recalling the definition of f sos in (4), we have obviously

(17) f sos ≤ f∗0 ≤ f∗1 ≤ f∗2 ≤ . . .

and if f is bounded from below, then all f∗k are lower bounds (perhaps −∞) of f∗

by Theorem 19. Note that the technique from Jibetean and Laurent (see Subsection
1.6 above) gives upper bounds for f∗ so that it complements nicely our method. It is
easy to see that Theorem 25 can be expressed in terms of the sequence f∗0 , f∗1 , f∗2 , . . .
as follows.

Theorem 30. Let f ∈ R[X̄] be bounded from below. Suppose that f has only
isolated singularities at infinity (e.g., n = 2) or the principle gradient tentacle
S(∇f) is compact. Then the sequence (f∗k )k∈N converges monotonically increasing
to f∗.

The following example shows that it is unfortunately in general not true that
f∗k = f∗ for big k ∈ N.

Example 31. Let f be the Motzkin polynomial from (5). By Theorem 30, we have
limk→∞ fk = 0. But it is not true that fk = 0 for some k ∈ N. By Definition 29,
this would imply that for all ε > 0, there is an identity (15) with sums of squares
s and t such that deg s ≤ k. Because S(∇f) has non-empty interior (note that
∇f(1, 1, 1) = 0 since f(1, 1, 1) = 0), we can use [PS, Proposition 2.6(b)] (see [Sr2,
Theorem 4.5] for a more elementary exposition) to see that such an identity would
then also have to exist for ε = 0. But this is impossible as we have seen in Remark
28.
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Unfortunately, the assumption that f is bounded from below is necessary in
Theorem 30 as shown by the following trivial example.

Example 32. Consider f := X ∈ R[X] (i.e., let n = 1 and write X instead of X1).
Then K(f) = ∅, S(∇f) = [−1, 1] and (f∗k )k∈N converges monotonically increasing
to inf{f(x) | −1 ≤ x ≤ 1} = −1 6= −∞ = f∗.

Open Problem 33. Do Theorems 25 and 30 hold without the hypothesis that f
has only isolated singularities at infinity or S(∇f) is compact?

By the above arguments, it is easy to see that this question could be answered in
the affirmative if R∞(f, S(∇f)) were finite for all polynomials f ∈ R[X̄] bounded
from below on Rn. But this is not true as the following counterexample shows. We
are grateful to Zbigniew Jelonek for pointing out to us this adaption of an example
of Parusiński [P2, Example 1.11].

Example 34. Consider the polynomial h := X + X2Y + X4Y Z ∈ R[X, Y, Z], set
f := h2 and define for fixed a > 0 the curve

γ : R>0 → R3 : s 7→

(
s,

2a

s2
,−
(
1 + s

4a

)
2s2

)
.

Observe that
h(γ(s)) =

3
4
s + a and

∂h

∂X
(γ(s)) = 0

and therefore f(γ(s)) = ( 3
4s + a)2 and

‖∇f‖2(γ(s)) = 4f‖∇h‖2(γ(s)) = 4s4

(
3
4
s + a

)2
((

1
2
− s

8a

)2

+ (2a)2
)

.

It follows that ‖∇f‖2(γ(s))‖γ(s)‖2 equals(
4s6 + 16a2 +

(
1 +

s

4a

)2
)(

3
4
s + a

)2
((

1
2
− s

8a

)2

+ (2a)2
)

which tends to (16a2+1)a2(1/4+4a2) for s → 0. We now see that for s → 0, ‖γ(s)‖
tends to infinity, f(γ(s)) tends to a2 and, when a is a sufficiently small positive
number, ‖∇f‖2(γ(s))‖γ(s)‖2 tends to a real number smaller than 1. This shows
that a2 ∈ R∞(f, S(∇f)) for every sufficiently small positive number a. Hence f is
an example of a polynomial bounded from below such that R∞(f, S(∇f)) is infinite.

3.3. Implementation in YALMIP. We show here how to encode computation
of f∗k (as well as of f∗−1 := f sos) for any k ∈ N with YALMIP. First you have to
declare the variables appearing in the polynomial f (here x and y) as well as the
variable a to maximize.
sdpvar x y a

Now you specify the polynomial f and the degree bound k (−1 for computing
f sos). Here we take the dehomogenization f := M(X, Y, 1) where M is the Motzkin
polynomial introduced in (5).
f = x^4 * y^2 + x^2 * y^4 - 3 * x^2 * y^2 + 1, k = 0

Now compute the partial derivatives with respect to the variables (here x and y)
and specify the polynomial g defining the gradient tentacle.
df = jacobian(f, [x y]), g = 1 - (df(1)^2 + df(2)^2) * (x^2 + y^2)
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Define a polynomial variable t of degree ≤ 2k and impose the constraints that t
and f −a− tg are sums of squares (for some reason the current version of YALMIP
does here not accept a degree zero polynomial t so that this has to be modeled as
a scalar variable).
if k > 0
v = monolist([x; y], 2*k), coeffVec = sdpvar(length(v), 1)
t = coeffVec’ * v
constraints = set(sos(f - a - t * g)) + set(sos(t))

elseif k == 0
coeffVec = sdpvar(1, 1), t = coeffVec
constraints = set(sos(f - a - t * g)) + set(t > 0)

else
coeffVec = []
constraints = set(sos(f - a))

end

Now solve the SDP and output the result for a.
solvesos(constraints, -a, [], [a; coeffVec]), double(a)

3.4. Implementation in SOSTOOLS. Below we give an SOSTOOLS code which
even slightly easier to read but essentially analogous to the YALMIP code. In con-
trast to the YALMIP code above, the MATLAB Symbolic Math Toolbox is required
to execute the code below.
syms x y a t
f = x^4 * y^2 + x^2 * y^4 - 3 * x^2 * y^2 + 1, k = 0
df = jacobian(f, [x y]), g = 1 - (df(1)^2 + df(2)^2) * (x^2 + y^2)
prog = sosprogram([x; y], a)

if k > 0
v = monomials([x; y], [0 : k]), [prog, t] = sossosvar(prog, v)
prog = sosineq(prog, f - a - t * g)

elseif k == 0
prog = sosdecvar(prog, t), prog = sosineq(prog, t)
prog = sosineq(prog, f - a - t * g)

else
prog = sosineq(prog, f - a)

end

prog = sossetobj(prog, -a), prog = sossolve(prog)
sosgetsol(prog, a)

3.5. Numerical results. The following examples have been computed on an or-
dinary PC with MATLAB 7, YALMIP 3 and the SDP solver SeDuMi 1.1. Most
of the computations took a few seconds, some of them a few minutes. The first
example corresponds exactly to the code in Subsection 3.3. To compute the others,
the variables, the polynomial f and the degree bound k has to be changed in that
code.

Example 35. Let f := M(X, Y, 1) be the dehomogenization of the Motzkin polyno-
mial M from (5), i.e., f := M(X, Y, 1) = X4Y 2 + X2Y 4 − 3X2Y 2 + 1 ∈ R[X, Y ].
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We have f∗ = 0 but f sos = −∞ (the latter is an easy exercise). If we execute the
program from Subsection 3.3 with k = −1 instead of k = 0, the computer answers
that the SDP is infeasible which means indeed that f sos = −∞. Executing the
same program for k = 0, 1, 2 yields f∗0 ≈ −0.0017, f∗1 ≈ −0.0013 and f∗2 ≈ 0.000066
which is already very close to f∗ = 0. By Theorem 30, the sequence f0, f1, f2, . . .
converges monotonically to f∗ = 0. But the computed value f∗2 ≈ 0.000066 is
positive so that there are obviously numerical problems. Confer [PS, Example 2].

Example 36. Define f := M(X, 1, Z) ∈ R[X, Z] where M is the Motzkin polyno-
mial from (5), i.e., f = X4 + X2 + Z6 − 3X2Z2 ∈ R[X, Z]. Computation yields
f sos ≈ −0.1780, f∗0 ≈ −5.1749 · 10−5, f∗1 ≈ −1.2520 · 10−7 and f∗2 = 8.7662 · 10−10

which “equals numerically” f∗ = 0. This is in accordance with Theorem 25 which
guarantees convergence to f∗ since we are in the two variable case. Confer [PS,
Example 3].

Example 37. Consider the Berg polynomial f := X2Y 2(X2 + Y 2 − 1) ∈ R[X, Y ]
with global minimum f∗ = −1/27 attained in (±1/

√
3,±1/

√
3). We have f sos =

−∞ and running the corresponding program gives indeed an output saying that
the corresponding SDP is infeasible. The computed optimal values of the first
principal tentacle relaxations are f∗0 ≈ −0.0564, f∗1 ≈ −0.0555, f∗2 ≈ −0.0371 and
f∗3 ≈ −0.0370 ≈ −1/27 = f∗. Confer [L1, Example 3], [NDS, Example 3] and [JL,
Example 4].

Example 38. Being a polynomial in two variables of degree at most four, we have
that for f := (X2 + 1)2 + (Y 2 + 1)2 − 2(X + Y + 1)2 ∈ R[X, Y ], f − f∗ must be a
sum of squares (see introduction) whence f∗ = f sos. By computation, we obtain for
all values f sos, f∗0 , f∗1 , f∗2 approximately −11.4581. That all these computed values
are the same can be expected by f∗ = f sos and the monotonicity (17). Confer [L1,
Example 2] and [JL, Example 3].

Example 39. In [LL], it is shown that

f :=
5∑

i=1

∏
j 6=i

(Xi −Xj) ∈ R[X1, X2, X3, X4, X5]

is nonnegative on R5 but not a sum of squares of polynomials. Therefore f sos = −∞
by Remark 2 since f is homogeneous. The SDP solver detects indeed infeasibility
of the corresponding SDP. We have computed f∗0 ≈ −0.2367, f∗1 ≈ −0.0999 and
f∗2 ≈ −0.0224. Solving the SDP relaxation computing f∗2 took already the time of
a coffee break. As in [JL, Example 6], we observe therefore that minimizing f is
after the change of variables Xi 7→ X1 − Yi (i = 2, 3, 4, 5) equivalent to minimizing

h := Y2Y3Y4Y5 +
5∑

i=2

(−Yi)
∏
j 6=i

(Yj − Yi) ∈ R[Y2, Y3, Y4, Y5].

Computing hsos results in infeasibility. The numerical results using the principle
gradient tentacle are h∗0 ≈ −0.2380, h∗1 ≈ −0.0351, h∗2 ≈ −0.0072, h∗3 ≈ −0.0019
and h∗4 ≈ −0.00086285 which is already very close to h∗ = 0. The condition
in Theorem 30 is satisfied neither for f nor for h and yet it seems that we have
convergence to h∗. This is a typical observation that might give hope that Open
Problem 33 has a positive answer.



GLOBAL OPTIMIZATION OF POLYNOMIALS 19

Example 40. Consider once more the polynomial f = (1−XY )2 +Y 2 from (6) and
Example 16 that does not attain its infimum f∗ = 0 on R2. Since this polynomial
is by definition a sum of squares, we have f sos = 0 = f∗ and therefore f∗k = 0 for all
k ∈ N by (17). By computation, we get f sos ≈ 1.5142 · 10−12 which is almost zero
but also f∗0 ≈ 0.0016, f∗1 ≈ 0.0727 and f∗2 ≈ 0.1317 which shows that there are big
numerical problems. We have verified that the corresponding SDPs have neverthe-
less been solved quite accurately. The problem is that small numerical errors in the
coefficients of a polynomial can perturb its infimum quite a lot whenever the infi-
mum is not attained (or attained very far from the origin). It should be subject to
further research how to fight this problem. Anyway, the gradient tentacle method
still performs in this example much better than the gradient variety method which
yields the wrong answer 1 (as described in Subsection 1.7 above). The method of
Jibetean and Laurent gives the best results in this case [JL, Example 5].

3.6. Numerical stability. If the coefficients of f and ‖∇f‖‖X̄‖ have an order of
magnitude very different from 1, then the defining polynomial g = 1−‖∇f‖2‖X̄‖2
for the gradient tentacle should be better exchanged by R − ‖∇f‖2‖X̄‖2 where R
is a real number of that order of magnitude. This is justified by Remark 18 above.

Example 40 and other experiments that we did with polynomials bounded from
below that do not attain a minimum are a bit disappointing and show that for this
“hard” class of polynomials (exactly the class we were attacking), a lot of work
remains to be done, at least on the numerical side. The corresponding semidefinite
programs tend to be numerically unstable.

For polynomials attaining their minimum, the method in [NDS] is often much
more efficient, e.g., for Example 39.

4. Higher gradient tentacles

In this section, we associate to every polynomial f ∈ R[X̄] a sequence of gradient
tentacles. Each of these is defined by a polynomial inequality just as the principal
tentacle from Section 3 was. But the degree of this polynomial inequality for the
N -th tentacle in this sequence will be roughly 2N times the degree of f . This has
the disadvantage that the corresponding SDP relaxations get very big for large N .
Also, we have to deal for each N with a sequence of SDPs. All in all, we have
therefore a double sequence of SDPs. The advantage is however that we can prove
a sums of squares representation theorem (Theorem 46) applicable for all f ∈ R[X̄]
bounded from below independently of what is the answer to Open Problem 33.
Again, we think that this theorem is also of theoretical interest. Implementation of
the higher gradient tentacle method is analogous to Subsections 3.3 and 3.4. This
time we do not give numerical examples because of Open Problem 33, Remark 21
and numerical problems for big N .

Definition 41. For f ∈ R[X̄] and N ∈ N, we call

S(∇f,N) := {x ∈ Rn | ‖∇f(x)‖2N (1 + ‖x‖2)N+1 ≤ 1}

the N -th gradient tentacle of f .

A trivial fact that one should keep in mind is that ‖∇f(x)‖2(1 + ‖x‖2) ≤ 1 and
in particular ‖∇f(x)‖‖x‖ ≤ 1 for all x ∈ S(∇f,N). This shows that

V (∇f) ∩ Rn ⊆ S(∇f, 1) ⊆ S(∇f, 2) ⊆ S(∇f, 3) ⊆ . . . ⊆ S(∇f).
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The definition of S(∇f,N) is motivated by the following definition which is taken
from [KOS, page 79].

Definition 42. Suppose f ∈ R[X̄] and N ∈ N. The set KN
∞(f) consists of all

y ∈ R for which there exists a sequence (xk)k∈N in Rn such that

(18) lim
k→∞

||xk|| = ∞, lim
k→∞

‖∇f(xk)‖‖xk‖1+
1
N = 0 and lim

k→∞
f(xk) = y.

Clearly, we have

K1
∞(f) ⊆ K2

∞(f) ⊆ K3
∞(f) ⊆ · · · ⊆ K∞(f).

The next lemma says that this chain actually gets stationary and reaches K∞(f).
For the proof, we refer to [KOS, Lemma 3.1].

Lemma 43 (Kurdyka, Orro and Simon). For all f ∈ R[X̄], there exists N ∈ N
such that

K∞(f) = KN
∞(f).

Now we prove for sufficiently large gradient tentacles what was Corollary 19 for
the principal gradient tentacle (which contains all higher gradient tentacles).

Theorem 44. Suppose f ∈ R[X̄] is bounded from below. Then f∗ ∈ K(f) and
there is N0 ∈ N such that for all N ≥ N0,

(19) f∗ = inf{f(x) | x ∈ S(∇f,N)}.

Proof. We know already from Theorem 19 that f∗ ∈ K(f). By Proposition 13,
at least one of the following two cases therefore must occur. The first case is that
f∗ ∈ K0(f). Then f∗ is attained by f on its gradient variety and therefore on the
N -th gradient tentacle for actually all N ∈ N. Hence we can set N0 := 1. In the
second case f∗ ∈ K∞(f), we can choose some N0 ∈ N such that f∗ ∈ KN

∞(f) by
the previous Lemma. Then f∗ ∈ KN

∞(f) for any N ≥ N0. This means that there
exists a sequence (xk)k∈N satisfying (18). Therefore ‖∇f(x)‖‖xk‖1+1/N ≤ 1

2 and
consequently

‖∇f(xk)‖2N (1 + ‖xk‖2)N+1 ≤ ‖∇f(xk)‖2N (2‖xk‖2)N+1 ≤ 1

for all large k since ‖xk‖ ≥ 1 and 2N+1 ≤ 22N . This shows that xk ∈ S(∇f,N) for
all large k which implies our claim. �

The great advantage of the higher gradient tentacles over the principal one is
that they are always small enough to admit only finitely many asymptotic values,
i.e., there is no counterpart to Example 34.

Theorem 45. For every f ∈ R[X̄], R∞(f, S(∇f)) ⊆ K∞(f). In particular, every
f ∈ R[X̄] has only finitely many asymptotic values on each of its higher gradient
tentacles, i.e., the set R∞(f, S(∇f,N)) is finite for all N ∈ N.

Proof. Let y ∈ R be such that (7) holds for some sequence (xk)k∈N of points
xk ∈ S(∇f,N). By Definition 41,

‖∇f(xk)‖N‖xk‖N ≤ 1
‖xk‖

→ 0 for k →∞

implying (13). This shows y ∈ K∞(f). �
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4.1. Higher gradient tentacles and sums of squares. We are now able to
prove the third important sums of squares representation theorem of this article
besides Theorems 9 and 25.

Theorem 46. For all f ∈ R[X̄] bounded from below, there is N0 ∈ N such that for
all N ≥ N0, the following are equivalent.

(i) f ≥ 0 on Rn

(ii) f ≥ 0 on S(∇f,N)
(iii) For every ε > 0, there are sums of squares of polynomials s and t in R[X̄]

such that

(20) f + ε = s + t(1− ‖∇f‖2N (1 + ‖X̄‖2)N+1).

Moreover, these conditions are equivalent for all f attaining a minimum on Rn and
all N ∈ N. Finally, (ii) and (iii) are equivalent for all f ∈ R[X̄] and N ∈ N.

Proof. We first show that (ii) and (iii) are always equivalent. To see this, observe
that g1 := 1 − ‖∇f‖2N‖X̄‖2N+2 is a polynomial that defines the set S := {x ∈
Rn | g1 ≥ 0} = S(∇f,N). Because sums of squares of polynomials are globally
nonnegative on Rn, identity (20) can be viewed as a certificate for f ≥ −ε on
S. Hence it is clear that (iii) implies (ii). For the reverse implication, we apply
Theorem 9 to f + ε instead of f . We only have to check the hypotheses. Condition
(a) is clear from Lemma 24. By Corollary 45, we have that R∞(f, S) is a finite set.
Since f ≥ 0 on S by hypothesis, this set contains clearly only nonnegative numbers.
This shows condition (b), i.e., R∞(f + ε, S) = ε + R∞(f, S) is a finite subset of
R>0. Finally, the hypothesis f ≥ 0 on S gives f + ε > 0 on S which is condition
(c).

Now suppose that f ∈ R[X̄] attains a minimum f(x∗) = f∗ in a point x∗ ∈ Rn.
Then ∇f(x∗) = 0 and therefore x∗ ∈ S(∇f,N) for all N ∈ N. This shows that (i)
and (ii) are in this case equivalent for all N ∈ N.

By what has already been proved, it remains only to show that (i) and (ii)
are equivalent for large N ∈ N when f ∈ R[X̄] is bounded from below but does
not attain a minimum. But in this case, (19) holds by Theorem 44 yielding the
equivalence of the first two conditions. �

Without needing it for our application, we draw the following immediate corol-
lary. Taking N = 1 in the second part of this corollary yields Theorem 6 above of
Nie, Demmel and Sturmfels.

Corollary 47. Suppose f ∈ R[X̄] and f ≥ 0 on V (∇f) ∩ Rn. Then f + ε is for
all ε > 0 a sum of squares modulo any principal ideal generated by a power of the
polynomial ‖∇f‖2(1 + ‖X̄‖2), i.e., for every ε > 0 and N ∈ N, there is a sum of
squares s in R[X̄] and a polynomial p ∈ R[X̄] such that

f = s + p(‖∇f‖2(1 + ‖X̄‖2))N .

In particular, f + ε is for all ε > 0 a sum of squares modulo each power of its
gradient ideal, i.e., for every ε > 0 and N ∈ N, there is a sum of squares s in R[X̄]
such that

f ∈ s + (∇f)N .

Proof. The second claim follows from the first one. The first claim follows im-
mediately from implication (i) =⇒ (iii) in Theorem 46 which always holds for all
N ∈ N. �
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4.2. Optimization using higher gradient tentacles and sums of squares.
The following definition can be motivated in the same way than Definition 29 in
Section 3.

Definition 48. For all polynomials f ∈ R[X̄], all N ∈ N and all k ∈ N0, we define
f∗N,k ∈ R ∪ {±∞} as the supremum over all a ∈ R such that f − a can be written
as a sum

(21) f − a = s + t(1− ‖∇f‖2N (1 + ‖X̄‖2)N+1)

where s and t are sums of squares of polynomials with deg t ≤ 2k.

Again, like in Section 3 outlined, computation of fN,k amounts to solving an
SDP for each fixed N ∈ N and k ∈ N0. Recalling the definition of f sos in (4), we
have for each fixed N ∈ N,

f sos ≤ f∗N,0 ≤ f∗N,1 ≤ f∗N,2 ≤ . . .

and if f is bounded from below, then all f∗N,k are lower bounds of f∗ by Theorem
44. It would be desirable to have also information how the fN,k are related to each
other when not only k but also N varies. All we know about that is the following
proposition.

Proposition 49. For all f ∈ R[X̄], N ∈ N and k ∈ N0,

f∗N+1,k ≤ f∗N,k+d.

Proof. Let us define the polynomials hN like in (11) and substitute in the identity
proved in Lemma 11, the polynomials ‖∇f‖2 for Y and ‖X̄‖2 for X̄. Then we get

(22) 1− ‖∇f‖2(N+1)(1 + ‖X̄‖2)N+2 = p + q(1− ‖∇f‖2N (1 + ‖X̄‖2)N+1).

where p and

q :=
(

1 +
1
N

)
‖∇f‖2(1 + ‖X̄‖2)

are sums of squares of polynomials. The degree of q is no higher than 2(d−1)+2 =
2d. Now if for a ∈ R we have an identity

f − a = s + t(1− ‖∇f‖2(N+1)(1 + ‖X̄‖2)N+2)

for sums of squares s and t with deg t ≤ 2k, then for the same a

f − a = (s + tp) + tq(1− ‖∇f‖2N (1 + ‖X̄‖2)N+1)

and deg(tq) ≤ 2(k + d). �

We conclude by interpreting Theorem 46 as a convergence result concerning the
optimal values f∗N,k of the proposed relaxations. This is the counterpart to Theorem
30 from Section 2.

Theorem 50. For all f ∈ R[X̄] bounded from below, (f∗N,k)k∈N converges mono-
tonically increasing to f∗ provided that N ∈ N is sufficiently large (depending on
f). If f attains a minimum on Rn, (f∗N,k)k∈N converges monotonically increasing
to f∗ no matter what N ∈ N is.
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5. Conclusions

We have proposed a method for computing numerically the infimum of a real
polynomial in n variables which is bounded from below on Rn. Like in [JL] and
[NDS], the approach is to find semidefinite relaxations relying on sums of squares
certificates and critical point theory. As one could expect, polynomials that do not
attain a minimum on Rn (that are either unbounded from below or have a finite
infimum that is not attained) are particularly hard to handle. In [JL], this prob-
lem (among others) was solved by perturbing the coefficients of the polynomial to
guarantee a minimum (in particular, boundedness from below). Though the results
in [JL] are quite good, we are convinced that one should also look for other meth-
ods that avoid perturbations and the danger of numerical ill-conditioning coming
along with them. Proving sums of squares representations for polynomials positive
on their gradient variety, it was shown by Nie, Demmel and Sturmfels [NDS] that
an approach without perturbation is possible. The computational performance of
their method is extremely good. However, for polynomials that do not attain a
minimum, their method yields wrong answers. Combining considerable machinery
from differential geometry and real algebraic geometry, we have shown that part
of this limitation can be removed. By using our gradient tentacles instead of the
gradient variety, polynomials that do not attain a minimum but are bounded from
below can also be handled. Our method has three major problems. First, we do
not address the important question of how to check efficiently if a polynomial is
bounded from below. For such polynomials, our method still gives a wrong answer
(see Example 32). Second, it turns out that solving semidefinite programs that arise
from a polynomial that does not attain a minimum takes sometimes surprisingly
long time. And third, small numerical inaccuracies might lead to big changes in the
infimum of a polynomial if the infimum is not attained. All three problems should
be subject to further research. Polynomials not attaining a minimum remain hard
to handle in practice. On the theoretical side, we have combined the theory of
generalized critical values with the the theory of real holomorphy rings and have
obtained new interesting characterizations of nonnegative polynomials.

Acknowledgments

We are most grateful to Zbigniew Jelonek for the discussions in Passau where he
showed us Example 34 and Parusinski’s Theorem 23. Our thanks go also to Mohab
Safey El Din for shifting our attention to Theorem 19, to Richard Leroy for helping
to prove Lemma 11 and to Krzysztof Kurdyka for interesting discussions in Paris.

References

[Ble] G. Blekherman. There are Significantly More Nonnegative Polynomials than Sums of
Squares. Preprint.
http://arxiv.org/abs/math.AG/0309130

[Cas] G. Cassier. Problème des moments sur un compact de Rn et décomposition de polynômes
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