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Abstract This paper introduces a new algorithmic tech-
nique for solving certain problems in geometric computer
vision. The main novelty of the method is a branch-and-
bound search over rotation space, which is used in this pa-
per to determine camera orientation. By searching over all
possible rotations, problems can be reduced to known fixed-
rotation problems for which optimal solutions have been
previously given. In particular, a method is developed for the
estimation of the essential matrix, giving the first guaranteed
optimal algorithm for estimating the relative pose using a
cost function based on reprojection errors. Recently convex
optimization techniques have been shown to provide optimal
solutions to many of the common problems in structure from
motion. However, they do not apply to problems involving
rotations. The search method described in this paper allows
such problems to be solved optimally. Apart from the es-
sential matrix, the algorithm is applied to the camera pose
problem, providing an optimal algorithm. The approach has
been implemented and tested on a number of both syntheti-
cally generated and real data sets with good performance.
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1 Introduction

In this paper, we will consider L∞ optimization problems
related to one-view or two-view geometry; in particular we
will focus on two problems, the pose problem and the rel-
ative pose problem. Optimal (minimum cost) solutions will
be given to these problems under the geometrically mean-
ingful L∞ cost function. Although these problems have
been well studied in the past, no previous solutions have
claimed optimality under any sort of meaningful geometric
error model.

The pose problem is as follows. Given a set of 3D points
with known position, and corresponding 2D image points,
determine the location and pose of the camera. A little
more formally: given 3D points Xi and corresponding im-
age points, vi , determine the camera matrix P. A solution
to this problem is given by the DLT algorithm (Hartley and
Zisserman 2003, Chap. 7).

The relative pose (or relative orientation) problem is to
find the relative pose of two cameras, given a set of image
correspondences determined by unknown 3D points. Often,
the solution to this problem involves finding the positions
of the 3D points as well. In other words, given image cor-
respondences vi ↔ v′

i , find two camera matrices P and P′,
along with 3D points Xi , such that vi = PXi and v′

i = P′Xi .
This is the problem commonly solved by computing the fun-
damental or essential matrix; a commonly used algorithm is
the 8-point algorithm (Longuet-Higgins 1981 or Hartley and
Zisserman 2003, Chap. 11).

In the case where there is noise in the measurements,
there is of course no exact solution to these problems, and
generally it is considered optimal to find a solution that min-
imizes image error, namely the difference between the mea-
sured and modelled image points. The difference between
the measured and modelled image measurements may be
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represented by a vector with one coordinate for each image
measurement. The L2 solution to the problem minimizes the
L2 norm of this error vector, namely the sum of squares
of the image-measurement errors. The L∞ solution, con-
sidered in this paper, minimizes the L∞ norm of the error
vector, that is, it minimizes the maximum error, and is also
called the minimax solution to the problem.

The main technical obstacle for solving these kinds of
problems is that they are by nature non-convex and may
contain several local optima. This is true for other simpler
multiview problems like triangulation as well, but unlike
triangulation—for which there are rarely any local minima
in practice (see Kahl et al. 2008)—the pose problems we
consider are known to be plagued by local minima and am-
biguous solutions for real image problems, see (Olsson et al.
2008; Szeliski and Kang 1997; Soatto and Brockett 1998).
Our solution for dealing with the non-convexity is accom-
plished by (i) efficiently searching the rotational manifold
and (ii) exploiting the quasiconvexity of the problems when
rotations are assumed to be known. The framework is based
on branch-and-bound in the rotation space and hence one
needs bounding functions to control the error. In order to
speed up the computations, we also show that the relative
pose problem can be solved using just Linear Programming
(LP), and hence the computationally more expensive Second
Order Cone Programming (SOCP) is not required.

1.1 Related Work

To this point, there has been no known efficient optimal so-
lution to these problems. Solutions have been given in (Ols-
son et al. 2006) for the pose problem, but the solution we
give here is considerably faster and the approach in (Olsson
et al. 2006) does not generalize to the relative pose problem.
To our knowledge, no optimal solution has been reported
for the relative pose problem using a cost function based on
reprojection errors. Optimal L∞ solutions are given in this
paper for both problems and the algorithms are efficient and
fast. A preliminary version of the work has appeared in the
conference paper (Hartley and Kahl 2007a).

The class of problems that can be solved globally with the
L∞-norm includes problems like n-view triangulation, un-
calibrated camera pose, homography estimation and struc-
ture from motion with a reference plane and more, see (Kahl
2005; Ke and Kanade 2007; Kahl and Hartley 2008). The
current paper further extends this class to include problems
involving unknown rotations. In recent years there have been
many attempts to compute globally optimal solutions for
various geometric reconstruction problems. Using the L∞-
norm framework has perhaps been the most successful one,
but other approaches include (Kahl et al. 2008) and (Kahl
and Henrion 2007). The former approach applies a branch
and bound algorithm to compute L1- and L2-solutions for

triangulation and uncalibrated pose and the latter one uses
convex approximations for a set of geometric reconstruction
problems, but with no guarantee of optimality. Neither of
these two approaches has shown the ability to optimize over
rotation space. A summary of research in this area is given
in (Hartley and Kahl 2007b).

Another class of related problems that have been ad-
dressed using branch-and-bound techniques is geomet-
ric matching problems; see (Breuel 2003; Olsson et al.
2008) and the references there. The problems considered
in (Breuel 2003) are harder in the sense that feature corre-
spondences are not known a priori. On the other hand only
problems with a small number of degrees of freedom seem
to be tractable. Typically, a planar Euclidean transformation
which maps one set of points to another is computed.

1.2 Getting Down to the Details

We consider calibrated cameras, and may therefore assume
that the calibration matrix is the identity. As is commonly
done with calibrated cameras, we find it convenient to con-
sider image points as lying on an image sphere, rather than
an image plane. Thus, an image measurement is a unit vector
vi , representing the direction vector from the camera centre
to the 3D point. Thus, a camera is represented by a rotation
matrix R, the orientation of the camera, and a position vector
C representing the position of the camera centre. The image
point corresponding to a point X is given by

v = R(X − C)

‖R(X − C)‖ .

We will often be considering situations where a mea-
sured image point v is compared with a modelled point v̂(θ),
where θ is a set of parameters that define the point v̂. We typ-
ically require that the angle ∠(v, v̂(θ)) should be less than
some error bound ε. Assuming that v�v̂(θ) > 0, this may be
written as

‖v × v̂(θ)‖
v�v̂(θ)

≤ tan(ε),

or equivalently

‖v × v̂(θ)‖ − ε′v�v̂(θ) ≤ 0 (1)

where ε′ = tan(ε) > 0. Note that this inequality implies the
condition that v�v̂(θ) > 0. Now, it was observed in (Kahl
2005; Ke and Kanade 2007; Kahl and Hartley 2008) that as
long as v̂(θ) is expressed linearly in terms of the parame-
ters θ , the condition (1) has the form of a second-order cone
constraint. For a fixed ε′, this is a convex constraint since
the constraint function is the sum of a linear (hence convex)
function −ε′v�v̂(θ), and the norm of a linear function.

Combining several such second-order constraints from
different measurement vectors vi leads to a so called
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Second-Order Cone Program (SOCP). For a given ε′, one
may ask to find any θ satisfying all the constraints. Since
there is no objective function we have what is known as
an SOCP feasibility problem which is easily solvable using
commonly available software packages, for example, Se-
DuMi (Sturm 1999). One can perform a binary search for
the optimal ε′ to solve the minimax optimization problem

min
θ

max
i

∠(vi , v̂i (θ)) (2)

by solving a series of SOCP feasibility problems, provided
that each v̂i (θ) is a linear expression in the parameters θ .
For more details, see (Kahl and Hartley 2008).

The Pose Problem Given a set of 3D points Xi and corre-
sponding image points vi , we seek the rotation R and camera
centre C that realize the minimax cost function

min
R,C

max
i

∠(vi ,R(Xi − C)) (3)

where ∠(·, ·) represents the angle between two vectors.1

This problem is of the form (2), but unfortunately, the
vector R(Xi − C) is not expressed linearly in terms of a set
of parameters for the unknowns R and C, so we have no
direct solution to this problem using SOCP. It is interesting
and relevant to note, however, that if the rotation R is known,
then this problem is solvable. In fact, it is identical to the L∞
triangulation problem. Observe that

∠(vi ,R(Xi − C)) = ∠(R�vi ,Xi − C).

With known direction vectors R�vi and points Xi we seek
the point C that minimizes the angular error. This is the
“triangulation” problem, which was shown to be optimally
solvable in L∞ norm in (Hartley and Schaffalitzky 2004);
SOCP was used to find the optimal solution in (Kahl 2005;
Ke and Kanade 2007; Kahl and Hartley 2008).

Thus, in principle, the pose problem may be solved by a
search over all possible rotations R to find the rotation that
gives the best solution. The challenge is to do this without
having to test an infinite number of rotations.

The Relative Pose Problem The relative pose problem is
to determine the relative position of two cameras given im-
age point correspondences. We assume a set of image cor-
respondences vi1 ↔ vi2, where vi1 and vi2 are points in the
first and second image respectively. We are required to find

1Thus, we formulate this problem as minimizing the angular error in
measurements, instead of “pixel error” on an image plane. This is not
an essential point; the problems could equally well be formulated in
terms of image-plane error, but we find this formulation more natural
for calibrated cameras.

corresponding 3D points Xi , rotation matrices Rj and cam-
era centres Cj for j = 1,2 that realize the minimum of the
following cost function.

min
Rj ,Cj ,Xi

max
i,j

∠(vij ,Rj (Xi − Cj )). (4)

To simplify this problem, we may assume that the first cam-
era has rotation R1 equal to the identity, and camera centre
C1 at the origin, leaving only the relative pose (R2,C2) as
well as the points Xi to be determined.

Once again, this problem is of the form given by (2),
but it may not be formulated linearly in the parameters of
the unknown quantities. However if the rotation is known,
then the problem reduces to that of structure-and-motion
with known rotations. This has also been shown to be solv-
able in L∞ norm in (Hartley and Schaffalitzky 2004). As
before, SOCP provides an efficient solution (Kahl 2005;
Kahl and Hartley 2008).

As this discussion shows, both the problems considered
reduce to optimization over a space of Euclidean motions
(rotation and translation). In both cases, the problem has a
known solution if the rotation is known, so solving the gen-
eral problem comes down to a search over all rotations. This
search will be carried out using a branch-and-bound strategy
(Kahl et al. 2008).

Existence of a Solution The description of the minimiza-
tion problems (3) and (4) above is written under the as-
sumption that a minimum exists and is in fact attained. For
the sake of mathematical rigour, we settle this issue here.
A function attains its minimum if it is defined on a com-
pact set and is continuous. However, the parameters Xi are
defined to lie in R3, which is not compact (in the standard
topology). To avoid this difficulty we simply compactify R3

by allowing points at infinity. In other words, we perform
optimization over the oriented projective space P 3+, de-
fined as equivalence classes of non-zero homogeneous vec-
tors {X = (X, Y, Z, T) �= 0 | T ≥ 0} where two such vectors
are considered equivalent if they differ by a positive constant
multiplier. Points for which T = 0 are points at infinity, but
unlike the usual projective space P 3, points at infinity in op-
posite directions are not identified. This being the case, one
may unambiguously extend the function ∠(vi ,Xi − Cj ) to
points at infinity Xi .

It is easily seen that each equivalence class has a unique
representative such that ‖X‖2 = X2 + Y2 + Z2 + T2 = 1 and
T ≥ 0. That is, P 3+ is homeomorphic to the closed half-
sphere S3+ in R4, and hence is compact.

A further small difficulty, that ∠(vi ,Xi − Cj ) has an es-
sential discontinuity when Xi = Cj is avoided by defining
∠(vi ,0) = 0. Since we are always interesting in minimizing
an L∞ norm such as maxij ∠(vij ,Xi − Cj ), this function
will be continuous unless all Xi and Cj are equal, which
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is easily avoided. In the relative orientation problem, for in-
stance, we enforce a unit distance between the two cameras.

In this way, we may ensure that the objective function
is continuous and defined on a compact domain, and hence
achieves its minimum. From a practical implementation
point of view, we find it unnecessary to use homogeneous
coordinates in this way, since our method of solution is to
approach the optimal solution through a sequence of fea-
sibility problems. For this reason, we do not consider this
issue throughout the rest of the paper.

2 Branch and Bound

We will discuss branch-and-bound optimization as a form of
search over a parameter space. In our discussion, it will be
assumed that the parameter space is some subset of a Euclid-
ean space Rn, where n should not be too large. In the case of
rotations, we may parametrize rotations using the angle-axis
parametrization, to be described later, in which rotations are
represented by 3-vectors. All 3D rotations may be repre-
sented by vectors in the closed ball of radius π in R3.

In our version of branch and bound, we divide up the
parameter space into cubic blocks, each block representing
a set of similar rotations. Let D be a block in the parameter
space. One now considers the optimization problem over the
restricted set of parameters D. This will be referred to as
the restricted optimization problem. Thus, for instance in the
pose problem, one tries to find the minimum

min
R∈D,C

max
i

∠(vi ,R(Xi − C))

where instead of trying to solve the problem over all rota-
tions, one restricts to rotations in the block D.

The critical requirement in branch-and-bound is that al-
though it may not be possible to solve the restricted problem
exactly, it is at least possible to find a lower bound for the
optimal solution to the restricted problem. The tighter this
lower bound is, the better, and in any case it is necessary
that as the size of the block D gets smaller, the lower bound
becomes a closer and closer approximation to the optimal
solution, and in the limit the lower bound converges to the
value of the optimal minimum of the restricted problem.

The branch and bound algorithm now goes as follows.

1. Start with an initial approximate solution to the optimiza-
tion problem, found by any method at all, and having cost
εmin for the cost function being minimized.

2. Now, divide up the parameter space into blocks Dj . For
each such block determine whether there is a solution to
the restricted optimization problem on Dj having cost
less than εmin. This question may be formulated as a fea-
sibility problem. If the answer is no (no solution with
cost less than εmin exists on Dj ), then block Dj can be
excluded from further consideration.

3. Otherwise we take two steps:
(a) evaluate the cost function for some value of the pa-

rameter inside the region Dj , and if this is less than
εmin, replace the value of εmin by this new current
minimum.

(b) Subdivide Dj into two or more smaller regions.

This algorithm terminates when the remaining blocks con-
strain the solution within the desired accuracy. Normally,
this search is carried out breadth-first—all blocks of a given
size are considered before blocks at a finer resolution level
are considered. However, under some circumstances (for in-
stance in minimal cases where a solution with zero cost is
known to exist), it may be preferable to carry out the search
depth-first, since this method has a smaller memory require-
ment. We have implemented both search strategies; both
work well.

This gives a general overview of the algorithm. In the
particular problems we are interested in, the search is over
all rotations, so the parameter space is 3-dimensional. Note
that we do not subdivide the translation space.

In the next few sections of this paper, we will consider
the details of our parametrization of rotations, and then the
method for computing a lower bound for the restricted opti-
mization problem.

3 The Geometry of the Space of Rotations

The group of all rotations is often referred to as SO(3), al-
though strictly speaking this only refers to its representation
as 3 × 3 orthogonal matrices. We will use SO(3) to denote
the group of rotations considered abstractly, but with a spe-
cific concrete representation in mind, namely in terms of the
rotations’ matrix representation.

Distance between Two Rotations The group of rotations
has a metric structure, defined by the angle metric, defined
as follows. Note that any rotation can be expressed as a ro-
tation through a positive angle less than π about some axis.
Let R and R′ be two rotations in SO(3). We wish to mea-
sure the distance between these two rotations. The distance
d∠(R,R′) is the angle θ lying in the range 0 ≤ θ ≤ π of the
rotation R′R−1. Note that it does not matter whether we de-
fine this distance in terms of R′R−1, or R−1R′, or R′−1R, or
RR′−1. The angle is the same.

We will be using the following inequality, which seems
simple enough that we omit the proof.

Lemma 1 For any vector V, ∠(RV,R′V) ≤ d∠(R,R′).

We shall have cause also to consider two different repre-
sentations of the set of rotations, quaternions and the angle-
axis formulation of rotations, and we will be interested in
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the relationship between the angle metric, and natural met-
rics defined for these alternative representations.

Unit Quaternions A quaternion is a 4-vector q = (q0, q1,
q2, q3) of real numbers with a defined non-commutative
multiplication operation (Wikipedia: “Quaternion”). It may
be verified that ‖q1q2‖ = ‖q1‖ ‖q2‖ where ‖ · ‖ represents
Euclidean norm in the 4-dimensional vector space. Thus,
the unit quaternions form a group under multiplication. We
denote the group of unit quaternions by H (in honour of
Hamilton).

Connection with 3D Rotations A unit quaternion may be
written as q = (cos(α/2), sin(α/2)r̂) where r̂ is a unit vec-
tor and 0 ≤ α ≤ 2π . We identify this quaternion q with the
rotation R(α, r̂), namely the rotation through angle α about
the axis r̂. It turns out that this mapping is a homomorphism
from the unit quaternions onto the group of 3D rotations.
One observes that a quaternion and its negative map to the
same rotation. Thus, mapping from unit quaternions to rota-
tions is a 2-to-1 mapping, inducing an isomorphism between
the group of rotations and the unit quaternions modulo nega-
tion. Any rotation may be represented by a unit quaternion
of this form with 0 ≤ α ≤ π .

Considered geometrically, the unit quaternions form a 3-
dimensional sphere in 4-space. The upper hemisphere (those
quaternions with q0 ≥ 0) is in one-to-one correspondence
with the rotations, except at the boundary, where the cor-
respondence is 2-to-1. We denote by H̃ the set of equiva-
lence classes of unit quaternions, modulo the equivalence of
a quaternion and its negative.

Distance in Quaternion Space One may define a simple
metric on the set of unit quaternions H as follows. Let p
and q be unit quaternions, which may therefore be repre-
sented by points on the unit 3-sphere. We define the dis-
tance dg(p,q) to be the geodesic distance on the sphere
between points p and q. In simpler terms, this is the dis-
tance between p and q along a great circle on the sphere.
This great-circle distance is easily computed by computing
the inner product of p and q as vectors. To avoid confusion
with quaternion multiplication we write this inner product
as 〈p,q〉 = ∑3

i=0 piqi . Since this inner product gives the
cosine of the angle between p and q, the distance metric
is defined as dg(p,q) = arccos〈p,q〉, where arccos takes
values between 0 and π . Since this distance function is
defined in terms of geometric distance between points on
the sphere, it is clearly a metric. The metric takes values
between 0 and π . It is a basic property that this distance
metric is invariant under quaternion multiplication, namely
dg(pr,qr) = dg(p,q).

This metric induces a metric d̃ on the group H̃ of equiv-
alence classes modulo negation. In particular given two

equivalence classes p̃ = {p,−p} and q̃ = {q,−q}, we define

d̃g(p̃, q̃) = min
(
dg(p,q), dg(p,−q)

)

= min
(
dg(p,q),π − dg(p,q)

)
.

Isometry between H̃ and SO(3) Note that the metric d̃g

takes values between 0 and π/2, whereas the metric d∠ on
rotations takes values between 0 and π . It should comes as
no surprise that these metrics are closely related. In fact, the
mapping from H̃ to the group of rotations is a scaled isom-
etry with respect to the two metrics. In particular consider
quaternions p and q, and their corresponding rotations Rp

and Rq respectively. The two metrics are related as follows:

d∠(Rp,Rq) = 2 d̃g(p̃, q̃).

In passing we observe that this relationship allows us to
determine the “volume” of the group of all rotations. The
group H̃ may be represented as the upper hemisphere of the
unit sphere S3, which has volume π2 (Wikipedia: “Sphere”).
Since the rotations are twice as big (in linear dimension), the
set of all 3D rotations has volume 8π2 cubic radians.

3.1 The Angle-Axis Representation

We now discuss how best to represent rotations for our
branch and bound application. A nice discussion of rotation
representations is given in (Wikipedia: “rotation representa-
tion”). However, the required details of our chosen represen-
tation will be given below.

We have seen that a rotation may be represented by a
quaternion q = (cos(α/2), sin(α/2)r̂) where α is the angle
of the rotation and r̂ is a unit vector representing the axis of
the rotation. (We shall in general use r̂ to represent a unit
vector.)

An alternative is to represent the rotation by the vector
r = αr̂. This is a vector with magnitude α, the angle of the
rotation, and with direction the axis of the rotation. This
is a result of applying a so-called “azimuthal-equidistant”
projection (in France, sometimes called the Postel projec-
tion, after Guillaume Postel, d 1581) to the unit quaternion
sphere, according to the mapping:

(
cos(α/2), sin(α/2)r̂

) → αr̂. (5)

This mapping may be thought of as taking the upper
quaternion hemisphere and flattening it, much as one might
take a tennis ball cut in half and flatten it by pushing down
to a plane. This causes tangential stretching at the periphery.

Because of the tangential stretching, we may intuitively
observe that 2d̃(q̃1, q̃2) ≤ ‖r1 − r2‖ where ‖ · ‖ repre-
sents Euclidean norm in R3, and ri = αi r̂i is the vector
corresponding to quaternion qi = (cos(αi/2), sin(αi/2)r̂i ).
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This relationship may be proved rigorously by comput-
ing an infinitessimal metric on the quaternion sphere.
Thus, let J be the Jacobian of the mapping f : r → q =
(cos(α/2), sin(α/2)r̂), where r = αr̂. Then an infinites-
simal metric on the quaternion unit sphere is given by
ds2 = dr�(J�J)dr. The symmetric positive-definite ma-
trix J�J may be computed explicitly. Its eigenvalues are all
at most equal to 1/2. This means that a line segment from
r1 to r2 maps under f to a path from q1 to q2 of length
no greater than half the length ‖r1 − r2‖ on the quaternion
sphere. Since the geodesic distance dg(q1,q2) will be less
than the length of this path, we have

d̃g(p̃, q̃) ≤ dg(p,q) ≤ ‖r1 − r2‖/2

as required.
Finally, relating the Euclidean metric to the angle metric,

we have the following relationship.

Lemma 2 If qi = (cos(αi/2), sin(αi/2)r̂i ) for i = 1,2 and
Ri are the corresponding rotations, and ri = αi r̂i , then

d∠(R1,R2) ≤ ‖r1 − r2‖.

The important point in this lemma is that the angle distance
is less than the Euclidean distance in the angle-axis repre-
sentation.

An alternative way of thinking of the angle-axis repre-
sentation of rotations is that a vector r = αr̂, where r̂ is a
unit vector, represents the rotation

R = exp([r]×) = I+ [r]× + [r]2×/2 + · · ·
= I+ sinα[r̂]× + (1 − cosα)[r̂]2×, (6)

which is the Rodrigues formula (see Hartley and Zisserman
2003). Here [r]× denotes the 3 × 3 skew-symmetric matrix
such that r × v = [r]×v for all 3-vectors v. Through the as-
sociation of the rotation R with the vector r, we see that
the set of rotations is represented by the ball of radius π

in R3. The correspondence is one-to-one on the interior of
the ball, whereas for vectors r with ‖r‖ = π , the correspon-
dence is 2-to-1, since both r and −r represent the same ro-
tation. A rotation through angle π about an axis is the same
as the rotation through angle π about the opposite axis.

Dividing Up Rotation Space The angle-axis representa-
tion gives a convenient way of dividing up rotation space
into blocks. Rotations are represented by points in a ball
B3

π of radius π in R3. We may enclose this ball in a cube
C3

π = [−π,π]3 in R3, and each point in this cube represents
a rotation. The representation is redundant, since points out-
side the ball represent the same rotation as some point inside
the ball, but this does not matter for our purposes.

Now, the cube C3
π may easily be broken up into cubic

blocks Di of a given size. These blocks form the initial sub-
division of the rotation space used in the branch-and-bound
algorithm. When necessary, a cube Di may be subdivided
into 8 cubes of half the size. A simple test may be used
to determine if a cube Di contains any points lying inside
the ball B3

π . If it does not, then it is discarded and not used
in the search. Given a cube Di , we represent by R̄ the ro-
tation corresponding to the centre of the cube, and by rD
the “radius” of the cube in terms of the angle metric. Thus
rD = max(d∠(R̄,R)), where R runs over all rotations repre-
sented by points in the cube D. From lemma 2 we have the
inequality

rD ≤ √
3σ (7)

where σ is the half-side length of the cube D.

4 Feasibility Problems

The most important requirement in the branch-and-bound
method is to be able to determine whether the function being
minimized may attain a value less than the current minimum
εmin on a restricted domain D in the parameter space. We
will show how this is done in the case of our problems of
interest.

First, we will detail how to obtain a bound for the rel-
ative pose problem in Sect. 4.1 and then continue with the
pose problem in Sect. 4.2. In the two subsequent sections,
we will show how one can improve computational efficiency
in two different ways. In Sect. 5, a more elaborate and effi-
cient linear programming solution is derived for the relative
pose problem. In Sect. 6, a tighter bounding function than
the one obtained in Sect. 4.2 is derived for the pose prob-
lem.

4.1 The Relative Orientation Problem

We consider a feasibility problem motivated by the relative
pose problem defined for a restricted rotation domain, D

with radius rD . We assume throughout that a set of corre-
spondences vi ↔ v′

i; i = 1, . . . ,N are given. By the radius
of the region, is meant maxd∠(R, R̄), where R̄ is the rotation
at the centre of D. We choose a coordinate system aligned
with the first camera. Then (R,C) denote the relative pose
of the second camera with respect to the first. The relevant
feasibility problem for the relative pose problem is then:

Given D,εmin

do there exist C,Xi ,R ∈ D

such that ∠(vi ,Xi ) ≤ εmin

and ∠(v′
i ,R(Xi − C)) ≤ εmin

for i = 1, . . . ,N ?

(8)
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Generally, we will be interested in this problem in the case
where we have a tentative solution to the relative pose prob-
lem with L∞ error εmin. A negative answer to this ques-
tion means that the optimal solution cannot be achieved with
R ∈ D.

Unfortunately, it is not possible to answer problem (8)
directly. Instead, we consider a slightly weaker, but solvable
problem in which we fix the rotation and place a slightly
weaker bound. Let D be a cube in rotation space with half-
side length σ and centre representing the rotation R̂. Then,
consider the problem

Given R̄, σ, εmin

do there exist C,Xi

such that ∠(vi ,Xi ) ≤ εmin

and ∠(v′
i , R̄(Xi − C)) ≤ εmin + √

3σ ?

(9)

Observe that the two constraints in problem (9) can written
as second-order cone constraints of the type given in (1).
Therefore, the problem is formulated as a SOCP feasibility
problem, and the question may then be answered using an
SOCP solver.

The two problems (8) and (9) are related as follows.

Lemma 3 If problem (8) has an affirmative answer then so
does problem (9). On the other hand, if the answer to prob-
lem (8) is negative on a domain D, then D may be split into
subdomains Di of sufficiently small radius such that prob-
lem (9) has a negative answer on every Di .

Proof First we prove that if problem (8) has an affirmative
answer then so does problem (9). Suppose that C, {Xi} and
Ropt constitute a feasible solution for problem (8). Then we
show that C and {Xi} constitutes a solution to problem (9).

The first constraint ∠(vi ,Xi ) ≤ εmin is fulfilled, since it
is the same as for problem (8). As for the second constraint,
by the triangle inequality, we have

∠(v′
i , R̄(Xi − C)) ≤ ∠(v′

i ,Ropt(Xi − C))

+ ∠(R̄(Xi − C),Ropt(Xi − C))

≤ εmin + d∠(R̄,Ropt)

≤ εmin + rD

≤ εmin + √
3σ

as required. Note where Lemma 1 was used.
Now for the second part of the lemma. Suppose that

problem (8) is infeasible, and that the minimum of all val-
ues of ε for which it is solvable is ε+, instead of εmin.
Thus ε+ > εmin and the constraints ∠(vi ,Xi ) ≤ ε and
∠(v′

i ,R(Xi − C)) ≤ ε cannot be satisfied for any choice of
Xi , C and R ∈ D and any value of ε < ε+. Choose σ such
that εmin + √

3σ < ε+. Then problem (9) is infeasible on

any subcube Di of D with side half-length σ . The domain
D may be divided into a finite number of such cubes so that
problem (9) is infeasible on any one of them. This completes
the proof of the lemma. �

This lemma gives a strategy for showing that problem
(8) is not feasible on domain D = [−σ,σ ]3. Letting R̄ be
the rotation represented by the centre of D, we ask whether
problem (9) is feasible. If the answer is no (problem is not
feasible), then neither is problem (8). If on the other hand
problem (9) is feasible, we subdivide domain D into smaller
cubic domains and continue by testing these subdomains.

4.2 The Pose Problem

The pose problem may be solved by the general branch-and-
bound technique outlined in Sect. 2 through solving the fea-
sibility problem

Given Xi ,D, εmin

do there exist C,R ∈ D

such that ∠(Rvi ,Xi − C) ≤ εmin ?
(10)

Again, it is not possible to solve this problem directly. In-
stead, we consider the problem

Given Xi , R̄, σ, εmin

does there exist C
such that ∠(R̄vi ,Xi − C) ≤ εmin + √

3σ ?
(11)

This is essentially the triangulation problem, and it may be
solved using SOCP. As in the relative pose case, problem
(10) may be relaxed to (11), which is then used to solve the
pose problem by the branch-and-bound technique.

5 A Linear Programming Solution for Relative Pose

For the relative pose problem, the SOCP-based method turns
out to be far too slow to be practical. A method that gives
orders of magnitude speed-up based on Linear Programming
is presented now.

Consider a set of correspondences vi ↔ v′
i in two views,

and suppose that the rotation is known. We address the ques-
tion of whether a solution to the relative pose problem ex-
ists, fitting the data within a given tolerance εmin as in (8).
Such a possible solution would involve an epipolar direction
t giving the relative displacement of the second camera with
respect to the first. We consider just a single correspondence
v ↔ v′ from the set of correspondences. The three vectors
v, v′ and t must be coplanar (the familiar coplanarity condi-
tion). With a given uncertainty εmin in the measurements v
and v′, we see that the vector t must lie in a wedge-shaped
region, as shown in Fig. 1. Thus, the vector t lies between
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Fig. 1 The epipole lies in the
wedge of a sphere bounded by
the pair of crossed great circles,
and containing the vector v

Fig. 2 The epipolar vector lies on the plane Z = 1 in a coordinate
frame determined by the pair of matched points v and v′. In this frame,
the Y-axis coincides with w

two planes, which may be specified in terms of the corre-
sponding pair v ↔ v′. In this way t is constrained by two
linear constraints (one for each bounding plane). From a set
of n correspondences, 2n linear constraints arise in this way.
The existence of a solution within the desired tolerance εmin

therefore becomes an LP feasibility problem in only 3 vari-
ables (the coordinates of t). We can reduce this to two vari-
ables; since the length of t is indeterminate, and irrelevant,
we can intersect the vector t with a plane, as in Fig. 2 reduc-
ing the problem to two variables. Thus, we have replaced an
SOCP feasibility problem in 3n + 2 variables and 2n con-
straints by an LP feasibility problem in only 2 variables and
2n constraints. The most important advantage is not simply
the greater speed of LP versus SOCP, but rather that in the
SOCP problem, the coordinates of the 3D points Xi appear
as parameters, whereas we have eliminated them in the LP
formulation. This makes for a much smaller feasibility prob-
lem that can be solved orders of magnitude faster.

With 100 or even 1000 points involved in the reconstruc-
tion, the speed-up can be enormous, particularly as the prob-
lem must be solved repeatedly for differing values of ε in
a binary search. Under the reasonable assumption that con-
strained programming is cubic in the size of the problem (al-
though the commonly used Simplex algorithm can of course
theoretically be exponential), and the unreasonable assump-
tion that a SOCP problem takes the same amount of time as

an LP programming problem of the same size, the differ-
ence in time represented by this new method on a problem
involving 100 points, compared with the SOCP method is
approximately a 650 times speedup.

5.1 More Details on Linear Programming

Let t be a unit direction vector from the camera centre C of
the first camera to the centre C′ of the second camera. This is
the epipolar direction, which we wish to determine. Given a
pair of image points vi ↔ v′

i corresponding to a 3D point X,
we have the equation X = C + λvi = C′ + μv′

i for positive
scalars λ and μ. This equation reduces to λvi − μv′

i = C′ −
C = νt, where λ,μ, ν are all positive. Setting ν = 1, we get
the simple but key observation that

t = λvi − μv′
i for positive constants λ and μ. (12)

Now, vi and v′
i are vectors based at different basepoints.

However, v′
i is simply a direction vector. We may move all

of vi , v′
i and t to be based at the origin. They all then lie

on the unit sphere, and in fact, being coplanar, all lie on a
great circle. As before, expanding vi and v′

i to cones, we
see that the epipole t must lie on the section of the sphere
bounded by the pair of crossed great circles. In fact, because
of (12), the epipole must lie inside the wedge containing vi .
This is illustrated in Fig. 1. If the two ε-circles about vi and
v′
i overlap, then there is no constraint (since any t would be

feasible), and we ignore this corresponding pair.
Since we are dealing with a single correspondence at

present, we drop the subscript i and write v ↔ v′. Now,
since each great circle lies in a plane, it follows that t lies
between the pair of planes of the two great circles, as shown
in Fig. 2. We relax the condition that t is a unit vector, and
instead constrain it to lie on the plane Z = 1 in a coordinate
system chosen as follows.

1. The Y axis passes through the point w where the two
great circles meet, between v and v′.

2. The X-axis is in the direction of the cross product w × v.
3. The Z-axis is x × y where x and y are the directions of

the X and Y axes.

This choice of coordinate frame is carried out for the first
matched point v0 ↔ v′

0 only (provided it does yield a con-
straint, i.e. the ε-circles do not overlap). The other corre-
spondences must be related to this coordinate frame. The
easiest way is to rotate all the point correspondences vi ↔ v′

i

for i > 0 to this coordinate frame, then compute the bound-
ing planes in this coordinate frame, as in the next section.

Remark Note that not all epipoles t lying between the two
great circles, that is the marked wedge in Fig. 1, are valid
solutions. In fact the portion of the wedge lying between
the w-axis and the ε-cone around v corresponds to points
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that do not satisfy the constraint (12) for positive constants.
This will result in a solution with reconstructed 3D points
with negative depths (behind the cameras), which is geo-
metrically invalid. The same is true for the symmetrically
placed region lying between the negative w axis and the ε-
cone about the vector −v′. To remove such spurious solu-
tions, further constraints could be added to the feasibility
test. However, we have found experimentally and theoreti-
cally that this is not necessary in practice.

Indeed, by ignoring this small detail, the constraints on
the vector t are made slightly less tight than they may be.
This can conceivably result in a false positive answer to the
feasibility test. This is not critical, since it can not result in
the rejection of a postulated rotation value. Instead, in the
branch-and-bound algorithm it will simply result in the cur-
rent rotation cube being subdivided and deferred to the next
level of resolution.

5.2 Computing the Great-Circles on the Unit Sphere

We want to compute the normals to the planes of the great-
circles in Fig. 1 tangent to the uncertainty cones for the mea-
surements vi and v′

i .

5.2.1 General Algebraic Solution

It is possible to solve this easily in the case where the cones
are elliptic, as follows. Observe that the planes of the great-
circles in Fig. 1 are tangent to the two cones. We find the bi-
tangent planes as follows. The two cones may be expressed
as equations X�QX = 0 and X�Q′X = 0, where Q and Q′
are 3×3 non-singular symmetric matrices. (For instance the
case Q = diag(1,−1,1) represents a circular cone centred
on the Y-axis.) The vector X represents a 3D point. Pass-
ing to the dual, we obtain the equations for the dual cones,
represented by matrices Q−1 and Q′−1. A plane through the
origin with normal n is tangent to the original cones if and
only if n�Q−1n = n�Q′−1n = 0. Solving these two simulta-
neous quadratic equations results in 4 solutions correspond-
ing to the four bi-tangent planes. We choose the solutions
with appropriate sign to satisfy n · v > 0 and n · v′ < 0. Geo-
metrically, it is evident that there are just two such planes.
Thus, we get two solutions n1 and n2 representing the planes
in Fig. 2. The linear constraints on the vector t are simply
n1 · t ≥ 0 and n2 · t ≥ 0.

Setting Z = 1 in these inequalities results in just two lin-
ear inequalities in X and Y representing constraints on the
plane Z = 1 in the coordinate system defined by the first
point correspondence. In this way, determining the existence
or not of an epipole satisfying all constraints becomes an LP
feasibility problem in only two variables.

5.2.2 A Closed-Form Expression

The method described above involves solution of a 4-th de-
gree polynomial in order to find the bi-tangent planes. In-
stead, we show that it is possible to obtain a simple closed-
form expression for the inequalities, as shown now. We con-
sider the case where the cones are circular (we are interested
in minimizing angle error on the sphere), but of possibly dif-
ferent diameters, given by angles ε and ε′, centred on v and
v′ respectively. This is because problem (9) specifies differ-
ent bounds for vi and v′

i .
The proof of the following results is given in an appendix.

Refer to Fig. 12 to aid in understanding this diagram.

1. First, v · v′ is the cosine of the angle between v and v′.
If this is less than ε + ε′ then no constraint results from
this correspondence, and we skip it. Let α be the angle
between v and v′.

2. The angle β between the plane containing v and v′ and
the crossed bi-tangent plane is given by

sin2 β = sin2(ε) + 2 sin(ε) sin(ε′) cos(α) + sin2(ε′)
sin2(α)

.

(13)

3. The point w where the two great circles cross is

w = sin(ε)v′ + sin(ε′)v
sin(β) sin(α)

. (14)

4. The local coordinate system is defined by vectors y = w,
x = (v × v′)/‖v × v′‖ and z = x × y.

5. The two normals are sin(β)z ± cos(β)x.

5.3 Testing for Feasibility

The first point correspondence gives rise to a strip on the
plane Z = 1 between the lines X = ± tan(β). Thus, subse-
quent constraints bound a region in this strip. The question
is whether there is a point in the strip that satisfies all the
constraints. It would be possible to set this up as one LP
programming problem consisting of 2n constraints in 2 vari-
ables, and then to solve it using an appropriate LP package.
Here n is the number of point correspondences. If n is large,
this can still take too long, particularly since we need to
solve this problem a large number of times. We are looking
for maximum speed.

In a search procedure there will be many instances in
which the problem is infeasible, and it saves time to de-
tect this early. It may be that with just a small number of
constraints the problem already becomes infeasible. In the
branch-and-bound algorithm, infeasible constraint problems
are much more common than the feasible ones, so it is im-
portant to detect infeasible problems early.
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Fig. 3 Constraints on the
position of the epipole t result in
constraints on a strip in the
plane Z = 1. This strip is
bounded by the lines
X = ± tan(β0) resulting from
the first point correspondence.
Considering the constraints one
at a time, we compute loose
bounds on the region, as
discussed in the text

After setting Z = 1 in the constraints ni · t ≥ 0, we ob-
tain constraints of the form ai X + bi Y + ci ≥ 0, where
t = (X, Y,1). This can be rewritten (depending on the sign
of bi ) as either Y ≥ ci + ai X or Y ≤ ci + ai X for new val-
ues of the constants ai and ci . Our algorithm is as follows.
(Please refer to Fig. 3.)

1. Let X− and X+ be the two edges of the strip shown in
Fig. 3.

2. From Y ≥ ai + ci X, we obtain a constraint Y ≥ ai +
min(ci X−, ci X+), which must hold for any point satisfy-
ing Y ≥ ai + ci X. (Yes, this should be min and not max,
and of course the converse of this statement is not true.)

3. Similarly from Y ≤ ai + ci X we derive a constraint Y ≤
ai + max(ci X−, ci X+).

4. Considering the constraints in order of arrival, we may
compute loose running lower and upper bounds Ylow and
Yhigh for Y. If at any point Ylow > Yhigh, it means that the
constraints are infeasible, and we exit, reporting this fact.

This allows infeasible problems to be detected quickly.
It also allows inactive constraints to be detected and elim-
inated, resulting in a smaller LP problem, should we need
to run a complete LP algorithm. Specifically, any constraint
that lies completely “below” the current value of Ylow or
above Yhigh does not need to be considered.

6 A First Order Bound for Pose

The bounds in Sect. 4 were called zero-th order bounds be-
cause they used a zero-th order approximation to the ro-
tations in a region D of rotation space, namely the centre
of the rotation domain D. Although these bounds allowed
us to formulate a branch-and-bound algorithm to solve the
pose and relative pose problems, the bounds are somewhat
pessimistic. The speed of the branch-and-bound algorithm
depends on the number of cells D that need to be tested.
A cell is eliminated from further consideration if the lower
bound residual calculated for that cell exceeds the current
minimum residual. If not, we need to subdivide the cell and
repeat the calculation for the subdivided cells. It is critical

to avoid subdividing unnecessarily, so the better the lower
bound is, the fewer subdivisions will be necessary.

With the zero-th order rotation estimate, the uncertainty
gap on our estimate of the residual is equal to the radius
of the rotation cell. It will be seen that using a first order
approximation to rotation, it is possible to decrease the gap
to the order of the squared-radius of the rotation cell. For
small cells, the gap will be very small. If this sounds hard to
follow at present, wait until we describe the details.

6.1 First Order Approximation to Rotations

A rotation matrix R corresponding to a 3-vector r in the
angle-axis representation can be represented in the exponen-
tial form as

R= exp([r]×) = I+ [r]× + [r]2×/2 + · · · .

Let R̄ be a rotation. A first order approximation to R about R̄
is defined as follows. Let δR= R̄�R and

δR= exp([δr]×) = I+ [δr]× + [δr]2×/2 + · · · ,

where δr is the corresponding angle-axis representation of
δR. By truncating this series after the second term we get

R= R̄δR≈ R̄+ R̄[δr]×.

This last expression is the first order approximation to R
about R̄, which will be denoted by R̂.

We need to evaluate how good an approximation this is
to the rotation R. The required relationship is as follows.

Lemma 4 Let R be a rotation and R̂ be its first order ap-
proximation about R0, where d∠(R,R0) < rD < 0.76. Then
for any vector V, ∠(RV, R̂V) ≤ r2

D/2.

This compares with the zero-th order approximation R̄
to R, for which ∠(RV, R̄V) ≤ rD . When rD is small, the
first order approximation to R gives a significantly better re-
sult. The restriction rD < 0.76 just implies that the size of
the cubes in the branch-and-bound algorithm cannot be too
large. This is easily handled by starting with a sufficiently
fine subdivision of rotation space. We prove this lemma in
Appendix 2.

6.2 Revisiting the Pose Problem

We may formulate the feasibility problem for pose compu-
tation using the first order approximation to R as follows.

Given Xi , εmin, R̄,D, with rD < 0.76
do there exist C, R̂
such that ∠(vi , R̂(Xi − C)) < εmin + r2

D/2?
(15)
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Fig. 4 For typical synthetic problems, the number of remaining cubes
(left) and the volume (right) are plotted (on a log-10 scale) against
the number of subdivision phases. At the final subdivision, the cube
half-side length is 6.13 × 10−4 radians, and the rotation is known to

lie in a region with volume about 10−6 cubic radians. In other words,
the rotation is known within about 10−2 radians (the rotation could of
course be computed with arbitrary accuracy)

With essentially the same derivation as before, we can show
that if this problem is infeasible, then so is problem (10).
What remains to show is that we may find a solution to this
problem. We may write

∠(vi , R̂(Xi − C))

= ∠(R̄�vi , (I+ [δr]×)(Xi − C))

= ∠(R̄�vi ,Xi + δr × Xi − (I+ [δr]×)C)).

However, C is an unconstrained variable in problem (15),
and as C runs over all values in R3, so does (I+ [δr]×)C.
So the feasibility problem can be answered by solving

Given Xi , R̄, εmin

do there exist C, δr ∈ [−σ,σ ]3

such that ∠(R̄�vi ,Xi + δr × Xi − C)

< εmin + 3σ 2/2?

(16)

The important point here is that the unknowns δr and C do
not interact quadratically in this expression, and the problem
is of the form (2), and so may be solved using SOCP.

7 Verification and Testing

7.1 Relative Pose Estimation

We tested the algorithm on many synthetic examples. Gen-
erally speaking, the speed of convergence of the algorithm
was closely tied to field of view of the camera. For cameras
with 360◦ field of view, the convergence was very fast.

Initial rotation space is divided up into sufficiently small
blocks. The exact number is not important; we use an
11×11×11 subdivision. The subdivision search for the op-
timal rotation was carried out using cubes in rotation space

Fig. 5 For synthetic data with n = 20 points, the 3D shape of the re-
maining rotation region is shown after running the algorithm to reso-
lution of 0.001 radians. Recall that the shape of the set of all rotations
in the angle-axis representation is a closed 3-dimensional ball. The ex-
ample in the figure is for a sideways motion of the camera with a field
of view of about 60◦, and a motion equal to 0.5 times the distance
to the closest point. The shape of the rotation region is quite flat and
elongated. This is explained by the known translation/rotation ambi-
guity, that translation and rotation of a camera are at times difficult to
distinguish, particularly for small fields of view

down to a predetermined resolution. This results in a finite
region of rotation space in which the rotation must lie. Us-
ing a breadth-first search, we consider cubes of diminishing
size. When all cubes of a given size have been considered
(we call this a phase of the algorithm), the remaining cubes
are subdivided and considered in the next phase. In Fig. 4
the number of remaining cubes and the remaining volume
after each phase is shown.

Next, the remaining 3D shape of the rotation space is
shown in a few examples (see Fig. 5).

Reconstruction from Small Numbers of Points It is well
known that the essential matrix can be computed from only
5 points, in which case up to 10 solutions may occur. How-
ever, it is also possible to attempt to compute the essential
matrix from 3 and 4 point correspondences. In the case of 5
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Fig. 6 Shape of the possible
rotations for 3 point
correspondences. The space of
possible rotations forms a
surface in 3-dimensional
rotation space

Fig. 7 Shape of the possible
rotations for 4 point
correspondences. The space of
possible rotations forms a set of
curves in 3-dimensional rotation
space

points, there is a 0-dimensional set of exact solutions. For 4
and 3 point correspondences, one finds 1 and 2 dimensional
sets of possible rotations, embedded in the 3-dimensional
rotation space. This is shown for synthetic data in Fig. 6 and
Fig. 7 for 3 and 4 points, respectively.

Timing Information The speed of convergence depends on
many factors, most notably the field of view and the degree
of perspective in the images. These factors vitally effect the
branch-and-bound convergence rate, that is, the number of
cubes that need to be tested. Generally speaking, the com-
putation time can be large for small numbers of points, be-
cause the number of required tests is high, since solutions
with rotations far from the correct one can still have rela-
tively small error—the data does not constrain the rotation
so strongly. On the other hand, for large problems, the num-
ber of tests required is much smaller but each individual fea-
sibility test is more expensive. Figure 8 shows some typical
timing information for various numbers of points.

Ordinary perspective cameras have a smaller field of
view, and the algorithm is slower since it becomes harder
to eliminate rotation cubes. Here are some example times
for image pairs taken from the Notredame data set provided
by Noah Snavely.

Correspondences 6572 794 29
Time 6m 21s 16s 7s

7.2 Pose Estimation

The camera pose estimation has been implemented in Mat-
lab using SOCP feasibility tests in the branch and bound al-
gorithm. Timings reported below should take this into con-
sideration. We believe that a fast LP implementation would

Fig. 8 Time in milliseconds plotted against number of points used to
compute the relative pose, for 360◦ data from a Ladybug camera. Even
very large problem sizes take less than 350 milliseconds

result in a speed-up of a factor 10 to 100, but it is not evident
how one should recast the SOCP feasibility problems using
LP. At the initial subdivision of rotation space, the cube half-
side length was set to π/8 radians.

In Fig. 9 and Fig. 10, camera pose computations are re-
ported for both zero-th and first order bounds for the feasi-
bility problems in (9) and (11), respectively. Note that there
is a large difference between the two ways of bounding the
error. The number of remaining cubes after each subdivision
phase is considerably larger by a factor of at least 100 for the
weaker zero-th bound than the first order bound.

Each SOCP feasibility problem is slightly more compli-
cated for a first order bound compared to a zero-th order
bound since the dimension of the problem is higher due to
the first order terms. Each individual feasibility test takes ap-
proximately 20% longer time to execute, but the total time
gained with the first order method is considerable. On the av-
erage, for a 4-point pose problem in the corridor sequence,
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Fig. 9 Pose: The number of remaining cubes (on a log-10 scale)
is plotted against the number of subdivision phases for camera pose
computations on real data from the publicly available Oxford corridor
sequence. In total, there are 11 images and several hundreds of pre-
determined 2D-3D point correspondence in the data set. The average
result of all 11 (independent) camera pose estimation problems in the

sequence is given for varying number of randomly chosen 2D-3D cor-
respondences. Left: the zero-th order algorithm; Right: the first order
algorithm. The number of cubes examined at each iteration is around
100 times less for the first order algorithm. Also note that the number
of cubes considered decreases with the size of the problem

Fig. 10 Pose: The remaining volume (on a log-10 scale) of rotation
space is plotted against the number of subdivision phases for camera
pose computations on real data. The average of all 11 cameras in the
corridor sequence is given for various numbers of randomly chosen
point correspondences. Left: the zero-th order algorithm; Right: the

first order algorithm. After 11 iterations, the remaining volume is a
factor of around 100 less for the first order algorithm. Also note that
the number of cubes considered at each phase is less in the first order
algorithm

the execution time is around 1 hour for the zero-th order,
but only 2 minutes for the first order method. Correspond-
ing numbers for a 10-point pose problem are 10 minutes
(zero-th order) and 1.5 minutes (first order), respectively.

8 Conclusions and Future Work

The algorithm for the relative pose problem works extremely
well for 360◦ images, such as Ladybug™ images, less

quickly, but still reasonably for narrower field of view im-
ages. In some instances this algorithm will be preferable to
known algorithms in real instances where real time speed is
not an issue. Another important role for this algorithm is in
giving a bench-mark optimal solution against which other
algorithms may be judged.

The method of searching over rotations proposed here
has applications on other problems that we are still explor-
ing. It has the potential for wide applicability.
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The method that we have proposed for solving the two-
view motion problem (with known rotation) is optimal, and
runs orders of magnitude faster than the existing optimal
algorithms based on SOCP. It is impossible to use the old
methods on very large problems, or ones that involve large
numbers of invocations of the algorithm.

We have given two important improvements of the orig-
inal branch-and-bound algorithm presented in Sects. 2–4 in
order to speed up the computations. First, for the relative
pose problem, an LP formulation of the feasibility problem
was developed instead of the original SOCP formulation.
Then, for the pose problem, a first order bound was derived
which is tighter than the original zero-th order bound.

8.1 Ideas for Speedup

There is still room for improvements in terms of speed
which would make the methods even more competitive com-
pared to traditional local algorithms. These ideas are left for
future research.

An LP formulation of the pose problem would most defi-
nitely result in faster execution times. Regarding the relative
pose problem, we describe here other ideas of speeding up
the calculations by accelerating the solution of the feasibility
problems.

1. It was suggested in Sect. 5.1 that the first (essentially
an arbitrary) correspondence should be the one used to
define the coordinate frame and determine a strip as in
Fig. 3 bounded by X = ± tan(β0). A better idea would
probably be to select the point pair for which the image
correspondences were furthest separated, since in this
case the angle β is smallest, resulting in a narrow strip
and a more accurate feasibility test.

2. Since the feasibility test gives a way of identifying a fea-
sibility problem with negative solution, it is not certain
that we need to solve the LP problem at all. If the prob-
lem passes the feasibility test, then we assume that the
feasibility test has an affirmative answer, and subdivide
the region D. This will mean that some regions are un-
necessarily subdivided, but will not cause the algorithm
to fail.

3. If we are willing to specify that one specific correspon-
dence is exact, then we may do without the LP altogether.
The fast feasibility test given in Sect. 5.3 may be simpli-
fied, since instead of having a strip in which the epipole
must lie, it is a straight line. This reduces the LP prob-
lem to a problem in one dimension, which may be solved
trivially.

Appendix 1

We prove the formulas given in Sect. 5.2.2. Parts 1 and 4 of
the formulas given in Sect. 5.2.2 are very simple. To prove

Fig. 11 The formula for the
sine of an angle in a
right-angled spherical triangle
formed by arcs of great circles is
sin(B) = sin(b)/ sin(c) where b

and c are the lengths of the arcs
on the surface of the unit sphere

Fig. 12 Computing the angle between the plane bi-tangent to two
cones and the plane containing the axes of the two cones. See the text
for the computation

the other results, we start with part 3, namely the formula
for vector w.

By symmetry, w is coplanar with v and v′. We write w =
av + bv′. Taking cross products with vectors v and v′ and
expressing the length of the resulting vector in two ways
leads to

sin(γ ) = ‖w × v‖ = ‖bv × v′‖ = b sin(α),

sin(γ ′) = ‖w × v′‖ = ‖av × v′‖ = a sin(α)

where γ and γ ′ are the angles separating w from v and v′
respectively. From this we obtain

w = sin(γ ′)
sin(α)

v + sin(γ )

sin(α)
v′. (17)

We do not yet know the angles γ and γ ′. At this point, we
need an elementary result from spherical trigonometry (see
Fig. 11).

Lemma 5 Let ABC be a spherical triangle in which C is
a right-angle, and the edges be arcs of length a, b and c

respectively, on a unit sphere. Then sinB = sin(b)/ sin(c).

This compares with the formula for a Euclidean triangle in
which sinB = b/c. We do not intend to prove this lemma.

Now, applying this to the triangles shown in Fig. 12 we
see that

sin(β) = sin(ε)

sin(γ )
= sin(ε′)

sin(γ ′)
.

Substituting for sin(γ ) and sin(γ ′) in (17) gives the required
formula (14) for w.
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Next we wish to prove the formula (13) for β . This is
simply a result of the fact that w is a unit vector. Computing
the norm of w given by (14) yields

‖w‖2 = sin2(ε) + 2 sin(ε) sin(ε′) cos(α) + sin2(ε′)
sin2(α) sin2(β)

from which the result follows.
The final item in Sect. 5.2.2, namely n = sin(β)z ±

cos(β)x is simply a statement that the angle between the
tangent plane and the z-axis is β .

Appendix 2

We now prove Lemma 4.

Proof Since R= R̄δR and R̂= R̄+ R̄[δr]×, we see that

∠(RV, R̂V) = ∠(R̄δRV, R̄(I+ [δr]×)V)

= ∠(δRV, (I+ [δr]×)V).

We wish to bound this angle as V varies over all vectors.
Since the magnitude of V is irrelevant, we may assume that
V is a unit vector, in which case, so is δRV.

For vectors A and B for which ‖A‖ = 1, and ‖A − B‖ <

1, observe that ∠(A,B) ≤ arcsin(‖A − B‖), as may be seen
by drawing a simple diagram. Apply this fact, we see that
when V is a unit vector,

∠(RV, R̂V) ≤ arcsin(‖(δR− I− [δr]×)V‖) .

Now, let δr = δθ r̂, with r̂ a unit vector be the vector rep-
resentation of the rotation δR. From Rodriques’s formula
we have δR = I + sin δθ [r̂]× + (1 − cos δθ)[r̂]2× and so
(δR− I− [δr]×)V is equal to

(sin δθ − δθ)[r̂]×V + (1 − cos δθ)[r̂]2×V

= (sin δθ − δθ)r̂ × V + (1 − cos δθ)r̂ × (r̂ × V).

Note that r̂ × V and r̂ × (r̂ × V) are orthogonal and of the
same length. Clearly, the magnitude of this vector is maxi-
mized (as V varies over all unit vectors) when r̂ and V are
orthogonal, so that r̂ × V is a unit vector. In this case,

∠(RV, R̂V) ≤ arcsin(‖(δR− I− [δr]×)V‖)
= arcsin

(√
(sin δθ − δθ)2 + (1 − cos δθ)2

)

≤ δθ2/2

for 0 < δθ < 0.76. This is easily verified graphically (see
Fig. 13). A rigorous proof follows. Since both arcsin and
square root are monotonic functions on the interval [0,1], it

Fig. 13 Plot of the function arcsin(
√

(sinx − x)2 + (1 − cosx)2)/x2,
verifying the last step of the proof of Lemma 4

is equivalent to prove

(sinx − x)2 + (1 − cosx)2

≤ sin2(x2/2) = (1 − cos(x2))/2

for x in the interval. Expanding both sinx − x and 1 − cosx

in a Taylor series we obtain bounds

(sinx − x)2 + (1 − cosx)2

< (x2/2 − x4/4! + x6/6!)2 + (x3/3!)2

< x4/4 − x6/72 + x8/320.

Similarly, from the Taylor series for cos(x2) we obtain

x4/4 − x8/48 < (1 − cos(x2))/2.

The lemma is completed by showing that x4/4 − x6/90 <

x4/4 − x8/48, which is seen to be true when 0 ≤ x <√
40/69 ≈ 0.76. �
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